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Abstract. Near-Field Communication (NFC) is a widely adopted stan-
dard for embedded low-power devices in very close proximity. In order to
ensure a correct system, it has to comply to the ISO/IEC 14443 standard.
This paper concentrates on the low-level part of the protocol (ISO/IEC
14443-3) and presents a method and a practical implementation that
complements traditional conformance testing. We infer a Mealy state
machine of the system-under-test using active automata learning. This
automaton is checked for bisimulation with a specification automaton
modelled after the standard, which provides a strong verdict of confor-
mance or non-conformance. As a by-product, we share some observations
of the performance of different learning algorithms and calibrations in
the specific setting of ISO/IEC 14443-3, which is the difficulty to learn
models of system that a) consist of two very similar structures and b)
very frequently give no answer (i.e. a timeout as an output).

Keywords: NFC · Automata Learning · Protocol Compliance · Bisim-
ulation · Formal Methods

1 Introduction

In this paper we describe an approach of very thoroughly evaluating the compli-
ance of Near-Field Communications (NFC)-based chip systems with the ISO/IEC
14443-3 NFC handshake protocol [10] using formal methods, concretely au-
tomata learning and equivalence checking. We present a tool chain that is easy
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to use - both the learning and the equivalence checking can run fully automatic.
A complete automaton of the system-under-test (SUT) compared with a spec-
ification automaton modeled after the standard, provides a strong complement
to conformance testing. The remainder of this paper structures as follows. First
we provide its motivation and contribution. Section 2 gives an overview of basic
concepts in this paper, including a formal definition of bisimulation for Mealy
Machines as used in this paper. Section 3 describes the developed interface for
automata learning of NFC systems, while Section 4 describes the learning setup
including a comparison of different algorithms and calibrations to be most suit-
able for the specifics of the NFC handshake protocol. Section 5 shows real-world
results, while Section 6 compare them to the works of others. Section 7, eventu-
ally, concludes the paper and gives and outlook on future work.

1.1 Motivation

As the NFC protocol is widely adopted in a broad variety of different, often
security-critical, chip systems like banking cards, passports, access systems, etc.,
that use relatively weak hardware, a correct implementation is utterly important.
While there are many works about security weaknesses in NFC (e.g., [14, 30]),
also specifically regarding the ISO/IEC 14443-3 handshake (e.g., [8, 18]), there
is few works on comprehensive testing (see Section 6). Assuring the correctness
of the system is a principal step in the quest to trustworthy systems. As there
is, to the best of our knowledge, no comprehensive works regarding assessment
of the handshake protocols, as the fundament of secure protocols build atop,
we aim for a strong verdict of ISO compliance for NFC systems. To make this
verdict more scalable than manual modeling, yet strongly verified, we choose
automata learning to automatically infer a formal model of the implementations
under scrutiny. For the actual compliance checking, we use bisimulation and
trace equivalence checks against a specification automaton from the ISO/IEC
14443-3 standard (a rationale is given in Section 2.2).

1.2 Contribution

Overall, this paper is on the interface between communications protocols, em-
bedded systems and formal methods. This work provides the following contri-
butions for people with scholarly or applied interest in this approach of strong
compliance checking:

– Insights regarding the specifics of learning NFC using active automata learn-
ing

– An evaluation on the performance of different learning algorithms in systems
with very similar structures

– Developing an NFC interface for a learning system
– An approach for automated compliance checking using bisimulation and

trace equivalence
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We saw the NFC handshake to be specific in two aspects: a) it consists of two
parts that are very similar and hard to distinguish for Learners and b) the vast
majority of outputs from a system-under-learning are timeouts. This has severe
impact on the learning where we examined different algorithms and configura-
tions. The maximum word length has an impact on correctly inferring an au-
tomaton: too short yields incomplete automata, too long seemed to have a nega-
tive performance impact. Surprisingly the L* algorithm [3] with Rivest/Schapire
(LSR) closure [25] surpassed more modern ones in learning performance. For dis-
covering deviations from the standard, the minimum word length was found to
have an impact. Here, the TTT algorithm [12] performed best, also followed by
LSR. We further created a concrete hardware/software interface using a Prox-
mark device and an abstraction layer for NFC systems. Lastly, we integrated
bisimulation and trace equivalence checking into the learning tool chain, which
enables completely automated compliance checking with counterexamples in the
case of deviations from the standard.

2 Preliminaries

This section outlines the theoretical fundamentals of state machines and au-
tomata learning including a definition of equivalence and bisimilarity in the
context of this paper. It further briefly describes the used framework and the
basics and characteristics of the scrutinized protocol.

2.1 State Machines

A state machine (or automaton) is a fundamental concept in computer science.
One of the most widely used flavors of state machines are Mealy machines, which
describe a system as a set of states and functions of resulting state changes
(transitions) and outputs for a given input in a certain state [20]. More formally,
a Mealy machine can be defined as M = (Q,Σ,Ω, δ, λ, q0), with Q being the set
of states, Σ the input alphabet, Ω the output alphabet (that may or may not
identical to the input alphabet), δ the transition function (δ : Q × Σ → Q), λ
the output function (λ : Q × Σ → Ω), and q0 the initial state. The transition
and output functions might be merged (Q×Σ → Q×Ω). An even simpler type
of automaton is a deterministic finite acceptor (DFA) [19]. It lacks of an output
(i.e. no Ω and no λ), but instead it has a set of accepted finishing states F ,
which are deemed as valid final states for an input word (i.e. sequence of input
symbols), resulting in a definition of D = (Q,Σ, δ, q0, F ). The purpose is to
define an automaton that is capable of deciding if an input word is a valid part
of a language. A special subset of DFAs are combination lock automata (with
the same properties) but the additional constraint that an invalid symbol in an
input sequence would set the state machine immediately back into the initial
state [22].
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2.2 Transitions and Equivalence

An element of the combined transition/output function can be defined as 4-tuple
(⟨p, q, σ, ω⟩) with p ∈ Q as origin state of the transition, q ∈ Q as destination
state, σ ∈ Σ as input symbol and ω ∈ Ω as output symbol. Generally, to conform
to a standard, a system must display the behavior defined in that standard.
The ISO 14443-3 standard [10] describe the states of the NFC handshake with
their respective expected input and result. . That means one can derive an
automaton from this specification. The problem of determining NFC standard
compliance can therefore be seen as comparing two (finite) automata. There is a
spectrum of equivalences between Labeled Transition Systems (LTS) including
automata. For being compliant with a standard, not necessarily every state and
transition must be identical as long as the behavior of the system is the same.
There might be learned automata that deviate from the standard automaton
and still be compliant, e.g., if they are not minimal (the smallest automaton to
implement a desired behavior). Figure 1 shows a very simple example of a three-
state automaton and its behavior-equivalent (minimal) two-state counterpart.

Fig. 1. Example for a partial automaton and its minimal counterpart.

To compare this type of equivalence between two LTS LTS1 and LTS2, com-
monly used are (various degrees of) simulation, bisimulation (noted as LTS1 ∼
LTS2) and trace equivalence. Simulation means that one automaton can com-
pletely reproduce the behavior of the other, for the bisimulation, this relation
becomes bidirectional (i.e. functional). Trace equivalence compares the respec-
tive output of automata. Just (uni-directional) simulation alone is not sufficient
as this would only the presence or absence of a certain behavior with respect to
the specification, while the standard compliance mandates both. Bisimilarity of
two transition systems is originally defined for labeled transition systems (LTS),
defined as LTS = (S,Act,→, I, AP,L), with S being the set of states, Act a set
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of actions, → a transition function, I the set of initial states, AP a set of atomic
propositions and L a labelling function.

Definition 1 (Bisimilarity). Bisimlarity of two LTS LTS1 LTS2 is defined
as exhibiting a binary relation R ⊆ QxQ, such that [4]:

A) ∀s1 ∈ I1∃s2 ∈ I2 · (s1, s2) ∈ R and ∀s2 ∈ I2(∃s1 ∈ I1 · (s1, s2) ∈ R.
B) for all (s1, s2) ∈ R must hold

1) L1(s1) = L2(s2)
2) if s1′ ∈ Post(s1) then there exists s2′ ∈ Post(s2) with (s1′, s2′) ∈ R
3) if s2′ ∈ Post(s2) then there exists s1′ ∈ Post(s1) with (s1′, s2′) ∈ R

Condition A of Definition 1 means that all initial states must be related, while
Condition B means that for all related states the labels must be equal (1) and
their successor states must be related (2-3). Formally the succession (Post) is

defined as Post(s, α) = {s′ ∈ S|s α−→ s′} and Post(s) =
⋃

α∈Act Post(s, α),
meaning the union of all action successions, which again are again the result the
transition function with a defined action and state as input. As this is recursive, a
relation of the initial states implies that all successor states are related. Since all
reachable states are (direct or indirect) successor states of the initial states, this
definition encompasses the complete LTS. We interpret Mealy machines as LTS
using the output functions as labeling functions for transitions and the input
symbols as actions, similar to [28]. Based on this, we define Mealy bisimilarity
(M1 M2) for our purpose follows:

Definition 2 (Mealy Bisimilarity).

A) q01 ∈ Q1, q02 ∈ Q2 · (q01 , q02) ∈ R.
B) for all q1 ∈ Q1, q2 ∈ Q2 · (q1, q2) ∈ R must hold

1) σ ∈ Σ · λ1(q1, σ) = λ2(q2, σ)
2) if q1′ ∈ Post(q1) then there exists q2′ ∈ Post(q2) with (q1′, q2′) ∈ R
3) if q2′ ∈ Post(q2) then there exists q1′ ∈ Post(q1) with (q1′, q2′) ∈ R

As the transition function is dependent on the input, we define Post(q, σ) =
δ(q, σ) and Post(σ) =

⋃
σ∈Σ Post(q, σ), which is essentially the same as for LTS

brought into the notation of Section 2.1. There are a couple of different bisimu-
lation types that differentiate by the handling of non-observable (internal) tran-
sitions (ordinarily labeled as τ transitions), e.g. strong and weak bisimulation,
and branching bisimulation to give a few examples. This distinction is, however,
theoretical in the context of this paper. The reason is that we intend to compare
a specification, which consists of an automaton that does not contain any τ tran-
sitions, with an implementation that is externally (black box) learned, rendering
τs unobservable. Therefore, two automata without any τs are compared directly,
which makes this distinction not applicable. More precisely, from a device per-
spective, the type of bisimulation equivalence cannot be determined, as the SUTs
are black boxes. This means that internal state changes (commonly denoted as
τ) are not visible, which determines the kind of bisimulation. From a model per-
spective, the chosen comparison implies strong bisimulation (i.e the initial state
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is related (formally, q0Ml
= q0Ms

) and all subsequent states are related as well
(formally Q = QMl

= QMs
;n = |Q|;∀n ∈ Q|qnMl

= qnMs
).

Trace equivalence, on the other hand, means that two transitions systems
produce the same traces for each same input.

Definition 3 (Trace equivalence). Traces(LTS1) = Traces(LTS2)

Although both bisimulation and trace equivalence might be principally ca-
pable of comparing a specification with an implementation automaton for de-
termining the standard compliance, determining bisimulation is a problem to be
solved in efficiently, whereas trace equivalence is PSPACE complete [2]. How-
ever, this might be negligible with a relatively low number of states and transi-
tions. In any case, bisimulation implies trace equivalence (LTS1 ∼ LTS2 implies
Traces(LTS1) = Traces(LTS2), but is finer than the latter [4]. For the pur-
pose of this paper, we consider two automata equivalent if they are trace or
bisimulation equivalent. In practice, we have obtained positive results with both
bisimulation and trace equivalence (see Section 4.4). Therefore, trace equivalence
is preferred as it is sufficient for standard compliance, but bisimilarity might be
used in cases where more efficient checking algorithms are necessary.

2.3 Automata Learning

The classical method of actively learning automata of systems, was outlined in
Angluin’s pivotal work known as the L* algorithm [3]. This work uses aminimally
adequate Teacher that has (theoretically) perfect knowledge of the SUT (in this
case called System-under-learning – SUL) behind a Teacher and is allowed to
answer to kinds of questions:

– Membership queries and
– Equivalence queries.

The membership queries are used to determine if a certain word is part of the
accepted language of the automaton, or, in the case of Mealy machines, which
output word will result of a specific input word. These words are noted in an
observation table that will be made closed and consistent. The observation ta-
ble consists of suffix-closed columns (E) and prefix-closed rows. The rows are
intersected in short prefixes (S) and long prefixes (S.Σ). The short prefixes ini-
tially only contain the empty prefix (λ), while the long ones and the columns
contain the members of the input alphabet. The table is filled with the respec-
tive outputs of prefixes concatenated with suffixes (S.E or S.Σ.E). The table
closed if for every long prefix row, there is a short prefix row with the same
content (∀s.σ ∈ S.Σ∃s ∈ S : s.σ = s). The table is consistent if for any two
equal short prefix rows, the long prefix rows beginning with these short prefixes
are also equal (∀s, s′ ∈ S∀a ∈ Σ : s = s′ → s.a = s′.a. A complete, closed
and consistent table can be used to infer a state machine (set of states Q con-
sists of all distinct short prefixes, the transition function is derived by following
the suffixes). Even though this algorithm was initially defined for DFAs, it has
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been adapted to other types of state machines (e.g., Mealy or Moore machines)
[15]. Alternatively, some algorithms use a discrimination tree that uses inputs
as intermediate nodes, states as leaf nodes, and outputs as branch labels, with a
similar method of inferring an automaton. One of these algorithms, TTT[12], is
deemed currently the most efficient [29]. Other widely used algorithms include
a modified version of the original L* with a counterexample handling strategy
by Rivest and Schapire [25], or the tree-based Direct Hypothesis Construction
(DHC) [21] and Kearns-Vazirani (KV) [17] algorithms.

Once this is performed, the resulting automaton is presented to the Teacher,
which is called equivalence query. The Teacher either acknowledges the correct-
ness of the automaton or provides a counterexample. The latter is incorporated
into the observation table or discrimination tree and the learning steps described
above are repeated until the model is correct. To allow for learning black box
systems, the equivalence queries in practice often consist of a sufficient set of
conformance tests instead of a Teacher with perfect knowledge [24]. Originally
for Deterministic Finite Automata, this learning method could be used to learn
Mealy Machines [26]. This preferred for learning black box reactive systems (e.g.
cyber-physical systems), as modeling these as Mealy is comparatively simple.

2.4 LearnLib

To utilize automata learning we use a widely adopted Java library called Learn-
Lib [13]. This library provides a variety of learning algorithms (L* and variants
thereof, KV, DHC and TTT), as well as various strategies for membership and
equivalence testing (e.g., conformance testing like random words, random walk,
etc.). The library provides Java classes for instantiating these algorithms and
interfaces systems under test. The interface classes further allow for defining
the input alphabets that the algorithm routines uses to factor queries used to
fill an observation table or tree. Depending on the used algorithms, the library
is capable of inferring DFAs, NFAs (Non-deterministic finite acceptors), Mealy
machines or VPDAs (Visibly Pushdown Automata).

2.5 Near Field Communication

Near Field Communication (NFC) is a standard for simple wireless communi-
cation between close coupled devices with relatively low data rates (106, 212,
and 424 kbit/s). One distinctive characteristic of this standard (operating at
13.56 Mhz center frequency) is that it, based on Radio-Frequency Identification
(RFID), uses passive devices (proximity cards - PICCs) that receive power from
an induction field from an active device (reader or proximity coupling device
PCD) that also serves as field for data transmission. There are a couple of defined
procedures that allow for operating proximity cards in presence of other wireless
objects in order to exchange data [11]. One standard particularly defines two
handshake procedures based on cascade-based anti-collision and card selection
(called type A and type B), one of which NFC proximity cards must be compliant
with [10]. This handshake is the particular target system-under-learning (SUL)
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of this paper, with the purpose of providing very strong evidence for compliance.
Due to the proliferation and the nature of the given system-under-learning, this
paper concentrates on type A devices. Therefore, all statements on NFC and its
handshake apply for type A only.

2.6 The NFC Handshake Automaton

Fig. 2. NFC handshake automaton after ISO 14443-3 [10] augmented with abstract
outputs. Note: star (*) as input means any symbol that is not explicitly stated in
another outbound transition of the respective state.
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Fig. 3. NFC interface setup.

ISO 14443-3 contains a state diagram that outlines the Type A handshake
procedure for an NFC connection (see Figure 2). This diagram is not a state
machine of the types described in Section 2.1, for it lacks both output and final
states. As we learn Mealy machines, we augmented it with abstract outputs
(see Sections 4.2 and 4.4) to get a machine of the same type. The goal of the
handshake is to reach a defined state in which a higher layer protocol (e.g.
as defined in ISO 14443-4 [11]) can be executed (the PROTOCOL state). The
intended way described in the standard to reach this state is: when coming into
an induction field and powering up, the passive NFC device enters the IDLE
state. After receiving a wake-up (WUPA) or request (REQA) message it enters
the READY state. In this state, anti-collision (AC, remaining in that state) or
card selection (SELECT going to the ACTIVE state) occur. In the latter state,
the card waits for a request to answer-to-select (RATS ), which brings it into
said PROTOCOL state. In all of these states, an unexpected input would return
the system to the IDLE state, no giving an answers (denoted as NAK ). Based
solely on ISO 14443-3 commands, the card should only leave this state after
a DESELECT command, after which it enters the HALT state. Apart from a
complete reset, it only leaves the HALT state after a wake-up (WUPA) signal
(in contrast to the initial IDLE state, which also allows a REQA message).
This brings it into the READY* state, which again gets via a SELECT into
the ACTIVE* state that can be used to get to the PROTOCOL state again.
The only difference between READY and READY*, as well as ACTIVE and
ACTIVE* state is that it comes from the HALT instead of IDLE state. Similar
to the first part of the automaton, an unexpected answer brings the state back
to HALT without an answer (NAK ).

Apart from the commands stated above that are expected by a card in the re-
spective state, every other (i.e. unexpected) command would reset the handshake
if its not complete (i.e. wrong commands from IDLE, READY, and ACTIVE
states would lead back to the IDLE state, while HALT, READY*, and ACTIVE*
lead back to the HALT state and unexpected commands in the PROTOCOL
state let it remain in that state. Even though this behavior of falling back into
a base state resembles a combination-lock automaton or generally an accept-
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ing automaton, we model the handshake as a Mealy Machine for the following
reasons:

a) As we observe a black box, input/output relations are easier to observe than
not intrinsically defined accepting states

b) The states are easier distinguishable: a variety of input symbols with the
corresponding output may represent a broader signature than just if a state
is accepting (apart from the transition to other states)

c) The output may processed at different level of abstraction (see Section 4.2)

There is also one specific feature to the NFC handshake protocol: unlike most
communication protocols, an unexpected or wrong input yield to no output. This
has an implication to learning, as a timeout will be interpreted as a general error
message.

3 NFC Interface

As Learner, we use the algorithm implementations in the Learnlib Java library
(see Section 2.4), configured as outlined in Section 4. To interact with the NFC
SUL, a Proxmark RFID/NFC device (see Section 3.1) is used that works with
an adapter written in C++ (see Section 3.2). Figure 3 provides an overview of
the setup.

3.1 Learner Interface Device

The interface with an NFC SUL is established via Proxmark3. Proxmark3 is
a pocket-size NFC device capable of acting as an NFC reader (PCD) or tag
(PICC), as well as sniffing device [7]. Proxmark3 can be controlled from a PC,
as well as, allowing firmware updates. Thus it allows us to construct the NFC
frames needed for learning and establishing a connection to the learning library
via a software adapter (see Section 3.2).

3.2 Adapter Class

The actual access to the NFC interface runs over a C++ program, running on
a PC, based on a provided application that comes with the Proxmark device.
As this application is open source, it was possible to modify it in order to adapt
it for learning. The main interface to the Java-based Learner is a Socket con-
nection that take symbols from the Learner (see Section 4.2) and concretizes
them by translating the symbols into valid NFC frames utilizing functions from
the SendCommand and WaitForResponse families. These functions send and
receive, respectively, command data (i.e. concrete inputs, symbol for symbol)
to the Proxmark device where the firmware translates it into frames and sends
them to the SUL and proceeds vice versa for the response. This, however, turned
out to create an error prone bottleneck at the connection between the PC ap-
plication and the Proxmark device running over USB. Due to round-trip times
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and timeouts, the learning was slowed down and occasional non-deterministic
behavior was introduced, which jeopardized the learning process and made it
necessary to repeat the latter (depending on the scrutinized system, multiple
times, which hindered the overall learning greatly). Therefore, the Learner was
re-implemented to send bulk inputs (i.e. send complete input words instead of
single symbols), which improved the throughput significantly and solved non-
determinism.

Firmware Modifications In order to be able to transfer traces word-wise
instead of symbol-wise, significant modifications of the device’s firmware were
necessary. The standard interface of the device is designed for sending a sin-
gle packet at one time (via a provided application on a PC) and delivering the
answer back to the application via a USB interface. This introduces latency,
which through the sheer amount of symbols sent in the learning process, has
a significant performance impact. To reach the device’s firmware with multiple
symbols at once, we modulate the desired inputs into one sent message in Type-
Length-Value (TLV) format (implemented types are with or without CRC and
a specialized type for SELECT sequences) and modify the main routine of the
running firmware to execute a custom function if a certain flag is set. This cus-
tom function deserializes the sent commands and sends them to the NFC SUT.
Answers are modulated into an answer packet in length-value format, followed
by subsequent answer messages containing precise logging and timestamps, if
used. As NFC is a protocol that works with relatively low round-trip times and
time outs these modifications, eliminating a great portion of the latency times
of frequently used USB connections, boost the performance of the learning us-
ing different learning algorithms significantly (for a performance evaluation see
Section 4.1).

4 Learning Setup

One distinctive attribute of ISO14443-3 with respect to learning is that it spec-
ifies to not give an answer on unexpected (i.e. not according to the standards
specification) input. Ordinarily, the result of such a undefined input is to drop
back to a defined (specifically the IDLE or HALT) state. In this sense, the NFC
handshake resembles a combination lock. A positive output on the other hand,
ordinarily consists of a standardized status code or information that is needed for
the next phase of the handshake, e.g., parts of a card’s unique identifier (UID).
The non-answer to undefined is a characteristic feature of the NFC standard.
This directly affects the learning because it yields many identical answers and
efficient time-out handling is essential. It is therefore necessary to evaluate differ-
ent state-of-the-art learning algorithms for their specific fitness (see Section 4.1)
well as determining the optimal parameter set (Section 4.1). We scrutinize the
main algorithms supported by Learnlib: classical L*, L* with Rivest/Schapire
counterexample handling, DHC, KV and TTT - the latter two with linear search
(L) and binary search (B) counterexample analysis.
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Max. Word Length
Algorithm

L*-C L*-RS DHC KV-L KV-B TTT-L TTT-B

10 5.92 5.05 6.00 4.38 4.38 5.45 5.37
20 20.08 9.34 10.93 12.24 11.65 7.66 7.40
30 41.90 12.92 9.82 12.19 11.47 10.67 10.04
40 68.17 8.54 11.16 15.56 12.89 10.87 9.49
50 34.75 7.87 11.02 15.60 12.53 11.29 9.91
60 77.33 17.15 12.98 17.16 13.37 13.04 10.85
70 134.65 11.34 14.46 17.68 14.81 13.06 11.32

Table 1. Runtime (minutes) per algorithm and maximum word length.

4.1 Comparing Learning Algorithms and Calibrations

All of the algorithms can be parameterized regarding the membership and equiv-
alence queries. The former are mainly defined via the minimum and maximum
word length, while the equivalence queries (lack of a perfect Teacher), is de-
termined by the method and number of conformance tests. Generally speak-
ing, a too short (maximum) word length results in an incompletely learned
(which, if the implementation is correct, should contain seven states). The maxi-
mum length, however, has a different impact on the performance for observation
and tree-based algorithms: table-based are quicker with a short maximum word
length, whereas for tree-based ones there seems to be a break-even point between
many sent words and many sent symbols in our specific setting. Table 1 shows
a comparison of the runtime of different algorithms with different maximum
word lengths (in red the respective algorithm’s shortest runtime that learned
the correct 7-state model). Some of the non-steadiness in the results can be ex-
plained by the fact that some calibrations with shorter word lengths required
more equivalence queries and, thus, refinement procedures. Table 2 shows the
results with the best performing (correct) run of the respective algorithm. This,
however, only covers the performance of learning a correct implementation. The
opposite side, discovering a bug, shows a different picture. We therefore used a
SUT with a slightly deviating behavior (see Section 5.3). This system is much
more error-prone, needing significantly higher timeout values, resulting in higher
overall runtimes. One key property in this case seems to be the minimum word
length. Some of the algorithms by their require a lower minimum word length
to discover than others. This has a significant impact with the special setting of
getting relatively many timeouts, which is greatly aggravated by the necessary
long timeout periods. With a minimum word length of 10 symbols, again the
original L* with the Rivest/Schapire closing strategy was performing quickest,
but discovered only 7 out of 10 states of the deviating implementation. DHC
yielded a similar result. Both needed a word length of 20 to discover the actual
non-compliant model, which was significantly less efficient in terms of runtime.
The TTT and KV algorithms needed a minimum length of 10, however with
quite some deviation in efficiency. While TTT was the best performing algo-
rithm to learn the SUT’s actual behavior model, KV was performing worst. The
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Algorithm L*-C L*-RS DHC KV-L KV-B TTT-L TTT-B
(20) (10) (30) (30) (30) (30) (40)

States 7 7 7 7 7 7 7
Runtime (min) 20.08 5.05 9.82 12.19 11.47 10.67 9.49

Words 1137 282 539 496 451 468 382
Symbols 10192 2588 5124 7932 7607 6628 6213
EQs 2 3 2 5 5 4 4

Table 2. Performance evaluation of different algorithms for a compliant system with
their respective fastest calibration in the given setting.

runtimes roughly correspond with the amount of sent symbols, in this case the a
very long timeout has to be set to avoid non-determinism. The classical L* is not
in the list, as the algorithm crashed after more than 24 hours of runtime. Table
3 provides an overview of minimum word lengths, run time, words, symbols and
equivalence queries. Lower minimum word lengths yielded false negatives (i.e.
the result showed a correct model with the deviation not uncovered).

4.2 Abstraction

Ordinarily, when applying automata learning to real-world systems, the input
and output spaces are very large. To reduce the alphabets’ cardinalities to a
manageable amount, an abstraction function (∇), that transforms the concrete
inputs (I) and outputs (O) to symbolic alphabets (Σ and Ω) using equivalence
classes. Of all possible combinations of data to be send, we therefore concentrate
on relevant input for the purpose of compliance verification. In the following we
present some rationales for the chosen degree of abstraction through the input
and output alphabets. These alphabets’ symbols are abstracted and concretized
via an according adapter class that translates symbols to data to be send (see
section 3.2).

Input Alphabet For the input alphabet we use the one needed for successfully
establishing a handshake (cf. Figure 2), according to the state diagram for Type-
A cards in the ISO 14443-3 standard [10]:

– Wake-UP command Type A (WUPA)
– Request command, Type A (REQA)
– Anticollision (AC)
– Select command, Type A (SELECT)
– Halt command, Type A (HLTA)
– Request for answer to select (RATS)
– Deselect (DESEL)

The last two commands are actually defined in the ISO 14443-4 standard [11].
However, as the handshake’s purpose is to enter and leave the protocol state, they
are included in the 14443-3 state diagram and, consequentially, in our compliance
verification.
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Algorithm L*-RS DHC KV-L KV-B TTT-L TTT-B

Min Length 20 20 10 10 10 10
Runtime (min) 309.81 328.83 520.34 423.27 277.67 131.43

Words 575 855 952 679 688 616
Symbols 14637 15262 23867 19241 13353 11769

Eqs 5 3 6 6 5 5
Table 3. Performance evaluation of different algorithms for a non-compliant system
with their respective fastest calibration in the given setting.

Output Alphabets In general, the output alphabet does not need to be defined
beforehand. It simply consists of all output symbols observed by the Learner in a
learning run. The Learner can derive the output alphabet implicitly. This means
that if a system behaved non-deterministicly, the output alphabet could vary
– although when learning Mealy machines, which are deterministic by defini-
tion, nondeterminism would jeopardize the Learner. The output alphabet has
obviously to be defined (in the abstraction layer) when abstracting the out-
put. Therefore, using raw output has the benefit of not having to define the
alphabet beforehand. The raw method has one drawback: there are cards that
use a random UID (specifically, this behavior was observed in passports). Ev-
ery anti-collision (AC ) and SELECT yields a different output, which introduces
non-deterministic behavior. This is not a problem with abstract output, as the
concrete answer is abstracted away. We therefore tried a heavily abstracted out-
put consisting of only two symbols, namely ACK for a (positive) answer and
NAK for a timeout, which in this case means a negative answer (see Section
2.5). This solves the problem, but degrades the performance of the Learner,
since states are harder to distinguish if the possible outputs are limited to two
(aggravated by the similar behavior of certain states - see Section 2.6). This
idea was therefore forfeit in favor of raw output for the learning. We still main-
tained this higher abstraction for the equivalence checking (see Section 4.4 for
the reasoning). Raw output, however, retains this problematic non-determinism.
We therefore introduce a caching strategy to cope with this issue. Whenever a
valid (partial) UID is received as an answer to an anti-collision or select input
symbol, we put it on one of two caches (one for partial UIDs from AC and one
for full ones from SELECT sequences). The Learner will subsequently only be
confronted with the respective top entries of these caches. We therefore abstract
away the randomness of the UID by replacing it with an actual but fixed one.
This keeps the learning deterministic while saving the other learned UIDs for
analysis, if needed.

4.3 Labeling and Simplification

An implementation that conforms to the standard will automatically labeled
correctly, as the labelling function follows a standards-conform handshake trace:

a) label the initial state with IDLE,
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b) from that point, find the state, where the transition with REQA as an input
and a positive acknowledgement as an output ends and label it as READY,

c) from that point, find the endpoint of a positively acknowledged SELECT
transition and label it as ACTIVE,

d) from that point, find the endpoint of a positively acknowledged RATS tran-
sition and label it as PROTOCOL,

e) from that point, find the endpoint of a positively acknowledged DESELECT
transition and label it as HALT

f) from that point, find the endpoint of a positively acknowledged WUPA tran-
sition and label it as READY*

g) from that point, find the endpoint of a positively acknowledged SELECT
transition and label it as ACTIVE*

If the labeling algorithm fails or there are additional states (which are out of the
labeling algorithm’s scope), this is an indicator for the learned implementation’s
non-compliance with the ISO 14443-3 standard (given that only the messages
defined in that standard are used as an input alphabet - see Section 4.2).

To simplify the state diagram for better readability and analysis, we cluster
the transitions of each states for output/target tuples and label the input for that
mostly traveled tuple with a star (∗). Normally that is the group of transitions
that mark an unexpected input and transitions back to the IDLE or HALT state.
This reduces the diagram significantly. Therefore, in those simplified diagrams,
all inputs not marked explicitly in a state can be subsumed under the respective
star (∗) transition.

4.4 Compliance Evaluation

Proving or disproving compliance needs a verdict if a potential deviation from
the standard violates the (weak) bisimulation relation. We use mCRL2 with
the Aldebaran (.aut) format for bisimilarity and trace equivalence checking (as
described in Section 2.2) [5]. As the Learnlib toolset provides to possibility to
store the learned automata in a couple of formats, including Aldebaran, setting
up the tool chain is easy, even though some re-engineering was necessary. Learn-
lib’s standard function for exporting in the Aldebaran format does not include
outputs. This accepts transitions as equal that are in fact not (as they distinguish
only through the output). We therefore rewrote this function to use the transi-
tion’s in the label of an LTS as well. mCRL2 comes with a model comparison
tool that uses, amongst others, the algorithm of Jansen et al. [16] for bisimilarity
checking. We therefore simply model the specification in form of the handshake
diagram (see Figure 2) as an LTS with the corresponding Mealy’s input and
output as a label in the Aldebaran format and use the mCRL2 tool to compare
it to automata of learnt implementations. The models of SUTs, although, could
differ greatly event if the behavior is similar . Due to different UIDs the out-
puts to legit AC and SELECT commands would ordinarily differ between any
two NFC cards. Also most other outputs might differ slightly. E.g., we observed
some cards to respond to select with 4800, others with 4400. We therefore use
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the higher abstraction level as described above and use only NAK and ACK
as output, circumventing this problem. This way, inequalities as detected by
the tool indicate non-compliance to the ISO 14443-3 standard of the scrutinized
implementation. If a non-compliance (i.e. a missing or additional state or tran-
sition actually countering the bisimulation relation) is found, all we need is to
do a simple conformance test. A trace of the non-compliant state/transition is
trivial to extract from the automaton (see the example in Section 5.3). If that
trace is executed on the system-under-test and actually behaves like predicted
in the model, we have found the actual specification violation in the real system,
disproving the compliance.

Alternatively, an actual positive verdict of compliance of a learned model is
simple. A full compliance proof can be made when doing identity equivalence,
that is comparing the learned model state by state and transition by transition
with the model manually derived from the ISO 14443-3 standard. If every state
and transition is equal, we consider the system as compliant. More formally,
the learned machine Ml must be fully equal the specification machine Ms, i.e.
Ml = Ms ∧ (Ml = Ms |= QMl

= QMs
∧ ΣMl

= ΣMs
∧ ΩMl

= ΩMs
∧ δMl

=
δMs

∧ λMl
= λMs

∧ q0Ml
= q0Ms

). This, obviously, is a simpler but stronger
relation that is not coersive for ISO protocol compliance. The probability of
learning (with a sufficient amount of conformance testing) an incorrect model
that is still compliant with the standard is negligible.

5 Evaluation

In this section we briefly outline the achieved results with the described tool
chain. We used serveral different NFC card systems for testing, which are de-
scribed below. All of these systems have shown to be conform to the ISO14443-3
standard, except for the Tesla key fob.

5.1 Test Cards and Credit Cards

We used five different NFC test test cards by NXP (part of an experimental car
access system) to develop and configure the Learner. Furthermore, we used two
different banking cards, a Visa and a Mastercard debit. All of these cards are
conform to the standard, with only minor differences. One of these deffenrences
is replying with diffent ATQA to REQA/WUPA messages with 4400 and 4800
respectively. Overall, the results with these cards are very similar. Figure 4 shows
an example of a learnt automaton (left side).

5.2 Passports

We also examined two different passports from European Union countries: one
German and one Austrian. The main noticeable difference (at ISO 14443-3 levlel)
between the other systems is that these systems answer to AC and SELECT
inputs with randomly generated (parts of) UIDs. This implements a privacy
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Fig. 4. Automaton of an NXP test card (left) and a Tesla car key fob (right) learnt
with TTT.

feature to make passports less traceable. Without accessing the personal data
stored on the device the passport should not be attributable. This, however,
requires authentication.

5.3 Tesla Key Fob

Apart from significantly slower answers than the other devices, which required to
adapt the timeouts to avoid nondeterministic behavior, the learned automaton
slightly differs when learnt with the TTT algorithm. Figure 4 (right side) shows
a model of a Tesla car key fob learnt with TTT. The (unnamed) states 3,4 and
6 are very similiar to the HALT, READY* and ACTIVE* states, respectively.
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Apart from the entry points (HALTA from the ACTIVE state for the first and
DESEL from the PROTOCOL state, respectively) these two structures are iden-
tical and in the reference model, those two transitions lead to the same state.
However, the ACTIVE* transition allows for issuing a DESELECT command
that actually returns a value (i.e. an ACK in the higher abstraction), which does
not correspond to the standard.

The mCRL2 comparison tool rightfully identifies this model not to be bisim-
ilar and trace equivalent with the specification. Using the according option, the
tool also provided a counterexample in the form of the trace (⟨REQA/ACK⟩,
⟨SELECT/ACK⟩, ⟨RATS/ACK⟩, ⟨DESEL/ACK⟩, ⟨WUPA/ACK⟩, ⟨SELECT/
ACK⟩, ⟨DESEL/ACK⟩). According to the specification, the last label should be
⟨DESEL/NAK⟩.

6 Related Work

There are other, partly theoretic, approaches of inferring a model using automata
learning and comparing it with other automata using bisimulation algorithms.
However, they target DFAs [6] or probabilistic transition systems (PTS) [9].
Neider et al. [23] contains some significant theoretic fundamentals of using au-
tomata learning and bisimulation for different types of state machines, including
Mealys. It also contains the important observation that (generalized) Mealy Ma-
chines are bisimilar if their underlying LTS are bisimilar. Tappler et al. [28] used
a similar approach of viewing Mealy Machines as LTS to compare automata
regarding their bisimilarity. Similarly, bisimulation checking was also used to
verify a model inferred from an embedded control software [27]. There is also
previous work on using automata learning for inferring models of NFC cards
[1], which concentrates on the upper layer (ISO/IEC 14443-4) protocol, dodging
the specific challenges of the handshake protocol. Also there is no mentioning of
automatic compliance checking in this approach. To the best of our knowledge,
there is no comprehensive approach for compliance verification of the ISO/IEC
14443-3 protocol.

7 Conclusion

In this paper, we demonstrated the usage of automata learning to infer models
of systems under test and evaluate their compliance with the ISO 14443-3 pro-
tocol by checking their bisimilarity with a specification. We described a learning
interface setup, showed practical results and made interesting observations on
the impact of the protocol specifics on learning algorithms’ performances.

7.1 Discussion

Using our learning setup on real-world devices, we found little differences be-
tween the SUTs – all examined systems were compliant to ISO/IEC 14443-3.
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Observed differences were mainly in the privacy-related random UIDs sent by
passports and the slow answers and a slightly different automaton of the Tesla
key fob. However, the scrutinized NFC handshake protocol has two characteris-
tics that are distinct from other communications protocols: a) it does not send
an answer on unexpected input and b) the automaton has two almost identi-
cal parts (IDLE/READY/ACTIVE and HALT/READY*/ACTIVE*) that pose
challenges in learning. Supposedly these characteristics are responsible for the
somewhat surprising finding that the L* algorithm with the Rivest/Schapire
improvement surpasses more modern tree-based algorithms for correct systems.
However, TTT performed best in finding a non-compliant system, which is the
actual purpose of the testing and that the minimum word length has an impact
on the ability to find incompliances. This might give some hints for optimization
of learning strategies for similar structures.

7.2 Outlook

The compliance checking is but a first step towards assuring correctness and,
subsequently, cybersecurity for NFC systems. Concretely, further research direc-
tions include test case generation using model checking and using the model to
guide an intelligent fuzzer to leverage cybersecurity validation and verification
(V&V). The target of these V&V activities are on the one hand upper layer
protocols and on the other hand NFC reader devices to search for faults that
might lead to exploitable security vulnerabilities. To talk to readers, because of
the low latency of NFC communications, it is crucial to already know what to
send before a conversation, which is satisfied by the predefined input words in
the automata learning process.
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Formal Methods and Software Engineering. pp. 67–83. Springer International Pub-
lishing, Cham (2015)

28. Tappler, M., Aichernig, B.K., Bloem, R.: Model-Based Testing IoT Communica-
tion via Active Automata Learning. In: 2017 IEEE International Conference on
Software Testing, Verification and Validation (ICST). pp. 276–287 (Mar 2017).
https://doi.org/10.1109/ICST.2017.32

29. Vaandrager, F.: Model learning. Communications of the ACM 60(2), 86–95 (Jan
2017). https://doi.org/10.1145/2967606
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