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Abstract. In this work, we use two well-established machine learning
algorithms i.e., Random Forest (RF) and XGBoost, to predict ambient
temperature for a baseband’s board. After providing an overview of the
related work, we describe how we train the two ML models and identify
the optimal training and test datasets to avoid the problems of data
under- and over-fitting. Given this train/test split, the trained RF and
XGBoost models provide temperature predictions with an accuracy lower
than one degree Celsius, i.e., far better than any other approach that
we used in the past. Our feature importance assessments reveal that
the temperature sensors contribute significantly more towards predicting
the ambient temperature compared to the power and voltage readings.
Furthermore, the RF model appears less volatile than XGBoost using our
training data. As the results demonstrate, our predictive temperature
models allow for an accurate error prediction as a function of baseband
board sensors.

Keywords: Predictive Maintenance, Temperature prediction, Radio Ac-
cess Network

1 Introduction

The development of fifth-generation telecommunications, the so-called 5G, was
not driven by technological evolution but by a commercial necessity. In fact, with
the advent of smartphones, the value of the network has progressively shifted
from connectivity to the data. 5G represents the opportunity for the operators
to enter the rich market of services, making their business model and investment
in network infrastructure sustainable. The core business shifts from connectivity
to service deployment, and operators can generate profits by hosting a broad set
of services in their infrastructure, close to the end user. However, 5G has led to
increased infrastructure complexity due to:

– increased throughput and delay requirements [1],
– widespread computing capacity deployment (especially for dense urban ar-

eas) [9], and
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– intelligent self-monitoring and easily-maintained configuration system to de-
crease CAPEX and OPEX [2].

Consequently, the need for a fault management framework that is strongly
oriented towards the centrality of the recovery action has also grown in tandem
with the complexity of the infrastructure [24]. Fault prediction [11, 8] and pre-
dictive maintenance [12] derive from the need of increasing the infrastructure
sustainability.

1.1 Context Description

Our research focuses on the ability to do predictive maintenance for products
in the Radio Access Network (RAN) domain. The "cloudification" of the net-
work suggests a technological convergence with data center hardware products,
but the environmental conditions are very different. A RAN solution, for exam-
ple, must rely on something other than the cooling systems available for data
centers due to cost, space, and noise constraints. Furthermore, RAN products
should work under very different circumstances, e.g., their operating tempera-
ture spans a more demanding range than the typical for data center products.
The above scenario exemplifies how research results that investigate the corre-
lation between environmental parameters and system reliability depend on the
domain of interest. Another characteristic of RAN products is that they poorly
tolerate disturbances and interruptions. The data acquisition process must be
unique regarding environmental and work parameters, i.e., the use of system re-
sources. Furthermore, data collection is crucial for network access systems since
they are often called for hosting soft real-time systems. The latter exhibit strin-
gent requirements in terms of the reaction time and execution of a particular
task such as the reception and decoding of traffic packets. The collection of data
must therefore be as least intrusive as possible so as not to compromise the
functionality of the node and the availability of bandwidth when transmitting
the collected data.

1.2 Problem Statement

The more distributed computing and high data traffic capacity also involve a
considerable workload. The evolution of hardware design on the nanoscale has
been the response to this growth in data processing for both the latest genera-
tion processors and memory devices (DDR5). The reliability of hardware com-
ponents has indeed increased in recent years [21], but it is equally valid that the
complexity of the design has also increased. And, with the nanoscale hardware
design, the probability of temporary or permanent fault conditions is higher due
to power fluctuations, excessive operating temperatures, or cosmic radiation.
Eventually, the hardware will end its life due to aging issues, and the system
reliability will enter a critical phase where the failure rate will increase expo-
nentially. The hardware repair process is costly: maintenance activities on-site,
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packaging, transportation, board troubleshooting, and test to confirm the fail-
ure condition diagnosis for the component, and faulty hardware replacement, if
applicable. In telecommunication networks, multi-chip packages, robotics, auto-
motive, and, more generally speaking, in an increasingly widespread distributed
system, the hardware devices must work and inter-work properly, react to ex-
ternal disturbances promptly, and operate as long as possible. However, it must
use an appropriate error prediction action by analyzing the data available from
the system. Without this fundamental prediction action, the maintenance costs
could be relatively high. Thus, it is essential to know how to identify a possi-
ble failure condition before it happens. Understanding how the state and use of
resources affect their life cycle allows planning appropriate recovery actions in
time, whether an actual replacement of the component or preventive isolation
to enable an operational state in full or degraded function mode. Predicting
the hardware fault is, therefore, fundamental for the sustainability of the future
network. Without it, the unsustainable maintenance cost would compromise de-
veloping innovative services for industry 5.0 [10]. Machine learning and Artificial
Intelligence can be the technology enabler for a fault prediction based on system
data [5].

1.3 Research Objective

The paper assumption is that the likelihood of a system error depends on the
environmental parameters, like temperature and humidity. Those environment
parameters drive the entire life cycle of the hardware devices: board working
continuously under stressful environment condition will have a shorter lifetime.
Our research objective is to devise a model capable of predicting the ambient
temperature of the board, i.e., the temperature of the immediate surroundings of
the board. The latter has a direct impact on the board’s operating temperature
so an accurate ambient temperature model will allow for:

– implementing operations e.g., thermal throttling, that maintain the temper-
ature of the device below a critical threshold, and

– forecasting the component’s life cycle according to the ambient temperature
for optimal maintenance planning.

1.4 Research Methodology

The paper is a quantitative engineering study [14] that aims to examine the re-
lationships between environment parameters and resource usage using machine
learning approach. For the evaluation of temperature prediction algorithms, the
research used two types of data: environmental (i.e.: temperature and humid-
ity) and resource use (number of cores used and their load). The data refer
exclusively to industrial baseband boards, and this paper used them in respect
of a confidential agreement. We have also used a thermal chamber to simulate
different temperature working environments. We have verified the temperature
prediction algorithms’ validity by comparing them with other solutions proposed
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in the literature. Baseband board designers have reviewed the research outcomes
and evaluated implementation feasibility and sustainability in the radio access
network domain. With this approach, the advantage for the industrial partner
is the possibility of reducing OPEX and the maintenance cost in the next gen-
eration of telecommunications systems.

2 Related Works

The ability to have a thermal model for any system is a well-known need be-
cause it is clear that, as the operating temperature increases, the reliability of
the CMOS-based ICs decreases exponentially [23]. Yang et al. [27], for exam-
ple, provides an interesting analysis of all those factors that negatively influence
both the aging and the reliability of electronic components, such as the effects
of voltage (Hot carrier injection) and temperature (Bias Temperature instabil-
ity). Even considering the system as a non-divisible entity, the system’s failure
rate doubles for every ten Celsius degrees increase above twenty-one Celsius
degrees [18]. Research on the thermal model mainly focuses on two types of
algorithms [25]: those based on the thermodynamic laws and the physical char-
acteristics of the components to find a thermodynamic model of the device [26,
16, 19] and those which, recognizing the limited capacity of a thermodynamic
physical model to be representative for different types of installations, prefer
algorithms that have data-driven solutions [22, 15]. The latter has received more
attention from researchers recently, especially concerning the progress of AI/ML
as a mechanism for evaluating predictive models. AI/ML methods have stood
the test of time concerning temperature prediction by providing very accurate
models for applications such as weather forecasting and temperature control in
industrial environments, among others. For example, Ma et al. study demon-
strates a spatiotemporal correlation for fault prediction algorithms using graph
convolutional recurrent neural networks (GCRNN), which seems promising to
replicate beyond the meteorological domain. In the networking domain, only a
few researchers have dealt with temperature prediction in the RAN domain. On
the contrary, most research works considered temperature prediction in data
centers and High-Performance Computers (HPC). Therein, temperature predic-
tion allows the intelligent implementation of energy saving utilizing workload
management [17, 28], effective heat dissipation [13], and improved cooling effi-
ciency [20]. Previous works considered the operational data of the board, such
as the number of cycles per CPU or the cache metrics, and the physical char-
acteristics of the system, such as the number of CPUs, the size and type of
memory or traffic devices [29, 15]. One of the used algorithms is the long short-
term memory-based temperature prediction (LSTM), an improved version of
the more traditional recurrent neural network (RNN), more suitable for solving
time series prediction problems. In the most significant works that have used
LSTM, we point out the work of Cheng et al. [7] in the multicore and Network
on Chip (NoC) domain. Neural networks are computationally demanding, and
our research focuses on temperature prediction through less complex algorithms
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and less costly solutions to meet the requirements described in the context de-
scription section. There is an inevitable divergence in the research results we
have considered. XGBoost is the algorithm frequently used in applied machine
learning for structured data due to its fast speed compared with other gradient-
boosting implementations [6].

3 Temperature Prediction Process

3.1 Design description

This chapter presents the design description of a machine-learning model that
predicts ambient temperature, i.e., the target value based on lab measurements.
We train the model using board temperature, rail, and board power sensors as
independent variables while controlling computing load, environment humidity,
and fan speed to simulate different board operating conditions. We evaluated
XGBoost Regressor (XGB) [6] and Random Forest Regressor (RF) [4] (with
and without cross-validation [3]) models to determine the most suitable for the
RAN domain. We performed hyperparameter optimization for both the tree-
based models to fine-tune their performance and promote better generalization.
By searching for the optimal hyperparameter values, our approach is to effec-
tively regularize the models to mitigate the risk of overfitting and enhance their
ability to generalize to unseen data. We placed the radio access network boards
inside a climate chamber in the lab. The climate chamber allows the simulation
of all possible humidities and temperature levels that the baseband is likely to
encounter in the field. We collected data for different computing loads by simu-
lating no network traffic, minimal activity, or peak traffic conditions. Since the
baseband board is a multiprocessor system, we have modified the active process-
ing units’ number and computing load to simulate different working conditions.
Additionally, to simulate the environmental conditions of the installation site on
the baseband board, we varied the fan speed of the cooling system. Following
the well-established ML principles, we split the data into two distinct data sets:

1) the training set that is used to train the ML model. The input features
include temperature sensors, watts and power levels measured at different points
of the baseband board, the relative humidity and the ambient temperature of
the climate chamber, among others, and

2) the test set that is used to assess the model’s performance.
The training set is assigned a splitting ratio of 80%, while the test set receives

20%. Consequently, the collected data sets encompass the distinctive patterns
that characterize the baseband board in various environmental and radio traffic
conditions. We trained the ML model using the training data set to create an
accurate and scalable model, making it possible to use the model for future
versions of RAN boards without compromising its validity. Our evaluation metric
regarding which ML model to use for environmental temperature prediction is
based on the mean absolute error (MAE) i.e., the absolute value of the difference
between the predictions and the targets, and R-squared (R2). Residual analysis
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between the predicted and the measured ambient temperatures is considered as
well.

3.2 Execution

Variable Value Distribution [X/Total]

DSP Low 9/18
Mid 7/18
High 2/18

CPU load [%] 0 1/18
20 1/18
30 8/18
100 8/18

Fan speed [%] 30 2/18
40 1/18
50 1/18
70 4/18
100 10/18

Relative Humidity [%] 0 8/18
20-80 2/18
30-80 8/18

Temperature Ranges [°C] 0-35 8/18
20-55 8/18
50-60 2/18

Table 1: The distribution of the dataset, for each setting of the controlled vari-
ables.

As described in the previous section, we continuously test the baseband in
the climate chamber. Thus, the training runs with a new data set after each
successful run. The current training for the ML models contains 18 datasets,
each collected from their respective laboratory tests. Table 1 shows the data
distribution of the various combinations of the controlled variables (DSP, fan
speed, CPU load, relative humidity, and ambient temperature). For example,
out of eighteen datasets, nine have DSP set to "Low", seven have DSP set to
"Mid", and two have DSP set to "High", etc. The data collected is then explored
and handled appropriately for the models to process. We also analyzed how to
impute missing values and decided to use linear interpolation after investigating
a few other methods, such as rolling mean or dropping entire rows containing at
least one missing value. For the training of the models, we randomly divided the
whole dataset into a training and testing set using the train-test split-function
in Python (train_test_split()3) by specifying the splitting ratio to be 80 −
3 sklearn.model_selection.train_test_split,

https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.train_test_split.html
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20% respectively. The purpose of the testing set is to assess and evaluate the
performance of the trained model by comparing the model’s predictions with the
actual values from the testing set. The performance evaluation described above
allows us to measure metrics such as accuracy and residuals, which provide
insights into how well the model generalizes to unseen data and, thus, performs
in real-world scenarios. For the sake of presentation and to provide an efficient
way to compare the predicted with the measured ambient temperature values
side by side, we decided to introduce a data set referred to as unseen data. The
unseen dataset contains a continuous baseband run in the climate chamber i.e.
with the temperatures increasing with every measurement and it is completely
excluded from the training and testing phase of the ML models. The data from
the features (all variables except the target variable) is then used as an input to
the models to acquire their predictions. This allows us to further evaluate the
models’ predictive ability of new and unseen data.

3.3 Results

We set the CPU and the fan speed maximum value (100%) as the test set
of the baseband unit under evaluation. The prediction outcomes of this un-
seen data can be observed in Fig. 1a and Fig. 1b for both the Random Forest
Regressor (with and without cross-validation) and the XGBoost Regressor, re-
spectively.The reason to why cross-validation was not applied for the XGBoost
regressor was because XGBoost generally performs well with smaller datasets
where on the contrary Random Forest would benefit from cross-validation. The
blue graph in both Fig. 1a and Fig. 1b shows the measured ambient temper-
ature values obtained from an ambient temperature sensor during laboratory
tests. It is the target value we want to predict successfully. The primary objec-
tive of the models is to predict this value accurately. Note that the Random
Forest regressor with and without cross-validation overlays each other i.e., it did
not matter whether we performed cross-validation on the training set or not.
A well-performing model should exhibit residuals, i.e., the difference between
the measured (actual) value and the predicted value, scattered randomly around
the horizontal line at zero on the y-axis, with no apparent patterns or trends.
The absence of patterns or trends indicate that the model effectively captures
the relationship between the features and the target variable and that there is
no further information that it could employ to enhance its predictions. On the
other hand, if the residual plot displays patterns or trends, such as a U-shape
or a curve, the model fails to satisfactorily capture the underlying relationships
between the features and the target variable.

Including additional information could improve the models’ predictions avoid-
ing underfitting or overfitting. Underfitting occurs when a model or algorithm
fails to capture the underlying trend of the data, resulting in poor performance
on training and testing data. Underfitting occurs when the training dataset is
too small, the model needs to be more complex, or the data needs to be more
precise. Overfitting happens when a model is too complex and learns from noise
or inaccurate data entries in the training set, leading to poor performance on
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(a) RF predictions (b) XGB predictions

Fig. 1: Ambient Temperature Predictions, CPU=100% and fan=100%

testing data. An over-fitted model indicates the need to explore the reduction of
the model complexity, use early stopping during training, or implement regular-
ization, among others. Upon observing the graphs in Fig. 2a and Fig. 2b along
with the graphs in Fig. 1a and Fig. 1b, it is evident that the Random Forest
and XGBoost regressors are capable of making predictions with a high degree of
accuracy, without under- or overfitting and exhibiting errors between the range
of ±1◦C.

(a) RF prediction (no cross validation) (b) XGB prediction

Fig. 2: Scatter plot of residuals between predictions and the measured value for
a baseband with CPU=100%, fan=100%, and ±1◦C threshold displayed

To further evaluate the accuracy of the predictions, we calculated and com-
pared the mean absolute error (MAE) and R-squared (R2) between the model’s
prediction and the measured ambient temperature of either the testing or the
unseen set. These metrics provide insight into how well the model is perform-
ing and how much of the variation in the data can be explained by the model.
For instance, a low MAE suggests that the average difference between the pre-
dicted and actual values is small. In contrast, a high R2 value indicates that the
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model explains a large proportion of the variance in the target variable - and
vice versa. Table 2 shows the result. The models are trained successfully with
relatively low error and high accuracy based on the metrics’ values for the test-
ing data, suggesting that the model fits the test data well and can make reliable
predictions. Moving on to the metrics for the unseen data, it suggests that the
model can generalize well and make accurate predictions on data that it has not
seen before. The fact that the MAE value is lower for the unseen data than the
testing data suggests that the model has not overfitted to the testing data and
is not capturing noise or irrelevant information. Overall, these metrics indicate
that the model has high accuracy and can be considered a reliable model for
predicting ambient temperature.

Metric Random Forest Random Forest XGBoost
(CROSS-VAL) (w/o CROSS-VAL)

Test MAE 0.795 0.791 0.613
Test R2 0.984 0.984 0.987

Unseen MAE 0.654 0.687 0.595
Unseen R2 0.987 0.988 0.994

Table 2: MAE and R2 values for different models when predicting baseband
ambient temperature at CPU=100% and fan=100%

(a) RF model (b) XGB model

Fig. 3: Top and bottom 10 features based on permutation importance, predicting
baseband ambient temperature at CPU=100% and fan=100%.

The results available in our paper show temperature prediction using base-
band temperature sensors and the controlled variables as features, excluding
temperature as it is the target variable. The permutation (Figs. 3a and 3b) and
feature importance (Figs. 4a and 4b) indicate that our features’ choice is cor-
rect. Permutation importance is a technique for evaluating feature importance
based on a model’s performance decrease during the permutation of a feature.
It measures how much each feature contributes to the model’s accuracy on the
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(a) RF model (b) XGB model

Fig. 4: Top and bottom 10 features based on importance, predicting baseband
ambient temperature at CPU=100% and fan=100%.

training set. On the other hand, feature importance is a metric that ranks fea-
tures according to their importance for making predictions on new, unseen data.
Figs. 3a, 3b, 4a, and 4b indicate that it is the temperature sensors that primarily
contribute to the model’s performance and,hence predictions’ accuracy. More-
over, they show that power and voltage readings can be excluded without any
loss of prediction accuracy.

3.4 Predictions on under-represented training data

To assess the performance of our trained model on data that is under-represented
we tested our models’ predictions on a dataset for which the unseen data are:
CPU load = 30%, fan speed = 70%, DSP = Low, ambient temperature range
= 0 − 35◦C and relative humidity range = 0%. The predictions can be seen in
Figs. 5a and 5b. Insufficient dataset refers to a situation where the prediction
test case lacks adequate representation in the training dataset concerning the
parameter settings. Note that the increased number of "triangles" in the Figures
only indicates consecutive test execution at the same temperature. Figures 5a
and 5b clearly show a case of overfitting. Possible reasons for overfitting could
be:

– Insufficient training data: When the training dataset is small, the model may
learn the noise or specific patterns present in the limited data. Increasing
the amount of training data can help alleviate this issue.

– Feature overfitting: When the model has access to irrelevant or noisy features
with no predictive power for the target variable, it may overfit by learning
patterns specific to the training data. Feature selection or dimensionality
reduction techniques can help address this issue.

– Complex model architecture: Models with high complexity, such as those
with a large number of parameters, have a higher tendency to overfit. Sim-
plifying the model architecture, reducing the number of parameters, or using
regularization techniques can mitigate overfitting.

Table 3 shows how the value of MAE in the case of prediction based on
an insufficient training dataset is higher than that obtained with an adequate
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(a) RF predictions (b) XGB predictions

Fig. 5: Ambient Temperature Predictions, CPU=30% and Fan=70%

number of variables in the training dataset (compare with Table 2) for both
test and unseen data. An MAE greater than two indicates that, on average,
the model’s predictions deviate from the actual temperature by more than two
degrees Celsius. This level is unacceptable; the goal is to keep the error below
one degree Celsius. An R2 of 0.94 indicates that the model is still explaining
94% of the variance in the data, which is still relatively high, but not as high as
the previous value of 0.98.

Metric Random Forest Random Forest XGBoost
(CROSS-VAL) (w/o CROSS-VAL)

Test MAE 0.919 0.897 0.633
Test R2 0.985 0.985 0.986

Unseen MAE 2.252 2.144 1.524
Unseen R2 0.942 0.947 0.959

Table 3: MAE and R2 values for different models when predicting baseband
ambient temperature at CPU=30% and Fan=70%

4 Conclusion and Future Works

In this paper, we use two well-established machine learning algorithms to predict
the ambient temperature of a baseband board; Random Forest and XGBoost Re-
gressors. The hypothesis is that we can achieve accurate ambient temperature
prediction for baseband boards without using neural-network-based solutions. In
fact, tree-based models are considered more suitable for regression tasks involv-
ing the prediction of continuous numerical values, and produces accurate result
for the baseband domain described in 1.1. These models capture the relationships
and patterns within the data to make accurate temperature predictions. Both
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tree-based models were hyperparameter optimized. Additionally, we performed
cross-validation for the Random Forest regressor to evaluate its performance.
The trained Random Forest and XGBoost models provide temperature predic-
tions with an accuracy lower than one degree Celsius, i.e., far better than any
other approach we used in the past. We observe MAE of at least 0.59 and R2

values of around 0.99 on completely unseen data. The evaluation of our metrics
(see Tables 2 and 3) indicate accurate predictions. Based on the generated per-
mutation and feature importance measurements, we can further conclude that
the temperature sensors are the most critical contributors to the model’s per-
formance. At the same time, the power and voltage readings don’t contribute
significantly, and the prediction can safely ignore them. When evaluating the
models on unseen data where the test case is not well-represented, the MAE in-
creases to approximately 2, and the R2 decreases to around 0.95. The robustness
of the models is underscored by the enhanced value for MAE and R2, indicat-
ing their high confidence levels. This signifies that the models have successfully
captured the intricacies of the data and minimized the potential for overfitting.
Moreover, the comprehensive examination of the prediction graphs will not only
yield further valuable insights but also solidify the overall findings of the study.
Finally, predicting the ambient temperature is the first step to putting into prac-
tice those thermal throttling and preventive maintenance policies that we have
indicated as the primary objective of our research (compare with Section 1.3).
Pursuing the research’s goals requires future study in two different but parallel
domains:

– Use the ambient temperature prediction along with system resources (com-
puter, networking, and memory) to obtain a hardware fault prediction.

– Use the prediction of ambient temperature as a critical variable in the run-
time product’s life cycle evaluation as a function of the environmental pa-
rameters.
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