
Reactive programming,
WinForms, .NET

Björn Dagerman

Motivation

- Troublesome for many students previous years

- Most student solutions we see are imperative

- Useful techniques when working with GUI’s, web, ...

- Well suited to be used with functional concepts like higher-order
functions

- Give an introduction to WinForms and .NET

Goals

After the lecture you should know how to:

- Handle event streams

- Set up asynchronous workflows

- Structure reactive programs

- Use WinForms

- How some feeling for what to look at next (continued learning)

.NET & CLR

!
Microsoft F#

F# is a functional programming language for the .NET Framework. It
combines the succinct, expressive, and compositional style of
functional programming with the runtime, libraries, interoperability,
and object model of .NET. [F# home page]

.NET & CLR

.NET provides a run-time environment called the Common
Language Runtime (CLR)

Compilers and tools expose the CLR’s functionality

Allows you do develop code that targets the runtime

Such code is called managed code

Benefits of managed code include:

- Cross-language integration

- Cross-language exception handling

- Enhanced security

- Versioning and deployment support

- Simplified model for component interaction

- Debugging and profiling services

.NET & CLR

Using .NET libraries from
F#

!

F# has been a first-class .NET citizen since its early days

It can access any of the standard .NET components

Any .NET language can access code developed in F#

For example, F# doesn’t have its own GUI library. However, by
going through .NET we can create GUI’s in F#

Windows Forms
!

A GUI class library part of .NET

We will use WinForms to create GUI applications in L4 and (some)
projects

Alternatives: using the graphical Windows Forms Designer, or
programmatically writing the necessary code

Windows Forms Designer is unfortunately not supported directly by
F#

Workaround: create a project in a language that supports the designer,
i.e. C# and create the GUI, then either
!
- Add this project to your F# solution, or

- Export as library (F# to C# or vice-versa)

Windows Forms – Windows Forms Designer

Straight-forward approach. Remember to add a reference to

System.Windows.Forms	

!

Opening a window using F# interactive:

Windows Forms – programmatically

> open System.Windows.Forms;;

> let form = new Form(Text = ”Demo”, Visible = true, TopMost = true);;

Reactive Programming

Create programs that wait for some input or event

!

Examples: GUI’s, Server applications

Asynchronous programming describes programs and
operations that once started are executed in the background and
terminate at some “later time”

Dataflow programming is a way of modeling programs as a
series of connections between data. The main concern is how the
data moves and propagates through these connections

We combine these concepts with those of functional programming,
such as higher-order functions (map, reduce, filter, ...)

Reactive programming

Events are a recurring idiom in .NET programming

!

An event is something you can listen to by registering a callback

Reactive programming – Events

Opens a window

When clicked, ”Clicked!” is printed to the console

form.Click is an event

form.Click.Add registers an event handler (also known as a
callback)	

Reactive programming – Events

> open System.Windows.Forms;;
!
> let form = new Form(Text = "Click Form", Visible = true, TopMost = true);;
!
val form : Form = System.Windows.Forms.Form, Text: Click Form
!
> form.Click.Add(fun evArgs -> printfn "Clicked!");;

Example using F# interactive:

Events in F# (such as form.Click) are first-class values, meaning you
can pass them around like any other value

We can use the combinators in the Event module to map, filter, and
otherwise transform the event stream in compositional ways

Example:

Reactive programming – Events as First-Class Values

form.MouseMove
 |> Event.filter (fun args -> args.X > 100)
 |> Event.listen (fun args -> printfn "Mouse, (X, Y) = (%A, %A)" args.X args.Y)

Events are a F# idiom to express configurable callback structures

F# also supports a more advanced mechanism for configurable
callbacks that is more compositional than events: Observables

Example:

Reactive programming – Observables

> open System.Windows.Forms;;
!
> let form = new Form(Text = "Click Form", Visible = true, TopMost = true);;
!
val form : Form
!
> form.Click |> Observable.add (fun evArgs -> printfn "Clicked!");;

Function Type and description

filter
('T -> bool) -> IObservable<'T> -> IObservable<'T> Returns an event that’s triggered when
the source event occurs, but only if the value carried by the event matches the specified predicate.
This function corresponds to List.filter for lists.

map
('T -> 'U) -> IObservable<'T> -> IObservable<'U> Returns an event that’s triggered every
time the source event is triggered. The value carried by the returned event is calculated from the
source value using the specific function. This corresponds to the List.map function.

add
('T -> unit) -> IObservable<'T> -> unit Registers a callback function for the specified event.
The given function is called whenever the event occurs. This function is similar to List.iter.

scan

('U -> 'T -> 'U) -> 'U -> IObservable<'T> -> IObservable<'U> This function creates an
event with internal state. The initial state is given as the second argument and is updated every
time the source event occurs using the specified function. The returned event reports the
accumulated state every time the source event is triggered, after recomputing it using the source
event’s value.

merge
IObservable<'T> -> IObservable<'T> -> IObservable<'T> Creates an event that’s triggered
when either of the events passed as arguments occurs. Note that the type of the values carried by
the events ('T) has to be the same for both events.

partition

('T -> bool) -> IObservable<'T>
 -> IObservable<'T> * IObservable<'T>
!
Splits an event into two distinct events based on the provided predicate. When the input event
fires, the partition function runs the predicate and triggers one of the two created events
depending on the result of the predicate. The behavior corresponds to List.partition function.

Overview of the most important functions of the Observable
module

Reactive programming – Observables

Let’s make a program where we change the value of a label by clicking
on buttons:

We start by defining the Event-processing pipeline for this program:

Starting from the left, ”Increment” and ”Decrement” are the source
events. The other boxes are events created using processing functions
!
The idea is that we take the click events and transform them such that
they propagate integer values

Reactive programming – Observables

//helper function
let always x = (fun _ -> x)
!
//event processing code
let incEvent = btnUp.Click |> Observable.map (always 1)
let decEvent = btnDown.Click |> Observable.map (always -1)
!
Observable.merge incEvent decEvent
|> Observable.scan (+) 0
|> Observable.add (fun sum -> lbl.Text <- sprintf ”Count: %d” sum)

In code:

incEvent and decEvent have type IObservable<int>. They represent events
carrying integers
!
We merge two events creating an event that will be triggered when
either button is pressed
!
Because the event carries integers, we can use scan to sum the values
(starting with 0). We use (+) for aggregation, meaning every click will
either add +1, or -1

//Monitors files in the user’s Downloads folder
let fileWatcher = new FileSystemWatcher(
Path.Combine(Environment.GetFolderPath(Environment.SpecialFolder.UserProfile
), "Downloads"))
!
//Checks if a file is archived or not
let isArchived(fse:FileSystemEventArgs) =
 let archive = FileAttributes.Archive
 (File.GetAttributes(fse.FullPath) &&& archive) = archive
!
//Unpacks a file using the unrar command
let unpack(fse:FileSystemEventArgs) =

let command = “/c unrar e “ + fse.FullPath.ToString()
System.Diagnostics.Process.Start("CMD.exe", command) |> ignore

!
//The programs control flow
fileWatcher.Changed //all new files
 |> Observable.filter isArchived //ignore those that are not archived
 |> Observable.add unpack //unpacks them

Reactive programming – Example

Let’s create a program that monitors the users download folder and
unpacks any new .rar files:

Asynchronous workflows

Asynchronous: something that is not synchronous,
i.e., non-blocking IO

Used to perform requests that are not completed immediately

Key observation: we don’t want these requests to block our current
thread!

Instead of waiting, multiple requests can be sent and results can be
handled as soon as it becomes available. Example: web crawlers

Reactive programming – Asynchronous workflows

When designing applications that don’t react to external events, we
have many constructs that makes it easy to describe what the
application does:
!
if-then-else expressions, for loops and while loops in imperative
languages
!
higher-order functions and recursion in functional languages

Reactive programming – Asynchronous workflows

A typical GUI program that reacts to multiple events usually involves
some mutable state. Depending on the event, this state changes
somehow and more code may be run as a response
!
Difficult to understand all possible states and the transitions
between them
!
Using asynchronous workflows we can write our code in such a way
that the control flow becomes visible even for reactive programs

In F# we design asynchronous workflows using the async block
!
async { some expression }

!
and the let! (bang) primitive

Reactive programming – Asynchronous workflows

Construct Description

let! pat = expr
Execute the asynchronous computation expr and bind its result to pat when it completes. If
expr has type Async<'a>, then pat has type 'a. Equivalent to async.Bind(expr,(fun pat -> ...)).

let pat = expr
Execute an expression synchronously and bind its result to pat immediately. If expr has type
'a, then pat has type 'a. Equivalent to async.Let(expr,(fun pat -> ...)).

do! expr Equivalent to let! () = expr.

do expr Equivalent to let () = expr.

return expr
Evaluate the expression, and return its value as the result of the containing asynchronous
workflow. Equivalent to async.Return(expr).

return! expr
Execute the expression as an asynchronous computation, and return its result as the overall
result of the containing asynchronous workflow. Equivalent to expr.

use pat = expr

Execute the expression immediately, and bind its result immediately. Call the Dispose
method on each variable bound in the pattern when the subsequent asynchronous
workflow terminates, regardless of whether it terminates normally or by an exception.
Equivalent to async. Using (expr,(fun pat -> ...)).

Common constructs used in async { ... } workflow expressions

Reactive programming – Asynchronous workflows

let form, label = new Form(...), new Label(...)
!
let rec loop(count) = async{

let! args = Async.AwaitObservable(label.MouseDown)
label.Text <- sprintf ”Clicks: %d” count
return! loop(count + 1) }

do
Async.StartImmediately(loop(1))
Application.Run(form)

Example:

Counting is done in a single recursive function that implements an
asynchronous workflow
!
AwaitObservable wait until the first occurrence of the given event
(label.MouseDown)
!
Appears to create an infinite loop. Yet, the construction is valid as it
stats by waiting for the MouseDown event

Reactive programming – Asynchronous workflows

The Async.StartImmediately primate runs the workflow on the current
thread
!
Application.Run starts the application. The current thread will be the GUI
thread
!
WARNING: Accessing Windows.Form controls from outside the GUI thread
causes undefined behavior!

Example:

let form, label = new Form(...), new Label(...)
!
let rec loop(count) = async{

let! args = Async.AwaitObservable(label.MouseDown)
label.Text <- sprintf ”Clicks: %d” count
return! loop(count + 1) }

do
Async.StartImmediately(loop(1))
Application.Run(form)

Reactive programming – Asynchronous workflows

Let’s see what happens when we use the StartImmediate primitive to run
a workflow containing a call to some async operation

When we run an asynchronous operation (using the let! primitive), the
GUI thread is free to perform other work
!
When the workflow running on a GUI thread spends most of the time
waiting for completion of an asynchronous operation, the application
won’t become unresponsive

StartImmediate
AsyncGetResponse	

(start operation)

(other work)

AsyncGetResponse	

(runs in background)

(resume workflow)

background thread

GUI thread

AwaitObservable waits for the first occurrence of an event
!
Async workflows can yield only a single value
!
If we want to handle multiple occurrences we can use recursion
!
Using recursion allows us to store the current state in the function
parameters

Summary

Reading guide
Real World Functional Programming: With Examples in F# and C#.!
Petricek, T., & Skeet, J. (2009). Manning Publications Co.!
!
Chapter 16 Developing reactive functional programs
Chapter 12 Sequence expressions and alternative workflows
Chapter 6 Processing values using higher-order functions
Chapter 7 Designing data-centric programs
Chapter 4 Exploring F# and .NET libraries by example
!
Expert F♯ 3.0!
Syme, D., Granicz, A., & Cisternino, A. (2012). Berkeley: Apress.!
!
Chapter 11 Reactive, Asynchronous, and Parallel Programming
Chapter 2.2 Using Object-Oriented Libraries in F#
!
Beginning F♯!
Pickering, R., & De la Maza, M. (2009). Apress.!
!
Chapter 8 User interfaces
!
F# for Quantitative Finance!
Astborg, J. (2013). Packt Publishing Ltd.!
!
Chapter 2.1 Structuring your F# program
Chapter 2.5 Asynchronous and parallel programming

