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Abstract. Radar systems equipped with Misalignment Monitoring and
Adjustment (MM&A) face challenges in accurately functioning within
complex environments, particularly tunnels. Standard radar system de-
sign assumes constant background activity of the MM&A throughout
a host vehicle’s ignition cycle, monitoring for misaligned radar sensors
and mitigating issues associated with faulty radar measurements. How-
ever, the presence of tunnels and other unfavorable driving conditions
can influence MM&A, thereby affecting its performance.

To address this issue, it is crucial to develop a reliable method for de-
tecting tunnel-like environments and appropriately adjusting the MM&A
system. This research paper focuses on the novel acoustic sensing sys-
tem called SONETE (Sonic Sensing for Tunnel Environment) for classi-
fication of acoustic signatures recorded by pressure zone microphone to
accurately identify tunnel environments.

The study aims to explore acoustic features and classification algorithms
to distinguish between road and tunnel environment and using a sen-
sor fusion with radar systems, suspend the MM&A system accordingly.
By tackling this problem, the research contributes to the advancement
of intelligent transportation systems by enhancing radar technology’s
robustness in complex environments and ensuring effective MM&A ad-
justments in tunnels.

Overall, this paper demonstrates the potential of using acoustic signa-
tures as a complementary sensor for tunnel detection in vehicles where
traditional sensors have limitations.

Keywords: Misalignment monitoring and adjustment - Acoustic signa-
tures - Classification - Tunnel detection.

1 Introduction

The presence of tunnel like environments might affect Advanced Driver Assis-
tance Systems (ADAS). In this study we are focusing on radar systems. One of
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the features in radar systems is MM&A, which performs a process of assessing
and correcting the alignment of radar components to ensure optimal system per-
formance. Signal reflections in tunnel like environments can result in overlapping
or delayed signals reaching the radar system, leading to inaccuracies in target
detection and localization. Misalignment in such scenarios can amplify the ef-
fects of signal reflections, making it challenging to distinguish between direct
and reflected signals.

In this study we are exploring use of a complementary sensor for tunnel de-
tection in order to compensate MM&A challenges in tunnel like environments.
We will explore acoustic phenomena of the sudden change in an acoustic environ-
ment. In order to achieve this, an externally mounted acoustic pressure sensor
proves to be suitable. Selected sensor configuration should remain unaffected by
the tunnel’s geometry, including wall curvature and internal infrastructure such
as Heating, ventilation, and air conditioning (HVAC) systems and piping.

The driver, when listening to the aural landscape before and after the tunnel,
may not be consciously aware of the tunnel’s size or any specific internal char-
acteristics. However, the presence of a tunnel is clearly perceivable throughout
its entire length, with the driver’s reaction time (i.e., resolution) determined by
the capabilities of the human auditory system.

2 Related studies

Numerous research studies have extensively explored different approaches and
technologies for vehicle localization and tunnel detection. For instance, using
LiDAR sensors and imaging technologies mounted on vehicles to acquire the
geometry and structural information of tunnels while the vehicle is in moving
(23,24, 27].

Acoustic and vibration signals have also been effectively utilized for tunnel
detection. Studies have examined the use of microphones to capture these signals
and analyzed their distinct patterns or characteristics [13, 28].

Radar sensors integrated in vehicles could be used for tunnel detection by
detecting changes in signal reflections. Researchers have explored diverse radar-
based techniques, including Doppler radar, in order to assess their potential for
tunnel detection [17,25, 21].

Moreover, imaging systems have been deployed for tunnel detection, lever-
aging their capabilities to identify tunnel-like environments [1]. Certain research
has focused on utilizing the object elevation property and applying Gaussian
filtering techniques for detecting tunnel environments [7].

These comprehensive research studies highlight the diverse range of tech-
niques and technologies being explored in the field of tunnel detection, effectively
demonstrating the advancements made in this domain.
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2.1 Discussion of related studies

This article shows use of pressure zone microphone (PZM) for tunnel detection
through acoustic signature analysis, and offers some distinct differences com-
pared to the previously mentioned detection methods.

Acoustic pressure variations are accurately captured by pressure zone mi-
crophones, which exhibit high sensitivity and can detect even subtle changes
in sound pressure levels. On the other hand, LiDAR, imaging technologies, and
radar sensors utilize different sensing modalities such as light, electromagnetic
waves, or radio waves.

When it comes to tunnel environments, pressure zone microphones are pri-
marily employed to analyze their acoustic signatures or characteristics. This anal-
ysis involves examining the frequency content, amplitude, and temporal patterns
of sound signals collected by these microphones. In contrast, LIDAR, imaging
technologies, and radar sensors focus on capturing the geometric or structural
information of tunnels, rather than directly studying their acoustic properties.
One notable advantage of pressure zone microphones is their ability to provide
real-time monitoring of the acoustic environment while a vehicle is in motion.
This allows for continuous detection and characterization of tunnel-like environ-
ments. Conversely, other detection methods often require periodic measurements
or snapshots of the environment.

It’s important to note that pressure zone microphones can be sensitive to
internal infrastructure elements present in tunnels, such as HVAC systems or
piping. These internal components may introduce additional noise or interfere
with the analysis of acoustic signatures. Therefore, the implementation of noise
filtering algorithms or physical isolation methods becomes necessary to minimize
the unwanted effects caused by the internal infrastructure. In contrast, other de-
tection methods like LiDAR or radar are generally less affected by these internal
infrastructure elements.

Another advantage of pressure zone microphones is relatively low cost com-
pared to specialized LiDAR or radar systems. They are also relatively easy to
install and integrate into existing vehicles or monitoring systems, making them
a cost-effective option for tunnel detection through the analysis of acoustic sig-
natures.

3 Methodology

3.1 Selected pressure zone microphone

Surface-mounted pressure microphone 147AX [6] was used as it is optimized for
testing in the automotive industry. It combines the high precision and stability of
a laboratory microphone with a high level of ruggedness, including the ability to
function properly in the most challenging environment with vibrations, oil mists,
water spray and dirt and dust - and high temperatures up to 125°C. Microphone
design and other internal parts makes it resilient to shock and vibrations. It
functions well under conditions with vibrations and g-forces from uneven road
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surfaces and other sudden directional shifts as encountered in real-life driving
tests.

Table 1. 147AX Specifications

Specification Value

Frequency range (+1 dB) 5 to 12.5 kHz
Frequency range (£2 dB) 3.15 to 20 kHz
Dynamic range lower limit 19 dB(A)
Dynamic range upper limit 133 dB

Set sensitivity @ 250 Hz (+2 dB) 42 mV /Pa

Set sensitivity @ 250 Hz (£2 dB) -27 dB re 1V /Pa
Output impedance < 50482

Static pressure coefficient @250 Hz, typical|-0.02 dB/kPa

The provided Table 1 contains specifications of the pressure microphone suit-
able for tunnel detection.

The microphone has a wide frequency range from 5 kHz to 12.5 kHz (+1
dB) and 3.15 kHz to 20 kHz (+2 dB). Tunnels often exhibit specific acoustic
characteristics within certain frequency ranges. By capturing and analyzing the
acoustic signals within these ranges, the microphone can detect and differentiate
tunnel environments from other surroundings.

Tunnels can have varying levels of ambient noise or signal strength. The
microphone has a high dynamic range, with a lower limit of 19 dB(A) and
an upper limit of 133 dB. This wide dynamic range allows the microphone to
capture both low-level ambient sounds and high-intensity sounds within the
tunnel environment.

Sensitivity level at 250 Hz is 42 mV /P which is important for detecting the
acoustic signatures specific to tunnels, which may have characteristic frequencies
and amplitudes. The microphone’s sensitivity enables it to capture and analyze
these signals effectively.

Output impedance of less than 50 Ohms ensures that the microphone can
provide a strong and stable output signal, allowing for accurate and reliable
measurements of the acoustic environment.

Static pressure coeflicient of -0.02 dB/kPa at 250 Hz indicates its ability to
maintain consistent performance even in the presence of static pressure varia-
tions. This is important in tunnel environments, where air pressure may change
due to factors such as ventilation or vehicle movement.

3.2 Recording audio signals
Microphone was placed on the vehicle (Skoda Karoq) at two positions. First

position was on the right side of the vehicle where microphone was exposed
to wind, and second position below back door handle making microphone less
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Fig. 1. MiSeluk tunnel model.

exposed to wind, see Figure 5. Recordings of audio signals were done in MiSeluk
tunnel, Novi Sad, Serbia showed in Figure 1.

Recordings were made in two sessions, respectively to microphone positions,
using a portable multi-channel sound analyzer Voyager at sample rate of 48
KHz [12]. Vehicle speed was in range between 7T0Km/h and 80Km/h. One set
of recordings were in a quiet environment without traffic, and other in a quite
busy environment with other vehicles on the road.

Audio samples were cut into 1 second length to be used in the signal pro-
cessing algorithms showed in Figure 5.

3.3 Time-frequency spectrum analysis

The approach we used to identify tunnel-like environments is through the analy-
sis of the time-frequency spectrum of acoustic signals. In our preliminary exper-
iments, we determined that the presence of a dominant frequency component at
around 1 kHz reliably indicates the presence of a tunnel-like environment.

We analyzed time-frequency spectrum to check the distribution of energy in
the frequency domain over time, see Figure 2. By capturing the variations in the
spectral content of the acoustic signals, analysis revealed specific patterns and
features associated with tunnel environments. When a vehicle enters a tunnel,
analysis showed that there is a noticeable shift in the time-frequency spectrum
of the acoustic signal. The sudden change in the acoustic environment shows
a distinct shift in the energy distribution across different frequency bands. In
particular, the presence of a dominant frequency component at around 1 kHz
becomes more noticeable when entering a tunnel, see Figure 2. This frequency
component can be attributed to the interaction between the vehicle’s motion
and the tunnel’s geometry, resulting in specific resonances or reflections that are
characteristic of tunnel-like environments.

In Figure 2 we see a dominant frequency component at around 1 kHz. This
was used as a reliable indicator of tunnel presence. Algorithms and techniques
can be developed to automatically detect and analyze the sudden changes in
the time-frequency spectrum, allowing for real-time identification of tunnel-like
environments. By focusing on the distinctive features of tunnel environments,
such as the dominant frequency component at around 1 kHz, the research aims
to develop accurate method for tunnel detection based on the analysis of the
time-frequency spectrum of acoustic signals.
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Fig. 2. Mel-scale power spectrogram and Short-Time Energy of raw audio sample.

3.4 External influences

Handling of external influences are crucial factors in designing an effective de-
tection system for tunnel environments. One important aspect considered was
the selection of an appropriate frequency range used. In the case of road and
tunnel detection, it has been determined that the relevant frequency range for
capturing the acoustic signatures is from 500 Hz to 2 kHz, see Figure 6.

By focusing on this frequency range, the system can effectively capture and
analyze the specific acoustic characteristics associated with roads and tunnels.
These frequencies are known to contain vital information related to the road
and tunnel environment, such as reverberations, echoes, and specific resonance
patterns.

To ensure accurate detection, frequencies outside of the relevant range were
filtered out. Filtering out frequencies above and below the desired range helps to
eliminate unwanted noise and interference that may arise from external sources,
such as road traffic, wind, or other environmental factors.

3.5 Data collection process

The audio processing pipeline for tunnel detection involved several steps. First,
audio samples with a duration of 1 second were re-sampled from the original 48
kHz to 8 kHz, which had been found to yield good results, and also filter some
noise out.

Next, Mel-frequency spectrograms (MELSs) were computed from the re-sampled
audio samples. The MEL spectrograms represented the spectral energy distribu-
tion of the audio signals across different frequency bands.



Detecting Road Tunnel-Like Environments 7
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Fig. 3. Vehicle horn spectrogram.
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Fig. 4. Vehicle passing by spectrogram.

After generating the MEL spectrograms, a filtering operation was applied
to isolate the frequency range of interest. The aim was to focus the analysis on
the relevant frequency components. Specifically, the MEL coefficients outside the
range of 500 Hz to 2 kHz were filtered out, see Figure 6.

Once the filtering was completed, the resulting filtered MEL spectrograms
served as the basis for extracting features using the Mel-frequency cepstral co-
efficients (MFCCs) technique. The MFCCs are calculated by taking the discrete
cosine transform (DCT) of the logarithm of the filtered MEL spectrograms.

These steps were performed using the Python programming language [16],
which provided a versatile and efficient environment for audio data processing.

Several Python libraries were used to streamline the various steps. The scikit-
learn library [14] played a crucial role in providing powerful tools for data pre-
processing, feature extraction, and machine learning algorithms.

The scipy library [20] proved invaluable for its comprehensive suite of signal
processing functions. These functions were utilized for tasks such as Fourier
transforms, filtering operations.
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A key component of the data collection process was the utilization of the
librosa library [11], which is specifically designed for audio and music signal
analysis. Librosa provided a high-level interface and a wealth of functionality
tailored for tasks such as audio loading, resampling, spectrogram computation,
and feature extraction. Resulting data was shown via matplotlib library [8].

By following this pipeline, the system was able to preprocess the audio sam-
ples, extracting MFCC features from the filtered MEL spectrograms within the
relevant frequency range of 500 Hz to 2 kHz, see Figure 6 and Figure 7. These
MFCC features served as valuable inputs for subsequent analysis, classification,
and detection algorithms, enabling the system to effectively differentiate tunnel-
like environments based on their acoustic signatures.

These below formulas describe the mathematical operations involved in com-
puting the MEL spectrogram and extracting the MFCC features:

— Computing the MEL Spectrogram:

e Apply the Short-Time Fourier Transform (STFT) to audio signal x(¢):
X(n,w) = ZZ;% z(m) - w(m —n) - e Iwm
(This is a simplified equation which assumes that the audio signal is zero
outside the range of 0 to N — 1, where N is the length of the window.
This is a frame-based approach, where the signal is divided into frames
of fixed length.)

e Compute the magnitude spectrum | X (n,w)]|.

e Apply a Mel filterbank to the magnitude spectrum:
S(m,t) = S0 H(m,w) | X (n,w)|?

e Apply a logarithmic compression to the MEL spectrogram: S(m,t) =
log(1+ S(m,t))

— Extracting MFCC Features:

e Apply the Discrete Cosine Transform (DCT)
S(m,b): Y(p,t) = M0 C(m,t) - cos (& (m + 0.5)p)
(The equation calculates each MFCC coefficient Y (p, t) by summing the
product of the Mel-scaled filterbank energies or log-compressed spectro-
gram coefficients C(m,t) and the cosine of a specific argument 7 (m +
0.5)p. The index m iterates over the filterbank or spectrogram coeffi-
cients, and M represents the total number of filters or coefficients.)

e Select a subset of the resulting DCT coefficients Y (p, t) to represent the
MFCC features.

4 Analysis and Results

In this section, we present the results of our study on road and tunnel acoustic
signature classification combined with Principal Component Analysis (PCA).
We begin by providing a detailed analysis of the obtained data, followed by a
discussion of the implications and reliability of our findings.

The dataset used for this study consisted of audio spectrograms extracted
from road and tunnel environments. Each spectrogram was processed to extract
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Road and Tunnel Mel-scale power spectrogram

3

Fig. 7. Signals for classification.

relevant features, and PCA was applied to reduce the dimension of the data. The
resulting principal components represented the most informative aspects of the
audio signals Figure 5. A total of 280 samples were available, with 200 samples
allocated for training and 80 samples reserved for testing the performance of the
classification models.

Firstly, the data was scaled using the RobustScaler, which helps normalize
the features and make them less sensitive to outliers. This step was crucial to
ensure that all features have a similar scale and avoid biasing the classification
models.

4.1 Principal Component Analysis

After scaling, PCA (Figure 9) was applied to reduce the dimensionality of the
feature space. PCA, short for Principal Component Analysis, is a widely used
dimensionality reduction technique that transforms the data into a new set of
uncorrelated variables called principal components [5]. This transformation is
achieved by finding linear combinations of the original features that capture the
maximum variance in the data. By doing so, PCA helps to extract the most
important information while reducing the dimensionality of the dataset.

In the specific case of the PCA accuracy plot (Figure 8), which depicts the
performance of PCA for different numbers of components using k-fold cross-
validation, an interesting observation can be made. Initially, as the number of
components increases, there is a noticeable improvement in the accuracy of the
PCA-based model. This suggests that the early principal components capture
the essential information that contributes to accurate classification or predic-
tion. However, as the number of components continues to increase, the improve-
ment in accuracy becomes less substantial. Beyond a certain threshold, typically
around 50 components in this case, the accuracy curve begins to flatten out,
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indicating that additional components contribute less significantly to the over-
all performance. This suggests that a substantial portion of the discriminatory
information is captured within the first 50 components, and incorporating more
components provides diminishing returns in terms of accuracy improvement.
This finding reinforces the notion that PCA effectively captures the most rel-
evant and informative aspects of the data, allowing for dimensionality reduction
without sacrificing much accuracy. By retaining a subset of the most important
principal components, we can achieve a compact representation that retains the
discriminatory power necessary for accurate classification or prediction tasks.

4.2 Classification

Five different classification models were employed in this study: Logistic Regres-
sion, Support Vector Machine with c-support vector classification (SVM/SVC),
K-Nearest Neighbors (KNN), Gaussian Naive Bayes (NB), and Random Forest.
Each model was trained using the training dataset and evaluated on the test
dataset.

The performance of each classification model was assessed using various eval-
uation metrics, including accuracy, precision, recall, and F1l-score. Confusion
matrices were also generated to visualize the classification results, see Table 2.

The Logistic Regression model achieved a high accuracy of 98.75% on the
test dataset. The precision, recall, and F1-score for both road and tunnel classes
were consistently high, indicating reliable classification performance.

The SVM model demonstrated a strong performance with an accuracy of
95.62%. It exhibited balanced precision, recall, and F1-score for both road and
tunnel classes, suggesting effective discrimination between the two classes.

The KNN model yielded an accuracy of 70% on the test dataset. While it
achieved a high recall for the tunnel class, its precision and F1l-score were rela-
tively lower for both road and tunnel classes, indicating some misclassifications.

The Gaussian NB model attained an accuracy of 83.75%. It demonstrated a
higher precision and F1l-score for the road class compared to the tunnel class.
However, its recall for the tunnel class was notably higher, suggesting better
identification of tunnel audio samples.

The Random Forest model achieved an accuracy of 80% on the test dataset.
It exhibited balanced precision, recall, and Fl-score for both road and tunnel
classes, indicating reliable classification performance.

4.3 Results overview

The results indicate that both Logistic Regression and SVM models outper-
formed the KNN, Gaussian NB, and Random Forest models in accurately clas-
sifying road and tunnel audio samples. Logistic Regression showed the highest
accuracy, precision, recall, and F1-score, indicating its suitability for audio sig-
nature classification in road and tunnel environments.
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The KNN model exhibited lower accuracy and precision, suggesting its limi-
tations in effectively distinguishing between road and tunnel classes. The Gaus-
sian NB and Random Forest models achieved moderate accuracies, with slightly
varying precision, recall, and F1-scores for road and tunnel classes. These mod-
els may be suitable for specific applications or when a balanced performance is
desired.

Overall, the findings presented suggest that audio signature classification for
environments like road and tunnel can be effectively accomplished using Logistic
Regression (Figure ??) or SVM (Figure 10) models. Further research could focus
on refining and optimizing these models, as well as exploring additional feature
extraction techniques to improve classification performance.

Analysis of PCA component cumulative variance (Figure 9) shows an inter-
esting trend. Initially, as the number of principal components increases, there is
a rapid increase in the cumulative variance explained. This indicates that the
early components capture the majority of the variability in the data.

Accuracy for N Compoments of PCA K fold cross validation
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Fig. 8. PCA accuracy for N components.

However, we observed a diminishing rate of increase in the cumulative vari-
ance. We reach a point where adding additional components contributes only
marginally to the cumulative variance explained. In fact, beyond a certain thresh-
old, as shown in Figure 9, the curve becomes nearly linear.

This suggests that a significant amount of information of the data is captured
by a relatively small number of principal components. These components rep-
resent the most dominant and essential features that characterize the acoustic
signatures of tunnel environments. As we incorporate more components beyond
this critical threshold, the additional information gained becomes increasingly
marginal.
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5 Misalignment Monitoring and Adjustment for Radar
Systems

Monitoring and adjusting the alignment of radar systems is a critical process
aimed at optimizing their performance. Radar systems consist of various hard-
ware components, such as antennas, transmitters, receivers, and signal process-
ing modules, all of which need to be properly aligned for accurate and reliable
operation.

Misalignment in radar systems can result from mechanical vibrations, envi-
ronmental conditions, installation errors, or component degradation over time.
These misalignments can have detrimental effects on system performance, in-
cluding reduced detection range, inaccurate target localization, degraded signal
quality, and increased false alarms.

Hence, it is essential to assess and correct misalignment in radar systems
to ensure their effectiveness. This can be achieved through various techniques,
such as sensor-based measurements, optical alignment systems, or signal analysis
methods. These techniques enable operators or automated systems to analyze
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Table 2. Model evaluation.

Sample Model Accuracy Inference time
1sec LogisticRegression 98.75% ~ 1 ms
SVC 95.625% ~ 15.6 ms
GaussianNB 83.75% ~ 1 ms
RandomForest 80% ~ 3 ms
K-Nearest Neighbors  70% ~ 130.9 ms
0.5 sec LogisticRegression  97.5% ~ 1 ms
SVC 93.7% ~ 10.6 ms
GaussianNB 86.8% ~ 1 ms
RandomForest 81.8% ~ 2 ms
K-Nearest Neighbors 73.1% ~ 80.9 ms
0.1 sec LogisticRegression  94.3% ~ 1 ms
SVC 88.1% ~ 5.6 ms
GaussianNB 61.8% ~ 1 ms

RandomForest 76.8% ~ 3 ms
K-Nearest Neighbors 76.2.1%  ~ 12.9 ms

and identify the presence and extent of misalignment. The ultimate goal of this
monitoring and adjustment process is to secure maximum accuracy, sensitivity,
and reliability in radar system operations.

By employing rigorous analysis and assessment, radar system misalignment
can be properly diagnosed and addressed. Findings from such analysis allow
for informed conclusions and the development of effective alignment strategies.
This comprehensive approach guarantees that radar systems operate at their
highest potential, enabling them to fulfill their intended functions with optimal
performance.

5.1 Environment impact

When a vehicle is traveling trough a tunnel, several factors come into play that
can affect the alignment and performance of radar systems such are: signal re-
flections and attenuation, electromagnetic interference etc.

Tunnels are enclosed environments with reflective surfaces, such as walls and
ceilings, which can cause signal reflections and multi-path propagation. These
reflections can result in overlapping or delayed signals reaching the radar system,
leading to inaccuracies in target detection and localization. Misalignment in such
scenarios can amplify the effects of signal reflections, making it challenging to
distinguish between direct and reflected signals.

The presence of walls and other structures in tunnels can cause signal atten-
uation, leading to a decrease in signal strength. This attenuation can reduce the
effective range and sensitivity of the radar system, making it more difficult to
detect and track targets accurately.

Tunnels often have electrical infrastructure, such as lighting, ventilation sys-
tems, and power cables, which can generate electromagnetic interference (EMI).
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EMI can introduce noise and distortions into the radar signals, affecting the
quality and reliability of the measurements.

5.2 Mitigate issues of misalignment in tunnel environments

One of the mitigation of issues with misalignment of radar systems in tunnel like
environments, is to provide information of environment to the system in order
to incorporate environmental compensation techniques. The radar system can
adapt to the specific conditions inside the tunnel, compensating for signal loss
and addressing the challenges posed by signal reflections and multipath propa-
gation. This can help improve the quality of radar measurements and mitigate
the impact of misalignment-induced errors.

We propose in this paper novel acoustic system called SONETE [18] (Sonic
Sensing for Tunnel Environment) for automotive diagnostics.

Fig. 11. Sonete system. [15]

Assistance and driving functions, for example, lane keeping or automated
driving, require information about the static and dynamic environment of a ve-
hicle. Usually this information is available trough a sensor data fusion, where
information about different environments is available. Here we add SONETE
(Figure 11) as a complementary sensor to a data fusion to ensure that informa-
tion about vehicle tunnel entrance is available, thus using sensor data fusion to
create a comprehensive view of the vehicle’s surrounding.

Utilizing information of tunnel presence, Figure 12, radar system can switch
off MM&A feature while the vehicle is traversing trough the tunnel, thus not
degrading performance of the system when vehicle exits the tunnel.

5.3 Limitations

The presented solution of using PZMs for tunnel detection through acoustic sig-
nature analysis has provided valuable insights and plausibility. However, it is
important to acknowledge several limitations that should be taken into consid-
eration when interpreting the results and guiding future research.

We analyzed acoustic signatures of a specific tunnel "Miseluk", and in or-
der to enhance the robustness of the SONETE system, it is crucial to gather
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Fig. 12. Mitigate issues of MM&A in tunnel environments.

recordings from more tunnels with varying characteristics. This would involve
considering tunnels of different sizes, materials, traffic conditions, and geograph-
ical locations. With this, proposed approach can be better evaluated and its
applicability to a wider range of tunnel environments can be assessed.

Placement of the PZM we believe can impact the overall system performance
and classification. Optimal placement of the PZM might vary depending on fac-
tors such as the vehicle type. Therefore, further investigations will be needeed
to explore the effects of different PZM placements to determine the most effec-
tive and reliable positioning for capturing tunnel acoustic signatures. This would
involve systematically evaluating the influence of microphone location and ori-
entation on the accuracy and consistency of the collected audio data.

The analysis and processing of the audio data in this study were performed
on a Windows based machine (Windows PC) with Intel 17-11850H and 32GB
of RAM memory, using Python and relevant libraries. However, it is crucial to
assess the feasibility and performance of the proposed approach on embedded
systems or real-time monitoring platforms. Evaluating the algorithm’s implemen-
tation on resource-constrained devices would provide insights into its practical
viability for on-board vehicle systems or embedded monitoring systems.

6 Conclusion

Time-frequency spectrum analysis of road and tunnel audio signals, showed the
potential of utilizing acoustic signatures for classification of tunnel like environ-
ments, thus implying the use of PZMs for tunnel detection plausible.

In this paper we used information of the environment, gathered from a pro-
posed novel SONETE system, to enhances the robustness of radar technology
in complex environments and ensures effective MM&A adjustments in tunnels,
where traditional sensors often encounter limitations.
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Recordings from other tunnels with varying characteristics should be gath-

ered in order to enhance the robustness of the SONETE system. This would
involve considering tunnels of different sizes, materials, traffic conditions, and
geographical locations. With this, proposed approach can be better evaluated
and its applicability to a wider range of tunnel environments can be assessed.

In conclusion, this research paper highlights the significance of addressing

the challenges faced by radar systems equipped with Misalignment Monitoring
and Adjustment (MM&A) in complex environments, specifically tunnels.
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