
Dynamic Priority Scheduling for Periodic
Systems using ROS 2

Lukas Dust, Saad Mubeen

Mälardalen University, Väster̊as, Sweden
(first.last)@mdu.se

Abstract. In this paper, a novel dynamic priority scheduling algorithm
for ROS 2 systems is proposed. The algorithm is based on determin-
ing deadlines of callbacks by taking the buffer size and update rates of
channels into account. The efficacy of the scheduling algorithm is demon-
strated on an illustrative example, where the needed buffer size is reduced
in comparison to the conventional single-threaded executor in ROS 2.

Keywords: Robot Operating System 2 · Scheduling · Executor

1 Introduction and Background

Robot Operating System (ROS) 2 is a middleware introducing real-time capa-
bilities to its predecessor ROS [1]. With the end of support for ROS in 2025,
researchers and practitioners are forced to transition their systems to ROS 2.
Hence, increased research activities have been seen in the past few years. ROS 2
systems consist of so-called Nodes as main components distributed in a network,

Executor

Subscription Callback

Node N

In Buffer [] Client CallbackTrigger

Service Callback

Timer CallbackTriggerIn Buffer []Timer Event

TriggerIn Buffer []

TriggerIn Buffer []

Data

Data

Data

Fig. 1. Schematic example of a ROS 2 Node and
its essential components for scheduling.

communicating via designated
channels in the Data Distri-
bution Service (DDS). As de-
picted in Fig. 1, each node
consists of a scheduler, called
an executor, that schedules the
schedulable entities, called call-
backs. Two types of trigger
events release callbacks. Data-
triggered callbacks are con-
nected to a specified channel in
the DDS. Time-triggered call-
backs are connected to a system

timer. Generally, there are four types of callbacks, namely, Timer, Subscription,
Service, and Client callbacks. An input buffer with a configurable size for each
callback collects the trigger instances, such as messages and timestamps. In order
to explore the real-time capabilities of ROS 2, the inbuilt scheduling algorithm
has been analyzed [2]. Alternative priority-based scheduling algorithm has been
proposed [4], assigning static priorities to callbacks. In the default executor, only
one instance of each callback, released before the scheduler interaction with the
middleware (polling-point), is considered for scheduling. Polling is performed
when the set containing one instance of every released callback has been emp-
tied. Blocking of callbacks [3], [6], and missing configuration options have been

2 L. Dust & S. Mubeen

exposed as a weakness by [2], [5]. In this paper, supported by the increased
demand for enhanced scheduling options, we propose a new dynamic priority
scheduling algorithm developed for periodic nodes. For the sake of simplicity, a
periodic node is defined, where all n callbacks contained in a node execute peri-
odically where the period P of each callback Pcb > 0. Each callback is released
by the trigger events contained in the Buffer Bcb, where rk is the kth trigger
instance in the buffer and t(rkcb) is the stored arrival time of the kth trigger in-
stance of callback cb. This paper shows that the algorithm can reduce the needed
buffer size compared to the native ROS 2 scheduling algorithm, while potentially
reducing the number of resource-demanding interactions with the ROS Middle
Ware (RMW) compared to the fixed-priority scheduling.

2 Algorithm
Algorithm 1: Proposed
Scheduling Algorithm

1 foreach callback cb where
nextrelease(cb) ≤ systime do

2 collect entity(cb) from RMW
3 if New Data available then
4 add cb to readyset;

5 calculate Tmin
cb and Dcb;

6 end

7 end
8 if readyset ̸= Null then
9 cb = callback with shortest

deadline
10 pop data from input buffer
11 if buffer(cb) empty then
12 remove cb from readyset
13 end
14 else
15 calculate new deadline
16 end
17 execute cb

18 end

The proposed algorithm, shown in
Alg. 1, assigns a deadline to ev-
ery released callback collected in
the so-called readyset. A schedul-
ing decision is performed following
the earliest-deadline-first metric. The
deadline for a callback is determined
by the predicted time the input buffer
to overflow, following (2). Initially, the
deadline is set to infinite. When new
data arrives, the minimum time dif-
ference Tmin

cb between two consecu-
tive arrivals is determined using (1).
Now, the deadline as the predicted
time of a buffer overflow can be cal-
culated by knowing Tmin

cb and the
buffer utilization U(Bcb). When run-
ning the algorithm, the scheduler up-
dates the readyset by scanning the
input buffers in the RMW. When
newly arrived data is detected, the
callback is added to the readyset. In

order to reduce the needed interactions with the middleware, based on Tmin
cb ,

the time for the next trigger instance arrival is predicted and stored as the
nextrelease for every callback. An interaction with the middleware is per-
formed only when the system time exceeds or equals the nextrelease. Initially,
the nextrelease is set to zero, forcing a scan in the middleware until the first
trigger instance has arrived. In the second step, the callback with the earli-
est deadline is selected for execution. In case of shared deadlines, the callback
with the highest buffer utilization is given the highest priority, followed by the
registration order in case of further shared priority. The data for the selected
callback is removed from the buffer. A new deadline is calculated, or the callback
is removed from the readyset when no trigger instance is left in the buffer.

Tmin
cb =

{
t(rkcb), if Tmin

cb = 0

min(Tmin
cb , t(rkcb)− t(rk−1

cb)), if Tmin
cb > 0

(1)

Dynamic Priority Scheduling for Periodic Systems using ROS 2 3

Tmin
cb is the minimum time difference between two consecutive trigger events,

and t(rkcb) is the arrival time of the last trigger instance k.

Dcb =

{
inf, if Tmin

cb = 0

Tmin
cb ∗ (S(Bcb) ∗ (1− U(Bcb)) + t(rkcb), if Tmin

cb > 0
(2)

Dcb is the deadline of callback cb, TB
cb is the minimum time difference between

two consecutive trigger instances, S(Bcb is the input buffer size, U(Bcb) is the
utilization of the buffer and t(rkcb) is the arrival time of the latest (kth) message.

3 Illustrative Example and Comparison to ROS 2
In this section, the scheduling of the proposed algorithm is shown in an example
and compared to the executor of ROS 2. Execution traces are carefully created
by hand based on the algorithms. The following scenario is taken: A ROS 2
node consists of five callbacks that are triggered periodically. The callbacks are
one timer callback TI, two subscriber callback S1, S2, and one service callback
SR, all triggered every 400 ms and one client callback CL triggered every 100
ms. For the sake of simplicity, the input buffers have a size of five, and the
execution time for each callback is 50 ms. Fig. 2 shows the execution of the
scenario by the proposed algorithm on the left and ROS 2 on the right plot.
At the start, all callbacks have been triggered once at 0 ms. Therefore, each

Execution of the proposed algorithm

 SI 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 200 400 600 800

Time (ms)

CL

SR

S2

S1

TI

C
a
ll
b

a
c
k

(a) Execution example of the
proposed algorithm

Execution of the ROS 2 executor

 SI 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 200 400 600 800

Time (ms)

CL

SR

S2

S1

TI

C
a
ll
b

a
c
k

(b) Execution example of the
ROS 2 executor

Fig. 2. Execution traces using the proposed (left) and the ROS 2 executor (right). Red
lines are trigger events and the blue numbers the scheduling iterations (SI).

task’s deadline is set to infinite. As all tasks have the same deadline and buffer
utilization, execution is conducted after the registration order, leading to the
execution of TI and S1. At SI2, CL is triggered a second time. The scheduler
now determines Tmin

CL as 100 ms and a Deadline of DCL = 400ms. Furthermore,
the predicted next release time is 200 ms. As all other callbacks still do not
have two consecutive releases, their deadline is still infinite. Therefore, the client
callback is executed, and the deadline is calculated until the buffer is empty, as
no other callback gains a lower deadline. At SI8,for TI, S1, S2 and SR, Tmin

cb

is be determined as 400 ms and Dcb = 2000 ms. For CL, Dcb = 800 ms. Hence,
CL is executed first. In comparison to the ROS 2 execution, CL is in all cases
executed closer to the trigger event. The buffer utilization never exceeds 40%,
while the maximum utilization in the ROS 2 system is 60%. If now CL has the

smallest buffer size of all callbacks, even in the first 400 ms, there will never
be more than one element in the buffer as CL would gain the highest priority.

Tab. 1. Amount of RMW interactions
Proposed

Alg.
ROS 2

Static
priority Alg.

First 400 ms
SI 0 - SI 7

37 20 40

Second 400 ms
SI 8 - SI 15

8 20 40

The number of needed interactions
with the RMW is presented in Tab. 1.
At the initial 400 ms, except for CL,
the predicted next arrival time is 0.
Therefore an interaction is performed
during every scheduling iteration. Af-
ter S2, the period of CL is known, and

interactions with the middleware are only needed every second scheduling itera-
tion. After 400 ms, the period for all callbacks is known, reducing the number of
interactions with the RMW significantly. Therefore, fewer interactions with the
RMW are needed than in the ROS 2 executor and static priority algorithms, that
need to interact with the RMW at each scheduling iteration for each channel.

4 Discussion and Ongoing Work

The presented algorithm is created to give developers further configuration op-
tions while preventing buffer overflow. This work is in its infancy, and the pro-
posed algorithm is at a conceptual level. Nevertheless, the given scheduling ex-
ample showed the algorithm to have the potential to decrease the needed space
of buffer size and give the developer more configuration options regarding pri-
orities compared to the single-threaded executor in ROS 2. The needed inter-
actions with the RMW are only increased at the first iterations. In the long
run, the number of interactions can be decreased compared to the actual ex-
ecutor in ROS 2. Nevertheless, further analysis is needed to determine possible
weaknesses of the proposed scheduling mechanism. Furthermore, the algorithm
will be implemented in the ROS 2 stack and tested to be compared with the
other existing algorithms on a real system. Adaptions of the algorithm might
be needed to mitigate errors caused by offsets, changes in publishing rates, and
message arrival jitter and make the algorithm usable in non-periodic systems.

Bibliography
[1] OpenRobotics ROS 2: Docs, 2023, https://docs.ros.org/en/humble.
[2] Blaß, T., Casini, D., Bozhko, S., Brandenburg, B.B.: A ros 2 response-time

analysis exploiting starvation freedom and execution-time variance. In: IEEE
Real-Time Systems Symposium. pp. 41–53. IEEE (2021)

[3] Casini, D., Blaß, T., Lütkebohle, I., Brandenburg, B.: Response-time anal-
ysis of ros 2 processing chains under reservation-based scheduling. In: 31st
Euromicro Conference on Real-Time Systems. pp. 1–23 (2019)

[4] Choi, H., Xiang, Y., Kim, H.: Picas: New design of priority-driven chain-
aware scheduling for ros2. In: IEEE 27th Real-Time and Embedded Tech-
nology and Applications Symposium. pp. 251–263. IEEE (2021)

[5] Dust, L., Persson, E., Ekström, M., Mubeen, S., Seceleanu, C., Gu, R.: Ex-
perimental evaluation of callback behavior in ros 2 executors. In: 28th Inter-
national Conf. on Emerging Technologies and Factory Automation (2023)

[6] Tang, Y., Feng, Z., Guan, N., Jiang, X., Lv, M., Deng, Q., Yi, W.: Response
time analysis and priority assignment of processing chains on ros2 executors.
In: IEEE Real-Time Systems Symposium. pp. 231–243 (2020)

