
A Literature Survey of Assertions in Software
Testing

Masoumeh Taromirad1,2[0000−0002−0838−928X] and
Per Runeson1[0000−0003−2795−4851]

1 Lund University, SE-221 00 Lund, Sweden
2 Jönköping University, SE-551 11 Jönköping, Sweden

{masoumeh.taromirad,per.runeson}@cs.lth.se

Abstract. Assertions are one of the most useful automated techniques
for checking program’s behaviour and hence have been used for different
verification and validation tasks. We provide an overview of the last two
decades of research involving ‘assertions’ in software testing. Based on a
term–based search, we filtered the inclusion of relevant papers and syn-
thesised them w.r.t. the problem addressed, the solution designed, and
the evaluation conducted. The survey rendered 119 papers on assertions
in software testing. After test oracle, the dominant problem focus is test
generation, followed by engineering aspects of assertions. Solutions are
typically embedded in tool prototypes and evaluated throughout lim-
ited number of cases while using large–scale industrial settings is still a
noticeable method. We conclude that assertions would be worth more at-
tention in future research, particularly regarding the new and emerging
demands (e.g., verification of programs with uncertainty), for effective,
applicable, and domain-specific solutions.

Keywords: assertions, testing, literature survey

1 Introduction

While there is abundance of research regarding the selection of test inputs and
execution conditions, the assessment of expected results is less covered. Research
on the expected results of test cases is often framed as “the oracle problem”,
with Weyuker as an early contributor, observing 1982 that “[a]lthough much of
the testing literature describes methodologies which are predicated on both the
theoretical and practical availability of an oracle, in many cases such an oracle
is pragmatically unattainable” [82].

Barr et al. [6] surveyed the research literature related to oracles and classi-
fied oracles into specified, derived, implicit, and no automatable ones. Among
the concepts identified in their survey are ‘assertions’, defined as “a boolean ex-
pression that is placed at a certain point in a program to check its behaviour at
runtime”. Despite being dated back to Turing and integrated into programming
languages, testing tools and practices of today, they only found a few pieces
of work specifically focused on assertions [16]. As our current research develops



2 M. Taromirad, P. Runeson

around assertions, we decided to survey the existence of assertions, for testing
purposes, in more recent research.

Our research goal is to provide an overview of existing research literature
on assertions in software testing, to provide a basis for further research. As
our research “aims to improve an area of practice”, we choose the design science
paradigm as a lens for this literature survey, as proposed by Engström et al. [25].
We search for literature that uses assertions or addresses problems with asser-
tions in software testing. In line with design science elements, we catalogue the
problems addressed in relation to assertions, the solutions designed to address
the problems with or using assertions, and the types of evaluation, assessing the
strength and relevance of the contributions.

We present existing literature surveys on testing in Section 2. Our methodol-
ogy is outlined in Section 3, followed by the main results – the literature overview
and synthesis in Section 4. We discuss our findings in Section 5, report limitations
in Section 6, and conclude the paper in Section 7.

2 Background and Related work

Assertions are used to check program’s behaviour at runtime: when an assertion
evaluates to true (false), the program’s behaviour is regarded “as intended” (“as
erroneous”) at the point of the assertion. They have gained significant attention
and been used as a measure for code quality. Most dominantly, program asser-
tions are used either to check the behaviour of the program, e.g., Blasi et al. [8],
or to specify and check the contracts within the design by contract development.

Test oracle assertions (test assertions for short) are also used to specify and
check the expected output of test cases [6]. Test assertions differ from program
assertions as they check the expected output for one specific test case, while pro-
gram assertions are typically located in the source code of the program, predicate
on its variables, and return true or false throughout all its executions. Neverthe-
less, in many studies, program assertions and test oracle assertions are considered
very closely or even interchangeably, e.g., Terragni et al. [74].

Specification assertions are also used to document programmers intent [16],
i.e. modules are annotated with pre/post-conditions or invariants, e.g., JML.
Specification assertions are basically non-executable and hence are inherently
different from the other two types of assertions, although they seamlessly can
be exploited at various stages of development for verification [54]. Our study
basically focuses on test oracle assertions, yet designed to be inclusive of other
types of assertions when they relate or contribute to testing.

Assertions (and their application) in software testing have been mostly stud-
ied under surveys on the test oracle problem, e.g., [6, 55, 61]. Among the 101
secondary studies, identified by Garousi and Mäntylä [32], only one is related
to assertions, namely the one by Barr et al. [6] which reports on the roots of
assertions, and existing support in languages and tools to use them for testing
purposes. Surveys on automatic test generation techniques also consider asser-
tions. Patel and Hierons [59] discuss the effectiveness and usability of assertions –



A Literature Survey of Assertions in Software Testing 3

Fig. 1. Overview of the research method.

among others – in testing non-testable systems. In a mapping study on software
test-code engineering, Garousi et al. [29] identify oracle assertion adequacy as a
criterion of test-code quality assessment. In a survey on software testability [30],
adding assertions is identified as an approach to improve testability. Winkler et
al. [83] identify assertions as one of the factors affecting test code readability
and understandability.

In summary, there are many secondary (and even tertiary) studies on software
testing, but to our knowledge, there is no study specifically focusing on assertions
used in software testing, and thus our survey fills a gap here.

3 Research method

This study provides an overview of research involving (different types of) asser-
tions used in the context of software testing. We follow similar research proce-
dures as used in the literature surveys conducted by Harman et al. [4,6], namely
a term–based search in Google Scholar, followed by a filtering process, and finally
synthesized in a qualitative analysis. This type of reviews, i.e., semi-systematic
reviews, is proposed by Snyder [69], in particular, for a non-homogeneous concept
(similar to the target of our survey), where systematic literature reviews would
be too strict, and a narrative approach is more feasible. Kitchenham et al. [38]
label a similar process mapping study that “may be auditable but not necessarily
complete”; that they should have transparent procedures but the search scope
may be limited. In this paper, we aim to “map a field of research, synthesize the
state of knowledge, and create an agenda for further research” [69].

This survey was conducted in four major steps which were iterated in several
cycles (demonstrated in Fig. 1). The first author was the main driver of the
work, while the second author primarily took a validation role at each step.

1. Search To include also grey literature, Google scholar was used as the pri-
mary search engine [31], with a query defined as: “assertion” AND “software”
AND (“test” OR “testing”). We limited the search in time to the 2000–2023 to
get an overview of modern research on assertions, still partially overlapping with
earlier surveys to ensure consistency (e.g. Barr et al. covered 1978–2012 [6]). The
initial search rendered about 173 000 hits.



4 M. Taromirad, P. Runeson

2. Screening The titles and abstracts were screened to find papers on asser-
tions, although being inclusive when in doubt. After about 5 000 titles, no more
relevant papers where found among the last dozens of titles. The screening re-
sulted in a set of about 380 papers before further classification of the papers.
To validate the search and screening, we used the same query in our university’s
library search portal, limiting the search to title and abstract within the context
of software testing. The results were further screened for relevance and overlap
resulting in 86 additional papers, and hence, the initial pool of about 470 papers.

3. Classification We then performed a preliminary coding of the papers, based
on the type of the study and then the type of assertion, resulting in five cate-
gories: 1) secondary studies, 2) empirical studies, 3) studies explicitly on testing,
4) studies involving program assertions, and 5) studies on assertion-based verifi-
cation. Firstly, we filtered out category 1 studies, as they were already considered
under the related work. We also excluded the papers in category 5, since they
are fundamentally related to hardware. Moreover, throughout the preliminary
coding, we found out that the studies in category 4 are divided into two groups
of 1) studies totally separate from testing, and 2) studies that are related to
testing, and hence, we excluded the first group from the further classification.
Accordingly, we came up with 119 papers on assertions related/contributing to
testing. We further classified the remaining papers according to the design sci-
ence elements of problem, solution, and validation.

4. Synthesis Finally, we synthesised the research from the perspectives of
1) the problems addressed, 2) the solutions presented, and 3) how they are
evaluated. The design science perspectives are motivated by earlier research,
concluding that this frame is feasible for software engineering research [25].
The results are presented in Section 4 accordingly. The complete listing of
the synthesis (including 119 papers) is available as complementary material at
https://shorturl.at/ruCHL.

4 Results

This section presents the results of reviewing the studies through characterising
three aspects of each study: the addressed problem (Section 4.2), the main pro-
posed solution (Section 4.3), and how the proposal was evaluated (Section 4.4).
It also outlines the type of assertions considered in the studies (Section 4.1).
Throughout a few iterations over the studies, these aspects were narrowed down
using more fine-grained and consistent taxonomy (presented in Figure 2), that
provides a comprehensive picture of the existing research on assertions in testing.

4.1 Assertion Types

Among our collection of studies, the three types of assertions are identified, which
are considered for different purposes in the context of testing. Evidently, most



A Literature Survey of Assertions in Software Testing 5

Fig. 2. Overview of the resulting taxonomy of the literature synthesis.

of the studies deal with test assertions, where assertions are manipulated as the
result of performing other tasks, such as automatically generating assertions [90]
or improving their effectiveness [18]. Empirical studies (e.g., [41,68]) also focus on
test assertions investigating them from different perspectives. Program assertions
are also found among the studies for testing purposes – rather than just program
verification. In such studies, program assertions are employed as part of the
solution in order to fulfill a goal, such as generating test data (e.g., [87, 92]).
Specification assertions are also employed for generating tests (e.g., [23, 43]).

4.2 Assertion Problems

The problem aspect looks into the principal focus of the research. The problems,
addressed by the collected studies, include test oracle, test generation, test re-
gression, test smells, specific applications (e.g., Mobile Apps, GUI, ML), and test
improvements. Note that these classes recognise the most distinguishing problem
addressed by a piece of research, and hence, they are not necessarily disjoint.

Test Oracle While assertions are useful for specifying test oracles, writing
and generating effective assertions are yet challenging [6]. Test oracle problem
has been considered from different perspectives, including lack of specification,
automatic generation of assertions statements, improving assertion oracles, and
assertions based on specifications.

Specification of the intended behavior of the software under analysis is es-
sential for assertion oracles. The lack of such specification has led to different
techniques to capture the software behavior, and then generate assertions accord-
ingly. Given an automatically generated test suite with no assertions, Ostra [86]
collects objects’ states, exercised by the test suite, and augments the test suite
with new assertions specifying the behavior of a method. Zamprogno [91] propose



6 M. Taromirad, P. Runeson

to automatically generate assertions for a given test case, based on its previous
executions and feedback of the developer. EvoSpex [52] uses genetic algorithms
to automatically produce a specification of the method’s current behavior, in
the form of postcondition assertions. Mesbah et al. [48] use a crawler to in-
fer a state-flow graph of user interface states and then identify AJAX-specific
faults and DOM-tree invariants that can serve as oracles. TOGA [22] is a unified
transformer-based neural approach to infer both exceptional and assertion test
oracles for a focal method, that in particular handles units with ambiguous or
missing documentation.

Assertion recommendation focuses on automatic generation of candidate
assertion statements. Agitator [9] applies software agitation to facilitate test
automation and recommends assertions based on observations of a code’s be-
haviour. DODONA [44] ranks program variables based on the interactions and
dependencies, and accordingly proposes a set of variables to be monitored within
test oracles. Pham et al. [33] generate candidate assertions based on test cases
and then apply active learning techniques to iteratively refine them. DSpot [18]
takes developer-written test cases as input and synthesizes improved versions of
them by triggering new behaviors and adding new assertions. Valueian et al. [79]
employ an Artificial Neural Network to construct automated oracles for low ob-
servable software based on tests inputs and verdict. Abdi et al. [1] address test
amplification for dynamically typed languages (e.g., Pharo), and exploit profiling
information to infer the necessary type information creating special test inputs
with corresponding assertions.

OASIs [34] is a search-based tool for improving oracle, using test case gener-
ation and mutation testing to reveal false positives and false negatives, respec-
tively. Given a set of assertions and a set of correct and incorrect program states,
GAssert [74] employs a co-evolutionary algorithm that explores the space of pos-
sible assertions to identify oracle with fewer false positives and false negatives.
Xie et al. [87] propose a mutation analysis approach for strengthening the asser-
tions of parameterised unit tests. Fraser and Zeller [28] present a mutation-based
assertion generation, within EvoSuite [27], optimised towards satisfying a cov-
erage criterion. ATLAS [80] is a deep learning (DL)-based approach to generate
meaningful assert statements for test methods based on existing unit tests. Yu
et al. [90] introduce an IR-based assertion retrieval technique and a technique
to adjust the assertions based on the context, that are more effective in generat-
ing a long sequence of tokens comparing to ATLAS. Tufano et al. [77] propose
an approach to generate accurate and useful assertions using transformer model
finetuned on the task of generating assert statements for unit tests.

Specification-based assertions can effectively reveal faults, up to their
limit [17], and hence have been employed in specifying test oracle. Xie and
Memon [85] automate GUI test oracles by inserting “assert” statements in test
cases based on the formal specifications, i.e., pre/postconditions of GUI events.
Zhao and Harris [94] introduce an approach to generate assertions directly from
the natural language specifications employing semantic analysis of sentences in
the specification document. Franke et al. [26] propose a method that identifies



A Literature Survey of Assertions in Software Testing 7

life cycle dependent properties in the application specification, and derives test
cases for validation. MeMo [8] automatically derives metamorphic equivalence
relations from natural language documentation (given in Javadoc comments),
which are then used as oracles in automatically generated test cases.

Runtime assertion checkers transparently ensure that the specification asser-
tions hold during program execution [16]. JML (or an extension of JML) and its
runtime assertion checker(s) are notably employed for testing in different context,
such as testing conformance of safety-critical systems [73], specifying metamor-
phic relations [54], testing services in the Home Automation System [62], testing
concurrent object-oriented software [5]. Cheon and Leavens [13, 14] propose to
use a specification language’s runtime assertion checker (e.g., JML) to decide
whether methods work correctly, and hence automating the test oracles. Pastore
et al. [58] introduce CrowdOracles, exploiting CrowdSourcing idea in the context
of test oracle problem, and demonstrate that CrowdOracles are a viable solution
to automate the oracle problem, yet taming the crowd to get useful results is a
difficult task.
In summary, the studies in the test oracle category focus on how to generate
assertions, what (kind of) information can be used for generating assertions,
how to automate or augment the assertion generation process to have more
effective assertions.

Test Generation Assertions have been considered in the context of test gener-
ation addressing different challenges including generating either complete tests
or part of a test, such as test data and input/output pair. Mirshokraie et al. [51]
leverage existing DOM-dependent assertions in human-written UI-based test
cases to automatically generate assertions for unit-level testing of JavaScript
code. TESTILIZER [50] learns from existing human-written assertions to gen-
erate assertions for unchecked portions of the web application.

In Assertion-based Testing, program assertions are combined with automated
test (data) generation in order to find assertion violations effectively. Zeng et
al. [92], automatically convert program dynamic invariants into program asser-
tions, which are then used to direct the test generation process. Mayer [47]
develops an assertion-based testing framework and a tool to generate runtime
checks based on the specification annotations, for the Go programming language.

Specification assertions are also used as the basis to automatically generate
tests. Korat [10] uses a method precondition to automatically generate all test
cases up to a given size and the method postcondition as a test oracle. Similarly,
Jarteg [56] randomly generates test cases for Java classes specified in JML, which
are used to eliminate irrelevant test cases and serve as a test oracle. Søndergaard
et al. [73] use JML annotations to model conformance constraints – in a safety-
critical system – in order to generate JUnit tests as well as runtime assertion
checks. Higher-level specification languages (and their assertions) are also em-
ployed for test generation. Li and Sun [43] translate Z formal models into their
UML/OCL counterparts and JUnit tests (containing assertions). TestEra [37]
generates test inputs based on Alloy specifications using Alloy SAT solver. Stoy-
anova et al. [72] introduce a test generation process based on WS-BPEL, having



8 M. Taromirad, P. Runeson

assertions at different levels (HTTP, SOAP and BPEL variable), for testing web
services. Drusinsky et al. [23] propose an automatic, JUnit-based, white-box
testing of statechart prototypes augmented with statechart assertions.

Using more recent ML-based techniques, A3Test [2] presents a DL-based test
case generation approach that uses a pre-trained language model of assertions
to improve test case generation from language models (e.g., AthenaTest).

In summary, different types of assertions have been basically employed to
direct test generation in order to generate complete tests or part of them,
such as test data and test oracle.

Specific Applications Specialised assertions – in contrast to general-purpose
assertions – have been introduced addressing special requirements in particular
domains. For multi-agent system development, Tiryaki et al. [75] introduce a
specialized assertion method for agent level verification. Delamare et al. [21]
extend JUnit with new types of assertions to specify the expected joinpoints in
aspect-oriented programming using AspectJ. Chang et al. [76] introduce visual
assertions to verify whether certain GUI interaction generates the desired visual
feedback. Koesnander et al. [40] introduce web macro assertions to encode the
expectations and assumptions of a website developed by non-technical users.

Verification and validation of applications with inherent, uncertain outcomes
(e.g., machine learning programs) requires new types of assertions. Dutta et
al. [24] present FLEX which uses approximate assertions to compare the actual
and expected values, while systematically identify the acceptable bound between
the actual and expected output which minimizes flakiness. Kang et al. [36] intro-
duce model assertions – that could be ‘exact’ or ‘soft’, which adapts the classical
use of program assertions as a way to monitor and improve ML models.

Assertions are also adapted for specific purposes, in addition to typical test-
ing, such as fault localisation, detecting merge conflicts, and test-suite reduction.
Salehi Fathabadi et al. [64] use a formal model of the APIs of independently de-
veloped components to generate a set of assertions embedded in the implemen-
tation. Xuan and Monperrus [88] present spectrum-driven test case purification
for improving fault localization, that generates purified versions of failing test
cases, which include only one assertion per test. Sequeira [66] provide an au-
tomated technique to determine the DOM dependencies for each test assertion
(on DOM), so that assertion failures are connected to the underlying JavaScript
code which help finding the cause of failures. Pariente and Signoles [57] propose a
method to trigger security counter-measures, based on static detection and run-
time assertion checking of program weaknesses. Knauth et al. [39] recommend
assertion-driven development instead of test-driven development and introduce
meta-mutations at the code level to simulate common programmer errors. An
assertion-aware test-suite reduction technique has been proposed by Chen et
al. [12]. Messaoudi et al. [49] use assertion-based backward slicing to decompose
complex system test cases into smaller, separate ones. Petke and Blot [60] suggest
to consider the output of test case assertions in fitness functions for test-based
program repair using genetic algorithms. Fang and Lam [95] introduce assertion



A Literature Survey of Assertions in Software Testing 9

fingerprint to identify suitable candidates in refactoring test suites. TOM [35] is a
tool that detects merge conflicts with the help of assertions that are defined on
the variables that have different values.
In summary, the specific applications category demonstrates that assertions
are useful for many different purposes. With specialised syntax and semantics,
assertions may support specific problems more effectively.

Test Regression Regression tests can fail not only due to faults in the program
but also due to obsolete tests which do not reflect the behavior of the updated
program. Moonen et al. [53] introduce “test-driven refactoring” in that general
code refactorings are induced by (re)structuring tests, for example to remove
assertion roulette. Sakakibara et al. [63] develop an assertion-based mechanism
to eliminate unnecessary dependencies between test code and objects in order to
decrease invalidated tests due to changes in a code. ReAssert [19] automatically
repairs broken unit tests by for example changing assertion methods. ReAssert
combines analysis of a test’s dynamic execution with analysis and transforma-
tion of the static structure of test code. WATER [15] suggests repairs for web
application test scripts (test assertions), employing differential testing in that
the behavior of tests on two successive versions of the application are compared
and analysed. Xu et al. [89] introduce TestFix to fix broken JUnit test cases by
synthesizing new method calls. TestFix regards the assertion of a broken test as
a constraint and relies on the information about changes between versions of the
software to guide the search of method-call sequences that meet the constraint.

In summary, the studies in test regression category largely address test ob-
solescence as the most known reason for test evolution, and introduce auto-
matic test repair techniques that mostly focus on changing assertions and use
assertion-based mechanisms.

Test Smells Test smells, poorly designed tests, negatively affect the comprehen-
sibility and the maintainability of the test code [7], and therefore, they have been
investigated and considered in many studies, e.g, [71] [20]. Assertion Roulette
(i.e., several assertions with no explanation within the same test method) is found
as the most frequent and riskiest test smell [84]. RAID [65] provides automated
detection of lines of code affected by test smells, namely Assertion Roulette and
Duplicate Assert, and a semi-automated refactoring for Java projects using JU-
nit. Soares et al. [70] present a set of refactorings – exploiting specific features of
JUnit 5 – that help to remove test smells.RTj [46] is a framework for detecting
and refactoring rotten green test cases, i.e., tests that pass but contain assertions
that are never executed, using static analysis and dynamic analysis. Vahabzadeh
et al. [78] recognise incorrect and missing assertions as the dominant root cause
of silent horror test bugs, i.e., those test that pass, while the production code is
incorrect. Wei et al. [81] introduce an ML-based approach for labelling unit tests
according to the AAA pattern (i.e., the Arrangement, Action, and Assertion), as
a best practice towards better code comprehension and less maintenance effort.



10 M. Taromirad, P. Runeson

In summary, the studies in the test smells category largely aim to prevent
test quality degradation due to badly designed tests and hence, introduce
techniques to automatically detect test smells, in particular assertion roulette.

Engineering Aspects There are many studies that focus on, so-called, engi-
neering aspects of using assertions in software development, including the impact
of using assertions, comparison between different techniques or types of asser-
tions, and good practices in using assertions. These studies consider assertions
in a more general context in comparison to the aforementioned problems.

The application of assertions as test oracles is empirically investigated by
Shrestha and Rutherford [68]. Li and Offutt [42] investigate the ability of test
oracles (that vary in amount and frequency of program state checked) to reveal
failures. The adequacy of assertions in test suite, particularly in the context of
automated test generation has been investigated in several studies, e.g., [96] [67]
[3]. Zhang and Mesbah [93] find a strong correlation between the number of
assertions in a test suite with its effectiveness. The relation between developers’
experience and assertion density is then investigated by Catolino et al. [11],
showing that such experience is a significant factor in effective testing.

The effect of fluent assertions on comprehensibility of tests is investigated
by Leotta et al. [41], demonstrating that adopting AssertJ (a fluent assertion
library in JUnit) has no significant effect on the level of comprehension, though it
significantly improves the efficiency in their comprehension. Ma’ayan [45] studied
the quality of real world unit tests and reported that they don’t follow the well-
known good patterns (in particular using the right assertions) for writing tests.

In summary, the studies of the engineering aspects category tend to empirically
investigate the application of assertions in software development in order to
provide rigorous evidence of the benefits developers gain by using assertions
and/or discover the best practices in the context.

4.3 Solutions

In order to a have an expressive view over the proposals in our collection, the
solution of each study is characterised by 1) the main technique(s) that specifies
the essence of the proposal, 2) the target domain/language for that the solution is
ultimately actualised and implemented (if applicable), and 3) the tooling support
which could be either a prototype implementation or within an existing tool.
Note that the studies considering the engineering aspects are excluded herein,
since they inherently do not provide any particular solution, in the way it is
investigated in this section, except very few of them. Also, the information was
collected based on the papers as the only source of our survey, and is hence
limited to what is explicitly provided.

Technique By technique, the very core idea of the proposed solution is de-
termined. While the technique(s) are (have to be) eventually implemented and
hence, shaped within a context (e.g., language and domain) considering all of



A Literature Survey of Assertions in Software Testing 11

its restrictions and capabilities, herein we abstract from such details and tend
to provide a high-level view of the techniques within limit. The main classes of
techniques, identified throughout our survey, are summarised in this section.

Learning and evolutionary algorithms have been used in several studies, par-
ticularly among the ones on assertion generation. Pham et al. [33] use active
learning techniques to generate assertions. A combination of evolutionary and
learning based techniques have been applied in EvoSpex [52] to automatically
generate specifications. GASSERT [74] applies a co-evolutionary algorithm that
explores the space of possible assertions to improve test oracles. Valueian et
al. [79] employ an Neural Network algorithm to construct automated test ora-
cles for low observable software. A3Test [2] uses a pre-trained language model
of assertions to generate assertions in test case generation process.

The application of static analysis is considered as a promising technique in
the literature, in different context. Zeng et al. [92] automatically generate asser-
tions based on program invariants. Pariente and Signoles [57] generate runtime
assertions checks based on static detection of CWEs3.

A number of studies exploit test execution in generating or improving test
oracles. Xie [86] adds assertions based on the object states collected throughout
previous test executions. Employing a search-based algorithm for improving as-
sertions, Jahangirova [34] combine test case generation to reveal false positives
and mutation testing to reveal false negatives. Test case execution logs are used
in DS3 [49] to determine dependencies among test slices. Mutation analysis has
been also used by Fraser and Zeller [28] to improve the fault detection capability
of test oracles, by Knauth et al. [39] to assess the quality of the assertions, and
by Xie et al. [87] for analyzing PUTs written by developers and identifying likely
locations in PUTs for improvement.

In several studies, a specific-purpose assertion is introduced, that is typically
defined on top of an existing assertion language/construct, through an extended
syntax and semantics, and a novel assertion evaluation technique. Corduroy [54]
introduces metamorphic assertions, built on top of Java Modelling Language
(JML). Model assertions [36] adapt the classical use of program assertions, tai-
lored to the specific needs of ML programs, in particular uncertainty in output.

Domain/Language A wide range of domains and languages are considered by
the collected papers, though with different density. In addition to solutions for
general and typical programs, that are the target of many studies, the proposed
solution in many studies are applicable to specific types of programs, e.g., Ma-
chine Learning programs [24] [36], web/mobile applications [26], and GUI [85].

The solutions can also be characterised regarding the language for which the
solution is introduced. While the most common language is Java (e.g., [86] [34]
[33] [74] [52]), a variety of other general-/specific-purpose languages have been
covered, including JavaScript/TypeScript [91], Go [47], and Pharo Smalltalk [1].
Other solutions (e.g., [79] [49]) are not limited to a specific programming lan-
guage and are applicable to programs in different languages. For example, Val-
3 Common Weakness Enumerations – https://cwe.mitre.org



12 M. Taromirad, P. Runeson

Table 1. Evaluation Methods vs. Assertion Problems

Evaluation Method
Problem Limited Many/Large Benchmark Empirical

Test Oracle 16 18 2 3
Test Generation 12 4 1 -

Specific Application 6 5 1 3
Test Regression 4 1 - -

Test Smells 2 1 - 13
Engineering Aspects 3 1 1 17

Total 43 30 5 36

ueian et al. [79] demonstrate the application of their solution on programs in
Java, C, C++, Verilog, and VHDL. There are also a number of studies that con-
sider a higher level of abstraction and introduce their solutions for specific types
of models, such as UML statecharts [23], Alloy models [37], Z Specification [43],
WS-BPEL [72], and Machine Learning models [36].

Tool Support Most of the solutions are embedded in and supported by tool
prototypes that are typically available online. A number of studies use a chain of
available tools to implement and demonstrate their solutions (e.g., [17] [77]). One
study [9] introduces its solution as part of a commercial tool (Agitator). Studies
in the engineering aspects category and the empirical studies are exempted to
have prototypes or any other implementation support and few papers (e.g., [92]
[60]) have not explicitly mentioned how the solution is implemented.

4.4 Evaluation

Looking into how the proposals of the collected studies have been evaluated, we
identified four main classes of the evaluation methods, namely limited experi-
ments, many/large experiments, benchmarks, and empirical & judgement, that
are described in the following. Note that most of the studies, excluding the ones
looking into the engineering aspects, provide a proof of concept through develop-
ing a prototype of the tooling support for their proposed solutions, which is not
considered herein as evaluation. There are few papers that do not present any
evaluation which is however compatible to their types of study, such as short
paper (e.g., [60]) or report on ongoing study (e.g., [87]). Table 1 summarises
evaluation methods w.r.t. the assertion problems.

Limited Experiments This type of evaluation provides preliminary and lim-
ited evidence of the application of the proposed techniques or tools, in that,
for example, the effectiveness of the proposals and how the proposal meets its
goal(s), is demonstrated throughout a limited number of case studies (e.g., up



A Literature Survey of Assertions in Software Testing 13

to 10 cases), e.g., [94] [64], or by limited artificial experiments (e.g., by manu-
ally generating or adding required information [68] [39]). In our collection of 119
papers, the evaluation of 43 studies fall into this category; the studies focusing
on test generation and test oracle/assertion generation have the main portion
among this group (28 studies in total).

Many/Large Experiments Several studies provide more convincing evalua-
tion results by assessing their solutions on many cases (e.g. > 10) or throughout
one or more experiments in an industrial setting. Large, open-source or public
projects or repositories, for example on GitHub, have been used in evaluation
experiments (e.g., [86] [33] [12]), that is, mostly used in the studies that address
assertion generation. Some of the studies use real systems/applications that are
under operation to demonstrate the usefulness and/or the cost-effectiveness of
their proposals, such as using an Aircraft e-Maintenance application [57].

Benchmarks Few studies have used benchmarks to evaluate and demonstrate
properties of their solutions. Different sets of benchmarks (e.g., regarding size,
application, and domain) were used depending on the target and context of a
study. Messaoudi et al. [49] use a proprietary benchmark of 30 complex system
test cases to assess the effectiveness and efficiency of their solution in slicing
system test cases. The quality of EvoSpex [52] was assessed on a benchmark of
open source Java projects in SF1104. Alagarsamy et al. [2] use Defects4J reposi-
tory to evaluate A3Test’s performance. Ji et al. [35] firstly design the benchmark
MCon4j and then use it to evaluate the effectiveness of their solutions.

Empirical & Judgement Some of the studies investigate and demonstrate
empirical evidence regarding a particular research question or of the use of a
technique or tool in practice. They may use surveys or interview among a cer-
tain number of participants (e.g., [91]), or use more formal experimental methods
(e.g., controlled experiment [41]). Most of the studies in this category, look into
the engineering aspects of the use of assertions, that is however obvious consid-
ering their intention.

5 Discussion

This section summarizes the research findings following the same structure we
used to review our collection of studies, and synthesise the results.

Assertion Problems. The dominant problem focus is the oracle problem.
About 34% of the studies (41) address the substantial challenge of specifying
the expected output or behaviour in tests using assertions. They largely inves-
tigate different types of information that can be used for generating or defining

4 https://www.evosuite.org/experimental-data/sf110/



14 M. Taromirad, P. Runeson

test oracle (assertions) and how to automate or augment the assertion generation
process to improve effectiveness, efficiency, and practicality.

Engineering aspects is the second premier focus. About 20% of studies pro-
vide empirical evidence of the benefits to gain by using assertions and also point
out challenges and obstacles in effective application of assertions in practice.

The third group of studies (about 15%) employ assertions to direct test gen-
eration tasks, such as generating test data. The use of assertions for specific
applications, addressed in 16 studies, demonstrates that assertions are useful
and could support specific problems more effectively. Among different specific
domains, limited studies address uncertainty in outputs, which however, consid-
ering the emerging use of ML, require more research. The same of number of
studies focus on poorly designed tests. Most of these studies investigate how test
smells affect test quality, whereas few of them introduce techniques to detect
and fix test smells. Finally, few studies address test regression due to program
evolution which mostly introduce automatic test repair techniques.

Solutions. Most of the solutions are embedded in and supported by tool pro-
totypes that are generally available online. About 85% of the studies excluding
those considering the engineering aspects, since they inherently do not provide
any particular solution.

As described in Section 4.3, many and various techniques have been previ-
ously introduced in the literature and therefore, they are not completely cat-
egorised. However, a number of techniques and ideas are more visible among
others. Learning and evolutionary algorithms have been used as a promising
technique in many recent studies (20 out of 119 papers), particularly among
the ones focusing on test oracle and test generation. Nearly the same amount
of papers suggest integrating static analysis and dynamic testing to improve
the effectiveness of either testing and/or static program analysis. Defining a
specific-purpose assertion language, including syntax, semantics, and possibly
a new assertion checking method, is a common proposal among the studies,
e.g., the studies addressing uncertainty in output.

While a wide range of domains and languages are considered in the collected
papers, general software programs and C/C++ and Java programming languages
are the target of the most of the studies (about 60%). While Java is a broadly
used programming language, it is important for the assertions research to also
take other languages into account. For example, in machine learning applications,
Python is frequently used, which may be a specific target for assertions.

Evaluation. As demonstrated in Table 1, the largest set of studies have been
evaluated throughout limited number of cases. The evaluation of 43 studies, out
of 119 papers, fall into this category, where the studies focusing on test oracle
and test generation have the main portion among this group (28 studies in total).
Empirical and judgement is the next more common evaluation method, that is
obviously used in the studies that focus on engineering aspects and also the
studies on test smells. A quarter of the studies, largely on test oracle, evaluate
their proposals using many experiments or within large–scale industrial cases.
Benchmarks are used in five studies.



A Literature Survey of Assertions in Software Testing 15

To ensure the relevance for practice, research has to go beyond small scale
proofs of concept. Among the surveyed studies, one third are evaluated in more
realistic cases, which is promising. However, for future research, we would like
to see even more focus on the scaling and relevance aspects.

6 Limitations

The main issues related to threats to validity of this survey are incomplete set of
studies in our collection and imprecise data extraction that are fundamentally
because of the researcher bias in choosing search terms, the search engine, and
the targeted databases, as well as, the exclusion/inclusion criteria. A very basic
method to address these issues is to conduct a survey in a structured way; we
accordingly carried out a semi-systematic review throughout four major steps,
which were iterated in several cycles and carefully defined and reported.

To reduce the risk of incomplete set of primary sources, Google Scholar was
used with a general search query which would render a large amount of studies,
including grey literature, as the initial pool. To minimise researchers’ bias, the
second author took a validation role and double checked the work done by the
first author. Design science paradigm was used as a lens for this survey, that was
motivated by earlier research concluding that this frame is feasible for software
engineering research. In order to ensure conclusion validity, the classification and
synthesis were performed repeatedly, and the outcome of each turn was discussed
between the authors to avoid any misunderstanding.

7 Conclusion

In this survey, we provide an overall picture of research work on assertions in
software testing, within the last two decades of research. Using a term–based
search, a collection of relevant papers was selected and then the papers were
reviewed and synthesised with respect to the design science elements, namely
the problem addressed, the solution proposed, and the evaluation method. The
synthesis demonstrated that test oracle is the dominant problem focus, followed
by engineering aspects of assertions and assertions in test generation. Solutions
include a wide range of techniques and are typically embedded in tool proto-
types. They are mostly consider general applications and languages, e.g., Java.
This however, suggest to consider other languages that are getting attention
more recently (e.g., Python). The proposals are by large evaluated within a lim-
ited number of cases while using large–scale industrial settings is also visible.
Nevertheless, in order to support practice, research has to go beyond small scale
experiments since scaling up analyses to large code bases is an essential challenge.
We conclude that assertions would be worth more attention in future research,
particularly regarding the new and emerging demands (e.g., wide-spread ap-
plications of software, verification of applications with uncertain outputs), for
effective, applicable, and domain-specific solutions, as well as more focus on the
scaling and relevance aspects.



16 M. Taromirad, P. Runeson

Acknowledgements. This work is funded by the ELLIIT strategic research
area (https://elliit.se), project ‘A19 – Software Regression Testing with
Near Failure Assertions’.

References

1. Abdi, M., Rocha, H., Demeyer, S., Bergel, A.: Small-amp: Test amplifica-
tion in a dynamically typed language. Empir. Softw. Eng. 27(6), 128 (2022).
https://doi.org/10.1007/s10664-022-10169-8

2. Alagarsamy, S., Tantithamthavorn, C., Aleti, A.: A3test: Assertion-augmented au-
tomated test case generation (2023). https://doi.org/10.48550/ARXIV.2302.10352

3. Almasi, M.M., Hemmati, H., Fraser, G., Arcuri, A., Benefelds, J.: An industrial
evaluation of unit test generation: Finding real faults in a financial application. In:
IEEE/ACM Int. Conf. on Software Engineering: Software Engineering in Practice
Track. pp. 263–272 (2017). https://doi.org/10.1109/ICSE-SEIP.2017.27

4. Anand, S., Burke, E.K., Chen, T.Y., Clark, J.A., Cohen, M.B., Grieskamp, W.,
Harman, M., Harrold, M.J., McMinn, P.: An orchestrated survey of methodolo-
gies for automated software test case generation. J. Syst. Softw. 86(8), 1978–2001
(2013). https://doi.org/10.1016/j.jss.2013.02.061

5. Araujo, W., Briand, L., Labiche, Y.: On the effectiveness of contracts as test ora-
cles in the detection and diagnosis of race conditions and deadlocks in concurrent
object-oriented software. In: Int. Symposium on Empirical Software Engineering
and Measurement. pp. 10–19 (2011). https://doi.org/10.1109/ESEM.2011.9

6. Barr, E.T., Harman, M., McMinn, P., Shahbaz, M., Yoo, S.: The oracle problem
in software testing: A survey. IEEE Trans. Softw. Eng. 41(5), 507–525 (2015).
https://doi.org/10.1109/TSE.2014.2372785

7. Bavota, G., Qusef, A., Oliveto, R., De Lucia, A., Binkley, D.: Are test smells
really harmful? an empirical study. Empir. Softw. Eng. 20(4), 1052–1094 (2015).
https://doi.org/10.1007/s10664-014-9313-0

8. Blasi, A., Gorla, A., Ernst, M.D., Pezzè, M., Carzaniga, A.: MeMo:
Automatically identifying metamorphic relations in javadoc comments
for test automation. J. of Sys. & Softw. 181, N.PAG–N.PAG (2021).
https://doi.org/10.1016/j.jss.2021.111041

9. Boshernitsan, M., Doong, R., Savoia, A.: From daikon to agitator: lessons and
challenges in building a commercial tool for developer testing. In: ACM Int. sym-
posium on Software testing and analysis. pp. 169–180. ISSTA ’06, ACM (2006).
https://doi.org/10.1145/1146238.1146258

10. Boyapati, C., Khurshid, S., Marinov, D.: Korat: automated testing based on java
predicates. ACM SIGSOFT Software Engineering Notes 27(4), 123–133 (2002).
https://doi.org/10.1145/566171.566191

11. Catolino, G., Palomba, F., Zaidman, A., Ferrucci, F.: How the experience
of development teams relates to assertion density of test classes. In: IEEE
Int. Conf. on Software Maintenance and Evolution. pp. 223–234 (2019).
https://doi.org/10.1109/ICSME.2019.00034, ISSN: 2576-3148

12. Chen, J., Bai, Y., Hao, D., Zhang, L., Zhang, L., Xie, B.: How do assertions impact
coverage-based test-suite reduction? In: IEEE Int. Conf. on Software Testing, Veri-
fication and Validation. pp. 418–423 (2017). https://doi.org/10.1109/ICST.2017.45

13. Cheon, Y., Kim, M., Perumandla, A.: A complete automation of unit testing for
java programs. Tech. Rep. UTEP-CS-05-05, University of Texas at El Paso (2005),
https://scholarworks.utep.edu/cs_techrep/234



A Literature Survey of Assertions in Software Testing 17

14. Cheon, Y., Leavens, G.T.: A simple and practical approach to unit testing: The
JML and JUnit way. In: Magnusson, B. (ed.) ECOOP — Object-Oriented Pro-
gramming. pp. 231–255. Lecture Notes in Computer Science, Springer (2002).
https://doi.org/10.1007/3-540-47993-7_10

15. Choudhary, S.R., Zhao, D., Versee, H., Orso, A.: WATER: Web application TEst
repair. In: ACM Int Workshop on End-to-End Test Script Engineering. pp. 24–29.
ETSE ’11, ACM (2011). https://doi.org/10.1145/2002931.2002935

16. Clarke, L.A., Rosenblum, D.S.: A historical perspective on runtime assertion check-
ing in software development. ACM SIGSOFT Software Engineering Notes 31(3),
25–37 (2006). https://doi.org/10.1145/1127878.1127900

17. Coppit, D., Haddox-Schatz, J.: On the use of specification-based assertions as
test oracles. In: IEEE/NASA Software Engineering Workshop. pp. 305–314 (2005).
https://doi.org/10.1109/SEW.2005.33, ISSN: 1550-6215

18. Danglot, B., Vera-Pe´rez, O., Baudry, B., Monperrus, M.: Automatic test improve-
ment with DSpot: a study with ten mature open-source projects. Empir. Softw.
Eng. 24(4), 2603–2635 (2019). https://doi.org/10.1007/s10664-019-09692-y

19. Daniel, B., Gvero, T., Marinov, D.: On test repair using symbolic execution. In:
ACM International Symposium on Software Testing and Analysis. pp. 207–218.
ISSTA ’10, ACM (2010). https://doi.org/10.1145/1831708.1831734

20. De Stefano, M., Pecorelli, F., Di Nucci, D., De Lucia, A.: A preliminary eval-
uation on the relationship among architectural and test smells. In: IEEE Int.
Working Conf. on Source Code Analysis and Manipulation. pp. 66–70 (2022).
https://doi.org/10.1109/SCAM55253.2022.00013, ISSN: 2470-6892

21. Delamare, R., Baudry, B., Ghosh, S., Le Traon, Y.: A test-driven ap-
proach to developing pointcut descriptors in AspectJ. In: IEEE Int. Conf.
on Software Testing Verification and Validation. IEEE Comput. Soc. (2009).
https://doi.org/10.1109/ICST.2009.41

22. Dinella, E., Ryan, G., Mytkowicz, T., Lahiri, S.K.: TOGA: A neural method for
test oracle generation. In: IEEE/ACM Int. Conf. on Software Engineering. pp.
2130–2141. ACM (2022). https://doi.org/10.1145/3510003.3510141

23. Drusinsky, D., Shing, M.T., Demir, K.: Creation and validation of embedded asser-
tion statecharts. In: IEEE International Workshop on Rapid System Prototyping.
pp. 17–23 (2006). https://doi.org/10.1109/RSP.2006.12, ISSN: 1074-6005

24. Dutta, S., Shi, A., Misailovic, S.: FLEX: fixing flaky tests in machine
learning projects by updating assertion bounds. In: ACM Joint Meeting
on European Software Engineering Conf. and Symposium on the Founda-
tions of Software Engineering. pp. 603–614. ESEC/FSE 2021, ACM (2021).
https://doi.org/10.1145/3468264.3468615

25. Engström, E., Storey, M., Runeson, P., Höst, M., Baldassarre, M.T.: How software
engineering research aligns with design science: A review. Empir. Softw. Eng. 25,
2630–2660 (2020). https://doi.org/10.1007/s10664-020-09818-7

26. Franke, D., Kowalewski, S., Weise, C., Prakobkosol, N.: Testing conformance
of life cycle dependent properties of mobile applications. In: IEEE Int.
Conf. on Software Testing, Verification and Validation. pp. 241–250 (2012).
https://doi.org/10.1109/ICST.2012.104, ISSN: 2159-4848

27. Fraser, G., Arcuri, A.: EvoSuite: automatic test suite generation for object-
oriented software. In: ACM SIGSOFT symposium and European conference on
Foundations of software engineering. pp. 416–419. ESEC/FSE ’11, ACM (2011).
https://doi.org/10.1145/2025113.2025179

28. Fraser, G., Zeller, A.: Mutation-driven generation of unit tests and oracles. IEEE
Trans. Softw. Eng. 38(2), 278–292 (2012). https://doi.org/10.1109/TSE.2011.93



18 M. Taromirad, P. Runeson

29. Garousi, V., Amannejad, Y., Betin Can, A.: Software test-code engi-
neering: A systematic mapping. Inf. Softw. Technol. 58, 123–147 (2015).
https://doi.org/10.1016/j.infsof.2014.06.009

30. Garousi, V., Felderer, M., Kılıçaslan, F.N.: A survey on software testability. Inf.
Softw. Technol. 108, 35–64 (2019). https://doi.org/10.1016/j.infsof.2018.12.003

31. Garousi, V., Felderer, M., Mäntylä, M.V.: Guidelines for including grey literature
and conducting multivocal literature reviews in software engineering. Inf. Softw.
Technol. 106, 101–121 (2019). https://doi.org/10.1016/j.infsof.2018.09.006

32. Garousi, V., Mäntylä, M.V.: A systematic literature review of litera-
ture reviews in software testing. Inf. Softw. Technol. 80, 195–216 (2016).
https://doi.org/10.1016/j.infsof.2016.09.002

33. H. Pham, L., Tran Thi, L.L., Sun, J.: Assertion Generation Through Active Learn-
ing. In: Duan, Z., Ong, L. (eds.) Formal Methods and Software Engineering. pp.
174–191. LNCS, Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68690-
5_11

34. Jahangirova, G., Clark, D., Harman, M., Tonella, P.: OASIs: oracle assess-
ment and improvement tool. In: ACM SIGSOFT Int. Symposium on Software
Testing and Analysis. ISSTA 2018, ACM, New York, NY, USA (Jul 2018).
https://doi.org/10.1145/3213846.3229503

35. Ji, T., Chen, L., Mao, X., Yi, X., Jiang, J.: Automated regression unit test gener-
ation for program merges (2020), http://arxiv.org/abs/2003.00154

36. Kang, D., Raghavan, D., Bailis, P., Zaharia, M.: Model assertions for monitoring
and improving ML models (2020), http://arxiv.org/abs/2003.01668

37. Khurshid, S., Marinov, D.: TestEra: Specification-based testing of java
programs using SAT. Autom. Softw. Eng. 11(4), 403–434 (2004).
https://doi.org/10.1023/B:AUSE.0000038938.10589.b9

38. Kitchenham, B.A., Budgen, D., Brereton, O.P.: Using mapping studies as the basis
for further research – a participant-observer case study. Inf. Softw. Technol. 53(6),
638–651 (Jun 2011). https://doi.org/10.1016/j.infsof.2010.12.011

39. Knauth, T., Fetzer, C., Felber, P.: Assertion-driven development: Assessing
the quality of contracts using meta-mutations. In: IEEE Int. Conf. on Soft-
ware Testing, Verification, and Validation Workshops. pp. 182–191 (2009).
https://doi.org/10.1109/ICSTW.2009.40

40. Koesnandar, A., Elbaum, S., Rothermel, G., Hochstein, L., Scaffidi, C.,
Stolee, K.T.: Using assertions to help end-user programmers create de-
pendable web macros. In: ACM SIGSOFT Int. Symposium on Foundations
of software engineering. pp. 124–134. SIGSOFT ’08/FSE-16, ACM (2008).
https://doi.org/10.1145/1453101.1453119

41. Leotta, M., Cerioli, M., Olianas, D., Ricca, F.: Fluent vs basic asser-
tions in java: An empirical study. In: Int. Conf. on the Quality of In-
formation and Communications Technology (QUATIC). pp. 184–192 (2018).
https://doi.org/10.1109/QUATIC.2018.00036

42. Li, N., Offutt, J.: Test oracle strategies for model-based testing. IEEE Trans. on
Softw. Eng. 43(4), 372–395 (2017). https://doi.org/10.1109/TSE.2016.2597136

43. Li, P., Sun, J., Wang, H.: Formal approach to assertion-based code gen-
eration. Int. J. of Softw. Eng. and Knowl. Eng. 27(9), 1637–1662 (2017).
https://doi.org/10.1142/S0218194017400162, publisher: World Scientific Publish-
ing Co.

44. Loyola, P., Staats, M., Ko, I., Rothermel, G.: Dodona: automated oracle data set
selection. In: ACM Int. Symposium on Software Testing and Analysis. pp. 193–203.
ISSTA 2014, ACM (2014). https://doi.org/10.1145/2610384.2610408



A Literature Survey of Assertions in Software Testing 19

45. Ma’ayan, D.D.: The quality of junit tests: An empirical study report. In:
IEEE/ACM 1st International Workshop on Software Qualities and their Depen-
dencies. pp. 33–36 (2018)

46. Martinez, M., Etien, A., Ducasse, S., Fuhrman, C.: RTj: a java framework for
detecting and refactoring rotten green test cases. In: IEEE/ACM Int. Conf. on
Software Engineering: ICSE-Companion. pp. 69–72 (2020), publisher: ACM

47. Mayer, E.C.: Assertion-based testing of go programs. Master thesis, Technical Uni-
versity Munich (2020)

48. Mesbah, A., van Deursen, A., Roest, D.: Invariant-based automatic testing of
modern web applications. IEEE Trans. on Softw. Eng. 38(1), 35–53 (2012).
https://doi.org/10.1109/TSE.2011.28

49. Messaoudi, S., Shin, D., Panichella, A., Bianculli, D., Briand, L.C.: Log-based
slicing for system-level test cases. In: Cadar, C., Zhang, X. (eds.) ACM SIGSOFT
Int. Symposium on Software Testing and Analysis. pp. 517–528. ACM (2021).
https://doi.org/10.1145/3460319.3464824

50. Milani Fard, A., Mirzaaghaei, M., Mesbah, A.: Leveraging existing tests in
automated test generation for web applications. In: ACM/IEEE Inte. Conf.
on Automated Software Engineering. pp. 67–78. ASE ’14, ACM (2014).
https://doi.org/10.1145/2642937.2642991

51. Mirshokraie, S., Mesbah, A., Pattabiraman, K.: Atrina: Inferring unit oracles from
GUI test cases. In: IEEE Int. Conf. on Software Testing, Verification and Validation
(ICST). IEEE Computer Society (2016). https://doi.org/10.1109/ICST.2016.32

52. Molina, F., Ponzio, P., Aguirre, N., Frias, M.: EvoSpex: An Evolution-
ary Algorithm for Learning Postconditions (artifact). In: IEEE/ACM Int.
Conf. on Software Engineering: ICSE-Companion. pp. 185–186 (May 2021).
https://doi.org/10.1109/ICSE-Companion52605.2021.00080, iSSN: 2574-1926

53. Moonen, L., van Deursen, A., Zaidman, A., Bruntink, M.: On the interplay be-
tween software testing and evolution and its effect on program comprehension. In:
Mens, T., Demeyer, S. (eds.) Software Evolution, pp. 173–202. Springer (2008).
https://doi.org/10.1007/978-3-540-76440-3_8

54. Murphy, C., Shen, K., Kaiser, G.: Using JML runtime assertion checking to
automate metamorphic testing in applications without test oracles. In: IEEE
Int. Conf. on Software Testing Verification and Validation. pp. 436–445 (2009).
https://doi.org/10.1109/ICST.2009.19, ISSN: 2159-4848

55. Oliveira, R.A.P., Kanewala, U., Nardi, P.A.: Chapter three - automated test or-
acles: State of the art, taxonomies, and trends. In: Memon, A. (ed.) Advances in
Computers, vol. 95, pp. 113–199. Elsevier (2014). https://doi.org/10.1016/B978-
0-12-800160-8.00003-6

56. Oriat, C.: Jartege: A tool for random generation of unit tests for java
classes. In: Reussner, R., Mayer, J., Stafford, J.A., Overhage, S., Becker,
S., Schroeder, P.J. (eds.) Quality of Software Architectures and Software
Quality. pp. 242–256. Lecture Notes in Computer Science, Springer (2005).
https://doi.org/10.1007/11558569_18

57. Pariente, D., Signoles, J.: Static analysis and runtime-assertion checking : Contri-
bution to security counter-measures (2017), https://zenodo.org/record/820856

58. Pastore, F., Mariani, L., Fraser, G.: CrowdOracles: Can the crowd solve the oracle
problem? In: IEEE Int. Conf. on Software Testing, Verification and Validation. pp.
342–351 (2013). https://doi.org/10.1109/ICST.2013.13, publisher: IEEE

59. Patel, K., Hierons, R.M.: A mapping study on testing non-testable systems. Soft-
ware Quality Journal 26(4), 1373–1413 (2018). https://doi.org/10.1007/s11219-
017-9392-4



20 M. Taromirad, P. Runeson

60. Petke, J., Blot, A.: Refining fitness functions in test-based program repair. In:
IEEE/ACM Int. Conf. on Software Engineering Workshops. pp. 13–14. ICSEW’20,
ACM (2020). https://doi.org/10.1145/3387940.3392180

61. Pezzè, M., Zhang, C.: Chapter one - automated test oracles: A survey. In:
Memon, A. (ed.) Advances in Computers, vol. 95, pp. 1–48. Elsevier (2014).
https://doi.org/10.1016/B978-0-12-800160-8.00001-2

62. Rajan, A., du Bousquet, L., Ledru, Y., Vega, G., Richier, J.L.: Assertion-based
test oracles for home automation systems. In: ACM Int. Workshop on Model-
Based Methodologies for Pervasive and Embedded Software. p. 45–52. MOMPES
’10, ACM (2010). https://doi.org/10.1145/1865875.1865882

63. Sakakibara, M., Sakurai, K., Komiya, S.: An assertion mechanism for software unit
testing to remain unaffected by program modification - the mechanism to eliminate
dependency from/to unnecessary object. Knowledge-Based Software Engineering
pp. 125–134 (2008). https://doi.org/10.3233/978-1-58603-900-4-125

64. Salehi Fathabadi, A., Dalvandi, M., Butler, M., Al-Hashimi, B.M.:
Verifying cross-layer interactions through formal model-based asser-
tion generation. IEEE Embedded Systems Letters 12(3), 83–86 (2020).
https://doi.org/10.1109/LES.2019.2955316

65. Santana, R., Martins, L., Rocha, L., Virgínio, T., Cruz, A., Costa, H., Machado,
I.: RAIDE: a tool for assertion roulette and duplicate assert identification and
refactoring. In: Brazilian Symposium on Software Engineering. pp. 374–379. SBES
’20, ACM (2020). https://doi.org/10.1145/3422392.3422510

66. Sequeira, S.: Understanding web application test assertion failures. Ph.D. thesis,
University of British Columbia (2014). https://doi.org/10.14288/1.0167024

67. Shamshiri, S., Just, R., Rojas, J.M., Fraser, G., McMinn, P., Arcuri, A.: Do auto-
matically generated unit tests find real faults? an empirical study of effectiveness
and challenges (t). In: IEEE/ACM Int. Conf. on Automated Software Engineering.
pp. 201–211 (2015). https://doi.org/10.1109/ASE.2015.86

68. Shrestha, K., Rutherford, M.J.: An empirical evaluation of assertions as oracles.
In: IEEE Int. Conf. on Software Testing, Verification and Validation. pp. 110–119
(2011). https://doi.org/10.1109/ICST.2011.50, ISSN: 2159-4848

69. Snyder, H.: Literature review as a research methodology: An
overview and guidelines. J. of Business Res. 104, 333–339 (2019).
https://doi.org/10.1016/j.jbusres.2019.07.039

70. Soares, E., Ribeiro, M., Gheyi, R., Amaral, G., Santos, A.: Refactoring test smells
with JUnit 5: Why should developers keep up-to-date? IEEE Trans. on Softw. Eng.
49(3), 1152–1170 (2023). https://doi.org/10.1109/TSE.2022.3172654

71. Spadini, D., Palomba, F., Zaidman, A., Bruntink, M., Bacchelli, A.: On the relation
of test smells to software code quality. In: IEEE Int. Conf. on Software Maintenance
and Evolution. pp. 1–12 (2018). https://doi.org/10.1109/ICSME.2018.00010,
ISSN: 2576-3148

72. Stoyanova, V., Petrova-Antonova, D., Ilieva, S.: Automation of test case
generation and execution for testing web service orchestrations. In: IEEE
Int. Symposium on Service-Oriented System Engineering. pp. 274–279 (2013).
https://doi.org/10.1109/SOSE.2013.9

73. Søndergaard, H., Korsholm, S., Ravn, A.: Conformance test development with the
java modeling language. Concurrency and Computation: Practice and Experience
29(22), (32 pp.) (2017). https://doi.org/10.1002/cpe.4071

74. Terragni, V., Jahangirova, G., Tonella, P., Pezzè, M.: GAssert: A Fully Auto-
mated Tool to Improve Assertion Oracles. In: IEEE/ACM Int. Conf. on Software



A Literature Survey of Assertions in Software Testing 21

Engineering: Companion Proceedings (ICSE-Companion). pp. 85–88 (May 2021).
https://doi.org/10.1109/ICSE-Companion52605.2021.00042, iSSN: 2574-1926

75. Tiryaki, A., Öztuna, S., Dikenelli, O., Erdur, R.: SUNIT: A unit testing framework
for test driven development of multi-agent systems. In: Padgham, L., Zambonelli,
F. (eds.) Agent-Oriented Software Engineering VII. pp. 156–173. LNCS, Springer
(2007). https://doi.org/10.1007/978-3-540-70945-9_10

76. Tsung-Hsiang, C., Yeh, T., Miller, R.C.: GUI testing using computer vision. In:
SIGCHI Conf. on Human Factors in Computing Systems. pp. 1535–1544. ACM
(2010). https://doi.org/10.1145/1753326.1753555

77. Tufano, M., Drain, D., Svyatkovskiy, A., Sundaresan, N.: Generating accurate as-
sert statements for unit test cases using pretrained transformers. In: ACM/IEEE
International Conf. on Automation of Software Test. pp. 54–64. AST ’22, ACM
(2022). https://doi.org/10.1145/3524481.3527220

78. Vahabzadeh, A., Milani Fard, A., Mesbah, A.: An empirical study of bugs in test
code. In: IEEE Int. Conf. on Software Maintenance and Evolution. pp. 101–110
(2015). https://doi.org/10.1109/ICSM.2015.7332456

79. Valueian, M., Attar, N., Haghighi, H., Vahidi-Asl, M.: Constructing automated
test oracle for low observable software. Scientia Iranica 27(3), 1333–1351 (2020).
https://doi.org/10.24200/sci.2019.51494.2219

80. Watson, C., Tufano, M., Moran, K., Bavota, G., Poshyvanyk, D.: On learn-
ing meaningful assert statements for unit test cases. In: ACM/IEEE Int.
Conf. on Software Engineering. pp. 1398–1409. ICSE ’20, ACM (2020).
https://doi.org/10.1145/3377811.3380429

81. Wei, C., Xiao, L., Yu, T., Chen, X., Wang, X., Wong, S., Clune, A.: Automatically
tagging the “AAA” pattern in unit test cases using machine learning models. In:
IEEE/ACM Int. Conf. on Automated Software Engineering. pp. 1–3. ASE ’22,
ACM (2023). https://doi.org/10.1145/3551349.3559510

82. Weyuker, E.J.: On testing non-testable programs. Comput. J. 25(4), 465–470
(1982). https://doi.org/10.1093/comjnl/25.4.465

83. Winkler, D., Urbanke, P., Ramler, R.: What do we know about readability
of test code? - a systematic mapping study. In: IEEE Int. Conf. on Soft-
ware Analysis, Evolution and Reengineering (SANER). pp. 1167–1174 (2022).
https://doi.org/10.1109/SANER53432.2022.00135, ISSN: 1534-5351

84. Wu, H., Yin, R., Gao, J., Huang, Z., Huang, H.: To what extent can code quality
be improved by eliminating test smells? In: Int. Conf. on Code Quality. pp. 19–26
(2022). https://doi.org/10.1109/ICCQ53703.2022.9763153

85. Xie, Q., Memon, A.M.: Designing and comparing automated test oracles for GUI-
based software applications. ACM Trans. on Softw. Eng. Methodol. 16(1), 4–es
(2007). https://doi.org/10.1145/1189748.1189752

86. Xie, T.: Augmenting automatically generated unit-test suites with regression oracle
checking. In: Thomas, D. (ed.) ECOOP – Object-Oriented Programming. pp. 380–
403. LNCS, Springer (2006). https://doi.org/10.1007/11785477_23

87. Xie, T., Tillmann, N., de Halleux, J., Schulte, W.: Mutation analysis of parameter-
ized unit tests. In: IEEE Int. Conf. on Software Testing, Verification, and Validation
Workshops. pp. 177–181 (2009). https://doi.org/10.1109/ICSTW.2009.43

88. Xuan, J., Monperrus, M.: Test case purification for improving fault localization. In:
ACM/SIGSOFT Int. Symp. on Foundations of Software Engineering. pp. 52–63.
ACM (2014). https://doi.org/10.1145/2635868.2635906

89. Y. Xu, B. Huang, G. Wu, M. Yuan: Using genetic algorithms to repair JUnit test
cases. In: Asia-Pacific Software Engineering Conf. vol. 1. IEEE Computer Society
(2014). https://doi.org/10.1109/APSEC.2014.51



22 M. Taromirad, P. Runeson

90. Yu, H., Lou, Y., Sun, K., Ran, D., Xie, T., Hao, D., Li, Y., Li, G., Wang, Q.:
Automated assertion generation via information retrieval and its integration with
deep learning. In: IEEE/ACM Int. Conf. on Software Engineering. pp. 163–174
(2022). https://doi.org/10.1145/3510003.3510149, publisher: ACM

91. Zamprogno, L., Hall, B., Holmes, R., Atlee, J.M.: Dynamic human-in-the-loop
assertion generation. IEEE Trans. on Softw. Eng. 49(4), 2337–2351 (2023).
https://doi.org/10.1109/TSE.2022.3217544

92. Zeng, F., Deng, C., Yuan, Y.: Assertion-directed test case genera-
tion. In: World Congress on Software Engineering. pp. 41–45 (2012).
https://doi.org/10.1109/WCSE.2012.16

93. Zhang, Y., Mesbah, A.: Assertions are strongly correlated with test suite effective-
ness. In: ACM Joint Meeting on Foundations of Software Engineering. pp. 214–224.
ESEC/FSE 2015, ACM (2015). https://doi.org/10.1145/2786805.2786858

94. Zhao, J., Harris, I.G.: Automatic Assertion Generation from Natural
Language Specifications Using Subtree Analysis. In: Design, Automation
Test in Europe Conf. Exhibition (DATE). pp. 598–601 (Mar 2019).
https://doi.org/10.23919/DATE.2019.8714857, iSSN: 1558-1101

95. Zheng, F., Lam, P.: Identifying test refactoring candidates with assertion finger-
prints. In: ACM Principles and Practices of Programming on The Java Platform.
pp. 125–137. PPPJ ’15, ACM (2015). https://doi.org/10.1145/2807426.2807437

96. Zhi, J., Garousi, V.: On adequacy of assertions in automated test suites: An em-
pirical investigation. In: IEEE Int. Conf. on Software Testing, Verification and Val-
idation Workshops. pp. 382–391 (2013). https://doi.org/10.1109/ICSTW.2013.49


