
More About Higher-Order Functions

Björn Lisper
School of Innovation, Design, and Engineering

Mälardalen University

bjorn.lisper@mdh.se

http://www.idt.mdh.se/˜blr/

More About Higher-Order Functions (revised 2022-02-01)

Currying (what Functions of Several Arguments Really are)

Remember simple?

A function of three variables, we said:

simple : int -> int -> int -> int

let simple x y z = x*(y + z)

But in F#, a function only takes one argument !

What’s up?

More About Higher-Order Functions (revised 2022-02-01) 1

simple x y z means ((simple x) y) z (function application is left
associative)

int -> int -> int -> int means
int -> (int -> (int -> int))

Thus, simple is a function in one argument, returning a function of type

int -> (int -> int)

which returns a function of type

int -> int

which returns an int!

Encoding functions with several arguments like this is called currying

(after Haskell B. Curry, early logician)

More About Higher-Order Functions (revised 2022-02-01) 2

We could have defined:

simple : (int * int * int) -> int

let simple (x,y,z) = x*(y + z)

Another way to represent a function of three arguments, as a function taking

a 3-tuple

But it is not the same function – it has different type!

This version may seem more natural, but the curried form has some
advantages

More About Higher-Order Functions (revised 2022-02-01) 3

Currying and Syntactical Brevity

What is simple 5?

A function in two variables (say x, y), that returns 5*(x + y)

We can use simple 5 in every place where a function of type

int -> (int -> int) can be used

More About Higher-Order Functions (revised 2022-02-01) 4

Direct Function Declarations

A declaration

let f x = g x

where g is an expression (of function type) that does not contain x, can be
written

let f = g

“The function f equals the expression g”, not stranger than “scalar”

declarations like let pi = 3.154159

More About Higher-Order Functions (revised 2022-02-01) 5

A First Example

Recall sum (and all the other functions defined by folds):

let sum xs = List.fold (+) 0 xs

Same as

let sum xs = (List.fold (+) 0) xs

Both sum and List.fold have xs as last argument (and nowhere else)

It can then be “cancelled”:

let sum = List.fold (+) 0

More About Higher-Order Functions (revised 2022-02-01) 6

A Second Example

A function that reverses a list

We first make a “naïve” recursive definition, which is inefficient; then a better
recursive definition; then we redo the second definition using higher order

functions, and finally we make the declaration as terse as possible

(Solutions on next slide and onwards)

More About Higher-Order Functions (revised 2022-02-01) 7

Reverse: First Attempt

Idea: put the first element in the list last, then recursively reverse the rest of
the list and put in front. Reverse of the empty list is empty list.

let rec reverse l =

match l with

| [] -> []

| x::xs -> reverse xs @ [x]

This definition of reverse is correct, but has a performance problem. What

problem? (Answer on next slide)

More About Higher-Order Functions (revised 2022-02-01) 8

Reverse: Problem with First Attempt

This definition uses List.append (@) with long first arguments

If the list to reverse has length n, then List.append will be called with first

argument of length n− 1, n− 2, . . . , 1

Time to run List.append is proportional to length of first argument

Thus, the time to run reverse is O((n− 1) + (n− 2) + · · ·+ 1) = O(n2)

Grows quadratically with the length of the list!!

Can we do better?

(Yes. . . solution on next slide)

More About Higher-Order Functions (revised 2022-02-01) 9

A More Efficient Reverse

We use the “stack the books” principle, with an accumulating argument:

let reverse xs =

let rec rev1 acc xs =

match xs with

| [] -> acc

| x::xs -> rev1 (x::acc) xs

in rev1 [] xs

This definition uses n recursive steps

In each step, the amount of work is constant

Thus, the time to reverse the list is O(n) – big difference to O(n2) when n

grows large!

More About Higher-Order Functions (revised 2022-02-01) 10

Higher-Order reverse

The main operation of the efficient reverse is to put an element in a list,

which is accumulated in an argument

Can we define a binary operation and use, say, List.fold to define
reverse (or rev1)?

More About Higher-Order Functions (revised 2022-02-01) 11

Let’s line up their definitions:

let rev1 acc xs =

match xs with

| [] -> acc

| x::xs -> rev1 (x::acc) xs

let rec fold f init l =

match l with

| [] -> init

| x::xs -> fold f (f init x) xs

Hmmm, an operation revOp such that revOp acc x = x::acc?

More About Higher-Order Functions (revised 2022-02-01) 12

Here’s the result:

let reverse xs =

let revOp acc x = x :: acc

in List.fold revOp [] xs

More About Higher-Order Functions (revised 2022-02-01) 13

Can we proceed to break down the definition into smaller, more general

building blocks?

Consider revOp. It is really just a “cons” (::), but with switched arguments

A general function that switches (or flips) arguments:

flip : (a -> b -> c) -> (b -> a -> c)

let flip f x y = f y x

(So flip f is a function that performs f but with flipped arguments)

More About Higher-Order Functions (revised 2022-02-01) 14

Then

let cons x xs = x :: xs

let revOp acc x = flip cons acc x

The declaration of revOp can be simplified to

let revOp = flip cons

Finally, replacing revOp with flip cons in reverse, we obtain

let reverse = List.fold (flip cons) []

Simple? Obfuscated? It’s much a matter of training to appreciate this style

More About Higher-Order Functions (revised 2022-02-01) 15

Nameless Functions

Functions don’t have to be given names

We can write nameless functions through λ-abstraction:

fun x -> e stands for function with formal argument x and function body e

(Comes from λ-calculus, where we write λx.e)

Example: fun x -> x + 1, an increment-by-one function

List.map (fun x -> x + 1) xs returns list with all elements
incremented by one

Nameless functions are often convenient to use with higher-order functions,
no need to declare functions that are used only once

More About Higher-Order Functions (revised 2022-02-01) 16

Some Syntactical Conveniences

fun x y -> e shorthand for fun x -> (fun y -> e)

Pattern matching as in ordinary definitions, like fun (x,y) -> x + y

Currying can be defined through λ-abstraction:

simple 5 = fun x y -> simple 5 x y

Also note:

let (rec) f x =

is precisely the same as

let (rec) f = fun x -> (....)

More About Higher-Order Functions (revised 2022-02-01) 17

Another Syntactical Convenience

function

| pattern_1 -> expr_1

...

| pattern_n -> expr_n

is shorthand for

fun x -> match x with

| pattern_1 -> expr_1

...

| pattern_n -> expr_n

Convenient when matching directly on function arguments. Used a lot in the
book

More About Higher-Order Functions (revised 2022-02-01) 18

An Example

posInts : [int] -> [bool]

posInts xs = let test x = x > 0 in List.map test xs

can be written

posInts xs = List.map (fun x -> x > 0) xs

or even, through “curry-cancelling”

posInts = List.map (fun x -> x > 0)

Concise! Easy to understand? You judge.

More About Higher-Order Functions (revised 2022-02-01) 19

A Second Example

Remember our file i/o example, turning whitespaces between words to
single spaces?

let string_2_words s = string2words (0,s)

let s = File.ReadAllText("in.txt")

|> string_2_words

|> words2string

in File.WriteAllText("out.txt",s)

With nameless functions we can avoid some declarations:

File.ReadAllText("in.txt")

|> (fun s -> string2words (0,s))

|> words2string

|> (fun s -> File.WriteAllText("out.txt",s))

More About Higher-Order Functions (revised 2022-02-01) 20

Function Composition

A well-known operation in mathematics, there defined thus:

(f ◦ g)(x) = g(f(x)), for all x

F# definition:

(>>) : (’a -> ’b) -> (’b -> ’c) -> ’a -> ’c

let (>>) f g x = g (f x)

Similar to the “forward pipe” operator |>: we have

x |> f |> g = (f >> g) x

Which one to use is often a matter of taste

f g
f >> g

More About Higher-Order Functions (revised 2022-02-01) 21

