Integrating IoT Infrastructures in Industrie 4.0
Scenarios with the Asset Administration Shell

Sven Erik Jeroschewski, Johannes Kristan, Milena Jéntgen, and Max Grzanna

Bosch.IO GmbH, Ullsteinstr. 128, 12109 Berlin, Germany
{firstname.lastname}@bosch.io

Abstract. The Asset Administration Shell (AAS) specifies digital twins
to enable unified access to all data and services available for a physical
asset to cope with heterogeneous and fragmented data sources. The setup
of an AAS infrastructure requires the integration of all relevant devices
and their data. As the devices often already communicate with an IoT
backend, we present three approaches to integrate an IoT backend with
an AAS infrastructure, share insights into an implementation project,
and briefly discuss them.

Keywords: IoT - Asset Administration Shell - 140 - digital twin.

1 Introduction

The rising heterogeneity and complexity of their environments make it hard for
manufacturers to adapt to changes, integrate new components, and prevent fast
and sound decision-making, as relevant data may be theoretically available but
practically not accessible where it is needed [§].

The Asset Administration Shell (AAS) [5,6] is a building block in achiev-
ing interoperability in Industrie 4.0 scenarios by specifying interaction models,
formats, and abstractions for the handling and access of information as digital
twins. Various domains already adopt the AAS for scenarios like Digital Calibra-
tion Certificates (DCC) [4], or accessing semantically and syntactically aligned
data sets for training, and re-using higher quality AT models [§].

To benefit from the AAS, manufacturers link existing systems, services, and
devices with an AAS infrastructure, which may result in high configuration ef-
forts for each device and possibly long down times. Many connected devices
already communicate with an Internet of Things (IoT) backend [1,7], which
manages the device state, collects data, and routes messages. Often, it is thus
easier to connect the AAS to an IoT backend and leave each device unchanged.

2 Integration Approaches

The AAS defines flows for data retrieval (Fig. 1) [6], which the presented inte-
gration approaches need to fit to. The flow starts by requesting an AAS ID from
the AAS discovery interface based on a (local) specific asset ID or a global asset

2 Jeroschewski et al.

ID. With the AAS ID, the application retrieves an endpoint for the AAS through
the AAS Registry interface. The application then requests the Submodel (SM)
ID from that AAS endpoint and uses this SM ID to get the SM endpoint from
the SM Registry. From that SM endpoint, the user can request the SM Element
(SME), which contains the required value.

“AhS-Endpoint”

st : : :
. S a— H H H
| H £1| Request data]
“ARS (with SMDs)Y : | | AAS Consumer Eclipse BaSyx Push data
s | : i Application AAS Server

“sM-&ndpoint”

h : Request delegated property! : Fulfill request

i i H suwin | f ! !

st [Dicovery Itertace) A4S Rty itrtace | 425 Itartace) [SH Rty Itetce) [SH metace . Push T cse
% == Delegated Databridge Requestdata | Ditto
Fig. 1. Sequence of data flow through Fig. 2. Implemented integration ap-
AAS infrastructure proaches

This generic flow shows that an IoT backend integration essentially boils
down to making device data available via SMs and their SMEs as an SM Interface
Endpoint. We identify three approaches for this: The IoT backend may push
latest updates to an AAS SM server or the AAS SM server pulls the current
state from the IoT backend either via a wrapper or via a bridge.

Push: Whenever the IoT backend receives an update from a device, a back-
end component transforms and pushes the data in the AAS format [5] to an SM
server. This approach allows for re-using a generic implementation of the SM
Server with the drawback of duplicate data storage in the IoT backend and the
SM server, leading to potential synchronization and data consistency issues.

Pull via Bridge: Some AAS SM servers support delegating requests for
specific SME values to other endpoints like a data bridge, which then retrieves
the actual data from the IoT backend and applies transformation logic. With
this approach, one can use a generic AAS server implementation and enable
mixed scenarios where only a few requests get delegated to one or multiple IoT
backends while the SM server stores all other SMEs. However, it requires the
AAS server component to provide such functionality.

Pull via Wrapper: It is also possible to add a custom wrapper that im-
plements the SM interface for the client and fetches the required data from the
IoT backend. This approach does not require data duplication but may impose
implementation efforts concerning identifier mapping and coupling between the
wrapper and the IoT backend.

As part of the project GEMIMEG-II [4], which works on DCCs and better
data orchestration, we implemented the approaches push (dotted) and pull via
a bridge (dashed) as depicted in Fig. 2. We used Eclipse Ditto [3] as an IoT
backend and Eclipse BaSyx as AAS infrastructure [2].

Title Suppressed Due to Excessive Length 3

Eclipse Ditto is an IoT backend built of micro-services, which evolves around
the concept of Things representing the state of a device. Each Thing has Proper-
ties grouped as Features, which may change over time (e.g. sensor values).
One can express constant values, such as identifiers, as Attributes. Grouping
of Things is possible by assigning them to a Namespace. Ditto comprises a
Connectivity API for the integration with other systems, which allows to provide
JavaScript code, which gets executed on events (e.g. changing a Thing).

Eclipse BaSyx is an open-source framework to realize an Industrie 4.0 mid-
dleware [2] based on the AAS Spec. [5, 6].

For push, we configured a Ditto instance through the connectivity API to
forward changes of a device and its corresponding Thing to a BaSyx SM Server.
This results in duplicated data storage in Ditto and the BaSyx SM Server.

For pull, the BaSyx SM server supports delegation and calls the endpoint of
a bridge component for each request for a corresponding SME. Since Ditto has
the option to return the value without additional payload, the main task of the
bridge is to perform the authorization flow of Ditto.

The pull via wrapper was not realized for AAS as it would require high
implementation efforts, as demonstrated by the integration of the Web of Things
(WoT) by the Eclipse Ditto Project [3].

The mapping between concepts of Ditto and AAS is depicted in Tab. 1.

Table 1. Concept mapping from Eclipse Ditto to the AAS

Eclipse Ditto Asset Administration Shell

Namespace Asset Administration Shell
Thing -
Features Submodel
Property Submodel Element
Attribute Submodel Element

3 Discussion

Based on our observations, the pull approach with a wrapper is a good trade-off
for scenarios with a high and medium frequency of sensing and actuation up-
dates. But the development and operation of new software artifacts lead to higher
engineering costs and operation efforts in comparison to the other approaches.
The push approach is a good solution for scenarios with many data reads and
few data updates but it lacks a good way of pushing actuation information to
the IoT backend and introduces risks regarding data inconsistency. Compared
to the other presented approaches, the pull approach with data bridge seems to
have lower engineering cost and is easier to operate allowing to get started a bit
faster, but it is not so well-suited when the frequency of data access rises.

4 Jeroschewski et al.

As we draw our conclusions about the three approaches solely from our ob-
servations in one project, it is worthwhile to extend the analysis and run some
even quantifiable evaluations based on further projects or in controlled environ-
ments. We also have not yet looked further into executing AAS operations. Once
BaSyx supports authenticating during requests for delegated data, we may also
try to retrieve the raw data from Eclipse Ditto without using a data bridge.

4 Summary

We presented the architectural approaches, push, pull with wrapper, and pull
with data bridge, to integrate existing IoT backends with the AAS. Based on
the experiences gained in the GEMIMEG-II project, we discussed the approaches
without identifying a preferred option since each alternative has different advan-
tages and drawbacks for the sensing and actuating frequency or the engineering
and operation cost.

Acknowledgements The research has received funding from the the Federal
Ministry for Economic Affairs and Climate Action of Germany under the funding
code 01MT20001J. The responsibility for the content of this publication lies with
the author(s).

References

1. Banijamali, A., Heisig, P., Kristan, J., Kuvaja, P., Oivo, M.: Software architecture
design of cloud platforms in automotive domain: An online survey. In: 2019 IEEE
12th Conference on Service-Oriented Computing and Applications (SOCA). pp.
168-175 (2019)

2. BaSyx, E.: Eclipse basyx - industry 4.0 operating system. https://www.eclipse.
org/basyx/ (2023)

3. Ditto, E.: Eclipse ditto. https://www.eclipse.org/ditto (2023)

4. Hackel, S., Schonhals, S., Doering, L., Engel, T., Baumfalk, R.: The digital cali-
bration certificate (dcc) for an end-to-end digital quality infrastructure for industry
4.0. Sci 5(1) (2023). https://doi.org/10.3390/sci5010011, https://www.mdpi.com/
2413-4155/5/1/11

5. IDTA: Spec. of the Asset Administration Shell - Part 1: Metamodel (April
2023), https://industrialdigitaltwin.org/en/wp-content/uploads/sites/
2/2023/04/IDTA-01001-3-0_SpecificationAssetAdministrationShell_Partl_
Metamodel . pdf

6. IDTA: Spec. of the Asset Administration Shell - Part 2: Application
Programming Interface (April 2023), https://industrialdigitaltwin.
org/en/wp-content/uploads/sites/2/2023/04/IDTA-01002-3-0_
SpecificationAssetAdministrationShell_Part2_API.pdf

7. Kristan, J., Azzoni, P., Romer, L., Jeroschewski, S.E., Londero, E.: Evolving
the ecosystem: Eclipse arrowhead integrates eclipse iot. In: NOMS 2022-2022
IEEE/IFIP Network Operations and Management Symposium. pp. 1-6 (2022)

8. Rauh, L., Reichardt, M., Schotten, H.D.: Ai asset management: a case study with
the asset administration shell (aas). In: 2022 IEEE 27th International Conference
on Emerging Technologies and Factory Automation (ETFA). pp. 1-8 (2022)

