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The Topics

Type Inference: how to find the possible type(s) of expressions, without
explicit typing

Higher Order Algebra: a number of laws that the higher order functions like
map, fold etc. obey

Lambda Calculus: a formal calculus for functions and how to compute with
them
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Type Inference

We have seen that the F# compiler can find types for expressions, and
declared values:

length l =
match l with
| [] -> 0
| _::xs -> 1 + length xs

length : ’a list -> int

As we have mentioned, the most general type is always found

How can the compiler do this?
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There is an interesting theory behind F#-style type inference

To infer means “to prove”, or “to deduce”

A type system is a logic, whose statements are of form “under some
assumptions A, expression e has type τ ”

Often written “A ⊢ e : τ ”

To infer a type means to prove that a statement like above is true

A type inference algorithm finds a type if it exists: it is thus a proof search
algorithm

Such an algorithm exists for F#’s type system
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Logical Systems

A logical system is given by a set of axioms, and inference rules over a
language of statements

A statement is true in the logic if it can be proved in a finite number of steps
using these rules

Each inference rule has a number of premises and a conclusion

Often written on the form

premise 1 · · · premise n

conclusion
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Logical Systems

An example of an inference rule (modus ponens in propositional logic):

P P =⇒ Q

Q
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Hindley-Milner’s Type System

F#’s type system extends a simpler type system known as Hindley-Milner’s
type system (HM)

This system was first invented around 1970

The typing statements have the form A ⊢ e : τ , where A is a set of typings
for variables, e is an expression, and τ is a type

Example: {x : α, f : α → β} ⊢ f x : β

The type system of F# is basically the HM type system, with some
extensions
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Hindley-Milner Inference Rules

A selection of rules from the HM inference system:

A ∪ {x : τ} ⊢ x : τ [V AR]

A ∪ {x : σ} ⊢ e : τ
A ⊢ λx.e : σ → τ

[ABS]

A ⊢ e : σ → τ A ⊢ e′ : σ
A ⊢ e e′ : τ

[APP ]

A ⊢ e : ∀α.τ
A ⊢ e : τ [σ/α]

[SPEC]

(You don’t need to learn this: I’m showing it only to let you know what an
inference system might look like)
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Inference Algorithm

There is a classical algorithm for type inference in the HM system

Called algorithm W

Basically a systematic and efficient way to infer types

The algorithm uses unification, which is basically a symbolic method to solve
equations

It has been proved that algorithm W always yields a most general type for
any typable expression

“Most general” means that any other possible type for the expression can be
obtained from the most general type by instantiating its type variables
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A Type Inference Example

Define

length l =
match l with
| [] -> 0
| x::xs -> 1 + length xs

Derive the most general type for length !

See next four slides for how to do it . . .
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Type inference can be seen as equation solving: every declaration gives rise
to a number of “type equations” constraining the types for the untyped
identifiers

These equations can be solved to find the types

In our example, we already know:

0 : int
1 : int
(+) : ’n -> ’n -> ’n, ’n some numerical type
[] : ’a list
(::) : ’b -> ’b list -> ’b list

Note different type variable names, to make sure they’re not mixed up
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Solving the Equations

Left-hand side:

length l = ...

length : ’c -> ’d (since length is applied to an argument, it has to
be a function)

l : ’c (since length is applied to l , l must have the same type as the
argument of length )

length l : ’d (result of applying length to l . So ’d must equal the
type of the right-hand side)
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Right-hand side, first case for l :

...
match l with
| [] -> 0
....

’c = ’a list (since l can match [] , and from the type of [] )

Thus, length : ’a list -> ’d

’d = int (since we can have length l = 0 , length l : ’d , and
0 : int )

Thus, length : ’a list -> int

Is this consistent with the second case in the matching of l ?
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Right-hand side, second case for l :

...
match l with
....
| x::xs -> 1 + length xs

Must first find possible types for x , xs , x::xs

Assume x : ’e , xs : ’f

From the typing of (::) we obtain ’e = ’b , ’f = ’b list , and
x::xs : ’b list

l can equal x::xs , so OK if ’b list = ’a list . Possible only if
’b = ’a

Then x : ’a , xs : ’a list , and x::xs : ’a list
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What about 1 + length xs ?

We have length : ’a list -> int , and xs : ’a list , which yields
length xs : int

1 : int , length xs : int , (+) : ’n -> ’n -> ’n gives
’n = int , and then 1 + length xs : int

Same type as for 0 (first case of match ), and length l ! We’re done

Result: length : ’a -> int

Must be a most general type since we were careful not to make any stronger
assumptions than necessary about any types
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Another Type Inference Exercise

Find the most general type for int_halve , defined by:

let rec int_halve a l u =
if u = l+1 || a.[l] = 0.0 || a.[u] = 0.0 then (l,u)
else let h = (l+u)/2 in

if a.[h] > 0 then int_halve a l h
else int_halve a h u
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Higher Order Algebra

Higher order functions like map, fold , >>, . . . obey certain laws

These laws an be compared to laws for aritmetical operators, like

x + (y + z) = (x + y) + z

They can be used to transform programs, e.g., optimizing them

They also help understanding the functions better
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Some Laws involving List.map

List.map id = id , where id = fun x -> x (the identity function)

List.map (g >> f) = List.map g >> List.map f

List.map f >> List.tail = List.tail >> List.map f

List.map f >> reverse = reverse >> List.map f

List.map f (xs @ ys) = List.map f xs @ List.map f ys
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Some Laws involving List.filter

List.filter p >> reverse = reverse >> List.filter p

List.filter p (xs @ ys) = List.filter p xs @ List.filter p ys

map f >> List.filter p = List.filter (f >> p) >> map f
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A Property of Fold

If op is associative and if e is left and right unit element for op , then, for all
lists xs :

List.foldBack op xs e = List.fold op e xs
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What Can Laws Like This Be Used For?

A simple example: rewriting to optimize code

reverse >> filter p >> map f >> reverse =
filter p >> reverse >> map f >> reverse =
filter p >> map f >> reverse >> reverse =
filter p >> map f >> id =
filter p >> map f

since obviously

reverse >> reverse = id
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How to Prove the Laws

Mathematical laws need mathematical proofs

How can the laws for higher-order functions be proved?

We’ll exemplify with the law

map f (xs @ ys) = map f xs @ map f ys

(Writing map for List.map )

• First, informal reasoning (to motivate why the law holds)

• Then, a formal proof using induction over lists
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An Informal Proof

Let xs = [x1, . . . , xm], ys = [y1, . . . , yn]

Then

map f ([x1, . . . , xm] @ [y1, . . . , yn]) = map f ([x1, . . . , xm, y1, . . . , yn])

= [f x1, . . . , f xm, f y1, . . . , f yn]

= [f x1, . . . , f xm] @ [f y1, . . . , f yn]

= map f [x1, . . . , xm] @

map f [y1, . . . , yn]

That is,
map f (xs @ ys) = map f xs @ map f ys

Q.E.D.
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An Formal Proof

If you really want to be sure . . .

A proof by induction

The proof will be over the structure of lists

It will use the recursive definitions of @and map
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Equality of Lists

The law states that two lists are equal

But when are two lists equal?

This is the definition:

[ ] = [ ]
[ ] 6= x::xs

x::xs 6= [ ]
x::xs = y::ys ⇐⇒ x = y ∧ xs = ys

This is a mathematical definition

It is recursive. Can be directly implemented by a recursive function
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Proof by Induction

Have you ever performed proofs by induction? (You should have. . .)

They prove properties that hold for all non-negative integers

For instance, ∀n.
∑n

i=0 i = n(n + 1)/2

Exercise: prove this property by induction!

But first, let’s check out next slide . . .
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The Induction Principle for Natural Numbers

Goal: show that the property P is true for all natural numbers (whole
numbers ≥ 0)

Proof by induction goes like this:

1. Show that P holds for 0 (the base case)

2. Show, for all natural numbers n, that if P holds for n then P holds also for
n + 1 (the induction step)

3. Conclude that P holds for all n

To prove 2 one typically assumes that P (n) is true (the induction
hypothesis), then shows that P (n + 1) follows
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Why does Induction over the Natural Numbers Work?

The set of natural numbers N is an inductively defined set

N is defined as follows:

• 0 ∈ N

• ∀x.x ∈ N =⇒ s(x) ∈ N (the successor of x, i.e., x + 1)

0 → s(0) → s(s(0)) → s(s(s(0))) → · · ·
0 1 2 3 · · ·

Proofs by induction follow the structure of the inductively defined set!
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The Inductively Defined Set of Lists

Inductively defined sets are typically sets of infinitely many finite objects

The set ’a list of (finite) lists with elements of type ’a :

1. [] ∈ ’a list

2. x ∈ ’a ∧ xs ∈ ’a list =⇒ x::xs ∈ ’a list

Note similarity with the set of natural numbers!

Also cf. the following type declaration (in “pseudo”-F#):

type ’a list = [] | (::) of ’a * ’a list
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An Induction Principle for Lists

Proof by induction for (finite) lists goes like this:

1. Show that P holds for []

2. Show, for all finite lists xs ∈ ’a list and all possible list elements
x ∈ ’a , that if P holds for xs then P holds also for x::xs

3. Conclude that P holds for all finite lists in ’a list
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The Formal Proof

Now let’s formally prove our equality

Prove that:

∀xs .∀ys .∀f .[map f (xs @ ys) = map f xs @ map f ys]

What induction hypothesis to use? This is often the tricky question!

General rule: look at the function definitions, and try to formulate the
induction hypothesis so it matches the recursive structure!
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Function Definitions

We recall:

[] @ ys = ys
(x :: xs) @ ys = x :: (xs @ ys)

map f [] = []
map f (x::xs) = f x :: map f xs

(“Mathematical” case-by-case versions of the function definitions)

@recurses over its first argument (xs in the statement to prove)

Thus, let’s do the induction over xs
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Induction Hypothesis

This is then our induction hypothesis:

P (xs ) = ∀ys .∀f .[map f (xs @ ys) = map f xs @ map f ys]

If we can prove ∀xs .P (xs ), then we have proved that the law holds!

We will now prove the following:

1. P ([ ]) (base case)

2. ∀x .∀xs .[P (xs ) =⇒ P (x::xs )] (induction step)

By the induction principle for lists, this will prove ∀xs .P (xs )
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Base Case

P ([ ]) = ∀ys .∀f .[map f ([ ] @ ys) = map f [ ] @ map f ys]

Assume any ys , f

Let’s show that the LHS equals the RHS:

LHS = map f ([ ] @ ys)
= map f ys

RHS = map f [ ] @ map f ys

= [ ] @ map f ys

= map f ys

Thus LHS = RHS, and P ([ ]) holds
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Induction step

We want to prove

P (x::xs ) = ∀ys .∀f .[map f ((x :: xs) @ ys) = map f (x :: xs) @ map f ys]

We are allowed to use P (xs ) in the proof. Assume any ys , f . Then,

LHS = map f ((x :: xs) @ ys)
= map f (x :: (xs @ ys))
= f x :: map f (xs @ ys))
= (induction hypothesis)
= f x :: (map f xs @ map f ys)
= (f x :: map f xs) @ map f ys

= map f (x :: xs) @ map f ys

= RHS
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Conclusion

We showed the base case P ([ ]), and the induction step
P (xs ) =⇒ P (x::xs )

We can thus conclude that ∀xs .P (xs )

That is, the law holds
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Bird-Meertens Formalism

The identities shown belong to an algebra of list functions

This is known as the Bird-Meertens Formalism

The idea of Bird and Meertens was to do program development by:

• making a specification of the program, using the list primitives, and

• using the identities to transform the specification into an efficient
implementation

This attempt has not been overly successful in general, but I think there are
niches where the method can be applied

In particular, it has been proposed for programming of parallel computers
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Lambda Calculus

Formal calculus

Invented by logicians around 1930 (Curry, Schönfinkel, and
others)

Formal syntax for functions, and function application

Gives a certain “computational” meaning to function
application

Theorems about reduction order (which possible
subcomputation to execute first)

This is related to call-by-value/call-by-need

Several variations of the calculus

H. B. Curry

M. Schönfinkel
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The Simple Untyped Lambda Calculus

The calculus consists of a language, and equivalences on expressions in the
language. A term in the language is:

• a variable x,

• a lambda-abstraction λx.e, or

• an application e1 e2

Some examples:

x x y x x λx.(x y) (λx.x) y λx.λy.λx.x

Any term can be applied to any term, no concept of (function) types

Syntax: function application binds strongest, λx.x y = λx.(x y) 6= (λx.x) y
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Lambda Calculus Syntax and Functional Programming

Syntax elements from the lambda calculus have been adopted by higher
order functional languages, in particular:

• Function expressions (fun x -> e) , from λx.e

• Function application syntax, and currying: f e1 e2
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Untyped Lambda Calculus with Constants

We can extend the syntax with constants, for instance:

1, 17, +, [ ], ::

We can then form terms closer to usual functional languages, like

17 + x λx.(x + y) λl.λx.(l :: x)

Functional language compilers often first translate into an intermediate form,
which essentially is a lambda calculus with constants
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Equivalences

Some lambda-expressions are considered equivalent (e1 ≡ e2)

Rule 1: change of name of bound variable gives an equivalent expression
(alpha-conversion)

So λx.(x x) ≡ λy.(y y)

Quite natural, right? If we change the name of the formal parameter, the
function should still be the same

Example: in F#, fun x -> x and fun y -> y define the same function
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Variable Capture

However, beware of variable capture:

λx.λy.x 6≡ λy.λy.y

Renaming must avoid name clashes with locally bound variables

Precisely the same problem appears in programming languages:

let f x = let g y = x + y in ...

Here we cannot change x into e y without precautions. However, OK if we
rename y in g to z first:

let f x = let g z = x + z in ... =>
let f y = let g z = y + z in ...

Same trick is used in lambda calculus: λx.λy.x ≡ λx.λz.x ≡ λy.λz.y
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Beta-reduction

A lambda abstraction applied to an expression can be beta-reduced :

(λx.x + x) 9 →β 9 + 9

Beta-reduction means substitute actual argument for symbolic parameter in
function body

A formal model for what happens when a function is applied to an argument

Works also with symbolic arguments:

(λx.x + x) (λx.y z) →β (λx.y z) + (λx.y z)

Like inlining done by optimizing compilers
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Variable Capture

However, again beware of variable capture:

(λx.λy.(x + y)) y 6→β λy.(y + y)

The fix is to first rename the bound variable y:

(λx.λy.(x + y)) y ≡ (λx.λz.(x + z)) y →β λz.(y + z)
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The same thing can happen when inlining functions. Example:

let f x = let g y = x + y in ...
let h y = f (y + 3)

If we want to inline the call to f in g, then g’s argument must first be
renamed:

let h y = f (y + 3) =>
let h y = let g z = (y + 3) + z in ...
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Some Encodings

Many mathematical concepts can be encoded in the (untyped)
lambda-calculus

That is, they can be translated into the calculus

For instance, we can encode the boolean constants, and a conditional
(functional if-then-else):

TRUE = λx.λy.x

FALSE = λx.λy.y

COND = λp.λq.λr.(p q r)

Exercise: make these encodings in F#!
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An example of how COND works:

COND TRUE A B →β (λp.λq.λr.(p q r)) (λx.λy.x) A B

→β (λq.λr.((λx.λy.x) q r)) A B

→β (λr.((λx.λy.x) A r)) B

→β (λx.λy.x) A B

→β λy.A B

→β A

Try evaluating COND FALSE A B yourself!
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Boolean connectives (and, or) can also be encoded

As well as lists, integers, . . . Even recursion can be encoded as a lambda
expression

Actually anything you can do in a functional language!

This means that any functional program can be translated into the lambda
calculus

Thus, lambda calculus serves as a general model for functional languages
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Nontermination

Consider this expression:

(λx.x x) (λx.x x)

What if we beta-reduce it?

(λx.x x) (λx.x x) →β (λx.x x) (λx.x x)

Whoa, we got back the same! Scary . . .

Clearly, we can reduce ad infinitum

The lambda-calculus thus contains nonterminating reductions

Type Inference, Higher Order Algebra, and Lambda Calculus (revised 2013-12-11) 49



Reduction Strategies

Any application of a lambda-abstraction in an expression can be
beta-reduced

Each such position is called a redex

An expression can contain several redexes

Can you find all redexes in this expression?

(λx.((λy.y) x) ((λy.y) x)

Try reduce them in different orders!
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Does the order of reducing redexes matter?

Well, yes and no:

Theorem : if two different reduction orders of the same expression end in
expressions that cannot be further reduced, then these expressions must be
the same

However, we can have potentially infinite reductions:

(λx.y) ((λx.x x) (λx.x x))

Reducing the “outermost” redex yields y

But the innermost redex can be reduced infinitely many times –
nontermination!

So the order does matter, as regards termination anyway!
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Normal Order Reduction

There is something called “normal order reduction” in the lambda calculus

It is a strategy to select which redex to reduce next

Normal order reduction corresponds to lazy evaluation, or call by need

Theorem : if there is a reduction order that terminates, then normal order
reduction terminates

For functional languages, this means that lazy evaluation always is the “best”
in the sense that it terminates whenever the program terminates with some
other reduction strategy, like call by value
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