
Comparative Analysis of Uppaal SMC, ns-3 and
MATLAB/Simulink

Muhammad Naeem, Michele Albano, Kim Guldstrand Larsen, and Brian
Nielsen

Department of Computer Science, Aalborg University, Aalborg, Denmark
{mnaeem,mialb,kgl,bnielsen}@cs.aau.dk

Abstract. IoT networks connect everyday devices to the internet to
communicate with one another and humans. It is more cost-effective
to analyse and verify the performance of the designed prototype before
deploying these complex networks. Network Simulator 3 (ns-3), MAT-
LAB/Simulink, and Uppaal SMC are three industry-leading tools that
simulate communicating models, each with strengths and weaknesses.
NS3 is suitable for large-scale network simulations, MATLAB/Simulink
is suitable for complex models and data analysis, and Uppaal SMC is
efficient for real-time probabilistic systems with complex timing require-
ments, This paper presents a comparative analysis of NS3 and MAT-
LAB/Simulink and Uppaal SMC, based on a Sigfox-based case study,
focusing on the behaviour of a single Sigfox node. The comparison is
drawn on ease of use, flexibility, and scalability. The results can help
researchers make informed decisions when designing and evaluating sim-
ulation experiments. They demonstrate that the choice of tool depends
on the specific requirements of the simulation project and requires careful
consideration of the strengths and weaknesses of each tool.

Keywords: WSN· Network Simulators· Sigfox· Energy Model· Network
Modelling· IoT

1 Introduction

The Internet of Things (IoT) has seen significant growth in recent years, leading
to the development of intelligent environments in areas like smart homes, energy,
and industry [8]. As IoT devices are often used in sensitive areas to collect
information and control the environment, designing an efficient model to reduce
the error risk and ensure system security is crucial. Simulating the prototype’s
model during the design process is essential to analyse its performance, identify
flaws, and overcome potential vulnerabilities. Several network simulation tools
are available, but selecting the most suitable one can be difficult.

This paper presents a comparative analysis of three simulation tools: Network
Simulator 3 (ns-3), Uppaal Statistical Model Checker (SMC) [3], and MAT-
LAB/Simulink [6], based on the simulation of an industrial case study aiming
to develop an energy-efficient wireless network for monitoring water levels in
drainage lines.

2 M. Naeem et al.

The choice to compare these three tools is driven by their distinct network
simulation and analysis capabilities. ns-3 excels in scalability and efficiency, mak-
ing it ideal for large-scale wireless network simulations. Uppaal SMC’s statis-
tical model checking offers valuable formal verification capabilities, while MAT-
LAB/Simulink’s versatility in handling continuous and deterministic simulations
adds another dimension to the comparison. This study aims to provide valuable
insights into their performance and applicability for simulating energy-efficient
wireless networks. The findings will help researchers and network administrators
select the most suitable tool for their simulation needs.

The analysis involves the utilisation of these different tools to explore multi-
ple aspects, including modelling complexity, simulation time, memory utilisation,
and validation of the energy-efficient wireless network. The objective is to inves-
tigate the strengths and weaknesses of each tool and identify key considerations
in selecting the most suitable tool for applications of this nature.

The rest of this paper is structured in the following manner: Section 2 pro-
vides an overview of the Related Work. Section 3 presents the tools overview
used in this study. Section 4 presents the case study, focusing on the Sigfox
sensor node. Subsequently, Section 5 describes the case study’s modelling in ns-
3, Uppaal SMC, and MATLAB/Simulink. Section 6 presents a comprehensive
comparative analysis of the tools. Finally, in Section 7, we conclude the paper
and propose avenues for future research.

2 Related Work

In recent years, the availability of various network simulation tools has provided
researchers and network administrators with numerous options to choose from.
However, the diversity of tools can complicate selecting the most suitable one
for specific applications [12].

Nayyar and Singh [12] provided a comprehensive review of 31 simulators,
aiming to clarify the features and limitations of each simulator to help new
researchers in selecting the most appropriate simulation tool for their applica-
tions. The authors discussed the architecture of WSN simulators and proposed
evaluation criteria, including the type of simulator, license, platform, ease of
coding, tracing, debugging, popularity, and graphical support. The simulators
were classified into three categories: generic simulators, code-level simulators,
and firmware-level simulators. Generic simulators use high-level programming
languages to simulate networking models but are considered less reliable com-
pared to code-level and firmware-level simulators.

Xian et al. [17] compared OMNet++ simulators against other simulators such
as OPNET and ns-2. The study demonstrated that OMNet++ outperformed
both OPNET and ns-2 in terms of functionalities, including debugging, tracing,
hierarchical modelling, and a powerful simulation library. The authors evaluated
the performance of the simulators by implementing a well-known WSN protocol
called directed diffusion and measuring performance metrics like total run time,

Comparative Analysis of Uppaal SMC, ns-3 and MATLAB/Simulink 3

delivery rate, and memory requirement. The results showed that OMNet++ was
the most powerful and efficient simulator.

In a study by Gnanaselvi [5], a survey was conducted to gain a better un-
derstanding of the current network simulation tools available and their features.
Bakni et al. [1] presented a methodology for evaluating WSN simulators focusing
on energy conservation. Kochhar and Kaur [7] proposed an approach to guide be-
ginners in choosing an efficient simulator for designing a simulation environment
based on their application area.

Our work presents the first comparative analysis of the network simulation
tool ns-3 and MATLAB/Simulink with Uppaal SMC. None of the prior re-
search considers the use of the model checker, which is a distinct feature in
Uppaal SMC. The comparison is based on applying the three tools in an indus-
trial case study.

3 Tools Overview

This section presents an overview of ns-3,Uppaal SMC andMATLAB/Simulink.

3.1 ns-3

ns-3 is an open-source Discrete Event Simulator (DES) released in 2008 [13].
It offers C++ simulation language with optional Python bindings, making it
highly adaptable. It includes models for wired technologies, such as Ethernet
networks with CSMA/CD protocols, and wireless technologies, like 802.11 MAC-
level and 802.11a physical layer models. Its simulation library focuses on realism
and reusability, allowing researchers to create complex network scenarios. ns-3
also supports NetAnim software, allowing for real-time experiments via emu-
lation. ns-3 is a comprehensive and widely used network protocol design and
evaluation platform because it integrates various simulation tools. The ns-3 sim-
ulator’s basic architecture is depicted in Figure 1 [15]. The figure shows that
users create simulation programs that define network behaviour, utilising a sim-
ulation library with built-in models for nodes, links, channels, and protocols
(ns-3 core). The engine executes these scripts to simulate the network. Data
analysis modules offer statistics and performance metrics. Simulation outcomes
are generated in a text file that can be analysed using the external graphing
tool.

3.2 Uppaal SMC

Statistical model checking (SMC) advances the classic model checking technique
[14]. SMC avoids the state-space exploration problem of the classic model check-
ing, and it also comparatively consumes less time and memory in simulation.
It simulates a model a number of times and uses statistical hypothesis test-
ing for model checking. SMC technique can also estimate probabilistic systems’
quantitative and qualitative properties.

4 M. Naeem et al.

Simulation traces
files(C++ bindings)

Data
Collection

User
Simulation
Program

ns-3 CoreSignal
Forwarding

Experimental
Control

Simulation
Outcomes

Analysis Script
Graphing
Tools, etc.

Trace calls

Fig. 1: Framework of NS-3 architecture
[15]

Editor

Simulator

Verifier

Plot
Composer

Hypothesis
testing

Probability
Evaluation

Probability
Comparison

Simulation
Engine

Compiler

Virtual
Machine

Graphical
Interface

Execution
EngineData

Processing
Engine

Server

Fig. 2: Architecture of Uppaal SMC
[4]

Uppaal SMC is an extension of Uppaal [3], and it models a system us-
ing priced timed automata. Uppaal SMC’s model is based on stochastic and
non-linear dynamic behavioural properties. Figure 2 depicts the Uppaal SMC’s
architecture [4]. The tool’s interface allows users to create automata models
in the editor and run simulations for the system’s verification, validation and
quantitative analysis. It supports visualising results as plots. The Uppaal SMC
execution engine exploits the stochastic semantics of interacting stochastic hy-
brid automata to evaluate the performance queries.

3.3 MATLAB/Simulink

MATLAB/Simulink is a robust simulation methodology, combining MATLAB
for matrix-based computation and Simulink for dynamic system design and sim-
ulation [6]. It offers a graphical programming language, visualisation tools, and
extensibility through MATLAB integration, enabling efficient modelling, simu-
lation, and analysis of diverse systems.

This integration offers researchers and developers in the embedded systems
domain an efficient platform to model, simulate, and analyse complex embedded
systems scenarios. With a graphical programming language and visualisation
tools, MATLAB/Simulink enables the creation of intricate embedded systems
models, including various network topologies and sensor node behaviours.

4 Case study

The aim of the Distributed ONline monitoring of the Urban waTer cycle (DONUT)
project is to develop a cost and energy-efficient IoT-based network to monitor
the water cycle (See Figure 3). The Montem Company (a project partner of the
DONUT project) has developed a prototype of a digital wireless sensor network
based on the Sigfox transceiver. The prototype includes a Sigfox transceiver, At-
mega controller, ultrasonic sensor, Digital accelerometer, EEPROM, Regulator,
and Battery (10,000 mAh). The controller uses the ultrasonic sensor to measure
the water height and then analyses the data to determine the water height for a

Comparative Analysis of Uppaal SMC, ns-3 and MATLAB/Simulink 5

cycle. The processed value is stored in the EEPROM before being transmitted
to the base station through the Sigfox transmitter. The accelerometer is used
to ensure the sensor node’s position. Our project is focused on modelling the
designed prototype’s behaviour using a simulation tool to analyse the battery
lifetime and investigate different transmission strategies to improve the overall
node’s lifetime.

-

-

.,.,, ,

--

t

Water supply

Groundwater
e traction

--
- --. . -

- -

onitoring

•

..... -----... . .. --·

\ <f. --.
. -

• •

• · --· ··-.. ---

rin ing water
Sewage
Stomwater

Water supplerrent to stream

- . - •

Residence with storm,vaterstorage and seperate sewer system

•

·- . . .
•
• . .

•

0

Wastewater
Treatment lant

Combined
sewer basin

! � 1 Residences j
l

j l
. - .

• 0
l t

..

,
.

•

- .. ' • /--

ain gauge

-- "' - .
 Stomwater

basin

0

Gate

-
� �

Harbor bath �

�food
protection

0 :::: o .Cl_) �-
Stomwater
discharge

-

I

--

- -

,.._ ------ -- -

Treated
wastewater
discharge

- .

�food
protection

I
I

-

I

I '

\

• . ')- ,, ---------

Rural Drainage system

Residence
With stromwater
Storage and
separate
Sewer system

Water level
Setting
Flow
Pressure
Temperature

Combined
Server overflow

SUDS

Combined
sewer basin

Sewer
overflow

ValveResidences With local
Stormwater Storage

and inf tration system

Weather
radar

Fig. 3: DONUT-project’s low cast sensor network provides holistic urban water
system insights for better decisions. 200+ sensors monitor the water cycle, from
groundwater to stormwater.

Sigfox is a low-power wide-area network (LPWAN) developed and operated
by Sigfox, a company based in France. The basic structure of the Sigfox network
is shown in Figure 4. Sensor nodes use binary phase-shift keying modulation to
communicate with the base station in a star topology. A Sigfox node broadcasts
its message, which nearby base stations can receive, and these messages are
then transferred to the Sigfox cloud. From there, they can be accessed by any
IoT platform [16]. Sigfox specifications may vary depending on the region. The
European part is the focus of this case study [16]. Sigfox restricts the messages
a node can transmit to 6 per hour (144 per day) with a maximum payload of
12 bytes to reduce energy consumption. Additionally, nodes can receive up to 4
downlink messages per day.

5 Modelling the Case Study

In this section, we present the modelling of the DONUT case study utilising
different tools, enabling us to conduct a comprehensive comparative analysis.

6 M. Naeem et al.

Radio Communication in Star Topology IP Based Network

UL

DL

Sigfox Nodes
Sigfox Base Stations

Sigfox Cloud
IoT Platforms

Radio Communication in
Star Topology IP Based Network

Fig. 4: Sigfox network Architecture

5.1 Implementation in ns-3

In [11], we have presented a Sigfox module for ns-3, and we also investigate the
DONUT case study. The model is parametric concerning the hardware properties
of the IoT device under research and includes all major energy-consuming states
and actions of a Sigfox node. We built the energy model for the device based on
data from the Sigfox radio specifications and power characteristics. We also used
a novel battery model that considers the self-discharge current. Figure 5 depicts
the class diagram of the C++-based designed Sigfox module, which includes the
classes and functions that implement the core functionalities.

Class Diagram3 2022/02/15

1 / 1

 pkg

m_macm_mac

m_energy
m_phy

sigfox-channel

sigfox-mac

+ SendToPhy(Ptr : packet) : void
+ Receive(Ptr : packet) : void

end-point-sigfox-mac

sigfox-net-device

end-point-sigfox-phy

gateway-sigfox-macgateway-sigfox-phy

+ SelectAlgorithm() : void
+ SendPacket() : void

sender

+ GetOnAirTime(Ptr : packet) : Time
+ ChangeStste() : void
+ GetState() : void

sigfox-phy

+ ChangeState(newstate : int) : void

sigfox-radio-energy-model

+ EndReceive(ptr : packet) : void
+ StartReceive(ptr : packet) : void
+ Send(ptr : packet) : void

simple-end-point-sigfox-phy

simple-gateway-sigfox-phy

Sigfox Energy ApplicationNS3:: channel

ns3::net-device

Uses

1 1

1

0..*

11 11

11

Sender control
communication
stratagies:

- Greedy
- Optimized Listening
- Weather-driven
- Data Compression

Sender control communication
strategies:
- Greedy
- Optimized Listening
- Weather-driven
- Data Compression

Class Diagram3 2022/02/15

1 / 1

 pkg

m_macm_mac

m_energy
m_phy

sigfox-channel

sigfox-mac

+ SendToPhy(Ptr : packet) : void
+ Receive(Ptr : packet) : void

end-point-sigfox-mac

sigfox-net-device

end-point-sigfox-phy

gateway-sigfox-macgateway-sigfox-phy

+ SelectAlgorithm() : void
+ SendPacket() : void

sender

+ GetOnAirTime(Ptr : packet) : Time
+ ChangeStste() : void
+ GetState() : void

sigfox-phy

+ ChangeState(newstate : int) : void

sigfox-radio-energy-model

+ EndReceive(ptr : packet) : void
+ StartReceive(ptr : packet) : void
+ Send(ptr : packet) : void

simple-end-point-sigfox-phy

simple-gateway-sigfox-phy

Sigfox Energy ApplicationNS3:: channel

ns3::net-device

Uses

1 1

1

0..*

11 11

11

Sender control
communication
stratagies:

- Greedy
- Optimized Listening
- Weather-driven
- Data Compression

Fig. 5: Class Diagram of Sigfox Module in ns-3 [11]

Sigfox-phy: The sigfox module implementation features a PHY layer
abstraction that models the interference between multiple colliding Sigfox trans-
missions to ensure appropriate behaviour when the simulation features large
deployments. It also computes energy consumed by each state using subclass
sigfox-radio-energy-model (See Figure 5).

Sigfox-mac: The MAC protocol operates on top of the physical layer. As
shown in Figure 5, the implementation of this layer is divided into two classes,
EndPointSigfoxMac and GatewaySigfoxMac, which model the MAC protocol
for end node and Gateway separately. The behaviour of a node’s MAC layer

Comparative Analysis of Uppaal SMC, ns-3 and MATLAB/Simulink 7

Fig. 6: Basic structure of the designed model in Uppaal SMC [9]

8 M. Naeem et al.

implements the communication procedures (Uni-directional and Bi-directional),
and it controls transmission strategies using subclass sender (See Figure 5).

5.2 Implementation in Uppaal SMC

In articles [10] and [9], we have presented the energy-aware analysis of this case
study by designing and simulating its model in Uppaal SMC. In the developed
model, we only include the sensor node’s behaviour, as the node’s battery lifetime
is unaffected by the remaining network elements following the Sigfox protocol.
Unlike ns-3, we don’t need to develop a complete network to simulate a node’s
behaviour but only a more abstract model capturing the system’s behaviour.

The system’s model includes four sub-process automaton models (Initial,
SensorNode, Self-Discharge, and Scheduler), interconnected through shared
variables and synchronisation channels to model the sensor node’s energy be-
haviour effectively. Initial enables all other processes to an active state using
a synchronisation channel, and the Self-Discharge model represents the bat-
tery’s self-discharge behavior. The SensorNode automaton (shown in Figure 6)
models the behaviour of the Sigfox sensor node, and the Scheduler controls the
actions of the SensorNode. The complete model is presented in paper [9].

The studies also investigate the different transmission strategies to optimise
the battery lifetime. In UPPAAL SMC, as depicted in Figure 6, users need
to have proficiency in automaton modelling and a basic knowledge of the C
language.

5.3 Implementation in MATLAB/Simulink

Figure 7 illustrates the behavioural model of the case study implemented in
Simulink. We use the C Function block from the Simulink Library to build the
Simulink model for the case study. It supports C programming to define the
desired algorithm or functionality.

Clk

12:34 Clk

Battery

clk

MDA

MUS

Send

Listen

StandbyClk

I

M I

Send

Listen

Standby

I

M I

flag

Battery

Batteryflag

flag

I

I
flag_in
B
clk

flag_out

UB

Battery

I

+
+
+

Fig. 7: Sigfox Sensor Node Energy Model in Simulink

Comparative Analysis of Uppaal SMC, ns-3 and MATLAB/Simulink 9

The model comprises five main components: Controller, Sigfox transceiver,
Ultrasonic sensor, Digital Accelerometer, and EnergyModel. The Controller is
responsible for managing the operations of the active components. A sum block
adds the current consumption by the Sigfox transceiver, Ultrasonic sensor, and
Digital Accelerometer. The EnergyModel utilises the combined system’s current
to update the battery level for every time unit and manage the self-discharge
mechanism. By using a scope block, we can observe the behaviour of combined
current and battery discharge.

6 Comparative Analysis of UPPAAL and ns-3

This section presents the comparative analysis of ns-3, Uppaal SMC, and MAT-
LAB/Simulink, considering tool performance, simulation, validation, and usabil-
ity. The research is based on the DONUT case study.

6.1 Classification of network simulation

Article [15] categorises simulations into different classes based on their applica-
tion areas.

Continuous simulation: Continuous simulation is employed for models with
dynamic state variables or parameters that change frequently over time. This
type of simulation finds utility in diverse areas, such as military applications
(e.g., simulating missile trajectories in WSN deployment).

DES: Discrete-event simulation is applied to systems with events occurring at
discrete time intervals. Each change represents an event, with no expected
changes between events.

Stochastic simulation: Stochastic simulation involves modelling probabilistic
systems, such as evaluating telecommunication system latency, traffic flow
in communication networks, and studying climatic changes. Monte Carlo
simulation is a specific type of stochastic simulation.

Deterministic simulation: Deterministic simulation is employed in systems
characterised by a lack of randomness. These systems possess pre-known
inputs and yield unique sets of outputs.

Uppaal SMC: Uppaal SMC is a powerful tool that supports various simu-
lations, including continuous, discrete, stochastic, and deterministic simulations
[3]. It uses timed automata to model systems with precise timing and discrete
events, allowing for continuous and discrete behaviour representation. With its
support for continuous simulation, researchers can define clock variables to con-
trol the timing and duration of events. For stochastic simulation, Uppaal SMC
introduces random variables and probability distributions, making it suitable
for modelling systems with uncertainty and probabilistic outcomes. Addition-
ally, Uppaal SMC can perform deterministic simulation, enabling researchers

10 M. Naeem et al.

(a)

(b) (c)

Fig. 8: Discrete and continuous behaviour (a,b) and Probabilistic choice (c) in
Uppaal SMC

to precisely control the timing of events and verify the deterministic properties
of real-time systems.

Figure 8 depicts a segment of our Uppaal SMC model. Figures 8(a,b) show-
case discrete and continuous behaviours modelling. We update environment vari-
ables (Battery clock) after task completion to simulate discrete behaviour, con-
sidering the time spent at that location. Uppaal SMC supports ordinary differ-
ential equations to model continuous variable evolution while staying at a specific
location. Figure8(c) illustrates the implementation of a probabilistic choice for
stochastic simulation in Uppaal SMC. The dotted line represents a probabilis-
tic choice, where the model selects the next action based on probability. In our
model, there is a 1% likelihood that the system measurement might be inaccu-
rate. In this scenario, the model reverts to the measuring location. Otherwise, it
will proceed to the following location.

Overall, Uppaal SMC is a versatile tool that provides comprehensive capa-
bilities for analysing a wide range of real-time systems with different behaviours
and uncertainties. One limitation of Uppaal SMC is that its continuous simu-
lation is not as comprehensive as specialised tools like MATLAB/Simulink.

ns-3: ns-3 is a flexible and versatile network simulator that supports various
types of simulation [13]. It can perform continuous simulation through event-
based modelling, approximating continuous behaviour using small time steps.
As a discrete-event simulator, ns-3 follows strict event scheduling for discrete
simulation, making it suitable for modelling systems with specific time intervals
for events.

In ns-3, we use Random Number Generator (RNG) (a built-in class) to model
the probabilistic choice. It supports stochastic simulation by allowing researchers
to introduce random variables and probability distributions. Additionally, ns-3
can perform deterministic simulation, where researchers can control the sequence
of events and verify the deterministic properties of communication networks
and protocols. It offers different algorithms to generate deterministic random
variables.

While ns-3 offers a wide range of capabilities, it is important to note that
continuous simulation in ns-3 is less comprehensive than in specialised contin-

Comparative Analysis of Uppaal SMC, ns-3 and MATLAB/Simulink 11

uous simulation tools, and stochastic simulation might require more manual
intervention and configuration.

MATLAB/Simulink: Simulink is a robust simulation and modelling environ-
ment that extends the capabilities of MATLAB to support continuous, discrete,
stochastic, and deterministic simulation [6]. It excels in continuous simulation
by providing a graphical interface to model and simulate dynamic systems de-
scribed by differential equations. Simulink’s solvers can numerically solve these
equations, allowing for the simulation of continuous behaviour over time. Ad-
ditionally, researchers can use it to perform discrete simulations by specifying
the sample time of blocks in the block diagram, enabling the simulation of sys-
tems with specific time intervals for events. It also supports stochastic simulation
by allowing the introduction of random variables and probability distributions,
and it can perform a deterministic simulation with precise control over the se-
quence of events. In this project, we use discrete modelling using an integer
clock and schedule all events based on that, and we use a random variable to
model stochastic behaviour. MATLAB/Simulink model is more abstract and
simple in our case; however, the author [6] claims that building complex models
in MATLAB/Simulink might require more time and effort than programming-
based approaches.

6.2 Simulation Terms (Memory Consumption and Simulation time)

The same model’s memory consumption and simulation time can vary depending
on the tool used. Figure 9 compares the tools regarding memory consumption
and execution time while simulating the case study. ns-3 has less memory con-
sumption, while Uppaal SMC has the shortest execution time. MATLAB has
the lowest memory consumption but the longest execution time.

0

20

40

60

80

100

0

20

40

60

80

ns-3 UPPAAL SMC MATLAB

Ex
ec

ut
io

n
Ti

m
e

(S
ec

)

M
em

or
y

Co
ns

um
pt

io
n

(M
B)

Memory Consumption Execution Time

Fig. 9: Memory Consumption and Simulation time

12 M. Naeem et al.

System configuration details: The simulations for all models were conducted
on a local machine with the following specifications: a MacBook Pro (2019)
workstation equipped with 16 GB 2133 MHz LPDDR3 memory and a 2.4 GHz
Quad-Core Intel Core i5 processor. The machine ran macOS Monterey (Version
12.3.1) as the operating system.

6.3 General comparison

This section provide a comprehensive comparison of the tools, with an abstract
visual representation in Figure 10 and a tabulated summary in Table 1. The
Table presents how we categorise the different aspects of modelling a system in
the tools focused on in this study; we’ve given them scores ranging from 0 to 10
(where 0 means challenging to use, and 10 means most accessible to use).

Expertise Required to model: Uppaal SMC focuses on formal modelling
and verification, making it suitable for researchers with a strong background in
formal methods and automata theory. It also required a basic level of C++ to
model actions behaviour. On the other hand, ns-3 demands a higher level of
programming expertise in C++ and the core architecture of the network and
protocols for developing network simulations. MATLAB/Simulink, in contrast,
provides a higher level of abstraction and requires less programming expertise.

Other Expertise: Modelling in ns-3 only requires only good programming ex-
pertise. Uppaal SMC needs a good knowledge of automata models with the ba-
sic concept of programming to design a system model, and MATLAB/Simulink
requires familiarity with Simulink’s interface and its blocks.

Graphical user interface (GUI) support: Uppaal SMC provides a user-
friendly GUI that simplifies formal modelling and verification tasks, allowing
users to design and visualise timed automata models. In contrast, ns-3 does not
have a built-in GUI, and users must write network simulations using C++ or
Python, which requires advanced programming expertise. MATLAB/Simulink
provides a complete GUI environment allowing users to visually represent com-
plex system models using blocks and connections. This user-friendly interface
benefits researchers with an engineering or numerical analysis background.

Availability of good online documentation: Online network analysis and
simulation documentation for ns-3 and MATLAB/Simulink is more detailed and
readily available than for Uppaal SMC. The dedicated networking focus and
their active community provide comprehensive tutorials and user guides. Many
built-in libraries and baseline examples are also available to build the basic
structure of the network and standard communication protocols. The specialised
focus of Uppaal SMC on formal modelling and verification may result in limited

Comparative Analysis of Uppaal SMC, ns-3 and MATLAB/Simulink 13

Table 1: Comparison of Uppaal SMC (U/S), ns-3(N) and MAT-
LAB/Simulink(M/S)

U/S ns-3 M/S

Programming Expertise

No 10
Basic (Conditions, loops, function) 7
Expert (Classes and structures, Pointers, Memory Man-
agement)

3

7 3 7

Other Expertise

Only programming skill required 10
Multiple languages required 7
Other modelling technique 3

3 10 3

GUI Support

Advanced 10
Moderate 5
No 0

10 0 10

Availability of good online documentation

BaseLine Examples 10
Built-in libraries 8
Strong Literature Review 6
Week Literature Review 5
Online Support Group 4
User Guide 2
No Help 0

5 10 10

Scalability

Allowed large scale network simulations 10
Allowed but simulation time increase more frequently 7
Partiacialy allowed 3
Not allowed 0

7 10 7

Limitations in model Design

Allowed most of the operation in networks 10
Limited tool set 5
Not allowed 0

5 10 10

Result Visualisation

Optimisation of graphs 10
Graphical Representation & Text Data output 7
Text Data 3

7 3 10

Model Verification

Rich proper language 10
Automatic analysis 8
Model Validation for function requirements 6
Ad Hoc Test Cases as Script 4
Verbose output log enabling extend analysis 2

10 4 4

Documentation of model / Representation of model

Graphical representation 10
Document in the form of blocks or class diagram 5
Code based representation 3

10 5 10

14 M. Naeem et al.

0
1
2
3
4
5
6
7
8
9

10
Programming Expertise

Other Expertise

GUI support:

Help Available online

ScalabilityLimitations in model
Design

Result Visualization

Model Verification

Documentation of model
/ Representation of model

UPPAAL
NS3
MATLAB

Fig. 10: General Comparison of Uppaal SMC, ns-3 and MATLAB/Simulink

specific documentation for network analysis and simulation tasks. But it provides
a good user guide and online support group for efficient model design.

The Sigfox module wasn’t available in ns-3 for this case study, so we mod-
ified and customised a LoRaWan module for Sigfox. We built the models for
MATLAB/Simulink and Uppaal SMC from scratch.

Scalability: Scalability was not within the scope of our case study, but in gen-
eral, ns-3 is highly scalable and optimised for large-scale network simulations,
making it an excellent option for simulations requiring much scalability. Up-
paal SMC is well-suited for small to medium-sized systems, but its scalability
may be limited for large and complex systems. Scalability to the very large sys-
tem can be achieved by exploiting the possibility in the newly released UPPAAL
5.0 of linking to external compiled C-code (this was successfully done for the
simulation of a model of Nothern Jutland of COVID-19 comprising more than 1
million components) [2]. The scalability of MATLAB/Simulink is generally good
for small to moderate-sized models, but it may have performance limitations for
large-scale simulations involving complex mathematical computations.

Limitations in model Design: Both ns-3 and MATLAB/Simulink exhibit
versatility in network analysis, allowing for robust modelling without signifi-
cant design limitations. On the other hand, UPPAAL employs clock variables
in timed automata, which evolve continuously through time derivative rates. It
only supports integer values in clock rates and clock conditional statements.

In this case study, the node takes 4.9 seconds to gather measurements in
the measuring state. However, Uppaal SMC doesn’t support conditions with

Comparative Analysis of Uppaal SMC, ns-3 and MATLAB/Simulink 15

floating-point numbers, so we adjusted the base time clock from seconds to desi-
seconds. This conversion allowed us to represent the condition as 49 desi-seconds
instead of 4.9 seconds. Simulating the node becomes more complicated when the
base clock needs to be reduced to micro or nanoseconds to avoid floating point
numbers, and the simulation time is in multiple years.

Result Visualisation: Uppaal SMC provides result analysis and visualisation
through its built-in plot composer tool. However, it cannot zoom in on specific
sections of the simulation graph for detailed analysis. In comparison, the ns-3
provides simulation results in a text data stream format that requires additional
software like Gnuplot for graphical representations. We use MATLAB to visu-
alise ns-3 simulation results and some simulation results from Uppaal SMC to
highlight a specific plot section. However, MATLAB/Simulink stands out with its
extensive visualisation functions and exceptional versatility in handling diverse
simulation types, making it highly suitable for a wide range of result analysis
and visualisation tasks.

Model Verification: Uppaal SMC is a specialised tool designed explicitly for
formal model checking, making it a powerful choice for testing model correctness.
It uses statistical model-checking techniques to verify if the system behaviour
meets predefined requirements. This tool automatically checks for probabilistic
systems’ reachability, safety, and liveness properties, providing valuable insights
into the model’s correctness.

Pr[<=100*days](<> Sensors(0).Listening && r>20) (1)

Equation 1 illustrates a query in Uppaal SMC, verifying the model’s com-
pliance with the requirement that it start listening (to receive a message) 20
seconds after sending an up-link. In this query, the clock variable r is a timer
initiated upon transmitting the up-link frame. The query executes the model for
hundred days to compute the possibility of reaching the state with the greater
value of r. In this case, the calculated probability is zero, so the model is correct.

In contrast, ns3 and Simulink do not offer statistical model-checking capabil-
ities like Uppaal SMC. However, researchers can still create test cases, analyse
simulation results, and validate the system’s behaviour against expected out-
comes.

Documentation of model / Representation of model: We need good
documentation of a designed model to present in front of others for many reasons
(Publishing, collaborating or proving). The documentation must be graphical
and more generic to make it more understandable for people from all domains.

Comparatively, the model in Uppaal SMC and MATLAB/Simulink has a
graphical representation of the system’s behaviour, and it is easy to convert into
documentation in the form of states and actions.

16 M. Naeem et al.

7 Conclusions and Future work

Uppaal SMC is a powerful tool for verifying early-phase design and identify-
ing vulnerabilities in distributed communication systems. Its statistical model-
checking capabilities ensure the correctness and reliability of the model, partic-
ularly benefiting users with expertise in Automaton models. ns-3 stands out for
large-scale network simulations. Its event-driven architecture and visualisation
modules are ideal for extensive network simulations and analysis. It is particu-
larly well-suited for users proficient in C++ programming with a solid under-
standing of communication networks and protocols, enabling them to perform
comprehensive network analyses. MATLAB/Simulink is versatile for simulat-
ing and testing communication networks. It has powerful simulation capabilities
and visualisation functions, making analysis and visualisation of results easy. It’s
flexible for different types of simulations and result analysis. It is more suitable
for users who know basic C code function blocks.

Future work can explore the co-simulation of Uppaal SMC, ns-3, and MAT-
LAB/Simulink to leverage their strengths and enhance overall simulation ca-
pabilities. Integrating these tools can offer a more comprehensive approach to
network simulation and analysis, allowing researchers to tackle complex scenarios
more effectively.

References

1. Bakni, M., Chacón, L.M.M., Cardinale, Y., Terrasson, G., Curea, O.: Wsn sim-
ulators evaluation: an approach focusing on energy awareness. arXiv preprint
arXiv:2002.06246 (2020)

2. Bilgram, A., Jensen, P.G., Jørgensen, K.Y., Larsen, K.G., Mikučionis,
M., Muñiz, M., Poulsen, D.B., Taankvist, P.: An investigation of safe
and near-optimal strategies for prevention of covid-19 exposure using
stochastic hybrid models and machine learning. Decision Analytics Journal
5, 100141 (2022). https://doi.org/https://doi.org/10.1016/j.dajour.2022.100141,
https://www.sciencedirect.com/science/article/pii/S2772662222000728

3. David, A., Larsen, K.G., Legay, A., Mikučionis, M., Poulsen, D.B.: Uppaal smc
tutorial. International Journal on Software Tools for Technology Transfer 17(4),
397–415 (2015)

4. David, A., Larsen, K.G., Legay, A., Mikučionis, M., Poulsen, D.B., Sedwards, S.:
Runtime verification of biological systems. In: Leveraging Applications of Formal
Methods, Verification and Validation. Technologies for Mastering Change: 5th In-
ternational Symposium, ISoLA 2012, Heraklion, Crete, Greece, October 15-18,
2012, Proceedings, Part I 5. pp. 388–404. Springer (2012)

5. Gnanaselvi, S.: A study on various simulation tools for wireless sensor networks.
Int. J. Eng. Res. Manag.(IJERM) 5, 1–3 (2018)

6. Knight, A.: Basics of MATLAB and Beyond. CRC press (2019)

7. Kochhar, A., Kaur, P., et al.: Simulation platforms for wireless sensor networks:
how to select? In: Information and Communication Technology for Sustainable
Development, pp. 539–545. Springer (2020)

Comparative Analysis of Uppaal SMC, ns-3 and MATLAB/Simulink 17

8. Korala, H., Georgakopoulos, D., Jayaraman, P.P., Yavari, A.: A survey of tech-
niques for fulfilling the time-bound requirements of time-sensitive iot applications.
ACM Computing Surveys (2022)

9. Naeem, M., Albano, M., Larsen, K.G., Nielsen, B., Høedholt, A., Laursen, C.Ø.:
Modelling and analysis of a sigfox based iot network using uppaal smc. IEEE
Sensors Journal (2023)

10. Naeem, M., Albano, M., Larsen, K.G., Nielsen, B., Høedholt, A., Østergaard
Laursen, C.: Battery aware analysis of sensor networks in uppaal smc. In: 2021
10th Mediterranean Conference on Embedded Computing (MECO). pp. 1–6. IEEE,
IEEE, Budva, Montenegro (2021)

11. Naeem, M., Albano, M., Magrin, D., Nielsen, B., Guldstrand, K.: A sigfox module
for the network simulator 3. In: Proceedings of the WNS3 2022, pp. 81–88 (2022)

12. Nayyar, A., Singh, R.: A comprehensive review of simulation tools for wireless
sensor networks (wsns). Journal of Wireless Networking and Communications 5(1),
19–47 (2015)

13. Riley, G.F., Henderson, T.R.: The ns-3 network simulator. In: Modeling and tools
for network simulation, pp. 15–34. Springer (2010)

14. Sen, K., Viswanathan, M., Agha, G.: Statistical model checking of black-box prob-
abilistic systems. In: International Conference on Computer Aided Verification. pp.
202–215. Springer (2004)

15. Sharma, R., Vashisht, V., Singh, U.: Modelling and simulation frameworks for
wireless sensor networks: a comparative study. IET Wireless Sensor Systems 10(5),
181–197 (2020)

16. Sigfox: Sigfox Radio specifications (Feb 2020),
https://storage.googleapis.com/public-assets-xd-sigfox-production-
338901379285/abaedf62-56de-402e-93c3-3a9c10a1cb49.pdf

17. Xian, X., Shi, W., Huang, H.: Comparison of omnet++ and other simulator for
wsn simulation. In: 2008 3rd IEEE Conference on Industrial Electronics and Ap-
plications. pp. 1439–1443. IEEE (2008)

