
Towards LLM-based System Migration
in Language-Driven Engineering

Daniel Busch, Alexander Bainczyk, and Bernhard Steffen

TU Dortmund University, Department of Computer Science, Chair for Programming
Systems, 44227 Dortmund, Germany

daniel2.busch@tu-dortmund.de, alexander.bainczyk@tu-dortmund.de,
bernhard.steffen@tu-dortmund.de

Abstract. In this paper we show how our approach of extending Lan-
guage Driven Engineering (LDE) with natural language-based code gen-
eration supports system migration: The characteristic decomposition of
LDE into tasks that are solved with dedicated domain-specific languages
divides the migration tasks into portions adequate to apply LLM-based
code generation. We illustrate this effect by migrating a low-code/no-
code generator for point-and-click adventures from JavaScript to Type-
Script in a way that maintains an important property: generated web
applications can automatically be validated via automata learning and
model analysis by design. In particular, this allows to easily test the
correctness of migration by learning the difference automaton for the
generated products of the source and the target system of the migration.

Keywords: Software Engineering, Low-Code/No-Code, Language-driven Engi-
neering, Large Language Models, Migration, Transformation, Automata Learn-
ing, Verification, Web Application

1 Motivation and Introduction

Many Large Language Models (LLMs) can be used for coding tasks [12]. They
are used as programming assistants [16], reviewers [10], or even full-blown code
generation tools [11]. In particular for small problems this works very well, but
the quality and reliability of the code drastically degrades with growing context
size and structural or conceptual complexity of the software projects. In [14], we
have illustrated how this problem of scalability can be mitigated within a hetero-
geneous approach that comprises model-based and LLM-based code generation:
We extended our Language-Driven Engineering (LDE) environment [7] for low-
code/no-code development via dedicated Domain-Specific Languages (DSLs) to
also support specification in natural language with the following benefits:

– The tasks to be solved via LLM-based code generation can be tailored in
size and conceptual complexity and

– the overall heterogeneously constructed system can be directly validated at
system level using automata learning and model analysis.

2 Busch, Bainczyk, and Steffen

Our approach has been illustrated via a system to generate fully running, web-
based point-and-click adventures from two specifications, (1) an easy graphical
specification for the ’landscape’ of the adventure, and (2) a natural language
specification for the game logic. The corresponding system structure is depicted
in the upper half of Figure 1. In [14], we concluded that this approach is unique
by placing this concept in the context of existing research.

In this paper, we illustrate an additional benefit of our approach to LDE-
based natural language integration: The heterogeneous LDE-based structure also
supports the automatic migration of entire heterogeneous LDE-based systems.
In particular, we sketch a migration process that allows one to migrate the en-
tire system generators we constructed for point-and-click adventures to different
programming languages just using a simple user prompt specifying the target
language. For illustration, we migrated the system generator from JavaScript to
TypeScript which essentially requires the migrator to automatically insert the
missing type information into the system code.

Like in [14], our approach applies natural language based code generation
only for very dedicated, small-scale tasks. Other tasks can be solved using textual
or graphical DSLs. For each task we apply the paradigm that is most suitable
to solve it. In our example these tasks are:

1. Generating base code that implements the ’landscape’ of the adventure using
graphical models.

2. Generating a prompt frame that provides contextual information using the
same graphical models.

3. Introducing game logic into the generated base code (from task one) utilizing
the generated prompt frame (from task two) using an LLM.

This separation of tasks does not only addresses the scalability problem,
but it also allowed us to maintain the second benefit mentioned above: The
migrated system generator automatically supports validation at system level via
automata learning and model analysis. In particular, this allows us to easily test
the correctness of migration simply by learning the difference automaton for the
generated products of the source and the target system of the migration.

Figure 1 explains the reason for this benefits: Migrating the original JavaScript
system generator sketched in the top to the TypeScript generator in the bot-
tom only requires very local adaptations. In our example, this means that we
only have to provide a descriptive natural language prompt for the the portion
marked in red in Figure 1.

This paper is organized as follows: In Section 2, we outline our previous work
[14] and introduce fundamentals of learning-based evolution control. Section 3
covers our concept of LLM-based code generator migration. Next, Section 4
demonstrates this concept with a running example, and following that, Section 5
concludes this paper with a discussion and an outlook on future work.

Towards LLM-based System Migration in LDE 3

Your task is to fill in code as
part of a larger java code
base.You can fill in multiple
blocks, each having a specific
purpose.

Purpose of your code: Fill in
the game logic based on a text
prompt. Transitions are already
implemented.

Embed in

Automata
Learning

Visual
Analysis

Verify

Deploy

Application
Code

 Prompt Frame

You can only take one item
with you to the other side at
once. The game is won, if all
items are on the other side
of the river.

Natural Language
Description

Your task is to fill in code as
part of a larger java code
base.You can fill in multiple
blocks, each having a specific
purpose.

Purpose of your code: Fill in
the game logic based on a text
prompt. Transitions are already
implemented.

You can only take one item
with you to the other side at
once. The game is won, if all
items are on the other side
of the river.

Embed in

Deploy

Application
Code

Generate

Generate

Generate

Generate

Infer

Prompt Frame

Test

TestDifference
Automaton

 Refine

You can only take one item
with you to the other side at
once. The game is won, if all
items are on the other side of
the river.

Graphical Model

Application

Application

Source Language

Target Language

LLM

Fig. 1. LLM-based code transformation concept.

2 Preliminaries

In this section, we recapitulate the core ideas of our work from our previous paper
[14] and outline the necessary basics of learning-based testing in the context of
our approach.

2.1 LLM-based Code Generators and Language Decomposition

In [14] we presented a way to combine LDE with the generative power of LLMs.
This approach enables users to use both graphical modeling and natural language
descriptions, each applicable to whichever part of the domain is more suitable.
This also reduces overall complexity by splitting the domain into smaller, more
manageable aspects. We further demonstrated the approach on a web-based
point-and-click adventure: A sitemap of game screens is modeled graphically,
while the game logic is described in natural language.

Our approach generates code from graphical models and an accompanying
Prompt Frame that provides context to the LLM. The Prompt Frame contains
the expected target language, variables and functions that are available from
the code generated from the graphical model, as well as code stubs that provide

4 Busch, Bainczyk, and Steffen

the function signatures for which the LLM needs to generate code to obtain the
resulting product. The combination of the code generated from the graphical
model, which we refer to as the base code, and the code generated by the LLM
then results in the final product.

This divide-and-conquer approach aims to solve some problems of LLM-based
code generation, such as too large contexts or loose task descriptions. Moreover,
it allows us to benefit from the formal aspects of the LDE paradigms and informal
natural languages and LLMs.

Further, our approach employs code instrumentation for the resulting prod-
uct code which allows the automated inference of behavioral models for verifi-
cation purposes, see Section 2.2. The instrumentation is part of the manually
implemented code generator that generates code from the graphical model.

2.2 Learning-Based Evolution Control

Active Automata Learning [1] has proven to be a viable solution for automated
black-box testing of web applications in the past [2, 4, 9]. Active learning refers
to the process in which a learner poses test queries over an input alphabet
to a System Under Learning (SUL) in an automated fashion to infer a formal
automaton model representing the SUL’s behavior. Because web applications can
be characterized as reactive systems, previous research relied on Mealy machines
to capture their behavior.

To minimize manual effort, [13] introduces the iHTML DSL to instrument an
application’s HTML code in a way that enables the on-the-fly inference of system
inputs by interacting with and analyzing the website’s Document Object Model
(DOM) automatically. We already exploited iHTML in [14] for our LLM-based
code generation approach to generate instrumented, web-based point-and-click
adventures that can be learned by simply providing their URLs.

Previous research [3, 4] established that a stable alphabet abstraction is re-
quired to enable structural comparisons between models to detect behavioral
changes. In this context, [8] introduces the notion of difference automata, i.e.
Mealy machines inferred by testing two systems simultaneously. The resulting
automaton will then show all traces that lead to the occurrence of divergent
behavior, see e.g. Figure 2. In this paper, we learn difference automata to detect
and visualize behavioral differences between two software versions that are the
result of LLM-based code migration.

3 Concept

Our goal is to use LLMs for code generator migration tasks. While in some cases
this could be done for any code generator, we want to apply additional principles
to be able to more easily handle the outcome of the code generated by the LLMs.
The principles are based on the approach presented in [14] and are as follows:

1. Split the problem domain to minimize individual generation contexts and
make code generation for LLMs easier to solve.

Towards LLM-based System Migration in LDE 5

2. Instrument the generated code so that products can be verified which pro-
vides additional trust in the LLM-generated code.

3. Validate the product using automata learning and provide feedback to the
user. Mismatches introduced by the migration can be detected using differ-
ence automata.

Splitting We split the problem domain according to our approach of [14], as
described in Section 2.1. The existing system generator (see the colored cogs
in Figure 1) consists of two sub-generators, one for the application code and
another for the Prompt Frame (see Source Language in Figure 1). Each sub-
generator is migrated separately by being passed to an LLM, together with a
supporting description to instruct the LLM with the migration task.

Instrumentation Only the LLM-based migration of the application code gen-
erator may lead to violations of the iHTML syntax. However, such violations
are automatically detected by the iHTML syntax checker and can be corrected
manually by refining the prompt for the LLM-based migration.

Validation Syntactically correct instrumented code can automatically be val-
idated via difference automata provide via automata learning (see Figure 2):
Whenever there is a path ending in a behavioural discrepancy (see area marked
in red) we can conclude that the LLM-based migration is erroneous. This in-
formation is then passed to a human expert for updating the prompt for the
LLM-based migration in a similar fashion as before for eliminating iHTML syn-
tax violations.

Figure 1 summarizes our setup. The upper half of the figure shows the ap-
proach as presented in [14]. In the middle, it is visualized that the generator
used to generate the application code and the Prompt Frame is fed into an LLM
(e.g. ChatGPT) to instruct it to migrate the sub-generators separately into the
desired target language. The bottom half of the figure shows the same workflow
as the top half, but using the migrated generator instead. Having two applica-
tion instances, automata learning is used to create the difference automaton and
feedback is passed to the user who refines the LLM-based migrator.

4 Example

To evaluate our concept described in Section 3, we have applied it to the example
of the river crossing puzzle [14]. In this example, we developed a web-based
point-and-click adventure using the Webstory DSL [5] of the graphical modeling
suite Cinco [6]. Webstory has been modified so that graphical modeling is only
used to model the available game screens and their reachability in a sitemap-like
manner. From these graphical models a point-and-click adventure base code as
well as a Prompt Frame with contextual information is generated (see Figure 1).
All game logic, such as win/loss conditions, is modeled using natural language
descriptions that are embedded in the generated Prompt Frame.

6 Busch, Bainczyk, and Steffen

Migration of the source generators that generate the base code and the
Prompt Frame was done using ChatGPT in its GPT-4 version [15]. The source
generators use JavaScript in the case of the base code and the code stubs in
the Prompt Frame, or natural language referencing JavaScript and JavaScript
objects in the case of the natural language part of the Prompt Frame. In this
example, our goal is to migrate these generators to TypeScript, a typed scripting
language.

Migration Listing 1.1 shows the initial prompt that prepares ChatGPT to mi-
grate the Prompt Frame generator. An excerpt of the target Prompt Frame
generated by ChatGPT can be seen in Listing 1.2. Note that ChatGPT success-
fully migrated both the natural language contextualization and the code stubs to
be implemented. All necessary functions were present and properly typed after
the migration.

The base code generator was migrated using a separate conversation and
prompts. Listing 1.3 is an excerpt of the target base code generator. Two things
are noteworthy about this successful migration. First, the overall migration and
typing was done correctly and quite extensively. Second, the instrumentation
that is introduced with this base code is preserved. This second aspect is critical
to the validation of the migration proposed in this paper.

You are provided with prompt frames. The prompt frame is

wrapped into "BEGIN PROMPT FRAME" and "END PROMPT

FRAME ". The prompt frame includes ALL text AND code.

These prompt frames should be used for yourself to

provide you with information to get a desired code

output for an input scenario.

Your overall task will be to modify the given prompt

frame so that you output a modified prompt frame for

another programming language instead of the given

prompt frame.

Answer only as follows in two interactions:

1. First , output only the programming language for which

the given prompt frame seems to be made , and ask the

user which programming language you should migrate the

prompt frame to.

2. After receiving the user ’s answer , display only the

migrated prompt frame and no additional text.

Listing 1.1. Priming prompt for Prompt Frame migration.

Towards LLM-based System Migration in LDE 7

BEGIN PROMPT FRAME

Your task is to fill in code as part of a larger

TypeScript code base.

[...]

The code blocks for you to implement:

function initVariables (): void {[...]}

function checkWin (): void {[...]}

function checkLoss (): void {[...]}

Listing 1.2. Excerpt of migrated Prompt Frame generator.

interface GameObject {

name: string;

currentScreen: string;

transitions: Array <{ screen: string , function: () =>

void }>;

}

function init(): void {

this.currentState = states.first;

this.states = states;

this.gameObjects = [] as GameObject [];

[...]

}

[...]

function addCustomClickAreas (): void {

[...]

items.forEach ((item: GameObject) => {

const itemElement: HTMLButtonElement =

document.createElement(’button ’);

itemElement.classList.add(’flex -item ’,

’interaction -item ’);

itemElement.setAttribute(’data -lbd -action ’, ’Click ’);

itemElement.setAttribute(’data -lbd -name ’, item.name +

’-’ + this.currentState);

itemElement.innerText = item.name;

[...]

}

[...]

Listing 1.3. Excerpt of migrated base code generator.

Verifying the Migration For illustrative purposes, we demonstrate how automata
learning can be used to detect behavioral differences between two system iter-
ations. The means for this are difference automata [8] (see Figure 2), which

8 Busch, Bainczyk, and Steffen

Fig. 2. Difference automaton for two learned WebStories.

contain all observed traces that lead to a different input-output behavior of
the two systems in question. By default, difference automata are constructed as
Mealy machines, but in this paper we convert them to Moore machines to reflect
user-level interactions more accurately [14].

To demonstrate the benefits of our migration approach, we manually intro-
duced a bug into the generated code to simulate a possible flaw in the LLM when
translating the user specifications into TypeScript code. The changes affect the
part of the code responsible for checking the game’s win condition. More specif-
ically, it affects a function that returns true when the win condition is met, i.e.
when all items are on the right side of the river. For our example, however, we
have modified the function to return false in this case, resulting in the game
never reaching the winning screen.

We first learned the automaton of the original JavaScript application, trans-
formed it to TypeScript using our presented approach, then manually introduced
the bug, and finally learned the automaton of the now erroneous application to
infer the difference automaton seen in Figure 2. The behavioral difference is
highlighted in red: If the farmer is on the left side of the river with the goat,
while the cabbage and wolf are on the right side of the river, the game would
have been won as soon as the user clicked on the goat, resulting in the display of
the winning screen in the source system. However, in our modified target system,
the game enters a state where instead of the winning screen, all three items are
displayed on the right side of the river, and therefore the game is never actually
won. This information is graphically displayed and can be used to fix the bug.

Towards LLM-based System Migration in LDE 9

5 Conclusion

In this paper we have shown how our approach of extending Language-Driven
Engineering (LDE) with natural language-based code generation presented in
[14] supports system migration. Central to this extension is the LDE-characteristic
decomposition into tasks that are solved with dedicated domain-specific lan-
guages, be they textual, graphical, or natural. This decomposition allows the
division of the migration tasks into portions adequate to apply LLM-based
code generation. We have illustrated the impact of our approach by migrat-
ing a low-code/no-code generator for web-based point-and-click adventures from
JavaScript to TypeScript, showing that

– the LLM-based migration correctly introduces the types required for Type-
Script and that

– also the point-and-click adventures generated with the migrated system can
be validated via automata learning and model analysis by design. In partic-
ular, this allows to easily test the correctness of migration by learning the
difference automaton for the generated products of the source and the target
system of the migration.

Technically, we have used LLMs to automatically migrate all code genera-
tors involved in our presented example, those that follow classical model-driven
approaches as well as those that were based on natural language descriptions.
Currently, we are experimenting with more complex scenarios.

We are convinced that hybrid approaches as the one presented here are a good
way to mitigate the weaknesses of LLM-based code generation: They provide
means for decomposition-based scalability, and to safely position LLM-based
code in an overall application.

References

[1] Dana Angluin. “Learning Regular Sets from Queries and Counterexam-
ples”. In: 75.2 (1987), pp. 87–106.

[2] Harald Raffelt et al. “Dynamic testing via automata learning”. In: Inter-
national Journal on Software Tools for Technology Transfer (STTT) 11.4
(2009), pp. 307–324. issn: 1433-2779. doi: http://dx.doi.org/10.1007/
s10009-009-0120-7.

[3] Stephan Windmüller et al. “Active Continuous Quality Control”. In: Pro-
ceedings of the 16th International ACM Sigsoft Symposium on Component-
Based Software Engineering. CBSE ’13. Vancouver, British Columbia, Ca-
nada: Association for Computing Machinery, 2013, pp. 111–120. isbn:
9781450321228. doi: 10.1145/2465449.2465469. url: https://doi.
org/10.1145/2465449.2465469.

[4] Johannes Neubauer, Stephan Windmüller, and Bernhard Steffen. “Risk-
Based Testing via Active Continuous Quality Control”. In: International
Journal on Software Tools for Technology Transfer 16.5 (2014), pp. 569–
591. doi: 10.1007/s10009-014-0321-6.

https://doi.org/http://dx.doi.org/10.1007/s10009-009-0120-7
https://doi.org/http://dx.doi.org/10.1007/s10009-009-0120-7
https://doi.org/10.1145/2465449.2465469
https://doi.org/10.1145/2465449.2465469
https://doi.org/10.1145/2465449.2465469
https://doi.org/10.1007/s10009-014-0321-6

10 Busch, Bainczyk, and Steffen

[5] Michael Lybecait et al. “A tutorial introduction to graphical modeling and
metamodeling with CINCO”. In: Leveraging Applications of Formal Meth-
ods, Verification and Validation. Modeling: 8th International Symposium,
ISoLA 2018, Limassol, Cyprus, November 5-9, 2018, Proceedings, Part I
8. Springer. 2018, pp. 519–538.

[6] Stefan Naujokat et al. “CINCO: a simplicity-driven approach to full gener-
ation of domain-specific graphical modeling tools”. In: International Jour-
nal on Software Tools for Technology Transfer 20 (2018), pp. 327–354.

[7] Bernhard Steffen et al. “Language-driven engineering: from general-purpose
to purpose-specific languages”. In: Computing and Software Science: State
of the Art and Perspectives (2019), pp. 311–344.

[8] Alexander Bainczyk, Bernhard Steffen, and Falk Howar. “Lifelong Learn-
ing of Reactive Systems in Practice”. In: The Logic of Software. A Tasting
Menu of Formal Methods: Essays Dedicated to Reiner Hähnle on the Occa-
sion of His 60th Birthday. Ed. by Wolfgang Ahrendt et al. Cham: Springer
International Publishing, 2022, pp. 38–53. isbn: 978-3-031-08166-8. doi:
10.1007/978-3-031-08166-8_3. url: https://doi.org/10.1007/978-
3-031-08166-8_3.

[9] Alexander Bainczyk et al. “Towards Continuous Quality Control in the Con-
text of Language-Driven Engineering”. In: Leveraging Applications of For-
mal Methods, Verification and Validation. Software Engineering. Ed. by
Tiziana Margaria and Bernhard Steffen. Cham: Springer Nature Switzer-
land, 2022, pp. 389–406. isbn: 978-3-031-19756-7.

[10] Zhiyu Li et al. “Automating code review activities by large-scale pre-
training”. In: Proceedings of the 30th ACM Joint European Software En-
gineering Conference and Symposium on the Foundations of Software En-
gineering. 2022, pp. 1035–1047.

[11] Priyan Vaithilingam, Tianyi Zhang, and Elena L Glassman. “Expectation
vs. experience: Evaluating the usability of code generation tools powered by
large language models”. In: Chi conference on human factors in computing
systems extended abstracts. 2022, pp. 1–7.

[12] Frank F Xu et al. “A systematic evaluation of large language models of
code”. In: Proceedings of the 6th ACM SIGPLAN International Symposium
on Machine Programming. 2022, pp. 1–10.

[13] Alexander Bainczyk. “Simplicity-Oriented Lifelong Learning of Web Ap-
plications”. [work in progress]. PhD thesis. Dortmund, Germany: TU Dort-
mund University, 2023.

[14] Daniel Busch et al. “ChatGPT in the Loop - A Natural Language Ex-
tension for Domain-Specific Modeling Languages”. In: Lecture Notes of
Computer Science. Vol. 14380. Springer, 2023.

[15] OpenAI. “GPT-4 Technical Report”. In: ArXiv abs/2303.08774 (2023).
[16] Haoye Tian et al. “Is ChatGPT the Ultimate Programming Assistant–How

far is it?” In: arXiv preprint arXiv:2304.11938 (2023).

https://doi.org/10.1007/978-3-031-08166-8_3
https://doi.org/10.1007/978-3-031-08166-8_3
https://doi.org/10.1007/978-3-031-08166-8_3

	Towards LLM-based System Migration in Language-Driven Engineering

