
A Federated Learning Algorithms Development

Paradigm

Miroslav Popovic1[0000-0001-8385-149X], Marko Popovic2[0000-0002-1957-0092], Ivan Kaste-

lan1[0000-0003-3417-7237], Miodrag Djukic1[0000-0001-7563-3820], Ilija Basicevic1[0000-0001-8824-5560]

1 University of Novi Sad, Faculty of Technical Sciences, Trg Dositeja Obradovica 6, Novi Sad,

Serbia
miroslav.popovic@rt-rk.uns.ac.rs, ivan.kastelan@uns.ac.rs,

miodrag.djukic@rt-rk.uns.ac.rs, ilija.basicevic@rt-rk.uns.ac.rs
2 RT-RK Institute for Computer Based Systems, Narodnog fronta 23a, Novi Sad, Serbia

marko.popovic@rt-rk.com

Corresponding author: Miroslav Popovic (miroslav.popovic@rt-rk.com)

Abstract. At present many distributed and decentralized frameworks for feder-

ated learning algorithms are already available. However, development of such a

framework targeting smart Internet of Things in edge systems is still an open

challenge. A solution to that challenge named Python Testbed for Federated

Learning Algorithms (PTB-FLA) appeared recently. This solution is written in

pure Python, it supports both centralized and decentralized algorithms, and its

usage was validated and illustrated by three simple algorithm examples. In this

paper, we present the federated learning algorithms development paradigm

based on PTB-FLA. The paradigm comprises the four phases named by the

code they produce: (1) the sequential code, (2) the federated sequential code,

(3) the federated sequential code with callbacks, and (4) the PTB-FLA code.

The development paradigm is validated and illustrated in the case study on lo-

gistic regression, where both centralized and decentralized algorithms are de-

veloped.

Keywords: Distributed Systems, Edge Computing, Decentralized Intelligence,

Federated Learning, Python.

1 Introduction

McMahan et al. [1] introduced Federated Learning (FL) as a decentralized model

learning approach that leaves the training data distributed on the mobile devices and

learns a shared model by aggregating locally computed updates. From the very begin-

ning, Google provided TensorFlow Federated (TFF) [2, 3] as a framework for devel-

oping federated learning applications. Many researchers and companies embraced this

approach and soon after federated learning became a de facto standard for decentral-

ized model learning in the cloud-edge continuum.

At present many distributed and decentralized frameworks for federated learning

algorithms are already available (a short overview is given in section 1.1). However,

2

according to a comparative review and analysis of open-source federated learning

frameworks for Internet of Things (IoTs), made by Kholod et al. [4], the application

of these frameworks in the IoTs environment is almost impossible. Besides, these

frameworks typically have many dependencies, which makes their installation far

from trivial, and they are not supported on all the platforms (e.g., TFF and BlueFog

are not supported on OS Windows). Therefore, to the best of our knowledge, devel-

opment of such frameworks is still an open challenge.

Recently, Python Testbed for Federated Learning Algorithms (PTB-FLA) [5] was

offered as a a framework for developing federated learning algorithms (FLAs) i.e., as

a runtime environment for FLAs under development, on a single computer (and on

edge systems in the future). PTB-FLA was written in pure Python to keep application

footprint small (to fit to IoTs) and to keep its installation simple (with no external

dependencies).

PTB-FLA programming model is a restricted programming model, which imposes

the following two restrictions: (1) using the Single Program Multiple Data (SPMD)

pattern, and (2) specifying code for server and client roles in form of callback func-

tions. Enforced by these restrictions, a developer writes a single application program,

which is instantiated and launched by the PTB-FLA launcher as a set of independent

processes whose behaviour depends on the process id. During processes execution,

the callback functions are called by the generic federated learning algorithms hidden

inside PTB-FLA. PTB-FLA supports both centralized and decentralized federated

learning algorithms, and its usage was validated and illustrated in [5] by three simple

algorithm examples.

The main limitations of the paper [5] are that it falls short on providing: (1) a more

systematic approach to development of FLAs and (2) an example of a commonly used

ML algorithm. This paper is a follow up paper on [5], which is motivated by the de-

sire to overcome the previously mentioned limitations.

At this point, a short digression on exemplification of the utilization of the whole

platform could help to understand, in a more specific way, the motivation and the

achieved results of this paper. PTB-FLA is being developed within the ongoing EU

Horizon 2020 project TaRDIS, which aims to create a toolbox for easy programming

of innovative applications, such as: (1) multi-level smart electrical vehicles charging,

(2) privacy-preserving learning through decentralised training in smart homes, (3)

distributed navigation concepts for LEO satellite constellations, and (4) highly resili-

ent factory shop floor digitalization to be implemented in a real factory comprising

several production lines, a warehouse, an intralogistics fleet of robots, etc. These sys-

tems must use some ML/AI algorithms and be trustworthy and responsible.

We are living in a world where there are a lot of open-source software implementa-

tions of various ML/AI learning algorithms are freely available in various online re-

positories, such as Microsoft GitHub, Google Colab, etc. But how can software de-

velopers reuse this software to develop FLAs for the applications mentioned above?

The ad hoc approach may work well for simple algorithms like the three examples in

[5], but for more complex algorithms some development paradigm is needed.

In this paper, we present the federated learning algorithms development paradigm

based on PTB-FLA, which is used by software developers as a systematic guideline to

transform a given sequential source code into the semantically equivalent target PTB-

FLA code. Here semantically equivalent means that the codes produce the same out-

put data (also called the results). We define the target code to be correct if it is seman-

tically equivalent to the source code. We define the target code to be correct by con-

struction if the way how it was constructed (here the way is by using the paradigm)

guarantees that it is correct. Finally, we define development easier than ad hoc devel-

opment, or just easier, if it is governed by some paradigm (or methodology, etc.) that

provides developers’ instructions, typically as a series of steps in a natural language.

The main goals of PTB-FLA development paradigm are: (1) to aid the develop-

ment of FLAs that are correct by construction and (2) to make the development of

FLAs easier. In the next three paragraphs we argue that we achieved these two goals.

To achieve both goals mentioned above, PTB-FLA development paradigm is de-

vised as a series of program code transformation phases where each transformation

phase consumes its input code and produces the semantically equivalent code that is

closer to the target PTB-FLA code. By convention, the phases are named according to

their output codes. Altogether, the PTB-FLA development paradigm comprises the

four phases: (1) the sequential code, (2) the federated sequential code, (3) the federat-

ed sequential code with callbacks, and (4) the PTB-FLA code.

The first goal (correct by construction) is achieved because each phase produces

correct output code (according to the above-mentioned definition of correctness),

therefore the whole pipeline of the four phases produces the correct PTB-FLA code

by the way how this code was constructed through the four phases.

The second goal (easier development) is achieved because the PTB-FLA develop-

ment paradigm (see section 2) is defined as a series of phases, and phases as series of

steps, which are explained in English language.

The PTB-FLA development paradigm is validated and illustrated in the case study

on logistic regression, which is one of the simplest and at the same time one of the

most used Machine Learning (ML) algorithms. In this case study, we train the logistic

regression model that can make predictions on clients’ orders based on their profiles.

In the case study, we apply the PTB-FLA development paradigm to construct both

centralized and decentralized logistic regression FLAs.

In summary, the main contributions of this paper are: (1) the PTB-FLA develop-

ment paradigm, (2) the case study on logistic regression, and (3) the developed cen-

tralized and decentralized logistic regression FLAs.

The rest of the paper is organized as follows. The section 1.1 presents related work,

the section 2 presents the PTB-FLA development paradigm, the section 3 presents the

case study on logistic regression, and the section 4 presents the paper conclusions.

1.1 Related Work

This section presents a brief overview of the most closely related research that was

conducted before this paper.

Back in 2017, federated learning was introduced by McMahan et al. [1] as a de-

centralized approach to model learning that leaves the training data distributed on the

mobile devices and learns a shared model by aggregating locally computed updates.

4

They presented FedAvg, a practical method for the federated learning of deep net-

works based on iterative model averaging (see algorithm FederatedAveraging in [1]).

The main advantages of federated learning are: (1) it preserves local data privacy, (2)

it is robust to the unbalanced and non-independent and identically distributed (non-

IID) data distributions, and (3) it reduces required communication rounds by 10–100x

as compared to synchronized stochastic gradient descent (FedSgd).

Immediately after the McMahan’s seminal paper [1], federated learning got its

traction. Widespread research in both industry and academia resulted in many re-

searchers’ papers, and in this limited space we mention just few of them. Not long

after [1], Bonawitz et al. [6] introduced an efficient secure aggregation protocol for

federated learning, and Konecny et al. [7] presented algorithms for further decreasing

communication costs. More recent papers are more focused on data privacy [8, 9].

TensorFlow Federated (TFF) [2], [3] is Google’s framework supporting the ap-

proach introduced in [1], which provides a rich API and many examples that work

well in Colab notebooks. However, TFF is a framework for applications in the cloud-

edge continuum, with a heavyweight server executing in the cloud, and therefore not

deployable to edge only. Besides, TFF is not supported on OS Windows, which is

used by many researchers, and TFF has numerous dependencies that make its installa-

tion far from trivial.

BlueFog [10], [11] is another federated learning framework with the same limita-

tions as TFF: (1) BlueFog is cloud dependant because BlueFog authors consider deep

training within high-performance data-centre clusters, see note on page 5 in [11] and

(2) BuleFog has many dependencies on external software packages and is not sup-

ported on OS Windows.

Recently, Kholod et al. [4] made a comparative review and analysis of open-source

federated learning frameworks for IoT, including TensorFlow Federated (TFF) from

Google Inc [6], Federated AI Technology Enabler (FATE) from Webank’s AI de-

partment [12], Paddle Federated Learning (PFL) from Baidu [13], PySyft from the

open community OpenMined [14], and Federated Learning and Differential Privacy

(FL&DP) framework from Sherpa.AI [15]. They concluded that based on the results

of their analysis, currently the application of these frameworks on the Internet of

Things (IoTs) environment is almost impossible. In summary, at present, developing a

federated learning framework targeting smart IoTs in edge systems is still an open

challenge.

TensorFlow Lite [16] is a lightweight solution for mobile and embedded devices,

which enables both on-device training and low-latency inference of on-device ma-

chine learning models with a small binary size and fast performance supporting hard-

ware acceleration [17]. So, TensorFlow Lite is not a federated learning framework,

but it is an orthogonal AI framework for mobile devices, which might be combined

with a federated learning framework such as PTB-FLA and this is one of the possible

directions of our future work.

PyTorch Mobile [18] (formerly PyTorch Lite) is another AI framework very simi-

lar to TensorFlow Lite, which provides an end-to-end workflow, from training a mod-

el on a powerful server to deploying it on a mobile device, while staying entirely

within the PyTorch [19] ecosystem. This simplifies the research to production and

paves the way for federated learning techniques. Luo et al. [20] made a comprehen-

sive comparison and benchmarking of AI models and AI frameworks (PyTorch Mo-

bile, Caffe2 which is now part of PyTorch Mobile, and TensorFlow Lite) on mobile

devices, and concluded that there is no one-size-fits-all solution for AI frameworks on

mobile devices (see remark 2 on page 8 in [20]), because TensorFlow Lite performs

better for some AI models or devices whereas PyTorch Mobile performs better for

other AI models or devices.

Finally, we would like to clarify what PTB-FLA is not and why it is called a

“testbed”. PTB-FLA is neither a complete system such as CoLearn [21] and FedIoT

[22] nor a system testbed such as the one that was used for testing the system based

on PySyft in [23]. By contrast, PTB-FLA is just a FL framework, which is seen by

ML&AI developers in our project as an “algorithmic” testbed where they can plugin

and test their FLAs.

The PTB-FLA programming model is based on the SPMD pattern [24] like other

well-known programming models: MapReduce, MPI, OpenMP, and OpenCL. For

those who know the MapReduce programming model it doesn’t take long to realize

that the PTB-FLA and MapReduce are rather similar – the client callback function in

PTB-FLA is like the map callback function in MapReduce, whereas the server

callback function in PTB-FLA is like the reduce callback function in MapReduce.

Logistic regression is an important ML technique for analyzing and predicting data

with categorical attributes, and in our case study (see section 4) we took the simple

implementation of the logistic regression at [25] as the source for our referent sequen-

tial code. In our future work, we plan to consider more advanced models, such as the

generalized linear model, see [26].

2 Development Paradigm

In this section we present the PTB-FLA development paradigm. The next two subsec-

tions present the general concept and the development phases, respectively.

2.1 Concept

The PTB-FLA development paradigm is primarily intended to serve as a FLA devel-

oper guide through the process of developing a target FLA using PTB-FLA, which we

call the FLA development process. The input to this process is the Python sequential

program code of target AI/ML algorithm, whereas the output from this process is the

PTB-FLA code with the same semantics, which means that for given input data it

produces the same output data with some tolerance e. The tolerance e is typically

some small error value (ideally zero).

Of course, the output PTB-FLA code must be compliant with the PTB-FLA pro-

gramming model which is a restricted programming model that imposes the following

two restrictions: (1) using the Single Program Multiple Data (SPMD) pattern, and (2)

specifying code for server and client roles in form of callback functions. Obviously,

6

there are many ways to define such a development process. Our intention was to pre-

scribe it as a paradigm which is much more disciplined than ad hoc development, but

also not too rigid to keep it attractive and creative.

The main idea of the PTB-FLA development paradigm was to follow the principle

of correct-by-construction, which when applied in this context meant to define the

development process that would for a given referent code yield the output PTB-FLA

code with the equivalent semantics. Following the approach used by program compil-

ers, we devised the PTB-FLA development paradigm as the series of program code

transformation phases where each transformation phase consumes its input code and

produces the semantically equivalent code that is closer to the target PTB-FLA code.

2.2 Development Phases

There are altogether four development phases, called phase 1, phase 2, phase 3, and

phase 4, which are by the convention named by their output code i.e., (1) the referent

sequential code, (2) the federated sequential code, (3) the federated sequential code

with callbacks, and (4) the PTB-FLA code, respectively.

The input to phase 1 is the row sequential code and the output is the referent se-

quential code. The input row sequential code may come from various sources and

may have various forms. Nowadays, many AI/ML algorithm solutions in Python are

available online in Colab notebooks, where snippets of textual mathematical explana-

tions, code snippets, and graphs plots dynamically created by code play (i.e., execu-

tion) are interleaved. Typically, these solutions are primarily intended for learn-

ing/understanding the solutions through interactive experimentation, where readers

are even encouraged to tweak the code and play with it.

To make the output referent sequential code, a PTB-FLA developer essentially

must select only the necessary code snippets (leaving out the alternative or redundant

snippets), to tweak them if needed, and to integrate them into a standalone Python

module(s) that they could preferably run on their PC (localhost), typically in a termi-

nal of some IDE. The important requirement for the referent sequential code is that

for a given input dataset it must deterministically produce some output data e.g.,

learned (trained) model coefficients and/or some quality indicators like accuracy,

because this output data is used as the referent data by the next development phases,

which they must produce (with some small error) to be semantically equivalent. To

that end, a PTB-FLA developer should use asserts that automatically compare wheth-

er the output data is (approximately) equal to the referent data, and if not, report the

corresponding assertion error.

In phase 2, a PTB-FLA developer makes the federated sequential code by the fol-

lowing three steps: (1) partition the input dataset into partitions (that could be distrib-

uted across clients), (2) split the monolithic computing of the complete input dataset

into a series of computing on individual partitions (that could be collocated with cor-

responding partitions) such that they produce the set of partition models, and (3) add

the computing for aggregating the set of partition models into the final model and for

computing quality indicators (that could be located on a server), as well as for com-

paring output and referent data. For example, a single function call (calling the func-

tion f) to process the complete dataset could be split into a series of function calls

(calling the same function f with different arguments) to process individual dataset

partitions. Note that this is still one sequential program that runs on a single machine

(developer’s PC).

In phase 3, a PTB-FLA developer makes the federated sequential code with

callbacks by the following four steps: (1) copy (and tweak) the computing on an indi-

vidual partition (say a partition number i) into the client callback function, (2) replace

the series of computing on individual partitions with the series of client callback func-

tion calls (with the arguments corresponding to the partition j in the call number j), (3)

copy (and tweak) the computing for aggregating the set of partition models to the

final model into the server callback function, and (4) replace the former computing

with the server callback function call (the code for computing quality indicators

should remain in its place). In the running example, the series of function calls (call-

ing the same function f with different arguments) to process individual dataset parti-

tions should be replaced with the corresponding series of client callback function

calls, which lead to indirect calls to the function f (each call to the client callback

function maps to the corresponding call of the function f).

In phase 4, a PTB developer makes the PTB-FLA code by the following two steps:

(1) add the code for creating the instance ptb of the class PtbFla and for preparing

local and private data for all the instances, and (2) replace the code for calling

callback functions (both the series of client callback function calls and the server

callback function call) with the call to the function fl_centralized (in case of a central-

ized FLA) or fl_decentralized (in case of a decentralized FLA) on the object ptb.

Generally, a PTB-FLA developer should first develop the centralized FLA and

then develop the decentralized FLA, because the centralized FLA is simpler and easi-

er to comprehend. As the next case study shows, when developing the decentralized

FLA after the centralized one, a PTB-FLA developer may reuse the code from the

first three phases, and then just tweak the server callback function for the last phase if

needed – for example, to get the same output data (i.e., results) by both centralized

and decentralized FLAs.

3 Case Study: Logistic Regression

In this section we validate and illustrate the PTB-FLA development paradigm by the

case study on logistic regression. The input code for phase 1 was the Colab notebook

by Adarsh Menon [25], which uses the Social Network Ads (SNA) dataset. SNA da-

taset comprises 400 samples (or rows) corresponding to user profiles and each record

comprises the following features (or columns): (1) User ID, (2) Gender, (3) Age, (4)

Estimated (yearly income), and (5) Purchased. Note that in the case study only fea-

tures Age and Purchased are used.

The main steps in the input code for phase 1 are: (1) split SNA dataset into training

and test datasets (320 and 80 samples, respectively), (2) train the linear logistic re-

gression model comprising two coefficients, namely b0 and b1, (3) using the trained

model, make predictions whether users in the test dataset would make purchase or not

8

(i.e., whether the predicted probability p per user is above the threshold 0.5 or not),

and (4) calculate the prediction accuracy as the ratio of test users for whom the pre-

dictions were correct.

In the next two subsections we apply the PTB-FLA development paradigm to first

develop the Centralized Logistic Regression FLA (CLR-FLA, see section 4.1) and

then to develop the Decentralized Logistic Regression FLA (DLR-FLA, see section

4.2). Note that algorithms in the following tables are given in a Pythonic pseudocode.

3.1 Centralized Logistic Regression

In the next four subsections we describe the four phases of the PTB-FLA develop-

ment process that we conducted to develop the centralized logistic regression FLA.

Phase 1. As already mentioned, the input code for phase 1 is taken from [25]. The

output code for phase 1 (called the referent sequential code) comprises the main func-

tion seq_base_case and two supplementary functions: logistic regression and evaluate,

see Table 1 (note: the supplementary functions normalize and predict were not

changed and therefore are not included to save space).

Table 1. CLR-FLA phase 1 output code

// pd is representing the Pandas library

01: seq_base_case()

02: data = pd.read_csv("Social_Network_Ads.csv")

03: X_train, X_test, y_train, y_test = train_test_split(data['Age'],

 data['Purchased'], test_size=0.20, random_state=42)

04: b0, b1 = logistic_regression(X_train, y_train)

05: y_pred, accuracy = evaluate(X_test, y_test, b0, b1)

// The supplementary function logistic_regression

06: logistic_regression(X, Y, b0=0., b1=0., L=0.001, epochs=300)

07: X = normalize(X)

08: for epoch in range(epochs)

09: y_pred = predict(X, b0, b1)

10: D_b0 = -2 * sum((Y - y_pred) * y_pred * (1 - y_pred))

11: D_b1 = -2 * sum(X * (Y - y_pred) * y_pred * (1 - y_pred))

12: b0 = b0 - L * D_b0

13: b1 = b1 - L * D_b1

14: return b0, b1

// The supplementary function evaluate

15: evaluate(X_test, y_test, b0, b1)

16: X_test_norm = normalize(X_test)

17: y_pred = predict(X_test_norm, b0, b1)

18: y_pred = [1 if p >= 0.5 else 0 for p in y_pred]

19: accuracy = 0.

20: for i in range(len(y_pred)):

21: if y_pred[i] == y_test.iloc[i]:

22: accuracy += 1.

23: accuracy = accuracy / len(y_pred)

24: return y_pred, accuracy

The main function seq_base_case (lines 1-5) takes the following four steps. Step 1

(line 2): load the dataset SNA into the variable data of the type Pandas DataFrame.

Step 2 (line 3): split the dataset from the variable data into the variables X_train,

X_test, y_train, and y_test of the type Pandas Series, such that test size is 0.2 (or 20%)

of the complete dataset (i.e., 80 test samples and 320 training samples), and random

splitting always start from the random state 42 (to provide reproducibility of the split-

ting result and to enable comparing the output data in the next phases with the referent

data). Step 3 (line 4): train the model by calling the function logistic_regression on the

training data pair (X_train, y_train) – the return values are the resulting model coeffi-

cients: (b0, b1). Step 4 (line 5): evaluate the model (b0, b1) on the test data pair

(X_test, y_test) by calling the function evaluate – the return values are the predictions

y_pred made on X_test and the achieved accuracy.

The function logistic_regression (lines 6-14) has four default arguments: b0=0.,

b1=0., L=0.001, epochs=300. The default arguments (b0, b1) were introduced to ena-

ble the so-called incremental training in case when the initial model is given, say by

the server; otherwise, the function starts from the default initial model (0., 0.). The

default arguments (L, epochs) are the learning rate and the number of epochs, respec-

tively. The function takes three steps: (1) normalize X i.e., X_train (line 7), (2) train

the model for given number of epochs (lines 8-13), and (3) return the trained model

(line 14). The for loop (lines 8-13) comprises three steps: (1) make predictions (line

9), (2) calculate the gradient (D_b0, D_B1) (lines 10-11), and (3) update the model

coefficients (b0, b1) (lines 12-13).

The function evaluate (lines 15-24) takes four steps: (1) normalize X_test (line 16),

(2) make predictions (lines 17-18), (3) calculate accuracy (lines 19-23), and (4) return

the predications and the accuracy (line 24).

The correctness of the output code for phase 1 was manually tested by comparing

the results (b0 and b1) of the output code with the results of the input code.

Phase 2. The output code for phase 2 (called the federated sequential code) comprises

the main function seq_horizontal_federated (see Table 2) and the supplementary

functions from phase 1, and it targets the system with three instances (two clients and

one server). We constructed the federated sequential code by following the three gen-

eral steps for phase 2 in section 2.2, which when applied to the case at hand became:

(1) split the training data horizontally (i.e., sample/row-wise) into two partitions with

160 samples each, (2) split a single function call to the function logistic regression

into two function per-client function calls, and (3) add the server code for aggregating

the two client trained models.

Table 2. CLR-FLA phase 2 output code

01: seq_horizontal_federated()

02: data = pd.read_csv("Social_Network_Ads.csv")

03: X_train, X_test, y_train, y_test = train_test_split(data['Age'],

 data['Purchased'], test_size=0.20, random_state=42)

04: X_train_0 = X_train.iloc[:160]

05: X_train_1 = X_train.iloc[160:]

10

06: y_train_0 = y_train[:160]

07: y_train_1 = y_train[160:]

08: b00, b01 = logistic_regression(X_train_0, y_train_0)

09: b10, b11 = logistic_regression(X_train_1, y_train_1)

10: b0 = (b00 + b10)/2.

11: b1 = (b01 + b11)/2.

12: y_pred, accuracy = evaluate(X_test, y_test, b0, b1)

13: return [b0, b1]

The function seq_horizontal_federated takes six steps. The first two are the same as in

the function seq_base_case (lines 2-3). Next steps follow. Step 3 (lines 4-7): split

training data into two partitions, more precisely, split X_train into X_train_0 and

X_train_1 (lines 4-5) and y_train into y_train_0 and y_train_1 (lines 6-7) where suf-

fixes 0 and 1 are indices of client 1 and 2, respectively. Step 4 (lines 8-9): train client

models by calling the function logistic_regression on the corresponding training data

partitions i.e., (X_train_0, y_train_0) and (X_train_1, y_train_1), respectively – the

return values are the corresponding model coefficients i.e., (b00, b01) and (b10, b11),

respectively, where the first index is the model coefficient index and the second index

is the client index. Step 5 (lines 10-11): calculate the aggregated model coefficients

(b0, b1). Step 6 (line 12): evaluate the aggregated model by calling the function eval-

uate on the test data (X_test, y_test) and the aggregated model coefficients (b0, b1) –

the return values are the predictions y_pred made on X_test and the achieved accura-

cy. Finally, return the result [b0, b1] (line 13), which is used by the asserts in the out-

put codes for phases 3 and 4.

The correctness of the output code for phase 2 was manually tested by comparing

the results (b0 and b1) of the output code with the results of the input code.

For both phase 1 and 2, the achieved accuracy is the same and is equal to 0.9, but

the values for the coefficients (b0, b1) are not equal. Here we use the relative error

(absolute value of the difference divided by the true value) as the metric for the quali-

ty of the phase 2 output data. The relative error for the phase 2 model coefficients b0

and b1 is 8.89%, and 3.75%, respectively. Since the output model accuracy is the

same (0.9), these relative errors are acceptable, and therefore we adopted the phase 2

output data (the model coefficients) as the new referent data for the next two phases

i.e., phase 3 and phase 4.

Phase 3. The output code for phase 3 (called the federated sequential code with

callbacks) comprises the main function seq_horizontal_federated_with_callbacks (see

Table 3) and the supplementary functions from phase 1. We constructed the federated

sequential code with callbacks by following the four general steps for phase 3 in sec-

tion 2.2, which when applied to the case at hand became: (1) copy one of the lo-

gistic_regression function calls that operate on an individual training data partition

into the client callback function, (2) replace the series of logistic_regression function

calls with the corresponding series of client callback function calls, (3) copy the com-

puting for aggregating the set of partition models to the final model into the server

callback function, and (4) replace the former computing with the server callback func-

tion call (the evaluate function call should remain in its place).

Table 3. CLR-FLA phase 3 output code

01: seq_horizontal_federated_with_callbacks()

02: data = pd.read_csv("Social_Network_Ads.csv")

03: X_train, X_test, y_train, y_test = train_test_split(data['Age'],

 data['Purchased'], test_size=0.20, random_state=42)

04: X_train_0 = X_train.iloc[:160]

05: X_train_1 = X_train.iloc[160:]

06: y_train_0 = y_train[:160]

07: y_train_1 = y_train[160:]

08: localData = [0., 0.]

09: msgsrv = [0., 0.]

10: msg0 = fl_cent_client_processing(localData, [X_train_0, y_train_0], msgsrv)

11: msg1 = fl_cent_client_processing(localData, [X_train_1, y_train_1], msgsrv)

12: msgs = [msg0, msg1]

13: avg_model = fl_cent_server_processing(None, msgs)

14: b0 = avg_model[0]

15: b1 = avg_model[1]

16: y_pred, accuracy = evaluate(X_test, y_test, b0, b1)

17: refbs = seq_horizontal_federated()

18: assert refbs[0] == b0 and refbs[1] == b1

19: fl_cent_client_processing(localData, privateData, msg)

20: X_train = privateData[0]

21: y_train = privateData[1]

22: b0 = msg[0]

23: b1 = msg[1]

24: b0, b1 = logistic_regression(X_train, y_train, b0, b1)

25: return [b0, b1]

26: fl_cent_server_processing(privateData, msgs)

27: b0 = 0.; b1 = 0.

28: for lst in msgs:

29: b0 = b0 + lst[0]

30: b1 = b1 + lst[1]

31: b0 = b0 / len(msgs)

32: b1 = b1 / len(msgs)

33: return [b0, b1]

The function seq_horizontal_federated_with_callbacks (lines 1-18) takes 8 steps. The

first three are the same as in the function seq_horizontal_federated (lines 2-7). Next

steps follow. Step 4 (lines 8-9): prepare the arguments localData and msgsrv for the

following client callback function calls – the former is the client initial model whereas

the latter is the message from the server carrying the server initial model. Step 5 (lines

10-11): make the series of two client callback function calls (which replaced the orig-

inal logistic_regression function calls in lines 8-9 in the phase 2 function

seq_horizontal_federated). Note that training data partition is passed through the cli-

ent callback function argument privateData (see line 19). The return values msg0 and

msg1 are the messages from the clients to the server that carry client updated models

that were trained on the client private data. Step 6 (line 12): prepare the argument

msgs for the following server callback function call – this is the list of messages re-

ceived from clients carrying their respective updated models (or more briefly called

updates). Step 7 (line 13): the server callback function call (which replaced lines 10-

12

11 in the phase 2 function seq_horizontal_federated) – return value avg_model is the

aggregated model. Step 8 (lines 14-18): unpack the model coefficients b0 and b1, call

the function evaluate (line 16), call the function seq_horizontal_federated (line 17),

and assert that the result is the same as the result of the phase 2 output code (line 18).

The function fl_cent_client_processing (lines 19-25) takes 3 steps. Step 1 (lines 20-

23): unpack the arguments privateData and msg into the local variables X_train,

y_train, b0, and b1, which are needed for the following logistic_regression function

call. Step 2 (line 24): make the logistic_regression function call (which is a copy-

tweak of the line 8 in the phase 2 function seq_horizontal_federated). Step 3 (line 25):

return the client updated model trained on its private data i.e., the client update.

The function fl_cent_server_processing (lines 26-33) takes 2 steps. Step 1 (lines

27-32): aggregate the client models from the list msgs (carrying the models from the

clients) – the result is the server aggregated model coefficients b0 and b1. Step 2 (line

33): return the final server aggregated model as the list [b0, b1].

The correctness of the output code for phase 3 was automatically tested at runtime

by the assert in line 18, which compares the results (b0, and b1) of the phase 3 output

code with the results of the phase 2 output code.

Phase 4. The output code for phase 4 (called the PTB-FLA code) comprises the main

function ptb_fla_code_centralized (see Table 4), the supplementary functions from

phase 1, and the main and the callback functions from phase 3. We constructed the

PTB-FLA code by following the two general steps for phase 4 in section 2.2, which

when applied to the case at hand became: (1) add the code for creating the instance

ptb of the class PtbFla and for preparing local and private data for all the instances,

and (2) replace the code for calling callback functions with the call to the function

fl_centralized on the object ptb.

Table 4. CLR-FLA phase 4 output code

01: ptb_fla_code_centralized(noNodes, nodeId, flSrvId)

02: data = pd.read_csv("Social_Network_Ads.csv")

03: X_train, X_test, y_train, y_test = train_test_split(data['Age'],

 data['Purchased'], test_size=0.20, random_state=42)

04: X_train_0 = X_train.iloc[:160]

05: X_train_1 = X_train.iloc[160:]

06: y_train_0 = y_train[:160]

07: y_train_1 = y_train[160:]

08: ptb = PtbFla(noNodes, nodeId, flSrvId)

09: lData = [0., 0.]

10: if nodeId == 0

11: pData = [X_train_0, y_train_0]

12: else if nodeId == 1

13: pData = [X_train_1, y_train_1]

14: else

15: pData = None

16: ret = ptb.fl_centralized(fl_cent_server_processing,

 fl_cent_client_processing, lData, pData, 1)

17: b0 = ret[0]; b1 = ret[1]

18: y_pred, accuracy = evaluate(X_test, y_test, b0, b1)

19: if nodeId == flSrvId:

20: refbs = seq_horizontal_federated()

21: assert refbs[0] == b0 and refbs[1] == b1

22: del ptb

The function ptb_fla_code_centralized (lines 1-22) takes 8 steps. The first three are

the same as in the function seq_horizontal_federated_with_callbacks (lines 2-7). Next

steps follow. Step 4 (8-15): create the object ptb (line 8) i.e., start-up the system, and

prepare the local data (line 9) and the private data (lines 10-15) for all the instances.

Step 5 (line 16): call the API function fl_centralized on the object ptb – the arguments

are the callback functions, the local and private data, and the number of iterations

(here set to 1 i.e., one-shot execution), whereas the return value is the updated model

(client model for client instances and aggregated model for the server instance). Step

6 (lines 17-18): unpack the model coefficients b0 and b1, and call the function evalu-

ate – the return values are the predictions y_pred and the achieved accuracy. Step 7

(lines 19-21): if the instance is the server, call the function main phase 3 function

seq_horizontal_federated to get the referent output values, and assert that they are

equal with the output values produced by this PTB-FLA code. Step 8 (line 22): de-

stroy the object ptb i.e., shutdown the system.

The correctness of the output code for phase 4 was automatically tested at runtime

by the assert in line 21, which compares the results (b0, and b1) of the phase 4 output

code with the results of the phase 2 output code.

This concludes the development of the centralized logistic regression FLA.

3.2 Decentralized Logistic Regression

Once we developed a centralized FLA for the system with n instances (where n > 2),

developing its decentralized counterpart for the system with (n – 1) instances (note

that the server is excluded because it’s not needed anymore), which has the same

semantics (i.e., it is producing the same output data), is rather straightforward. Obvi-

ously, since in the decentralized system, the server is excluded, the remaining peers

need to do some extra work to get the same result that the missing server was produc-

ing. What is the missing part?

To see the answer, let’s focus on the third phase of the generic decentralized FLA,

where each peer receives (n – 2) updated models from its clients. When compared

with the third phase of the generic centralized FLA, where the server receives (n – 1)

updated models from its clients, we realize that one updated model is missing, and

that is the updated model of the peer (in the role of a server) itself. Therefore, the

server callback function first must update its local model by training it on its private

data (here we can reuse the centralized client callback function), add it at the end of

the received list of client models, and then aggregate all the client models, including

its own (here we can reuse the centralized server callback function).

This means that we can simply reuse the first three phase of the development pro-

cess we conducted for the decentralized logistic regression FLA, and then in the

fourth phase we need to write the new server callback function and adapt the main

function accordingly (see the next subsection on phase 4).

14

Phase 4. The output code for phase 4 (i.e., PTB-FLA code) comprises the main func-

tion ptb_fla_code_decentralized and the new server callback function

fl_decent_server_processing (see Table 5), as well as the supplementary functions

from phase 1 (in section 3.1) and the callback functions from phase 3 (in section 3.1)

of the previous CLR-FLA development.

Table 5. DLR-FLA phase 4 output code

01: ptb_fla_code_decentralized(noNodes, nodeId)

02: data = pd.read_csv("Social_Network_Ads.csv")

03: X_train, X_test, y_train, y_test = train_test_split(data['Age'],

 data['Purchased'], test_size=0.20, random_state=42)

04: X_train_0 = X_train.iloc[:160]

05: X_train_1 = X_train.iloc[160:]

06: y_train_0 = y_train[:160]

07: y_train_1 = y_train[160:]

08: ptb = PtbFla(noNodes, nodeId)

09: lData = [0., 0.]

10: if nodeId == 0

11: pData = [X_train_0, y_train_0]

12: else

13: pData = [X_train_1, y_train_1]

14: ret = ptb.fl_decentralized(fl_decent_server_processing,

 fl_cent_client_processing, lData, pData, 1)

15: b0 = ret[0]; b1 = ret[1]

16: y_pred, accuracy = evaluate(X_test, y_test, b0, b1)

17: refbs = seq_horizontal_federated()

18: assert refbs[0] == b0 and refbs[1] == b1

19: del ptb

20: fl_decent_server_processing(privateData, msgs)

21: myData = fl_cent_client_processing(None, privateData, [0., 0.])

22: msgs2 = msgs + [myData]

23: myData2 = fl_cent_server_processing(None, msgs2)

24: return myData2

The main function ptb_fla_code_decentralized was constructed from the function

ptb_fla_code_centralized (section 3.1) by the following four changes: (1) the argu-

ment flSrvId is deleted (see lines 1 and 8), (2) the preparation of private data is re-

duced to preparation for two instances (lines 10-13), (3) the server callback function

is changed to fl_decent_server_processing (line 14), and in contrast to the centralized

FLA the assert must be satisfied for both instances (line 18).

The function fl_decent_server_processing takes the following three steps: (1) call

the centralized client callback function fl_cent_client_processing – the return value is

the local model that was updated by training on the private data (line 21), (2) add the

updated local model at the end of the list of all client models (line 22), (3) call the

centralized server callback function fl_cent_server_processing – the return value is

the aggregated model (line 23), and (4) return the aggregated model (line 24).

The correctness of the output code for phase 4 was automatically tested at runtime

by the assert in line 18, which compares the results (b0, and b1) of the phase 4 output

code with the results of the phase 2 output code.

4 Conclusions

In this paper, we present the PTB-FLA development paradigm. The paradigm com-

prises the four phases dubbed by the code they produce: (1) the sequential code, (2)

the federated sequential code, (3) the federated sequential code with callbacks, and (4)

the PTB-FLA code. The PTB-FLA development paradigm is validated and illustrated

in the case study on logistic regression, where both centralized and decentralized al-

gorithms are developed.

The main original contributions of this paper are: (1) the PTB-FLA development

paradigm, (2) the case study on logistic regression, and (3) the developed centralized

and decentralized logistic regression FLAs.

The main advantages of PTB-FLA development paradigm are: (1) it aids the de-

velopment of FLAs that are correct by construction and (2) it makes the development

of FLAs easier. These advantages are achieved by devising the PTB-FLA develop-

ment paradigm as a series of four program code transformation phases, where each

phase produces code semantically equivalent to its input code, and for each develop-

ment phase its main steps are clearly described.

The potential limitations of the PTB-FLA development paradigm may depend on

developers’ subjective development experience: (1) for some developers it may be too

restrictive, whereas (2) for some other developers it may be too informal. This is be-

cause we tried to create a paradigm that is more disciplined than the pure ad hoc ap-

proach but not too rigid to let it be attractive and creative. Yet another limitation of

the PTB-FLA development paradigm is that it is still in its infancy, so it still has not

been tested during the development of a real application.

The main directions of future work are: (1) use the PTB-FLA development para-

digm to develop other more complex FLAs and real applications, (2) continue im-

proving the PTB-FLA development paradigm based on the feedback from developing

more complex FLAs and real applications, and (3) research adapting and specifying

the PTB-FLA development paradigm for AI tools, such as GPT-4, ChatGPT, and

alike.

Acknowledgements. 🇪🇺 Funded by the European Union (TaRDIS, 101093006).

Views and opinions expressed are however those of the author(s) only and do not

necessarily reflect those of the European Union. Neither the European Union nor the

granting authority can be held responsible for them.

References

1. McMahan, H.B., Moore, E., Ramage, D., Hampson, S., Arcas, B. A.: Communication-

Efficient Learning of Deep Networks from Decentralized Data. In 20th International Con-

ference on Artificial Intelligence and Statistics, volume 54, pp. 1273-1282. PMLR (2017).

2. TensorFlow Federated: Machine Learning on Decentralized Data,

https://www.tensorflow.org/federated, last accessed 2023/09/01.

16

3. Federated Learning from Research to Practice,

https://www.pdl.cmu.edu/SDI/2019/slides/2019-09-05Federated%20Learning.pdf, last ac-

cessed 2023/09/01.

4. Kholod, I., Yanaki, E., Fomichev, D., Shalugin, E., Novikova, E., Filippov, E., Nordlund,

M.: Open-Source Federated Learning Frameworks for IoT: A Comparative Review and

Analysis. Sensors 21(167), 1-22 (2021). doi: 10.3390/s21010167

5. Popovic, M., Popovic, M., Kastelan, I., Djukic, M., Ghilezan, S.: A Simple Python Testbed

for Federated Learning Algorithms. In: 2023 Zooming Innovation in Consumer Technolo-

gies Conference, pp. 148-153. IEEE Xplore, Piscataway, New Jersey, USA (2023), doi:

10.1109/ZINC58345.2023.10173859

6. Bonawitz, K., Ivanov, V., Kreuter, B., Marcedone, A., McMahan, H.B., Patel, S., Ramage,

D., Segal, A., Seth, K.: Practical Secure Aggregation for Privacy-Preserving Machine

Learning. In: 2017 ACM SIGSAC Conference on Computer and Communications Securi-

ty, pp. 1175–1191. ACM, New York, NY (2017). doi: 10.1145/3133956.3133982

7. Konecny, J., McMahan, H.B., Yu, F.X., Suresh, A.T., Bacon, D., Richtarik, P.: Federated

Learning: Strategies for Improving Communication Efficiency. arXiv, Cornell University

(2017). https://arxiv.org/abs/1610.05492

8. Bonawitz, K., Kairouz, P., McMahan, B., Ramage, D.: Federated learning and privacy.

Communications of the ACM 65(4), 90–97 (2022). doi: 10.1145/3500240

9. Perino, D., Katevas, K., Lutu, A., Marin, E., Kourtellis, N.: Privacy-preserving AI for fu-

ture networks. Communications of the ACM 65(4), 52–53 (2022). doi: 10.1145/3512343

10. Ying, B., Yuan, K., Hu, H., Chen, Y., Yin, W.: BlueFog: Make Decentralized Algorithms

Practical for Optimization and Deep Learning. arXiv, Cornell University (2021).

https://arxiv.org/abs/2111.04287

11. Ying, B., Yuan, K., Chen, Y., Hu, H., Pan, P., Yin, W.: Exponential Graph is Provably Ef-

ficient for Decentralized Deep Training. arXiv, Cornell University (2021).

https://arxiv.org/abs/2110.13363

12. An Industrial Grade Federated Learning Framework, https://fate.fedai.org/, last accessed

2023/09/01.

13. An Open-Source Deep Learning Platform Originated from Industrial Practice,

https://www.paddlepaddle.org.cn/en, last accessed 2023/09/01.

14. A world where every good question is answered, https://www.openmined.org, last ac-

cessed 2023/09/01.

15. Privacy-Preserving Artificial Intelligence to advance humanity, from https://sherpa.ai, last

accessed 2023/09/01.

16. Deploy machine learning models on mobile and edge devices,

https://www.tensorflow.org/lite, last accessed 2023/09/01.

17. David, R., Duke, J., Jain, A., Reddi, V.J., Jeffries, N., Li, J., Kreeger, N., Nappier, I.,

Natraj, M., Regev, S., Rhodes, R., Wang, T., Warden, P.: TensorFlow Lite Micro: Embed-

ded Machine Learning on TinyML Systems. arXiv, Cornell University (2021).

https://arxiv.org/abs/2010.08678

18. PyTorch Mobile. End-to-end workflow from Training to Deployment for iOS and Android

mobile devices, https://pytorch.org/mobile/home/, last accessed 2023/09/01.

19. Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z.,

Gimelshein, N., Antiga, L., Desmaison, A., Köpf, A., Yang, E., DeVito, Z., Raison, M.,

Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S:. PyTorch: An Im-

perative Style, High-Performance Deep Learning Library. In: 33rd International Confer-

ence on Neural Information Processing Systems, Article 721, pp. 8026–8037. ACM, New

York, NY (2019). doi: 10.5555/3454287.3455008

https://dl.acm.org/doi

20. Luo, C., He, X., Zhan, J., Wang, L., Gao, W., Dai, J.: Comparison and Benchmarking of

AI Models and Frameworks on Mobile Devices. arXiv, Cornell University (2020).

https://arxiv.org/abs/2005.05085

21. Feraudo, A., Yadav, P., Safronov, V., Popescu, D.A., Mortier, R., Wang, S., Bellavista, P.,

Crowcroft, J.: CoLearn: Enabling Federated Learning in MUD-compliant IoT Edge Net-

works. In: 3rd International Workshop on Edge Systems, Analytics and Networking, pp.

25–30. ACM, New York, NY (2020). doi: 10.1145/3378679.3394528

22. Zhang, T., He, C., Ma, T., Gao, L., Ma, M., Avestimehr, S.: Federated Learning for Inter-

net of Things. In: 19th ACM Conference on Embedded Networked Sensor Systems, pp.

413–419. ACM, New York, NY (2021). doi: 10.1145/3485730.3493444

23. Shen, C., Xue, W.: An Experiment Study on Federated Learning Testbed. In: Zhang, Y.D.,

Senjyu, T., So-In, C., Joshi, A. (eds.) Smart Trends in Computing and Communications.

Lecture Notes in Networks and Systems, vol. 286, pp. 209–217. Springer, Singapore

(2022). doi: 10.1007/978-981-16-4016-2_20

24. Mattson, T.G., Sanders, B., Massingill, B.: Patterns for Parallel Programming. Addison-

Wesley, Massachusetts, USA (2008)

25. Logistic Regression,

https://colab.research.google.com/drive/1qmdfU8tzZ08D3O84qaD11Ffl9YuNUvlD, last

accessed 2023/09/01.

26. Cellamare, M., van Gestel, A.J., Alradhi, H., Martin, F., Moncada-Torres, A.: A Federated

Generalized Linear Model for Privacy-Preserving Analysis. Algorithms 15(243), pp. 1-12

(2022). doi:10.3390/a15070243

