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Abstract. We showcase and demonstrate IDPP, a Pyrus-based tool
that offers a collection of pipelines for the analysis of imbalanced datasets.
Like Pyrus, IDPP is a web-based, low-code/no-code graphical modelling
environment for ML and data analytics applications. On a case study
from the medical domain, we solve the challenge of re-using AI/ML mod-
els that do not address data with imbalanced class by implementing ML
algorithms in Python that do the re-balancing. We then use these algo-
rithms and the original ML models in the IDPP pipelines. With IDPP,
our low-code development approach to balance datasets for AI/ML ap-
plications can be used by non-coders. It simplifies the data-preprocessing
stage of any AI/ML project pipeline, which can potentially improve the
performance of the models. The tool demo will showcase the low-code
implementation and no-code reuse and repurposing of Al-based systems
through end-to end Pyrus pipelines.
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1 Introduction

The combination of Artificial Intelligence (AI), Machine Learning (ML) and
Deep Learning (DL) algorithms has uncovered enormous potential and unprece-
dented problems in the ever-changing environment of software engineering. Soft-
ware engineering principles need to adapt to developing and evolving Al-based
systems. Our work addresses the need of responsible Al engineering and by lever-
aging the strengths of the Pyrus tool. Pyrus [I7] is a Python-based, web-based,
graphical modelling environment for ML and data analytics applications.

A particular aspect of fairness and access to advanced Al is to increase its
accessibility to domain experts that are non-coders. This is increasingly impor-
tant in medicine, health and natural science context. Prior work successfully
used low-code/no-code approaches to address workflow in bioinformatics [5] [4],
computational science [I] and paired with computational thinking, in educa-
tion [8]. Those approaches share similar abstraction, encapsulation and coordina-
tion mechanisms to ours, however, their underlying tools were desktop or server
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oriented, the system used Java for the low-code part, and modelling was sin-
gle user. Choosing Pyrus, we now support Python as implementation language,
the system is cloud-based, and it supports distributed collaborative modelling,
three core characteristics for the ease of adoption in modern interdisciplinary
and distributed teams of natural and medical scientists and practitioners.

Tools like Tinesﬁ and H20.ai 's Hydrogen Torchﬂ are specifically low-code/no-
code or support ML applications. Tines is a web-based no-code tool that uses
workflows in the domain of cybersecurity. The workflows can be automated us-
ing different no-code snippets of generic components called ‘actions’ within au-
tomated workflows called ‘stories’. Although Tines has a robust and easy to use
interface, it lacks the ability to code specific ‘actions’ required for any complex
data analysis or ML application. H20.ai Hydrogen Torch is a ML/DL-specific,
web-based, low-code/no-code tool that can be used by non-coders for their big-
data needs. This platform can also be used to deploy ML pipelines and models,
and it has API functionality for remote use. In comparison, Pyrus supports the
features offered by Hydrogen Torch, and it is open source, thus it can be used
without subscription fees. For a business/organisation looking to develop its own
in-house AI models using their own proprietary data, sharing data with a third
party and model training costs are the biggest issues.

From an application point of view, the AI/ML models, workflows and pipelines
need to be explainable and reusable to allow for ease of future development and
collaboration. The low-code/no-code paradigm helps by presenting the end user
transparent, explainable and reusable ways to implement the AI/ML models in
a reliable and fair way. We demonstrate how IDPP is a good solution to these
problems on a real-world use-case where we show how to deal with the data
imbalance problem for a selection of popular ML models, applied to the medical
domain. To resolve class imbalance, data resampling techniques are used and
all the IDPP modelling pipelines are developed in Pyrus using the low-code/no-
code paradigm. This research extends the M.Sc. thesis of Olga Minguett [12],
who chose the datasets and resampling methods. The new contribution is the
IDPP tool: it concerns the restructuring of the code for the data analytics and
the new model driven approach with ML pipelines in Pyrus H

In this paper, Sect. [2] describes the IDPP framework used in this research,
Sect. [3| demonstrates the IDPP framework using a case study of imbalanced
datasets from the medical domain, Sect. [d] concludes the paper.

2 Framework Description

Pyrus is a Python-based, web-based, graphical modelling environment for ML
and data analytics applications. Pyrus is also part of the larger CINCO family

* lhttps:/ /www.tines.com/product

® lhttps://h20.ai/platform/ai-cloud /make/hydrogen-torch/

6 All code, information on datasets used and the results are published on GitHub at:
https://github.com/singhad/class_imbalance_pyrus
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Fig.2: IDPP and Pyrus: List of SIBs in the Ecore palette

of low-code/no-code development tools [I3], and it is integral part of a Dig-
ital Thread solution [J] that enables inter-accessibility and reusability of the
code-base for different applications and objectives. Pyrus models are data-flow
models, they are the no-code graphical equivalent to programming workflows
that orchestrate reusable Python functions. The Python functions are imple-
mented in the renowned programming platform Jupytelﬂ following the OTA
(One Thing Approach) paradigm [I0]. Special signature annotations added to
these functions enable their identification by the Pyrus web-based orchestration
tool. The code generated by Pyrus from the pipelines is also stored and executed
in Jupyter. This separation of the low-code development of functionalities and
no-code orchestration via modelling is based on MDE principles [I].

Fig. B shows a screenshot of the Pyrus web-based development environment.
Each Python function implemented in Jupyter is represented in Pyrus as a col-
lection of taxonomically grouped Service Independent Building blocks (SIBs) in

7 https://jupyter.org
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Fig. 3: Pyrus: View of the web-based development environment

its Ecore section, containing the SIBs palettes. Fig. [l shows the annotated code
in Jupyter in Fig. [Th] and its representation as a SIB in Pyrus, see Fig. A
summary of the SIBs available in the Ecore section of IDPP is shown in Fig. [2|

3 Use Case and Demonstration

ML classification algorithms assume that the classes are balanced, but this is
rarely the case in any real-life data. Class imbalance happens when one or more of
the classes/categories in a dataset are not well represented and hence are thought
to be outliers, noise or anomalies by the ML algorithms during their training
process. This is a challenge for the ML algorithms, as the underrepresented
categories will be ignored or misclassified. The problem is exacerbated when
these algorithms are used as applications in real-life settings and produce biased
or wrong results. According to [16], most ML classification algorithms assume
that the classes are balanced and that the cost of miscalculation is the same for
any class. However, for diagnosing conditions, improving prognostics, accurate
patient monitoring and in personalised medicine, the cost of misdiagnosing a
patient is significantly higher. For example, for the classification of tumours as
malignant or not-malignant [2], the cost of miscalculation is very different. To
resolve class imbalance, resampling techniques are used, such as data-resampling
techniques that modify the training dataset in order for the ML models to have
equal representation of the minority class.

3.1 Python Pre-requisites

We chose Python as the programming language. The two central packages used
for the programming tasks are scikit-learn [I4], used for data cleaning, modelling
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and evaluation, and imbalanced-learn [6], used to apply the different data-driven
resampling techniques on the datasets.

3.2 Datasets
We chose these three datasets for this study:

1. Cerebral Stroke Dataset [7]: This dataset was created to aid in detection of
a stroke using classification algorithms. It has 12 features containing 43.4K
observations out of which 783 observations are labelled to be stroke.

2. Diabetes Dataset [I5]: This dataset was extracted from the Behavioral Risk
Factor Surveillance System (BRFSS) 2014 dataset that was published by
the CDC EL The BRFFS 2014 dataset contained survey collected responses
from over 400,000 people on health-related risk behaviours, chronic health
conditions, and the use of preventative services, conducted since 1984. The
extracted Diabetes dataset has 22 features, 254.6K observations with the
target variable having 2 classes - 0 for no diabetes, 1 for diabetes.

3. Sepsis Dataset [3]: This dataset was created in the Computing in Cardiology
Challenge from Physionet 2019 with the goal of early detection of sepsis.
The data was sourced from ICU patients in three separate hospital systems.

3.3 Data Pre-processing and Transformation

To remove missing values and encoding of categorical variables, different ap-
proaches are employed for the three different datasets.

1. Cerebral Stroke dataset: only two features have missing values - BMI and
Smoking Status. For the BMI feature, the missing values are imputed with
the modal value, and for the Smoking Status feature, the missing values are
categorised into a new label named 'Unknown’. The categorical features in
this dataset are encoded using the Pandas package.

2. Diabetes dataset: it has no missing values or categorical features. The dataset
has 253680 rows and 22 columns with an imbalance of target label of 16.19%.
Since the dataset is very large for this study, a subset of the dataset is taken
by keeping the imbalance percentage constant. The subset dataset we use
has 41075 rows and 22 columns.

3. Sepsis dataset: the features with more than 70% missing values are deleted.
The remaining missing values in the features are imputed using the median
values. There are no categorical features in this dataset.

The datasets are split into a ratio of 80:20 for training and testing respec-
tively. The stratified splitting method is used. For outliers, the RobustScaler()
transform function is used for feature scaling to remove the median values and
perform scaling of data between the 1st and 3rd quartile.

8 lhttps://www.cdc.gov/brfss/annual_data/annual 2014.html
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3.4 Experiments

Five classification algorithms were chosen: 1) Support Vector Machine (SVM),
2) Decision Tree (DT), 3) Gaussian Naive Bayes (GNB), 4) K-Nearest Neigh-
borhood (KNN), 5) Logistic Regression (LR).

Three types of data-driven resampling techniques were applied on the datasets:
undersampling, oversampling, and hybrid techniques. The following specific data-
driven resampling techniques were selected in the experiments:

1. Oversampling: RandomOverSampler, SMOTE, SMOTENC, BorderlineSMOTE,
SVMSMOTE, KMeansSMOTE, ADASYN

2. Undersampling: RandomUnderSampler, ClusterCentroids, NearMiss, Instance-
HardnessThreshold, TomekLinks, CondensedNearestNeighbour, AIIKNN, Edit-
edNearestNeighbours, RepeatedEditedNearestNeighbours, OneSidedSelection,
NeighbourhoodCleaningRule

3. Combined/Hybrid: SMOTEENN, SMOTETomek

3.5 Pyrus Pipelines

The original code was transformed according to the OTA paradigm for modular-
ization and reuse, and each SIB was annotated with special signature comments
for the Pyrus orchestrator to recognise the functions in the pipelines. The code
was then stored and implemented on Jupyter, and GUI-based pipelines were
modelled in Pyrus. The Pyrus pipelines are depicted in Fig. [ [5] and [6]

The performance of the algorithms on the datasets before and after resam-
pling was evaluated using the metrics accuracy, precision, recall, f1 score, number
of occurrences, predictions count, confusion matrix and area under the curve.
The precision, recall and fl score metrics were plotted, and the results were
stored as a CSV file for each classification algorithm.

3.6 Results

Experiments were conducted on the three selected datasets. Fig. [4] shows the
exploratory data analysis (EDA) pipeline to get the overview and basic statistics
of the datasets. Fig. [5]shows the pre-processing and transformation pipeline used
to clean the datasets and segment them into training/testing sets for ML models.
Fig. [6] shows the modelling and evaluation pipeline used to apply and evaluate
ML models on the selected datasets.

The highest and lowest scoring results for each of the datasets based on the
f1 score metric are shown in table[[l The results are summarised as follows:

1. The Cerebral Stroke dataset has the most imbalanced class ratio. The best
results were obtained by the KNN and DT models when undersampling and
oversampling techniques were used. Although overall, oversampling tech-
niques performed better. The worst results were obtained when a set of
undersampling techniques were used.
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Fig.4: Pyrus: Exploratory Data Analysis (EDA) Pipeline
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Fig.5: Pyrus: Pre-processing and Transformation Pipeline

2. The Diabetes dataset had a mild class imbalance ratio and here too oversam-
pling techniques performed better overall than undersampling techniques.
For this dataset, the best algorithms were KNN and DT. The worst results
were obtained when a set of undersampling techniques were used.

3. The Sepsis dataset had a moderate class imbalance ratio. Here the undersam-
pling and oversampling techniques performed equally well. For this dataset,
the best algorithm was DT. The worst results were obtained when a set of
undersampling techniques were used.

Across all three datasets, the hybrid techniques had the best overall perfor-
mance, with the least variance in f1 scores for different models. The best model
for hybrid techniques was DT.

Across all datasets, specifically the TomekLinks/OneSidedSelection (under-
sampling), RandomOverSampler/KMeansSMOTE (oversampling) and SMOTE-
Tomek (hybrid) methods performed the best.
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Fig. 6: Pyrus: Modelling and Evaluation Pipeline
Table 1: Results for all datasets - sorted by fl1 Scores
Dataset Technique |[Model Method f1 Score|Accuracy|Precision|Recall
Undersampling| KNN TomekLinks 0.9906 0.9812 0.9820 [0.9992
KNN | OneSidedSelection | 0.9906 0.9813 0.9820 [0.9992
DT NearMiss 0.3702 0.2376 0.9798 |0.2282
Cerebral Stroke Dataset| Oversampling | DT |RandomOverSampler| 0.9831 0.9668 0.9821 ]0.9842
DT KMeansSMOTE 0.9760 0.9532 0.9832 |0.9689
GNB ADASYN 0.8247 0.7057 0.9934 |0.7049
Hybrid DT SMOTETomek 0.9736 0.9486 0.9829 |0.9645
GNB SMOTEENN 0.8264 0.7082 0.9937 10.7073
Undersampling| KNN TomekLinks 0.9111 0.8422 0.8843 |0.9596
KNN | OneSidedSelection | 0.9111 0.8421 0.8844 10.9393
DT ClusterCentroids 0.3769 0.3221 0.9020 |0.2382
Diabetes Dataset Oversampling | SVC KMeansSMOTE 0.8963 0.8220 0.8992 [0.8934
DT |RandomOverSampler| 0.88 0.7945 0.8737 |0.8737
GNB ADASYN 0.7596 0.6567 0.9558 |0.6303
Hybrid DT SMOTETomek 0.8768 0.7910 0.8900 |0.8639
KNN SMOTEENN 0.7570 0.6526 0.9508 |0.6289
Undersampling| DT OneSidedSelection | 0.9736 0.9510 0.9736 |0.9736
DT TomekLinks 0.9730 0.9499 0.9734 [0.9725
SvVC ClusterCentroids 0.4018 0.2993 0.9634 [0.2539
Sepsis Dataset Oversampling | DT |RandomOverSampler| 0.9736 0.9510 0.9727 10.9745
LR ADASYN 0.8549 0.7601 0.9734 |0.7620
Hybrid DT SMOTETomek 0.9601 0.9270 0.9736 0.9470
KNN SMOTEENN 0.8399 0.7390 0.9738 [0.7384

Overall, hybrid techniques perform the best with the least variance in f1
scores, oversampling techniques ranked second-best: with many higher f1 scores
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than hybrid techniques, but with more variance. Undersampling techniques ranked
the lowest of the three types, with some high scores but a lot of variance in f1
scores. This result is in agreement with the established understanding that more
data points are always better than fewer data points even when the resulting
dataset is completely balanced. By design, undersampling techniques remove
data points, which generally results in loss of information compared to oversam-
pling/hybrid techniques that append more data points.

4 Conclusions

With IDPP we demonstrate that the low-code/no-code pipelines for imbalanced
datasets in Pyrus serve as an embodiment of ‘Responsible AI’ concerning trans-
parency, fairness, explainability, reliability and reusability of the AI/ML models
and IDPP pipelines themselves. IDPP uses the web-based, low-code/no-code
graphical modelling environment of Pyrus for AI/ML applications. We applied
IDPP to imbalanced datasets, showing on 3 imbalanced medical datasets the
performance of different data-driven resampling techniques in combination with
a selection of ML classification algorithms.

The low-code Pyrus pipelines were easy to create and reuse. The develop-

ment time of the pipelines was greatly reduced by using a web- and GUI-based
tool. Pyrus was used to build the data-flow pipelines using SIBs generated from
annotations in the Python code. With this low-code/no-code approach, future
users can reuse the existing IDPP pipelines and SIBs by simply selecting them
from the Ecore palette section in Pyrus, without the prerequisite of proficiency in
programming. This ensures superior understandability of the logical steps in the
pipeline w.r.t. the code based approach. IDPP’s end-to-end Pyrus pipelines offer
a variety of techniques, models and methods to rectify data imbalance in dif-
ferent scenarios without the need for redeveloping custom pipelines and AI/ML
models from scratch for each use-case.
A challenge faced by IDPP and any low-code/no-code approach is the depen-
dency of Python libraries on the Python kernel version. If the version of Python
required by the libraries does not match the version of Python kernel used by
Jupyter for the IDPP or Pyrus orchestration, the pipeline will not execute. It may
help to re-deploy Pyrus framework using the most recent versions of Python and
other supported packages. Ultimately, software obsolescence is inevitable, and it
is essential to keep pace with newer versions, tools and technology.
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