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Abstract. In this paper, we set up a mathematical framework for the
modelling and verification of complex cyber-physical ecosystems. In our
setting, cyber-physical ecosystems are cyber-physical systems of systems
that are highly connected. These are networked systems that combine
cyber-physical systems with an interaction mechanism with other sys-
tems and the environment (ecosystem capability). Our contribution will
be on two streams: (i) modelling the constituent systems and their inter-
faces, and (ii) local/global verification of cyber-physical ecosystems. We
introduce a concept of basic model, whose skeleton is a Markov decision
process and we propose a verification based abstraction methodology.
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1 Introduction

The Cyber-Physical System (CPS) paradigm was introduced by NSF in 2006
to define a new generation of systems that are built from, and rely upon, the
coherent integration of computational algorithms and physical components. It is
based on three technologies which are: embedded systems, sensor and actuation,
and network and communication systems.

An ecosystem is a complex system, i.e. a group of interrelated things, working
together to achieve a common objective. In system engineering, an ecosystem
usually consists of components or subsystems, interacting via interfaces, which
together satisfy a set of requirements. There exists also an external environ-
ment where the given system activates. Examples include the global financial
infrastructure of banks and exchanges, transportation networks, cyber-physical
systems, IoT networks and semiautomated manufacturing lines, and distributed
databases.

Cyber-physical ecosystems (CPES) are ecosystems of networked CPS, mean-
ing that they are systems of CPS (CPSoS) provided with an interaction activ-
ity between them and with their environment. Alternatively, we may call them
cyber-physical infrastructures (CPI). Examples are smart grid, autonomous ve-
hicles and maritime ships, autonomous swarm drones.

⋆ This work has been funded by the EPSRC project EP/R006865/1: Interface reason-
ing for interacting systems (IRIS).
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The aim of this paper is to set up a modelling framework for CPES based
on the distributed system paradigm. The necessary shift to the ecosystem view
means that we have to consider not only the construction of models of individ-
ual components but also the mechanism that allows them to interact with one
another. The interaction mechanism is based on the concept of interface, which,
in this paper, is defined in a very general way. From an engineering standpoint,
the interfaces can be treated from different perspectives. It is important to note
that in the architecture of an ecosystem, an interface may be itself a subsystem
with its own interfaces.

In this paper, we consider that components have the possibility to connect
with some free interfaces. The interfaces have separate structure and the link
with specific components is realized via interface requirements.

We model the CPES components as Markov decision processes that encap-
sulate at a higher level of abstraction the interaction between physics and com-
putation in the CPS model. The interaction between components will be done
by means of specific interfaces, which will be modelled using again decision
processes with constraints. This kind of interfaces is flexible enough to enable
dynamic interactions and reconfiguration within the underlying CPES.

The novelty of our CPES modelling approach relies on the use of distributed
systems paradigm combined with the dynamic behaviour of components de-
scribed by suitable Markov models. In this setting, the component interaction
is enabled by some independent interfaces that play the role of connectors. For
this modelling framework, we propose a safety verification methodology based
on abstractions.

The paper is structured as follows. In Section 2, we discuss our use of dis-
tributed systems as a metaphor for cyber-physical ecosystems of systems and
show how we combine it with the dynamic system behaviours. In Section 3, we
present the mathematical models for the CPES constituents using some suit-
able Markov models. In Section 4, we explain how to model the compositional
structure of ecosystem models using a rather general notion of interface. Inter-
faces between models describe how they can be composed together to construct a
model of an ecosystem. Conditions that ensure the soundness of the composition
operation are also provided. Our notion of interface captures a wide range of the
notions of interface that are in the literature on systems and modelling [6]. In
Section 5, we define verification of CPES as a stochastic reachability problem.
This reachability problem is specialised for models of components and interfaces.
In Section 6, we introduce a specific concept of abstraction map that preserves
the Markov property. Then this is used to obtain aggregations of models and
interface models and to simplify the computation of the reach probabilities.
The abstraction process is done in a modular way supporting the local rea-
soning. Modular reasoning involves breaking down a computational ecosystem
into smaller, more manageable components, and to determine local properties of
these components that guarantee desired properties of the global system. First,
we check the local safety properties and then we combine them in order to de-
duce the global system safety. This modular safety approach is quite standard
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in the verification community [7]. We apply the philosophy of this approach in
a new setting of CPES modelled as networks of Markov decision processes. The
paper ends with some conclusions.

2 CPES - Conceptual Modelling

CPES are modelled as systems of systems, defined through the composition of
their CPS constituents. The composition operation is done via specific subsystem
interfaces. In this work, we combine the distributed system modelling approach
with the behavioural approach for dynamical systems.

In a nutshell, a constituent can be viewed as a tuple

C = ⟨Loc,X, I,Beh⟩

where Loc represents its location, X is a finite set of variables (both computa-
tional and physical), I represents its interface thought of as a set of variables
that can be observed by the other systems of the CPES. Finally, Beh denotes
the set of the system behaviours that are thought as system traces (evolutions
of its variables).

The interaction with other constituent systems and the environment may
affect these parameters. For example, Loc can be modelled as a random graph,
or the time evolution of X can be modelled as a stochastic dynamical system
where the environment perturbation is captured as a contiguous noise (modelled
as white noise in the structure of a stochastic differential equation), or as shot
noise (modelled by a Poisson type process).

2.1 The Distributed Systems Metaphor

CPES are thought of as systems of systems, or systems with different (semi)-
autonomous constituent systems, which interact, collaborate, inter-operate to
achieve common goals. Each system may have a private activity with a specific
structure, behaviour, decision mechanism or internal information encapsulated
in a specific mathematical model.

We use distributed systems as a metaphor for describing CPES. Our mod-
elling approach for ecosystems is component based, where each constituent sys-
tem is modelled using a quite general basic model. A basic model is intended to
capture the simplest convenient representation of a single constituent system.

There are three key ingredients upon which we draw.

- Location. Distributed systems naturally have a concept of distinct locations,
which may be connected to one another. In the setting of computer systems,
components are present at different locations and connected by a network. In
the more general view, locations can be physical (e.g., a room, a container),
logical (e.g., an address in computer memory), or abstract (e.g., the location
where a semaphore exists).
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- Resource. Resources exist at locations and can move between them according
to the locations’ connections. In general, they can represent physical objects,
people, information, and more.

- Process. Processes manipulate resources — such as consuming, creating, and
moving between locations — as they go.

These concepts can be used to build a representation of a system’s structure and
operation, but there is one more concept required: the environment in which the
system operates.

- Environment — Environments capture the world outside of the system of
interest and how the two interact.

Each basic model encapsulates the above primitives — locations, resources, pro-
cesses, and environment.

2.2 Dynamic behaviour

Each constituent system is characterized by a specific dynamic behaviour. We
can model this behaviour as a deterministic dynamical system or a stochas-
tic process. In [4], the behaviour of CPS subsystems has been modelled as a
stochastic hybrid process to encapsulate the physical part and the digital part
of a component.

In this paper, for simplicity, we will use an abstraction of this behaviour mod-
elled by a simple Markov chain, viewed as graph whose states are the locations,
which have associated some resources. To capture the processes that manage
the resources, we add control actions to the Markov chain, transforming it into
a Markov decision process. A CPES will be modelled as a network of Markov
chains, and its safety verification will be based on some coarse-graining process
implemented using specific abstraction morphisms. The continuous dynamics
will be abstracted into control action, in the sense that an action could enable a
continuous path from a discrete state to another. This technique has been suc-
cessfully applied for different models of cyber-physical systems such piecewise
deterministic Markov processes or stochastic hybrid processes [1]. An interesting
CPES example is the water distribution network for which a modelling frame-
work based on Markov decision processes has been developed in [12].

3 Mathematical Modelling of CPES

In this section, we set up a mathematical framework where the basic models
and their composition are formally described. Our CPES model builds on some
well-known formalisms as Markov chains and interface theory. A CPES, viewed
as a system of systems, will be modelled as a composition of Markov chains.
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3.1 Basic model

The basic model is a representation of a single constituent system. In this pa-
per, the basic model is defined as a discrete time Markov chain (MC) with a
finite state space. The MC states represent the system locations. Resources ex-
ist in each state and their manipulation will be modelled using Markov decision
processes.

A Markov Chain MC is a directed graph which consists of a set of states S
as nodes, and a set of edges defined by a set of probabilistic transitions. An MC
can be also specified as a (discrete-time) stochastic process (Xn) with values in
S.

The relation between the states of the MC is defined by a set of transitions:

T = {(s, s′)|s, s′ ∈ S}

where each transition (s, s′) is governed by a transition probability

p(s, s′) = P[Xn+1 = s′|Xn = s].

The transition matrix P = (p(s, s′)) is a stochastic matrix (that means the sum
of each row is equal to one).

Usually, to ensure the uniqueness of an MC, we need to have an initial state
s0 or an initial probability distribution µ0. Sometimes, a deadlock or a cemetery
state s∆ to encounter for the case when the chain enters in a failure state or is
dying (that is s∆ is an absorbing state). Then, an MC is defined as a tuple:

MC = (S, T, s0, s∆).

The important advantage is that the infinitesimal generator has a matrix form,
and the probability distributions are probability vectors. For a Markov chain,
the generator is one-step increment of the transition matrix

L = P − I (1)

Each state of the MC is associated with some resources. We denote the set of
resources by R. We may add an algebraic structure to R. The processes (which
execute the resource management) will be modelled by using a Markov decision
process (MDP). To introduce an MDP we need a set of actions A, where each
action a ∈ A will represent a resource operation decision or a resource control
action. At each time step n, the corresponding decision is denoted by an.

Considering the decision process (an), the transition probabilities of the MDP
is:

pa(s, s′) = P[Xn+1 = s′|Xn = s, an = a].

Therefore, we have a transition set T a associated to each action a ∈ A. For each
s ∈ S, denote by A(s) the set of all actions a ∈ A, which enable a transition
from s.
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For a Q ⊂ S, we use the notation s
a−→µ Q whenever a ∈ A(s) and∑

q∈Q

pa(s, q) = µ.

For an MDP, we may define also a reward function ρ : S×A → R, which specifies
the gain and cost of being in a particular state and applying a particular action.

An MDP policy is a set of rules a controller would follow to choose the
action to perform in each state. A Markov policy is a family of stochastic kernels
πn : S → ∆(A), where ∆(A) is the space of probability distributions on A:

π(s, a)(n) = P[An = a|Xn = s]. (2)

If a policy does not depend on time, it is called stationary. Under each policy,
the MDP behaviour is described by an MC.

We define a basic model as follows:

M = (S[R],A, (T a)a∈A, s0). (3)

We can replace the initial condition s0 with an initial probability distribution µ0.
A basic model is an MDP that models the resource dynamics. The basic model
can be seen, as well, as a probabilistic automaton [11] where all the transitions
are Markovian (we do not consider nondeterminism). We treat the basic model
as graph with probabilistic transitions.

We can view an MDP or an MC as a dynamical system on the space of
probability distributions of S, denoted by ∆(S). Let us call µn the probability
distribution at time n; that is

µn(s) = P[Xn = s|X0 = s0]. (4)

The distribution dynamics of an MC can be described the following master
equation:

µn+1 = µnP (5)

where P is the associated stochastic matrix. Then (5) describes a semi-dynamical
system with the initial condition equal to µ0. For an MDP, to each action a ∈ A,
we have the corresponding dynamics:

µn+1 = µnP
a, (6)

where P a is thought of as a matrix operator acting on the space of probability
distributions. For simplicity we use the notation µn instead of µa

n.

We can adapt the master equation to capture also the resource dynamics:

µn(s,R) = P[Xn = (s,R)|X0 = (s0, R0)].
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Then the master equation describes a probabilistic modification function of the
basic model graph. In the following, we consider the process dynamics contains
the resource movement in an implicit way to ease the notation.

3.2 Probabilistic Modal Logic

We consider below a probabilistic modal logic (PML), which is a probabilistic
version of the Henessy-Milner logic as defined in [8]

ϕ := ¬ϕ | ⊤ | ⊥ | ϕ ∧ ϕ | ϕ ∨ ϕ | ∆a | ⟨a⟩µϕ

where a ∈ A and µ ∈ [0, 1]. The semantics of PML is given using a probabilistic
labelled transition system, which is an MDP in our setting. The satisfaction
relation between states and formulas s |= ϕ is defined as usual for ¬ϕ, ⊤, ⊥,
ϕ ∧ ϕ and ϕ ∨ ϕ. s |= ∆a holds whenever a /∈ A(s).

The satisfaction of s |= ⟨a⟩µϕ holds when for some Q ⊂ S we have s
a−→ν Q

for a ν ≥ µ and q |= ϕ for all q ∈ Q. Then

[a]ϕ ≡ ⟨a⟩1ϕ

A concept of probabilistic bisimulation can be defined on the state space S
of an MDP which is characterized by the above logic (see [8] for definitions and
characterizations).

4 Interfaces and Composition

To start thinking about system interaction, a concept that captures how these
interactions happen is required. In this section, we introduce the notion of basic
interface, and we equip our basic model with this concept.

4.1 Basic Interface

We define a basic interface for a basic model M as:

I = ⟨SI [R],AI⟩ (7)

where AI is a set of actions specified by a transition function TI . The transition
function could be deterministic or stochastic. Such an interface will be connected
with a basic model, and then we will define a model for a CPES subsystem.

With the above concept of interface, we define the model of a constituent
system in the CPES architecture as M = ⟨M, I⟩, where SI ⊂ S, AI ⊂ A is a
subset of observable actions and TI coincides with T on SI for all a ∈ AI .

For the soundness of the underlying mathematical model, we enforce the
following assumption.
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Assumption 1 The state space S is partitioned into the union of a transient
set and an absorbing set:

– S \ SI is a transient set for the underlying MC (that means the probability
to leave this set is strictly positive);

– SI contains an absorbing set for the underlying MC (it may contain also
transient states).

Moreover, the initial condition s0 will belong to S \SI , otherwise the model will
evolve only in SI .

4.2 Composition of Models

The composition operation joins two models using a specified basic interface
from each one. Let M1 = ⟨M1, I1⟩ and M2 = ⟨M2, I2⟩ be two models.

Assumption 2 Suppose that SI1∩SI2 ̸= ∅, AI1∩AI2 ̸= ∅ and (S1\SI1)∩S2 = ∅,
(S2 \ SI2) ∩ S1 = ∅; (A1 \ AI1) ∩ A2 = ∅, (A2 \ AI2) ∩ A1 = ∅.

The two models need to match their transition structure on the intersection of
their basic interfaces. So, the following assumption is necessary:

Assumption 3 Let SI12 = SI1 ∩ SI2 . For any a ∈ AI1 ∩ AI2 , we have:

pa1(s, s
′) = pa2(s, s

′), ∀s, s′ ∈ SI12 .

The composition M1 ◦I1,I2 M2 is defined as follows:

M =M1 ◦I1,I2 M2 = ⟨S[R], T,A, s0, I⟩

where: S = S1 × S2; R = R1 ⊗R2; T = T1 ⊗ T2; A = A1 ∪ A2; s0 = (s01, s02),
I = I1 ⊗ I2.

The resource allocation for a state s = (s1, s2) in the composed model M is
defined as the union of component resources: s(R) = s1(R) ∪ s2(R).

The transition function T of model M is defined as follows:

– If a ∈ A1 \ A2, and s = (s1, s2) ∈ S then a ∈ A(s) if and only if a ∈ A(s1)
with

pa(s, s′) = pa1(s1, s
′
1)δs2(s

′
2), ∀s′ = (s′1, s

′
2) ∈ S.

– If a ∈ A2 \ A1, and s = (s1, s2) ∈ S then a ∈ A(s) if and only if a ∈ A(s2)
with

pa(s, s′) = pa2(s2, s
′
2)δs1(s

′
1), ∀s′ = (s′1, s

′
2) ∈ S.

The interface I of the model M has the following items:

– SI = SI1 × SI2 .
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– The transition function TI is defined similarly as T , the only difference is
that we encounter an extra case:
If a ∈ AI1 ∩AI2 , and s = (s1, s2) ∈ SI12 × SI12 then a ∈ AI(s) if and only if
a ∈ AI1(s1) ∩ AI2(s2) with

pa(s, s′) = pa1(s1, s
′
1)p

a
2(s2, s

′
2), ∀s′ = (s′1, s

′
2) ∈ SI .

The synchronization of the two models is realized only on the overlapping region
SI12 . Outside of this region, the composed model inherits the structure (loca-
tions, resources, processes) of its components. The model composition is similar
with the MDP composition, taking into account the interface separation. The
following result is easy to establish.

Proposition 1 (Composition Soundness) IfM1 andM2 are models as above,
then so is M1 ◦I1,I2 M2.

Standard properties of composition as commutativity and associativity are straight-
forward.

When two models are composed using their basic interfaces it follows, by
construction, that their basic structures fit together. But this is not always the
case. The main observation is that for model, whenever it is composed with
another model, it is necessary to specify which of the properties or functionalities
must be preserved.

In this paper, we define a more general concept of interface which is defined
as a model itself together with some constraints. These constraints may concern
the states, the resources, the rewards or the cost functions associated to MDPs.
To be more general, suppose we have given an appropriate logic for MDPs (for
example, probabilistic modal logic defined in subsection 3.2).

4.3 Interface model

An interface model is a pair I = ⟨M,ψ⟩ where M is a model, and ψ is a set
of formulae that describe properties of the model that must be preserved under
composition. We refer to these formulae as interface formulae.

The concept of an interface model strictly generalizes that of a model, as we
can take the interface model as ⟨M, {⊤}⟩, which has no constraint on M .

Our concept of interface model can be thought of as a connector with a model
structure (locations, resources, processes and basic interfaces). The interface
requirements are specified as logical formulas.

4.4 Admissibility

For the interface composition, some extra conditions are required to ensure the
soundness of this operation.

Let ⟨M1, ψ1⟩ and ⟨M2, ψ2⟩ be interface models such that M1 and M2 are
built on MDPs as in the previous section. Let M1 ◦M2 denote a composition of
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M1 and M2 using some choice of interfaces that satisfy the Assumption 2. Then
the composition of ⟨M1, ψ1⟩ and ⟨M2, ψ2⟩, denoted

⟨M1, ψ1⟩ ◦ ⟨M2, ψ2⟩ := ⟨M1 ◦M2, ψ1 ∧ ψ2⟩

is admissible if ψ1 ∧ ψ2 ̸⊃ ⊥.

Proposition 2 (Composition Soundness) If ⟨M1, ψ1⟩ and ⟨M2, ψ2⟩ are in-
terface models, then so is their composition ⟨M1, ψ1⟩ ◦ ⟨M2, ψ2⟩.

Proposition 3 (Commutativity and Associativity) Commutativity of com-
position of interface model follows as for models. Associativity of composition of
interface models ⟨M1, ψ1⟩, ⟨M2, ψ2⟩, and ⟨M3, ψ3⟩ holds as for models provided
also ψ1 ∧ ψ2 ∧ ψ3 ̸⊃ ⊥.

In our setting, an ecosystem is modelled as a composition of interface models.

5 Verification

Verification of cyber-physical systems is a difficult, yet extremely important,
problem. In this paper, we formulate the CPES verification as a reachability
problem. Reachability analysis is a fundamental problem in verification that
checks for a specific model and a set of initial states if the system will reach a
specified set of unsafe states. Complementary, reachability analysis can check if
the system will achieve its objective, that is if the system will reach a set of target
states. For CPS, the reachability problem is challenging when we consider hybrid
models that combine discrete transitions alternating with continuous dynamics.
In this work, we abstract away the continuous behaviour of CPES, but the main
difficulty is arising from the distributed nature of CPES.

In modular verification of distributed systems, the component verification is
specified and solved independently (locally) for each module. Then the entire
system verification is defined as a global property, whose solution is obtained as
the composition of local solutions rather than using the global implementation
of the system.

5.1 Reachability Problem for a Basic Model

Suppose that we have given a basic model M as described by (3).
Here, we define the state-constrained reachability, called sometimes reach

avoidance problem. Let U ⊂ S be an unsafe set, and E ⊂ S be a target (or ob-
jective) set. Then the reach avoidance problem aims to compute the probability
to reach the unsafe set U , before hitting the target E.

Formally, for the underlying MC, we have to compute the reach probability
function, i.e.

qM(s) = qM(s, U,E) = P{τU < τE |X0 = s} (8)
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where we use the notation τQ = min{k > 0|Xk ∈ Q} for the first hitting time of
a set Q ⊂ S. Then qM is the solution of the following Dirichlet problem:

(Lq)(i) = 0,∀i ∈ S \ U,

q(j) = 1,∀j ∈ U,

q(l) = 0 if l ∈ E,

which is a system of linear equations.
When the transition probabilities are triggered by the action a ∈ A, we will

use the notation qaM(s).
For an MDP, the reach probability can be computed for any policy π. Usually,

the stochastic safety aims to compute the optimal policies for which the reach
probabilities are bounded by an admissible threshold p ∈ [0, 1]. For the analysis
and computational methods that characterize the reach avoidance problem for
MDPs, we refer to [5, 13].

5.2 Reachability Problem for a Model

We adapt the reach probability function for a model that is equipped with a
basic interface. In this case, we take U ⊂ (S \ SI) and E ⊂ S. Then we define:

qM (s) = qM (s, U,E) = qM(s, U,E ∪ SI) (9)

i.e.
qM (s) = P{τ(U) < τE∪SI

|X0 = s}.

In this case, our objective is to compute the probability to reach either the unsafe
set U before reaching the target E, or the basic interface space SI . Then qM is
the solution of the following Dirichlet problem:

(Lq)(i) = 0,∀i ∈ S \ (U ∪ SI); q(j) = 1,∀j ∈ U ; q(l) = 0,∀l ∈ E ∪ SI . (10)

We assume that the basic interface is a safe region for the model. The problem
of verification concerns only the unsafe states which are transient. As in the case
of basic model, when the transition probabilities are controlled by the action
a ∈ A, we will use the notation qaM (s).

5.3 Reachability for an Interface Model

Suppose now we have given an interface model ⟨M,ψ⟩. In order to verify safety
of such a model, we need to check two conditions: (1) the logical constraints ψ
are satisfied, and (2) the stochastic safety condition qM < p, where p ∈ [0, 1] is
an admissible probability threshold. If the logical constraints ψ regard only the
basic interface space SI , the two conditions can be checked seprately.
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5.4 Reachability for Model Composition

Let M1 = ⟨M1, I1⟩ and M2 = ⟨M2, I2⟩ be two models that satisfy the Assump-
tions 2, 3 for composition. Let M = ⟨M, I⟩ be their composition.

Let
E = E1 × E2 ⊂ S1 × S2

be a target set, and

U = U1 × U2 ⊂ (S1 \ SI1)× (S2 \ SI2)

be an unsafe set for M .
It is important to remark that the model composition does not change the

behaviour on S1 \SI1 or S2 \SI2 of its constituents. Then the next result can be
easily checked.

Proposition 4 The reach probability function of M w.r.t. U and E is equal to
the component reach functions as follows:

– If a ∈ A1 \ A2 then

qaM (s, U,E) = qaM1
(s1, U1, E1),

for all s = (s1, s2) ∈ (S1 \ SI1)× (S2 \ SI2).
– If a ∈ A2 \ A1 then

qaM (s, U,E) = qaM2
(s2, U2, E2),

for all s = (s1, s2) ∈ (S1 \ SI1)× (S2 \ SI2).

The above proposition states that the computation of the reach probability for
the composed model is done in a modular way, for each component. The reason
is that outside of the interfaces, a control action a modifies only one component
when it is enforced.

6 Abstractions

For MDPs, according to [9], there exist five types of abstraction functions. Here,
we use the state abstraction function.

6.1 Abstraction of a Basic Model

Let M be a basic model defined by (3).
Formally, an abstraction function is defined as a surjective map φ : S → S,

which maps the underlying MC into another MC. Then we define a matrix Φ of
dimension |S| × |S| by:

Φ(s, s′) = δs′(φ(s)) = 1φ−1(s′)(s).
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A sufficient condition for φ to be a Markovian abstraction function is the exis-
tence of a stochastic kernel Λ : S → ∆(S) such that suppΛ(s, ·) = φ−1(s) for all
s in S, i.e.,

Λ(s, φ−1(s)) =
∑

y∈φ−1(s)

Λ(s, s) = 1, ∀s ∈ S.

This assumption implies that:
ΛΦ = I|S| (11)

where I|S| is the identity matrix of order |S|. Note this condition is more general

than the one given in [9]. The condition is inspired by the seminal paper on
Markov functions of Rogers and Pitman [10].

The kernel Λ will be called concretization kernel. The reason is that it maps
the abstract model into the concrete one. The following relationship holds:

P{Xn = s|φ(Xm), 0 ≤ m ≤ n} = Λ(φ(Xn), s), ∀s ∈ S. (12)

This states a very prominent thing that the estimator of the state Xn that
predicts the process from the abstractions is the same as the abstracted state.
We denote by Xn = φ(Xn) the abstraction process, which is still Markov. The
relationship between the infinitesimal generator of the abstraction process and
the concrete one is as follows:

L = ΛLΦ.

We define an equivalence relation on S by:

s ∼ s′ ⇐⇒ φ(s) = φ(s′).

Let [s] be the equivalence relation of s w.r.t. ∼, and S/∼ be the quotient space.
A subset F of S is closed w.r.t. ∼ if whenever s ∈ F then s′ ∈ F for all s′ ∈ [s].

In fact the abstract basic model is thought of as:

M = (S[R],A, (T a
)a∈A, s0), (13)

where the underlying Markov chain is the quotient process. In fact, the equiva-
lence relation ∼ is thought on the hybrid space (S,R). Due to the limited room
of this paper, we keep the implicit notation.

Let U ⊂ S and E ⊂ S be two closed subsets (w.r.t. ∼) of S. Denote U = φ(U)
and E = φ(E). Then φ−1(U) = U and φ−1(E) = E. The reach probability
function qM for the abstraction process Xn the unsafe set U and target set E
will be the solution of the Dirichlet problem associated to the generator L. The
following result is straightforward:

Proposition 5 The reach probability function qM of the concrete basic model
M w.r.t. the target set E and the unsafe set U is related with the reach probability
function qM of the abstraction of the basic model M w.r.t. the target set E and
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the unsafe set U by the following relation:

qM = qMΛ.

6.2 Abstraction of a Model

Let M = ⟨M, I⟩ be a model defined as before. An abstraction function for M
is defined as an abstraction function for the underlying basic model M, which
satisfies the following condition:

φ−1(SI) = SI , (14)

where SI = φ(SI). Then, the interface space ‘invariance’ will lead to the following
relations that connect the abstraction function and the concretization kernel:

Λ|S\SI
Φ|S\SI

= I|S\SI |, Λ|SI
Φ|SI

= I|SI |.

For a model M , the reach probability function qM w.r.t. U and E is a spe-
cialization of the reach probability function qM of basic model M w.r.t. U and
E ∪ SI . Then:

qM = qMΛ. (15)

6.3 Abstraction of an Interface Model

Let I = ⟨M,ψ⟩ be an interface model. An abstraction function φ : S → S of the
model M is an abstraction function for the interface model I if it is compatible
with the constraints ψ. This will be explained below.

We impose the following compatibility assumption between ∼ and the con-
straints ψ:

Assumption 4 If there exists s′ ∈ [s] such that s′ |= ψ then s′′ |= ψ for all
s′′ ∈ [s].

Therefore, the equivalence relation ∼ is consistent with the interface constraints.
The computation of the reach probability function remains the same, the main
difficulty in this case is to find an abstraction map that preserves the interface
requirements.

6.4 Abstraction Composition

Suppose that we have given two interface models ⟨Mi, ψi⟩ with i = 1, 2 such that
the Assumptions 2, 3 hold and the admissibility condition is satisfied.

Let φi, i = 1, 2 be associated abstractions functions, with their corresponding
concretization kernels Λi, i = 1, 2 such that the Assumption 4 holds for both of
them.

We have the underlying models defined as Mi = ⟨Mi, Ii⟩, i = 1, 2. To make
the composition of their abstractions we need a further assumption as follows.
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Assumption 5 The abstraction functions coincide on the basic interface over-
lapping SI12 = SI1 ∩ SI2 , i.e.

φ1(s) = φ2(s), ∀s ∈ SI12

and SI12 is ‘invariant’ w.r.t. both abstraction maps:

φ−1
1 (φ1(SI12)) = φ−1

2 (φ2(SI12)) = SI12

Then φ = (φ1, φ2) will play the role of an abstraction map for the composed
model M .

We denote by M the composition of the abstract interface models M1 and
M2.

The reach probability function qM corresponding to the unsafe set U =
U1×U2 and the target set E = E1×E2 will be the superposition of the component
reach probabilities:

qM = (qM1
, qM2

).

The reach probability function qM corresponding to the unsafe set U = U1×U2

and the target set E = E1×E2 will be the superposition of the component reach
probabilities:

qM = (qM1
, qM2

).

We introduce the notation:
Λ = (Λ1, Λ2)

where Λ1 and Λ2 are the concretization kernels associated to the component
models M1 and M2. The following result holds:

Proposition 6 The reach probability function qM of the concrete model M and
the reach probability qM of the abstraction model M are related as follows:

qM = qM ◦ Λ

where qM ◦ Λ is the Hadamard product of matrices, i.e.

qM ◦ Λ = (qM1
Λ1, qM2

Λ2).

The main remark here is that the verification process is carried out in a
modular way.

7 Conclusions

In this paper, we have presented an approach to modelling and verification
of cyber-physical ecosystems based on concepts from distributed systems and
Markov decision processes. We have developed the notion of a basic model based
on the MDP skeleton, expanded it with basic interfaces to define a model. Then
we have characterised an interface model as a model which has associated a set
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of formulae that characterize the composition requirements. We have defined the
verification of CPES as a stochastic reach avoidance problem for all constituent
models. Then, we have explored how to use modular abstractions to find simple
computational solutions for the stochastic safety of CPES.

This paper provides the theoretical setting for CPES verification, when the
system constituents are modelled as MDPs and they interact through some gen-
eral interfaces. A case study of a cyber-physical ecosystem as a system of supply
chains is under development. New results will be reported in a follow-up paper.
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