
Functional Programming and Parallel Computing

Björn Lisper
School of Innovation, Design, and Engineering

Mälardalen University

bjorn.lisper@mdh.se
http://www.idt.mdh.se/˜blr/

Functional Programming and Parallel Computing (revised 2013-12-03)

Parallel Processing

Multicore processors are becoming commonplace

They typically consist of several processors, and a shared memory:

CPU

CPU

Memory

CPU

CPU

The different cores execute different pieces of code in parallel

If several cores do useful work at the same time, the processing becomes
faster

Functional Programming and Parallel Computing (revised 2013-12-03) 1

Imperative Programming and Parallel Processing

Imperative programming is inherently sequential

Statements are executed one after another

However, imperative programs can be made parallel through parallel
processes, or threads:

CPU

CPU

Memory

CPU

CPU

P4P3

P1 P2

Functional Programming and Parallel Computing (revised 2013-12-03) 2

Side Effects and Parallel Processing

Imperative programs have side effects

Variables are assigned values

These variables may be accessed by several processes

This introduces the risk of race conditions

Since processes run asynchronously on different processors, we cannot
make any assumptions about their relative speed

In one situation one process may run faster, in another situation another one
runs faster

Functional Programming and Parallel Computing (revised 2013-12-03) 3

A Race Condition Example

Two processes P1 and P2, which both can write a shared variable tmp :

P1: P2:
. tmp = 4711
. z = tmp + 3
. .

tmp = 17 .
y = 2 * tmp .

The intention of the programmer was that both P1 and P2 should set tmp
and then use its newly set value right away. This would yield the following,
intended, final contents of y and z :

y = 34 , z = 4714

Functional Programming and Parallel Computing (revised 2013-12-03) 4

But the programmer missed that the processes have a race condition for
tmp , since they may run at different speed. Here is one possible situation:

P1: P2:
tmp = 17 .

. tmp = 4711
y = 2 * tmp .

. z = tmp + 3

Final state: y = 9422 , z = 4714

Wrong value for y !

Functional Programming and Parallel Computing (revised 2013-12-03) 5

Here is another possible situation:

P1: P2:
. tmp = 4711

tmp = 17 .
. z = tmp + 3

y = 2 * tmp .

Final state: y = 34 , z = 20

Wrong value for z !

Functional Programming and Parallel Computing (revised 2013-12-03) 6

Parallel Programming is Difficult

To avoid these race conditions, the programmer must use different
synchronization mechanisms to make sure processes do not interfere with
each other

But this is difficult! It is very easy to miss race conditions

Debugging of parallel programs is also difficult! Race conditions may occur
only under certain conditions, that appear very seldom. It can be very hard
to reproduce bugs

This is a very bad situation, since multicore processors are becoming
commonplace. We are heading for a software crisis!

The heart of the problem is the side effects – they allow different processes
to thrash each others’ data

Functional Programming and Parallel Computing (revised 2013-12-03) 7

Pure Functional Programs and Parallel Processing

Pure functional programs have no side-effects

The evaluation order does not matter

Thus, different parts of the same expression can always be evaluated in
parallel:

+

f(x) + g(x)

f(x) g(x)

Sometimes called expression parallelism

Functional Programming and Parallel Computing (revised 2013-12-03) 8

Parallelism in Collection-Oriented Primitives

Data structures like lists, arrays, sequences, are sometimes called
collections

Functions like mapand fold are called collection-oriented

Collection-oriented functions often have a lot of inherent parallelism

If one can express computations with these primitives, then parallelization
often becomes easy

This parallelism is often called data parallelism

In imperative programs these computations are often implemented by loops.
Loops are sequential. A good parallelizing compiler might retrieve some of it,
but there is a risk that parallelism is lost

Functional Programming and Parallel Computing (revised 2013-12-03) 9

Map on Arrays

Map is very parallel:

x1 x4x3x2 x5 x6 x7 x8 x9 x10 x11 x12

x1 x4x3x2 x5 x6 x7 x8 x9 x10 x11 x12

x14 x16x15x13

x14 x16x15x13

f f f f

f x4 f x5 f x13 f x14 f x15 f x16f x11f x10f x9 f x12f x8f x7f x6f x1 f x2 f x3

With sufficiently many processors, mapcan be done in O(1) time

Functional Programming and Parallel Computing (revised 2013-12-03) 10

Parallel Fold

Fold can be parallelized if the binary function is an associative operator :

op op op op

op

op

op

op

op

op

opx1

init

op

x2

x3

x4

x5

x6

x7

x8

opop
op

x1 x7 x8x2 x3 x4 x5 x6

Functional Programming and Parallel Computing (revised 2013-12-03) 11

If op is associative, then the expression tree can be balanced

With sufficiently many processors, parallel fold can be done in O(logn)
time (n = no. of elements)

Functional Programming and Parallel Computing (revised 2013-12-03) 12

Fault Tolerance Through Replicated Evaluation

If an expression has no side effects, then it can be evaluated several times
without changing the result of the program

f(x) f(x) f(x)

choose

This can be used to increase the fault tolerance: if one processor fails, we
can use the result from another one computing the same expression

Functional Programming and Parallel Computing (revised 2013-12-03) 13

Parallelism in F#

F# has some support for parallel and concurrent processing:

The System.Threading library gives threads

A data type Async<’a> for asynchronous (concurrent) workflows (a kind of
computation expressions)

The System.Threading.Tasks library yields task parallelism

Array.Parallel module provides data parallel operations on arrays

More on this in Section 13 in the book

Functional Programming and Parallel Computing (revised 2013-12-03) 14

Example: Expression Parallelism using Parallel Tasks

Evaluating f x and g x in parallel when computing (f x) + (g x) :

Open System.Threading.Tasks

let h x =
let result1 = Task.Factory.StartNew(fun () -> f x)
let result2 = Task.Factory.StartNew(fun () -> g x)
result1 + result2

Functional Programming and Parallel Computing (revised 2013-12-03) 15

Example: Data Parallel Search for Primes

Create a big array, then map a test for primality over it to be done in parallel

Assume a predicate isPrime : int -> bool that tests whether its
argument is a prime

let bigarray = [|1 .. 500000|]

Array.Parallel.map isPrime bigarray

Functional Programming and Parallel Computing (revised 2013-12-03) 16

Summing Up

Freedom from side effects simplifies parallel processing a lot

Collection-oriented operations are also very helpful for this

It’s the design and thinking that is important – not necessarily that a
functional language is used

The same principles can be applied also when using conventional
programming languages

Functional Programming and Parallel Computing (revised 2013-12-03) 17

