
A Software Package (in progress) that implements the

Hammock-EFL Methodology

Moshe Goldstein1[0000-0002-0429-4873] and Oren Eliezer1[0000-0001-9699-8247]

1 Jerusalem College of Technology – Lev Academic Center, Jerusalem 9372115, Israel

goldmosh@g.jct.ac.il orene10@gmail.com

Abstract. This poster paper presents a software package (in progress) that im-

plements the Hammock-EFL approach for Project Management and Parallel Pro-

gramming, written in Python.

Keywords: Hammock-EFL, Project Management, Parallel Programming, Py-

thon Programming

1 Motivation

In sequential programming a problem is solved by decomposing it into sub-problems

and by identifying the structural dependencies among them. In project design and man-

agement, the designer needs to identify not only all the activities (or sub-problems) that

compose the whole project and their structural dependencies, but also their temporal

dependencies. The identification of those temporal dependencies implicitly requires the

application of parallel thinking. The same is required from a programmer when he tries

to solve a problem by Parallel Programming. All those problem-solving-related obser-

vations induced us to realize that a project management methodology, like the Ham-

mock Cost Techniques for Project Management [1], will contribute to better problem

solving thinking in Parallel Programming.

EFL (Embedded Flexible Language) [2,3] is a mini embedded language whose se-

mantics are those of the Flexible Algorithms (FA) [4] approach to computation, which

is applicable for parallel programming (as well as sequential programming) and ensures

deterministic results without the need of locking. EFL was designed to make parallel

programming independent of any specific parallel programming platform, making the

programmer’s task easier. To allow that independence, two EFL pre-compilers were

implemented for the Python programming language as the host language.

Based on all the above, the Hammock-EFL methodology [5-7] was proposed. It com-

bines the Hammock methodology and the FA approach to Computation. This combi-

nation allows developers to treat programs and project schedules as conceptually the

same, at a higher level of abstraction, enabling them to deal with the complexity of

computing systems engineering in a more reliable and easier way. This is the novelty

of the Hammock-EFL methodology. We argue that this is the first research which

makes a symbiotic combination of methodologies taken from two different disciplines

- (Parallel) Computing and Programming, and Project Management.

mailto:goldmosh@g.jct.ac.il

2

2 Proof of Concept

The Project Schedule diagram depicted in Fig. 1 was used as the Proof of Concept of

the combined methodology.

Fig. 1. The Project Schedule diagram (taken from [1]) used to try the software.

That schedule is composed by an appropriate combination of Regular, Compound

and Hammock activities: two Compound activities are activated in parallel, the Regular

activities that compose each of them, the activities no. 4, 8, 12, 16, and 19, and no. 3,

7, 11, 15, 18, and 20, are activated serially, and a Hammock activity H1 whose Ham-

mock members are organized in two groups, Regular activities no. 5, 9, and 13, and no.

6, 10, and 14. Each activity may include properties such as duration (Di), earliest be-

ginning (ESi), latest beginning (LSi), amount of resources (Ri), etc.

If the same diagram is intended to describe a program, a Regular activity represents

a function with a relatively simple behavior, a Compound activity represents a function

whose behavior is expressed by an appropriate combination of the behaviors of its sub-

activities, a Hammock activity represents a function whose behavior is expressed by a

randomly scheduled ensemble of sub-activities, executed in sequence. Based on the

structural and temporal dependencies of the sub-activities of a Compound activity, the

functions represented by them may be executed in parallel or in sequence.

The software presented here uses a tree data structure to represent project schedules

like that in Fig. 1. Fig. 2 shows the rendering of the tree representation of that schedule.

Fig. 2. The tree representation of the above project schedule

3 The Software

Fig. 3 shows a graph of the modules that compose the software presented here, and their

dependencies. Table 1 gives a brief description of each one of those modules.

Fig. 3. The Dependency Graph of the Software.

Table 1. Description of modules that compose the software.

Program/Module Description

anytree A Python module implementing tree data structures.

HammockEFL.py Schedule and Activity are classes defined in this module. See [7].

HEhelpers.py Helper functions are defined for general use, as needed.

HEprojRun.py Module used to actually run or simulate the schedule.

HEprojDef.py

A tree data structure, representing a schedule (or program), will be

defined by the designer (or programmer), using methods from the

Schedule and Activity classes.

HEprojDraw.py A schedule’s diagram is rendered using this module (see Fig. 2).

HEprojImplement.py

The behavior of each activity is expressed by a three-step (pre-pro-

cessing → processing → post-processing) pipeline-like proce-

dure. This module is intended to include their implementations.

mpire A module that substitutes Python’s Multiprocessing module.

4 Experiment

The software was successfully tried to run and simulate the above Proof of Concept

schedule, restricted to the case that all the activities are defined to be executed in se-

quence. At the current moment, we are debugging the capability of running and simu-

lating schedules that combine activities defined to be executed in sequence, with activ-

ities defined to be executed in parallel.

5 Conclusion and further work

The current state of a software package has been presented, which intends to be both, a

framework for project management based on the Hammock Cost Techniques, and for

4

developing parallel software based on the FA approach to Computation. Following [1],

the impact of the presented tool should be expressed as a trade-off between project's

makespan and total revenue. To check this, a comparative and experimental research

must be done when Di, ESi, LSi, Ri and cost, for each activity i, will be taken into account

in the case of a planned project relative to an already executed project. A new version

of the software should include (a) a shared-memory mechanism like PSTM [8] which

will allow the implementation of shared-memory-based parallel programs, and (b) sup-

port of JSON files (or YAML files) which will allow a more readable and writable

definition of a schedule (or program). Additionally, experimental analysis of Time and

Space Complexity of a designed computing system will be possible by calculating ac-

tual run time and storage of programs described by graphs of the kind discussed above.

References

1. G. Csébfalvi, A. Csébfalvi.: Hammock activities in Project scheduling. In Proceedings of

the Sixteenth Annual Conference of POMS, POMS, Chicago, IL, USA (2005).

2. D. Dayan, M. Goldstein, M. Popovic, Sh. Mizrahi, M. Rabin, D. Berlovitz, O. Berlovitz, E.

Bussani Levy, M. Naaman, M. Nagar, D. Soudry, R. B. Yehezkael.: EFL: Implementing and

Testing an Embedded Language Which Provides Safe and Efficient Parallel Execution. In:

Proceedings of ECBS-EERC 2015, pp. 83-90. IEEE Press, Brno, Czech Republic (2015).

DOI: 10.1109/ECBS-EERC.2015.21.

3. M. Goldstein, D. Dayan, M. Rabin, D. Berlovitz, O. Berlovitz, R. B. Yehezkael.: Design

principles of an embedded language (EFL) enabling well defined order-independent execu-

tion. In: Proceedings of ECBS 2017, pp. 1-8. ACM, Larnaca, Cyprus (2017). DOI:

10.1145/3123779.3123789.

4. R. B. Yehezkael, M. Goldstein, D. Dayan, Sh. Mizrahi.: Flexible Algorithms: Enabling

Well-defined Order-Independent Execution with an Imperative Programming Style. In: Pro-

ceedings of ECBS-EERC 2015, pp. 75–82. IEEE Press, Brno, Czech Republic (2015). DOI:

10.1109/ECBS-EERC.2015.20.

5. O. Eliezer, M. Goldstein.: Implementing Hammock Cost Techniques using the parallel pro-

gramming paradigm of EFL (Embedded Flexible Language). In: Procedings of ZINC 2018,

pp 132-134, IEEE Press, Novi-Sad, Serbia (2018). DOI: 10.1109/ZINC.2018.8448763.

6. O. Eliezer, M. Goldstein, D. Dayan.: About the trade-off between time and space consump-

tion when combining the Hammock-Cost model with the EFL (Embedded Flexible Lan-

guage) parallel programming paradigm. In: Proceedings of the 16th International Confer-

ence on Civil, Structural and Environmental Engineering Computing, Riva del Garda, Italy

(2019).

7. M. Goldstein, O. Eliezer, D. Dayan.: Implementing the Hammock-EFL Methodology for

Project Management and Parallel Programming. In: Proceedings of ECBS 2021, pp 1-5,

ACM, Novi-Sad, Serbia (2021). DOI: 10.1145/3459960.3459967.

8. M. Popovic, B. Kordic.: PSTM: Python software transactional memory. In: 2014 2nd Tele-

communications Forum Telfor, pp 1106-1109, TELFOR, Belgrade, Serbia (2014). DOI:

10.1109/TELFOR.2014.7034600.

https://www.researchgate.net/deref/http%3A%2F%2Fdx.doi.org%2F10.1109%2FECBS-EERC.2015.21
javascript:void(0)
javascript:void(0)
javascript:void(0)
https://doi.org/10.1145/3123779.3123789
https://doi.org/10.1145/3459960.3459967

