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Abstract. This paper presents an innovative methodology for improving
the robustness and computational efficiency of Spiking Neural Networks
(SNNs), a critical component in neuromorphic computing. The proposed
approach integrates astrocytes, a type of glial cell prevalent in the human
brain, into SNNs, creating astrocyte-augmented networks. To achieve
this, we designed and implemented an astrocyte model in two distinct
platforms: CPU/GPU and FPGA. Our FPGA implementation notably
utilizes Dynamic Function Exchange (DFX) technology, enabling real-
time hardware reconfiguration and adaptive model creation based on
current operating conditions. The novel approach of leveraging astrocytes
significantly improves the fault tolerance of SNNs, thereby enhancing their
robustness. Notably, our astrocyte-augmented SNN displays near-zero
latency and theoretically infinite throughput, implying exceptional com-
putational efficiency. Through comprehensive comparative analysis with
prior works, it’s established that our model surpasses others in terms of
neuron and synapse count while maintaining an efficient power consump-
tion profile. These results underscore the potential of our methodology in
shaping the future of neuromorphic computing, by providing robust and
energy-efficient systems.
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1 Introduction

Fault tolerance has become a critical feature of today’s increasingly sophisticated
computational systems, which require not just high performance, but also contin-
uous and reliable operation. This is especially true for neural networks that mimic
the structure of the brain, pushing the limits of existing computing paradigms.
Spiking Neural Networks (SNNs), a type of artificial neural network patterned
after the brain’s neuronal dynamics, are energy efficient, use time-dependent data
processing, and have bio-plausible algorithms for learning. In spite of this, SNNs
are susceptible to faults and failures, which could disrupt their functionality and
reduce their efficiency. Therefore, fault-tolerant mechanisms within SNNs need
to be explored. Recent research has demonstrated that astrocytes play a crucial
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role in regulating neuronal activity and synaptic transmission in the brain. It
has long been believed that neurons contributed significantly to the resilience
and adaptability of biological neural networks, but astrocytes have now been
found to play a much more important role which is shown in Fig. 1. Dynamically
modulating neuronal activity based on state, they effectively support fault toler-
ance at the molecular level. The hypothesis of integrating astrocytic mechanisms
into SNNs is an exciting prospect, potentially leading to dynamic adjustment for
fault tolerance in these systems [5] [2] [6].

Field Programmable Gate Arrays (FPGAs) are reprogrammable silicon chips
that can be customized to perform complex computations in parallel, making
them ideally suited for implementing SNNs. FPGAs have been increasingly used
for emulating SNNs due to their high degree of parallelism, energy efficiency,
and low latency. Further, their inherent re-programmability makes them a prime
candidate for implementing adaptive mechanisms, such as those inspired by
astrocytes, to handle faults dynamically. This could potentially enable SNNs
implemented on FPGAs to autonomously adapt in the face of faults, mimicking
the resilience observed in biological neural networks [4] [3].

(a) Original neural net-
work structure.

(b) Astrocyte-modulated neural net-
work structure.

Fig. 1. Inserting an astrocyte in a neural network.
[5]

In this paper, we explore how FPGA-implemented SNNs could benefit from
astrocyte-powered dynamic adjustments to enhance fault tolerance. The purpose
of this study is to investigate whether introducing astrocyte-inspired mechanisms
could enhance network performance and reliability by reducing faults and failures.
The rest of the paper is organized as follows: Section II discusses astrocytes’
significance in SNNs and reviews related works. Section III describes SNN
architecture and the integration of astrocytes. Section IV details our astrocyte-
augmented SNN model, emphasizing hardware implementations. Section V
evaluates the model’s fault tolerance and efficiency, comparing it with other
models and introducing the Dynamic Function eXchange technology. Section
VI concludes with our key findings and suggests future research avenues.

2 Background

The principles of biological brains are reflected in SNNs, which are artificial neural
networks. A key difference between them is the emulation of time-dependent
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spikes or ’action potentials’, which are the primary means of communication be-
tween neurons in the brain. The SNN is a powerful computational model capable
of handling complex tasks such as pattern recognition, sensory processing, and
motor control in a highly energy-efficient, low-latency manner. Recent advances
in neuromorphic engineering have propelled research in this field, which aims to
create hardware and software solutions that mimic neuronal spike dynamics [11].
Fault-tolerance techniques are essential for ensuring robustness and reliability
of complex systems like SNNs, particularly when uninterrupted functionality is
critical. Several methods have been proposed and implemented, ranging from
redundancy and error correction codes to adaptive mechanisms that enable dy-
namic fault recovery [18]. The disadvantages of these traditional techniques are
often increased resource consumption and decreased performance. Therefore,
innovative solutions are needed that minimize these trade-offs while ensuring
robust fault tolerance. Astrocytes once considered mere supporting cells in the
brain, are now recognized as key players in regulating neuronal activity. The
ability of biological neural networks to detect and modulate neural activity con-
tributes to their adaptability and resilience [13]. The idea of integrating these
astrocytic mechanisms into artificial neural networks to enhance their resilience
and adaptability is a novel and promising area of research. Previous works have
explored the implementation of SNNs on FPGAs for their advantages in paral-
lelism, energy efficiency, and re-programmability [15]. However, the integration
of astrocyte-inspired fault-tolerance mechanisms in such systems has not been
adequately explored. This research seeks to fill this gap, extending our under-
standing of fault tolerance in SNNs and paving the way for more robust and
adaptive neural network architectures. By examining how astrocyte-powered
dynamic adjustments could enhance fault-tolerance in FPGA-implemented SNNs,
this study could provide a valuable contribution to the fields of computational
neuroscience and neuromorphic engineering.

3 Astrocyte and Spiking Neural Networks

Astrocytes constitute about 20-40% of the total glial population in the human
brain. Studies have revealed that these molecules play an active role in neuronal
signaling and information processing. The astrocyte extends its processes near
neurons, where it senses and modulates neuronal activity through gliotransmission
[16]. This remarkable capability motivates the integration of astrocyte mechanisms
into SNNs, providing an intriguing avenue to enhance their fault tolerance and
adaptability. An SNN is an artificial neural network that mimics time-dependent
and event-driven communication between biological neurons through spikes
or ’action potentials’. High temporal resolution, high power efficiency, and bio-
plausible mechanisms have made them a subject of keen interest [14]. It is possible
to mimic the fault tolerance and dynamic adjustment of biological neural networks
by incorporating astrocyte mechanisms into SNNs. A bidirectional communication
system connects astrocytes to neurons. Neurotransmitters released by neurons
can be detected and responded to by them, and the gliotransmitters released can
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modulate neuronal activity. Among the main mechanisms of astrocyte-neuron
interaction is the tripartite synapse model, in which astrocytes actively contribute
to neuronal synaptic transmission [1]. Among the diverse effects of this interaction
are the modification of synaptic strength, the regulation of local blood flow, and
metabolic support for neurons, thus enhancing network resilience and adaptability.
SNNs based on astrocyte functionality can incorporate these aspects to enhance
their resilience. Synaptic weights can be modulated by astrocytes to balance
neuron firing rates across a network, thereby preventing neurons from ’dying out’
or ’overfiring’ as a result of neural network models. Moreover, astrocytes are able
to sense and respond to changes in neuronal activity, enabling them to design
fault-tolerance mechanisms that dynamically adjust to faults in networks [8] [9].
The incorporation of astrocyte-neuron interactions into SNNs, especially those
based on FPGAs, has yet to be explored in various computational neuroscience
studies.

4 Method

4.1 Dataset

Our project is based on the DAVIS 240C Dataset, a unique collection of event-
based data ideal for pose estimation, visual odometry, and SLAM. This dataset,
generated using DAVIS 240C cameras by iniLabs, offers event-based images,
IMU measurements, and motion-captured ground truth. Some datasets that
utilized a motorized linear slider lack motion-capture or IMU data; however,
their ground truth derives from the slider’s position. The "calibration" dataset
provides alternative camera models, with all gray datasets sharing identical
intrinsic calibration. This dataset proves invaluable for image data analysis,
particularly in SNNs and related domains [10]. For this project, we employ a
subset of the DAVIS 240C dataset. Figure 2 showcases the DAVIS 240C event
camera which was utilized to produce this dataset.

Fig. 2. DAVIS 240 DVS Event Camera

4.2 Training Details

In our implementation, the SNN is architected to emulate astrocyte functions
using a subset of the DAVIS 240C Dataset that records astrocyte activity in
response to neuronal behavior. The architecture is composed of:
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– Input Layer: Simulates neuron-astrocyte interactions, customizable for
specific neurological scenarios.

– Astrocyte Layer: Represents spiking astrocytes, processing inputs and
relaying spike trains to the subsequent layer.

– Output Layer: Decodes the spike trains, producing responses analogous to
biological outcomes from astrocyte activities.

During compilation, the aim is to synchronize the Output Layer’s reactions
with the anticipated responses in the training set. We employ the ’Adam’ op-
timizer, recognized for efficiently addressing complex problems. Performance
evaluation utilizes the ’accuracy’ metric, with the ’EarlyStopping’ callback in-
tegrated during training to mitigate overfitting. Following training, outcomes
are juxtaposed with validation data, assessing accuracy, precision, and recall.
This implementation paves the way for deeper explorations into astrocytic roles
in SNNs. Subsequent iterations may further refine the model and incorporate
additional cellular dynamics, with a recommendation to consider advanced SNN
metrics such as spike timing and spiking rate accuracy.

4.3 Hardware Implementation

Hardware implementation is vital for real-world applications, particularly in
computationally-intensive tasks. This section presents our methodology for phys-
ically implementing the astrocyte model using two different approaches: CPU/
GPU and FPGA.

Fig. 3. Block Diagram of Implementation

CPU/GPU Implementations
We utilized Python to execute implementations on the CPU and GPU. The study
leveraged the computational prowess of NVIDIA’s GeForce RTX 3060 GPU and
Intel’s Core i9 12900H CPU, both of which are optimized for different tasks,
ensuring an efficient execution of our implementations.

FPGA Implementation
Our FPGA implementation was executed on the XCVC1902 FPGA chip,
equipped with 400 AI Chips, utilizing the 2021.1 software version of Vivado.
Our central module, “Astrocyte”, processes a 42-bit input and produces a 42-bit
output. The internal operations of the PiP (Place-in-Place) module, which is a
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crucial component of this design, are depicted in Fig. 3. The efficiency of our
astrocyte-augmented SNN, as presented through metrics, was evident in its low
latency and theoretically infinite throughput, emphasizing its computational
prowess. The presented metrics stem from an experiment involving an astrocyte-
augmented SNN. Our aim was to evaluate how the astrocyte implementation
impacts the network’s robustness and computational efficiency. Initially, our
SNN displayed a fault tolerance of 72.08% without astrocytes, signifying that
a single artificially silenced neuron caused the network’s output to diverge by
this proportion from the original, fault-free state. Such a measure provided an
estimate of the SNN’s resilience to localized neuronal failures. When astrocytes
were incorporated into the SNN, a remarkable reduction in latency was observed;
the time required for an entire round of astrocytic updates was essentially zero
as per the system clock. This extremely low latency indicated an impressive
efficiency in the computational implementation. Moreover, this near-zero latency
facilitated theoretically infinite throughput, implying instantaneous processing
of all neurons in the network, which further emphasized the exceptional com-
putational efficiency of our astrocyte-augmented SNN. The observed new fault
tolerance was quantified as 8.96%, highlighting the degree of enhancement in
SNN’s fault tolerance as a direct result of astrocyte integration. Post astrocyte
integration, the SNN demonstrated an improved fault tolerance of 63.11%. The
fault tolerance FT of a SNN is conceptually defined as the proportionate devia-
tion of the SNN’s output from the original, fault-free state when subject to a
fault condition.

1. FTinitial: Initial fault tolerance without astrocytes.
2. FTastro: Fault tolerance after integrating astrocytes.
3. ∆FT : Improvement in fault tolerance due to astrocyte integration, given by

∆FT = FTinitial − FTastro.

The fault tolerance of the SNN, considering the given description, is repre-
sented as:

FT =
Ofault −Ooriginal

Ooriginal
× 100% (1)

Where:

– Ooriginal is the output in the original, fault-free state.
– Ofault is the output when a fault (like a silenced neuron) is induced.

From our results:

FTinitial = 72.08%

FTastro = 8.96%

∆FT = 63.11%

This confirms the mathematical relationship:
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∆FT = FTinitial − FTastro (2)

The reduced FTastro implies that the network’s output deviates less from the
fault-free state when a fault condition is induced, indicating enhanced resilience
of the SNN upon integrating astrocytes.

4.4 Adaptive Model Creation with Dynamic Function eXchange
Technology

We utilize Dynamic Function Exchange (DFX) technology for an adaptable model
construction. Central to this approach is on-the-fly hardware reconfiguration,
allowing computational functions to map onto hardware according to emerging
demands. Initially, the model engages in “Training & Predicting” using historical
data, recognizing patterns for adaptation. It then proceeds to “Adjusting Hyper-
parameters” for performance refinement. Ultimately, in the “Execute DFX” phase,
as illustrated in Fig. 4, DFX’s real-time hardware reprogramming facilitates
model functionality adjustments according to network state changes, optimizing
computational resource allocation. This not only enhances adaptability to SNN
variability but also fosters energy efficiency, pivotal for high-demand machine
learning tasks. In essence, our DFX-integrated model offers enhanced performance
and adaptability in astrocyte-based neuronal network implementations.

Fig. 4. DFX Diagram

4.5 Quantitative Analysis of the Hardware Accelerator

For computational tasks, especially in real-time scenarios, metrics like throughput
and latency are vital. Throughput gauges the system’s capability to handle data
processing, whereas latency measures the delay before a transfer of data begins.
These metrics play a pivotal role in understanding and optimizing the performance
of our system.

Throughput =
No. of MACs

Operational Latency
(3)

The above equation delineates the throughput as a function of the number of
Multiply-Accumulate (MAC) operations over the operational latency. The count
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of MAC operations is derived from specialized neural network libraries [12]. On
the other hand, the operational latency, which is synonymous with simulation
time in this context, predominantly emerges from the inherent characteristics
and constraints of the underlying hardware architecture. This is mathematically
captured by:

Operational Latency =
Time for Inference

Dataset Loader Iteration
(4)

This equation emphasizes the interdependence between the time taken for
model inference and the iterations dictated by the dataset loader.

Table 1. Resource utilization summary

VC1902 Versal
Resource Utilization Available % Utilization

LUT 900 899,840 0.10%
FF 100 75,000 0.13%

BRAM 0 1,000 0%
IO 86 770 11.17%

AI Engine 0 400 0%
DSP 0 1,968 0%

Our FPGA implementation’s efficiency can be further understood through
the resource utilization summary provided in Table 1. The low percentages in the
utilization column indicate efficient use of resources. However, there remains an
opportunity to further leverage these resources for complex tasks or to enhance
performance.

5 Results

Table 2. Comparison between CPU, GPU, and FPGA

i9 12900H RTX 3060 VCK190
Vendor Intel NVIDIA AMD-Xilinx
Tech (nm) 10 8 7
Freq (MHz) 5200 1320 100
MACs (G) 0.269 0.269 0.269
Latency (ms) 84 11.6 4.6
Power (W) 27 68 2
Throughput (GOP/s) 3.2 24.5 58.5
Efficiency (GOP/s/W) 0.11 0.36 29.2

Table 2 covers metrics such as manufacturing technology, operating frequency, and
power consumption. Notably, the parallel execution of GPUs and FPGAs often
surpasses CPUs in efficiency, even at lower frequencies. This is demonstrated by
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the Xilinx FPGA’s 4.6 ms latency and its mere 2 Watts consumption. Emphasizing
energy efficiency, the table indicates FPGA’s throughput of 58.5 GOP/s and an
energy efficiency of 29.2 GOP/s/W, accentuating FPGAs’ proficiency for energy-
sensitive applications. This underscores the unique attributes and potential
applications of each technology. In Table 3, our FPGA-based astrocyte modeling
on the advanced Xilinx VCK-190 chip is compared with prior works such as [7], [6],
and [5]. Operating at a standard 100 MHz, our model encompasses 680 neurons
and 69,888 synapses, outstripping other models in complexity. Correspondingly,
our model demonstrates robustness with a fault tolerance rate of 9.96%, on par
with [5], and a resilience improvement of 63.11%. Despite a 2W power demand,
higher than certain FPGA models, our implementation’s extensive neuronal and
synaptic counts justify this. This consumption reflects our model’s commendable
energy efficiency amidst heightened complexity.

Table 3. Comparisons with previous implementations.

[17] [7] [6] [5] Our

Platform CPU FPGA Virtex-5 FPGA Artix-7 FPGA VCU-128 FPGA VCK-190

Clock 3.1 GHz 100 MHz 100 MHz 100 MHz 100 MHz

Neurons 2 14 - 336 680

Synapses 1 100 - 17,408 69,888

Fault Tolerance Rate 30% 30% - 39% 8.96%

Resilience Improvement 12.5% 70% 80% 51.6% 63.11%

Power - 1.37 W 0.33 W 0.538 W 2 W

6 Conclusions
This work has presented a novel astrocyte-augmented spiking neural network
model implemented on CPU/GPU and FPGA platforms. The inclusion of as-
trocytes has shown significant improvements in the network’s fault tolerance,
demonstrating the potential benefits of astrocyte integration in artificial neural
networks. Additionally, the use of FPGA hardware for this model leverages
the advantages of parallel computation and on-the-fly hardware reconfiguration
offered by DFX technology. The comparison with different computational ar-
chitectures and previous works highlighted the strengths of our approach in
terms of computational efficiency and network robustness. Future research in
this direction could yield more sophisticated and efficient neuromorphic systems,
thus paving the way for advanced applications in diverse areas such as robotics,
bioinformatics, and cognitive computing.
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