F# as an Object-oriented Programming Language
Object-oriented Programming in F#

BjGrn Lisper F# has an object-oriented part

School of Innovation, Design, and Engineering

Important to know something about this — accessing .NET libraries and
Malardalen University P g g

services is done in an object-oriented fashion

bjorn.lisper@mdh.se F# has these kinds of object types:
http://www.idt.mdh.se/ " blr/
e Concrete object types

e Object interface types

Object-oriented Programming in F# (revised 2016-04-28) Object-oriented Programming in F# (revised 2016-04-28) 1
Concrete Object Types An example
F# objects can be both mutable and immutable Extending a record data type with members, turning the records into objects:
Methods are called members type vector2D =
{ x : float; y : float }
The simplest case: extending a conventional F# type with member member v.Length = sqrt (v.xx+2.0 + v.yx+2.0)
declarations member v.Scale(k) = { x = k*#v.X; y = k*v.y }
member v.X_shift(x_new) = { v with x = x + X_new }

These provide a kind of interface to the data type static member Zero = { x = 0.0; y = 0.0 }
static member X_vector(x_in) = { x = x_in; y = 0.0 }

(They're really just functions that take an argument of that type)

Object-oriented Programming in F# (revised 2016-04-28) 2 Object-oriented Programming in F# (revised 2016-04-28) 3

v is like “this”, or “sel£” in other languages. In F# you can choose

whatever identifier you want

Members without arguments are properties, members with arguments are

methods

Members can be static, meaning they operate on types rather than values.

We’'ll see an example soon

The above is an immutable object type: no record fields can be updated

Obiject-oriented Programming in F# (revised 2016-04-28)

Creating an object and using its methods and properties:

let vec = { x = 3.0; y = 4.0} //

vec.Length //
let vec2 = vec.Scale(2.0) //
vec2.Length //
vec.Length //
vector2D.Zero //

Note the immutability: vec.Scale (2.
is not affected

create an object "vec"
length of vec = 5.0

create a new object "vec2"
length of vec = 10.0

length of vec is still 5.0

a new object with x, y = 0.0

0) creates a new object, the old one

Static members are applied to the type, not to values of that type

Object-oriented Programming in F# (revised 2016-04-28)

This is the object type resulting from the declaration:

type vector2D =
{ x : float; y : float }
member Length : float

member Scale : k:float -> vector2D
member X_shift : x_new:float -> vector2D
static member Zero : vector2D

static member X _vector : x_in:float -> vector2D

The member types become part of the object type

Object-oriented Programming in F# (revised 2016-04-28)

Members vs. Functions

Consider this alternative, F# with ordinary functions:

type vector2D =
{ x : float; yv : float }

let Length v = sqgrt (v.xx*2.0 + v.y*%x2.0)
let Scale v k = { x = kxv.x; y = kxv.y }
let Zero = { x=20.0; v =20.0 1}

let X_vector x_in = { x = x_in; y = 0.0 }

Perfectly possible, does the same thing. But we lose the bundling of

members and record type into an object type

Object-oriented Programming in F# (revised 2016-04-28)

A Variation

Any F# type can be enriched with members into an object type:

type Tree<’a> = Leaf of 'a | Branch of Tree<’a> x Tree<’a>
member t.Fringe =
match t with
| Leaf x -> [x]
| Branch (tl,t2) -> tl.Fringe @ t2.Fringe

It doesn’t have to be a record type

Members can be recursive

Obiject-oriented Programming in F# (revised 2016-04-28)

An Example of a Constructed Class

vector2D using a constructed class:

type vector2D(x : float; y : float) =
let len = sqgrt (x**2.0 + y*%2.0)

member v.Length = len

member v.Scale (k) = vector2D(kxx, kxy)

member v.X_shift (x_new) = vector2D(x = x + x_new, y = V)
static member Zero = vector2D(x = 0.0, y = 0.0)

static member X vector(x_in) = vector2D(x = x_in, y = 0.

Object-oriented Programming in F# (revised 2016-04-28)

Constructed Classes

Goes beyond the simple object types where ordinary F# types are extended
with members

Adds a possibility to define entities local to objects

These entities can be precomputed

Object-oriented Programming in F# (revised 2016-04-28) 9

vector2D is a constructor (in the OO sense): a function that creates a new
object

let v = vector2D (3.0, 4.0)
len will be computed then vector2D creates the new object

Arguments to members can be given both by position (Scale), or by name
(e.9., X_shift)

Object-oriented Programming in F# (revised 2016-04-28) 11

The resulting type:

type vector2D =
new : x:float * y:float —-> Vector2D
member Length : float
member Scale k:float -> Vector2D
member X_shift x_new:float -> Vector2D
static member Zero : vector2D
static member X_vector : x_in:float -> Vector2D

Note “new”, tells the type of the vector2D constructor

Obiject-oriented Programming in F# (revised 2016-04-28)

Optional Arguments, Example

We turn x and y into optional arguments with default 0. 0:

type vector2D(?x : float; ?y : float) =
let x = match x with
| None -> 0.0
| Some v -> v
let y = match y with
| None -> 0.0
| Some v -> v

Note the new local definitions of x and y — not the same as the arguments x

and y!

Object-oriented Programming in F# (revised 2016-04-28)

Named and Optional Arguments

With named arguments, it is convenient to make arguments optional and
have a default value for them

Named arguments can be used with all method calls
Optional arguments are preceded by “2”

An optional argument with type ’ a will have type " a option within the
object type declaration

If the argument v is given, then it will have value Some v inside
If the argument is not given, it will have value None

It is the responsibility of the programmer to write code that uses this
distinction to provide a default value

Object-oriented Programming in F# (revised 2016-04-28)

Optional Arguments, Continued

A builtin function to use with optional arguments:
defaultArg : ’a option -> "a -> ’a
Its definition;

DefaultArg arg default =
match arg with
| None -> default
| Some a -> a

An example of its use:

defaultArg x 0.0

Object-oriented Programming in F# (revised 2016-04-28)

Mutable Object Types

One idea with object-orientation is to encapsulate side-effects into objects
This reduces the risks with the side-effects

Side-effects means we should have mutable data inside objects

F# supports this

Object-type internal variables can be declared mutable

Members are defined with get and set methods:

e The get method returns the current value for the member

e The set method sets a new value for the member by setting new values
for the object-internal mutable variables

An Example

The 2D-vector again, but now with two different views:

Angle = atan(y/x)
Length = sqrt(x**2 + y**2)
x = Length*cos(Angle)

y = Length*sin(Angle)

An object representing a 2D-vector will have = and y as mutable state
However, we will also provide methods for Length and Angle
Getting Length and Angle will compute them from x and y

Setting Length or Angle will set x and y

Obiject-oriented Programming in F# (revised 2016-04-28)

Object-oriented Programming in F# (revised 2016-04-28)

Object Type Declaration

type mutVector2D (x float; float)
let mutable current_x = x
Yy

current_x and set x

current_y and set y

y o:
let mutable current_y =
()
()

member v.x with get current_x <- x

member v.y with get current_y <- vy
member
with

and

v.Length

get ()
set len

sqrt (current_x+%2.0 + current_y*x2.0)
let theta
current_x

v.Angle
<- lenx*cos theta
current_y <- len*sin theta
member
with
and

v.Angle

get ()
set theta

atan2 current_y current_x

let len v.Length
current_x <- len*cos theta
current_y <- len*sin theta

Resulting type:

type mutVector2D
float * float —-> mutVector2D
x : float with get, set

y : float with get, set
Length : float with get, set
Angle: float with get, set

new :
member
member
member
member

Object-oriented Programming in F# (revised 2016-04-28)

Object-oriented Programming in F# (revised 2016-04-28)

How to Use

> let v = mutVector2D (3.0, 4.0);;
val v : mutVector2D

> (V.X, V.V)i;

val it : float » float = (3.0,4.0)
> (v.Length, v.Angle);;
val it : float » float
> v.Length <- 10.0;;
val it : unit = ()

> (V.xX, V.V)i;

(5.0,0.927295218)

val it : float » float = (6.0,8.0)

> (v.Length, v.Angle);;

val it : float = float = (10.0,0.927295218)

> (v.x, v.y) <- (1.0,1.0)

val it : unit = ()

> (v.Length, v.Angle);;

val it : float » float = (1.414213562,0.7853981634)

Object Interface Types

“Abstract” object type declarations, specify only members and their types,
not their implementations

Concrete implementations are specified by separate declarations

By having different concrete implementations implement members
differently, we achieve something similar to virtual methods

Obiject-oriented Programming in F# (revised 2016-04-28)

20 Object-oriented Programming in F# (revised 2016-04-28) 21

Example

type Point = { X : float; Y float }
type Rectangle = Rectangle of (float * float x float x float)

type IShape =
abstract Contains
abstract Boundingbox

Point -> bool
Rectangle

let circle(center:Point, radius:float) =
{ new IShape with

member x.Contains (p:Point) =
let dx = p.X - center.X
let dy = p.Y - center.Y
sgqrt (dx**2.0 + dy*%2.0) <= radius

member x.Boundingbox =
Rectangle (center.X - radius,center.Y - radius,

2.0xradius, 2.0+xradius) }

let square (center:Point, side:float) =
{ new IShape with
member x.Contains(p:Point) =
let dx = p.X - center.X
let dy = p.Y - center.Y
abs (dx) <= side/2.0 && abs(dy) <= side/2.0
member x.Boundingbox =
Rectangle (center.X - side,center.Y - side,
2.0%side, 2.0xside) }

Object-oriented Programming in F# (revised 2016-04-28)

22 Object-oriented Programming in F# (revised 2016-04-28) 23

Object Expressions

circle and square are functions whose bodies are object expressions
(the “{ new IShape with ...}")

Object expressions are used to specify implementations for interface types

An object expression must give an implementation for each member of the
interface type

In our example, the functions circle and square provide implementations
of the Ishape interface

Obiject-oriented Programming in F# (revised 2016-04-28) 24

Functional Programming Techniques and Object
Expressions

We can define functions that return object expressions
In that way, object expressions can be abstracted

An example: a simple interface TextOutputSink defining two methods: for
writing a character, and writing a string, and a function SimpleOutputSink
returning an implementation

(See next page)

Object-oriented Programming in F# (revised 2016-04-28) 26

Inheritance

Object interface types can inherit from each other
Thus, hierarchies of such types can be built
The keyword “inherit” specifies inheritance

type Blahonga =
abstract xxx :

type FooBar =
inherit Blahonga
abstract yyy :

An implementation of FooBar must implement both xxx and yyy

Object-oriented Programming in F# (revised 2016-04-28) 25

type TextOutputSink =
abstract WriteChar : char -> unit
abstract WriteString : string -> unit

let SimpleOutputSink (writechar) =
{ new TextOutputSink with
member x.WriteChar(c) = writechar c
member x.WriteString(s) =
for ¢ in s do writechar c }

SimpleOutputSink defines the simple pattern to write a string by writing it
character by character

Object-oriented Programming in F# (revised 2016-04-28) 27

Using Objects in F#: A Simple GUI Example

Objects are needed in F# when interfacing with all the services of .NET

That’'s one reason why we spend time on the OO part of F# in the course

We’ll bring up a simple example here: some simple GUI handling, with

windows and buttons

Obiject-oriented Programming in F# (revised 2016-04-28)

28

Hello world

Press me!

Window

Object-oriented Programming in F# (revised 2016-04-28)

30

Objects and GUI’'s

In F# (and .NET), each GUI component is represented by an object:

e A window
e A button
o Etc.

The object holds the representation: position, style, fill colour, text(s), etc.

Object-oriented Programming in F# (revised 2016-04-28)

29

Events

GUTI’s receive input from users: clicks,

mouse movements, keys being pressed, . ..

Represented by events

An event is basically a stream of data:
coordinates for a mouse, data representing
key clicks, etc.

time |

stream
of
data
in
time

event

Object-oriented Programming in F# (revised 2016-04-28)

31

GUI components (like a window) hold a set
of events

An event handler can connect to an event

Listens to the stream of data, and performs
some action for each item in the stream

time [

Obiject-oriented Programming in F# (revised 2016-04-28)

32

Event
handler

handler

handler

Hello world

Press me!

Window

Object-oriented Programming in F# (revised 2016-04-28)

34

In F#/.NET, an event handler connects to an event by adding itself to the
event

Once added, it will receive all data in the stream and can take action
accordingly

Each GUI object holds a number of events, to which event handlers can add
themselves

In F#, event handlers are functions. The function is applied to each data in
the stream, in order

Object-oriented Programming in F# (revised 2016-04-28) 33

Events in F#

F# has a data type IEvent<’ a> for events

Events are first-class citizens just like any other data: can be moved around,
copied, stored in data structures, . ..

Since events are data streams, they are similar to sequences

There is an Event module with functions on events. Some examples:

Object-oriented Programming in F# (revised 2016-04-28) 35

Event.choose : ("a -> 'b option) -> IEvent<’a> -> IEvent<’b>
Event.filter : ('a -> bool) —-> IEvent<’a> -> IEvent<’a>
Event.map : ("a —-> 'b) —-> IEvent<’a> -> IEvent<’b>
Event .merge : IEvent<’a> -> IEvent<’a> -> IEvent<’a>
Event.partition : (‘a -> bool) -> IEvent<’a> ->

IEvent<’a> % IEvent<’a>
Event.scan : ("a -> 'b -> 'a) -> 'a -> IEvent<’b> ->

IEvent<’ a>
Note that some are the same as for sequences (and lists, and arrays)!

The same style of programming can be used for events!

Obiject-oriented Programming in F# (revised 2016-04-28) 36

form.Controls.Add (button)
// add the button to the window

form.MouseMove.Add
(fun args —> printfn "Mouse, (x,y) = (%A,%A)" args.X args.Y)
// add a handler for the window "MouseMove" event

let e = form.MouseMove |> Event.filter (fun args -> args.X > 100)
|> Event.map (fun args —-> args.X + args.Y)

// Define a new event, created from the MouseMove event

e.Add (fun n -> printfn "Mouse sum = %d" n)
// Add an event handler to our new event

Application.Run(form) // Finally start the execution of the window

Object-oriented Programming in F# (revised 2016-04-28) 38

A Simple Example

open System.Windows.Forms // Module for .NET GUI handling
open System.Drawing // Namespace for colors etc.

let form = new Form(Text="Hello World",Visible=true)
// Create a new window, and make it visible

let button = new Button (Text="Press here!")
// Create a new button

button.BackColor <- Color.Red

button.Size <- new Size (50,50)

button.Location <- new Point (25,25)

// make it red, size 50x50 pixels, offset (25,25) pixels

button.Click.Add (fun _ -> printfn "You pressed me!!")
// add a handler for the button’s "Click" event

Object-oriented Programming in F# (revised 2016-04-28) 37

