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Abstract. Creating resilient machine learning (ML) systems has be-
come necessary to ensure production-ready ML systems that acquire
user confidence seamlessly. The quality of the input data and the model
highly influence the successful end-to-end testing in data-sensitive sys-
tems. However, the testing approaches of input data are not as system-
atic and are few compared to model testing. To address this gap, this
paper presents the Fault Injection for Undesirable Learning in input Data
(FIUL-Data) testing framework that tests the resilience of ML models
to multiple intentionally-triggered data faults. Data mutators explore
vulnerabilities of ML systems against the effects of different fault injec-
tions. The proposed framework is designed based on three main ideas:
The mutators are not random; one data mutator is applied at an in-
stance of time, and the selected ML models are optimized beforehand.
This paper evaluates the FIUL-Data framework using data from ana-
lytical chemistry, comprising retention time measurements of anti-sense
oligonucleotide. Empirical evaluation is carried out in a two-step process
in which the responses of selected ML models to data mutation are ana-
lyzed individually and then compared with each other. The results show
that the FIUL-Data framework allows the evaluation of the resilience
of ML models. In most experiments cases, ML models show higher re-
silience at larger training datasets, where gradient boost performed bet-
ter than support vector regression in smaller training sets. Overall, the
mean squared error metric is useful in evaluating the resilience of models
due to its higher sensitivity to data mutation.

Keywords: Mutation testing · Data mutation · Fault injection · Ma-
chine Learning Testing · Responsible AI · Chromatography data
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1 Introduction

The world is experiencing rapid evolution in using artificial intelligence and
machine learning (ML) in almost every domain. This trend has raised questions
about the resilience of ML systems to data faults, most importantly in safety-
critical applications such as autonomous driving, cyber security, and healthcare
[30]. In light of these concerns and the serious consequences of failure in ML
systems, testing methods have gained much attention in the research community
and industry [18]. Furthermore, the resilience of ML systems has become an
important requirement to gain users’ trust [9]. Given its unpredictable behavior,
testing ML systems is more complex than classical software since inspecting the
ML algorithm alone is not sufficient [2,20]. The behavior of the ML system does
not depend solely on the algorithm but also on the training and testing data,
the choice of hyperparameters, and the optimizer. All these factors impact the
performance of the system [23]. The influence of data on the performance of
the ML system is not negotiable. Therefore, performing tests to evaluate the
suitability of the data is equally critical to achieving a production-ready ML
system.

In the literature, various systematic testing methods are effective in testing
the ML model, such as mutation testing (MT) and black-box testing tools [19].
However, not as many systematic methods were investigated to evaluate the
training data as stated by Narayanan et al. [19]. Having an important impact on
the performance of the ML, major faults in the input data could lead to incorrect
outcomes by the system. In some cases, not faults, but drifts in the real-time
data lead to undesirable outcomes. Fault injection is one of these few available
methods that aim to intentionally inject faults into the data, as described by [23]
as data sensitive faults, in an attempt to change the behavior of the system [6].
The more an ML system is resilient to data-sensitive faults, the better a system
can learn from incomplete data and unexpected observations. Therefore, models
that have high resilience generally generalize better to far-from-perfect real-world
data.

ML systems based on supervised learning algorithms often assume the in-
put data is static. However, this assumption does not necessarily hold when
the system is deployed in the real world [11]. Therefore, unexpected events are
likely to occur and can cause risks to the performance of the ML system. But a
resilient ML system, as described in [28], has the capacity to absorb data fluc-
tuations without performance degradation. According to [28], a resilient system
can monitor, learn, anticipate, and respond to adversity. This means that the
system should be able to maintain good performance when the input data are
disrupted, to a certain extent. The sources of data disruption are many and could
be classified as natural, system-related, or human errors, and can also include
external factors [28]. The diversity in the types of faults raises questions such as
are some ML models more resilient to data faults than others and which faults
have the biggest influence?

Like any ML system, multiple fault sources can influence the data collected
from a chromatography system. Consistent records of data could be attributed to
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the performance of the chromatographic instruments, experimental conditions,
and other external factors. Such variations and errors are common in any real-
world application and lead to degradation in the performance of the ML system.
Therefore, there is a need for ML models that can predict under complicated un-
certainty, yet perform efficiently when used in decision-making [16]. To address
this gap, we present the Fault Injection for Undesirable Learning in input Data
(FIUL-Data) testing framework to evaluate the resilience of an ML system to
common faults. The design intends to introduce likely-occurring faults through
artificial mutators before applying the ML model. The proposed framework is
generalizable, explainable, feasible on a scale, and applicable in multiple domains.
The main ideas behind designing the FIUL-data framework are (1) the mutators
are not random; they are formulated based on previous knowledge about the
data, (2) it is a single fault application; so that at any instance of time only one
fault is applied, and (3) the ML models used in the evaluation phase are selected
based on their suitability to the dataset. FIUL-Data empirically validates the
resilience of ML systems by introducing data faults to the ML input data in
scenarios that might otherwise be rarely considered. FIUL-Data framework is
evaluated on a case study from the analytical chemistry domain. The data set
includes antisense oligonucleotide sequences (ASOs) and their experimentally
observed retention time (tR). These text-coded sequences are transformed into
numeric features before applying any ML system [31]. The data set is collected
through a sequence of chromatography experiments from the Chemistry Depart-
ment of Karlstad University. The evaluation of FIUL-Data consists of two steps;
first, each ML model is evaluated individually. In the second step, the models are
compared with each other to have a comparative view of the vulnerabilities of
each model against the different fault injections. We are mainly considering su-
pervised ML models in our case study. However, the proposed framework could
apply to other types of ML systems.

In this paper, we propose and evaluate the FIUL-Data framework usable in
multiple domains against likely occurring data faults. As a result, this paper
makes the following contributions:

– Propose FIUL-Data as a data-mutation-based framework integrated with
ML to evaluate the resilience of ML systems to data faults.

– Design and implement two data-level mutators applied to introduce likely-
occurring faults to ML input data.

– The proposed FIUL-Data framework is evaluated on a dataset from the
analytical chemistry field to demonstrate the usefulness of the framework in
a real-world application.

– Propose and perform a multi-metric evaluation of the FIUL-Data framework
to enable quantitative evaluation of the metrics and generation of insights.

The remainder of this paper is structured as follows: Section 2 summarizes
the relevant background concepts and lays out the necessary terminologies to
understand the paper. Section 3 details the research questions and the exper-
imental setup to apply and evaluate the proposed framework. The evaluation
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results from the use case and the answers to the research questions are pre-
sented in Section 4. Finally, Section 5 concludes the paper with a summary of
the findings.

2 Background

This section provides a selected overview of relevant MT definitions and appli-
cations in the literature.

2.1 ML in Chromatography Applications

Chromatography is an important separation method that is used in all chemistry
fields [5]. Chromatography is considered powerful in separating mixtures of com-
pounds even with similar physical properties due to the large number of parti-
tioning steps involved [5]. The output of the separation is gaussian-shaped peaks
for each eluted compound in the mixture. ML is commonly used in chromato-
graphic separation applications to predict experiments before they are conducted
in the laboratory. This is possible by predicting important parameters, such as
tR, which is the time a compound spends in the system from injection to elution.
One of the most important goals in chromatographic separation is to achieve a
sufficiently high resolution between the eluted peaks within a reasonable experi-
mental time and resources [13]. Therefore, optimizing the experiment conditions
to achieve this goal requires much effort. However, the optimization task can be
complicated and time-consuming, given the large space of experimental variables
and the possibilities of interaction among them [29]. The accurate performance
of ML predictive models allows analytical chemists to reduce the costly and time-
consuming experiments needed to achieve optimal separation conditions. In such
cases, peak resolutions or tR could be predicted as the output. Once the space
of chemical conditions is controlled, more efficient separation experiments can
be conducted in the laboratory. In the literature, various ML models have been
tested in this context, including artificial neural networks (ANN) and traditional
models such as in [4, 12,25], which have shown promising results.

Another important application of ML in chromatography is to use it to an-
alyze the chromatographic data that result from the experiments. Regardless of
the type of chromatography system, data analysis is time-consuming and often
requires manual human intervention [24]. Therefore, researchers actively investi-
gate the potential of ML to reduce human-dependent steps in the analysis stage
using mainly ANN, as in [3,22,24,27]. For example, [24] tested an approach based
on convolutional neural networks to automatically evaluate the modeled elution
profiles of the gas-chromatographic data. In [3], a multilayer neural network (NN)
was applied to predict the retention behavior of amino acids in reversed-phase
liquid chromatography. The authors concluded that NNs are powerful in model-
ing the influence of various gradient elution modes. ML offers great potential to
advance the separation tasks toward more efficient handling of chromatographic
data from collection to analysis. In this paper, we provide another example of
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the usefulness of ML with a focus on building more resilient separation pipelines
in chromatography.

2.2 Common Faults in Chromatography Data

The reliability of the data generated by chromatography experiments has been
investigated greatly in the literature. Although modern instruments used in lab-
oratories have user-friendly interfaces, some types of variation and errors are
inevitable [15]. Multiple approaches have been proposed to classify and quan-
tify the errors in an attempt to understand their influence on the certainty
of the measurements. In general, variations can be seen as person or system
caused. Guiochon et al. [1] discuss the different sources of errors and their in-
fluence on chromatographic measurements. Kuselman et al. [14] identify nine
human-related errors while performing experiments. The most common sources
of common systematic errors in chromatography were also investigated in [10].
The causes of systematic errors ranged from errors in sample handling to wrong
evaluation and interpretation of results. In the case of ASO chromatography
experiments, errors are reflected in the output data in the form of skewness
in the detected peaks, low signal-to-noise ratio, and high variation of the out-
come across replicates of the sample. The inevitability and recurrence of errors
in chromatography, demand handling before data are used for analysis or ML
purposes [8]. MT methods integrated with ML are one of the approaches used
to simulate likely-to-happen errors and study their influence on the performance
of the models.

2.3 Data Mutation

To ensure the systems work as intended in real but uncertain conditions, we must
understand and consider the faults in our input data [20]. There is no doubt that
different types of faults would have a different influence on the performance of the
ML system. Many approaches deal with the different faults, such as changing the
input data, changing the model, or building a resilient system to faults [20]. One
of the approaches to understand the influence of certain errors is the application
of designed artificial mutations to the input data.

Originally, MT is a popular software engineering (SE) technique widely used
in academia and industry [21]. The concept of MT is based on using artificial
faults for system testing purposes. In other words, MT for evaluation is used to
measure the effectiveness of a system in finding faults [32]. Traditionally, MT
application involved inserting individual faults into the software, but later ap-
proaches tested higher-order mutations in which multiple faults are injected at
once, which was shown to be expensive [7]. Although MT is a proven technique
in SE, it recently started gaining attention in the field of ML, specifically in the
subfield of deep learning (DL) [26]. However, MT for ML systems is still consid-
ered to be in the early stages [17]. The interest in adopting established methods
such as MT is triggered by the willingness to improve the trustworthiness of DL
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systems [26]. It should be noted that by concept, MT has been most commonly
used to test models, but rarely at the data level, which is our paper’s focus.

Motivated by the success of MT in classical software systems and recently
in DL models, the FIUL-Data framework applies mutation at the data level.
In the literature, the tools used to evaluate the input data for ML are limited
[19]. To address this gap, we propose the FIUL-Data framework to assess the
responsiveness of multiple ML models to input data mutations. The framework
is applied to ASO chromatographic data where the designed data mutations
represent common faults in the field.

3 Methodology

In this section, we describe the systematic approach followed to study the re-
silience of ML models to data faults, including the specific research questions that
guided the experiments. The dataset used to evaluate the FIUL-Data framework
and the methods used for the evaluation are also described in detail.

3.1 Research Questions

This paper aims to answer the following research questions (RQs):

– RQ1: How does the reduction in training data influence the re-
silience of the ML model?

– RQ2: How does the selection of the size of a certain class of data
influence the resilience of the ML model?

– RQ3: How to evaluate the resilience of different ML models in
response to different data mutators?

3.2 Use Case Dataset

The data used in our use case are obtained by means of a chromatography
experiment aimed at separating impurities from an ASO compound. The ex-
periments were carried out under two different chemical conditions, therefore
resulting in two different datasets G1 and G3. During the separation process,
an aqueous-organic mixture is continuously pumped into the chromatography
column, where the amount of organic solvent in the mixture increases over time
(gradient time); this is called the gradient. The first dataset (G1) is collected
from experiments in which the gradient equals 11 minutes. The second dataset
(G3) is collected at a gradient of 44 minutes. The change in gradient results in
a new tR for each unique compound entering the chromatography system. At
higher gradients, ASO compounds are retained longer in the system. Therefore,
data collected at higher gradients are considered more sensitive to slight changes
in experimental conditions.

In chemistry, the ASO compound is represented in a combination of four
different nucleotide bases, adenine (A), thymine (T), cytosine (C), and guanine
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(G), forming a sequence. In this case study, non-phosphorothioated known as
native and phosphorothioated ASO sequences are collected in a dataset with
their respective tR as the target variable. The tR is always recorded as the
separated compounds individually exit the system.

After pre-processing the datasets and removing the incomplete records, the
clean G1 dataset included 876 data points and G3 dataset had 870 data points.
Both datasets have compounds that do not include sulfur (non- phosphoroth-
ioated), partially phosphorothioated compounds, and others fully phosphoroth-
ioated. Both datasets have more than 79% of the compounds partially or fully
phosphorothioated. As part of the data preparation methods before applying
ML, the nucleotide sequences are encoded into numeric values, referred to as
features, such as the frequency of each nucleotide and di-nucleotide (ordered
and unordered) in a sequence, the total length, and the number of sulfur atoms
present. Figure 1 shows the frequency range for the encoded features in the G3
training dataset. The same encoding system is applied to the testing data. As
seen in Figure 1, the ASO sequence can reach 20 nucleotides long, whereas, the
number of sulfur atoms in the sequences varies between 0 and 19 atoms. The
occurrence of A, C, T, and G nucleotide bases is relatively similar, while, in
di-nucleotide occurrence, TT and CC are the most frequent.

Fa Ft Fc Fg Len Fsulf AA AT AG AC TA TT TG TC GA GT GG GC CA CT CG CC
Feature
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Train set feature excluding di-occurance, subset size 90

Fig. 1: Frequency of features in G3 training data. The features representing unordered
di-nucleotides were removed for visualization purposes.

3.3 The FIUL-Data Framework

The FIUL-Data framework is built on four key phases, as illustrated in Figure
2. In the first phase, the data mutators are designed and coded. The operation
of the data mutators is application-specific and relies on the common faults en-
countered during implementation. The execution of data mutators comes next,
where pre-trained ML models and the programmed data mutators are imported
and performed on clean data. Once the mutated data are ready, the ML cycle
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starts, including typical training and evaluation of the models based on con-
sciously selected metrics. The results are integrated into useful visualizations in
the last phase, and insights are concluded. In our case study, Python language
is selected to implement the data mutators’ functions and run the experiments.

Mutation 
Design

Mutation 
Code 

Generation

Mutation Execution

Data Mutator

Pre-trained 
model

Data Mutator Generator

Importer 
(Python)

Pre-
processing

Dataset

Machine Learning

Train-Test Split

Model Training

Model 
Evaluation

Results Analysis

Visualisations

Evaluation 
Metrics

Fig. 2: Conceptual illustration of the FIUL-Data framework

The application of FIUL-Data framework consists of two general-purpose
data mutators, the reduce_data_mutator and the select_data_mutator. The
operation of both data mutators is described in detail in the following section.
We note that the same data mutators are expected to behave differently in
different applications. In this application, 10% of the data is repeatedly removed
in every iteration until only 10% of the original data is left. The selected step-
size induces small changes in the data that allows to record results and visualize
behavioral trends from 10 data mutation iterations. In other words, the 10%
iterative variation ensures that we have a sufficient number of instances from
small yet sensitive changes that allows to monitor the behavior of the models.
We note that the records in the dataset are randomly shuffled before applying the
FIUL-Data framework. This is an important step, as compounds and impurities
could share similar characteristics in the case of chromatography data. Data
shuffling ensures representative distribution of the different compounds in the
partitions of the training and testing sets.

– Reduce_data_mutator The reduce_data_mutator reduces the training
data by 10% in each iteration. In some applications, where collecting data
for ML is expensive and time-consuming, it is critical to know the size of
training data that is sufficient for a good-performing model. Large data are
a relative term and depend on the application being studied. In the case of
chromatography data, laboratory experiments are expensive, the products
used to perform the experiments are costly, and the experiments run for a
long time. Therefore, collecting sufficient data could significantly reduce time
and cost burdens. In our experiment, the data is first split into train and test
datasets, 80% and 20%, respectively. The testing data remains unchanged,
while the training data is reduced iteratively by 10%. For every iteration,
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the model is fitted to the training data and tR is predicted on the unseen
data. At the end of each iteration, the coefficient of determination (R2) train,
R2 test, and the mean squared error (MSE) are recorded. The design and
operation of reduce_data_mutator is illustrated in Figure 3.

– Select_data_mutator The select_data_mutator iteratively reduces a
certain class in the data. In this case, the records of the compounds that
lost one or more sulfur atoms from their sequence are removed at a rate
of 10% per iteration, while the other class (native compounds) remains un-
changed. However, the percentage of the target class in the training and
testing data after splitting is controlled for consistency purposes. The sulfur
atom(s) loss is denoted by "-P=O" at the end of an ASO sequence. The
models are then fitted to the new version of the training data and evaluated
on the testing data. The operation of select_data_mutator is illustrated
in Figure 4. This mutator aims to reveal the influence of a certain class of
data on the performance of the ML system. In this case study, the class of
sequences having a -P=O suffix is subject to data mutation.

Tr1 Tr2 Tr3 Tr4 Tr7 Tr8Tr6Tr5 Tr10Tr9

Tr1 Tr2 Tr3 Tr4 Tr7 Tr8Tr6Tr5 Tr10Tr9

Tr1 Tr2 Tr3 Tr4 Tr7 Tr8Tr6Tr5 Tr10Tr9

Tr1 Tr2 Tr3 Tr4 Tr7 Tr8Tr6Tr5 Tr10Tr9

Data remaining in train data

Data removed from train data

Shuffled train data partitions

. 

. 

.
Repeat application of reduce_data mutator 

Encode

Training 


data

Model

Training


And

Predicting

Plot 

results 

Test data

Machine Learning

Fig. 3: The operation of reduce_data_mutator

4 Results and Analysis

After implementing the reduce_data_mutator and the select_data_mutator
functions in a Python (3.9) supported framework, the G1 and G3 datasets along
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Native Compounds Data

Data selected for ML application

P Shuffled phosphorothioated compounds data

Shuffled native compounds data

P1 P2 P3 P4 P7 P8P6P5 P10P9
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P1 P2 P3 P4 P7 P8P6P5 P10P9

. 
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.
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(Train/Test) 
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Train/Test 
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and
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Fig. 4: The operation of select_data_mutator

with the corresponding pre-trained and hypertuned ML models, were imported.
Then, the FIUL-Data framework was applied to both datasets, where the perfor-
mances of the Gradient boost(GB) and support vector regression (SVR) models
in response to the type of fault injected were compared. The evaluation metrics
used in monitoring the performance of individual models and when comparing
models to each other were the MSE, the R2 train, and the R2 test. The MSE
is chosen to observe the variation in the average squared difference between the
predicted values and the observed values of tR.

4.1 Effect on G1 Dataset

In Figure 6, the reduce_data_mutator is applied to the G1 dataset at a de-
creasing rate of 10% in each iteration. For each of the mutation iterations, the
accuracy of the train and the test are recorded in addition to the MSE values.
The performance of the SVR and GB models on G1 data yields relatively good
results. The accuracy on unseen data for the GB model ranges from 0.80 to 0.82,
showing relatively stable performance against reducing the size of the training
data. For the SVR model, the R2 test remained relatively stable until 60% of the
training data were removed, and the performance began to degrade, reaching a
minimum R2 test of 0.74. Both models were shown to generalize reasonably well
to unseen testing data when the training data is relatively large; however, GB
performed better with a smaller training datasets. The same trend applies to
MSE, which increased significantly for the SVR model with decreasing training
data.
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Fig. 6: The application of reduce_data_mutator in G1 dataset using SVR and GB
models. Maximum and Minimum values are annotated.

The results of the application of select_data_mutator to input data are
shown in Figure 8. For the GB model, we can observe that the highest R2 test
is achieved with a 30% (0.98) subset size of the -P=O class. The R2 test ranges
from 0.86 to 0.98 and the graph shows a trend of increasing R2 test with a
decrease in the subset size of the -P=O data class. The GB and SVR mod-
els performed relatively similarly, with GB showing slightly better performance
across iterations. However, high fluctuations are observed in the performance of
both models in the case of select_data_mutator. The same trends are observed
in the MSE values, ranging from 0.017 to 0.203 in GB and 0.018 to 0.029 in
SVR. MSE is a measurement of error, so the lower the MSE value, the better
the performance of the model. Both models achieved the lowest performance at
the sizes of the subsets 90% and 30% of the -P=O class.
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Fig. 8: The application of select_data_mutator in G1 dataset using SVR and GB
models. Maximum and Minimum values are annotated.
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4.2 Effect on G3 Dataset

Across both mutation applications and in almost all iterations, GB outperformed
SVR as shown in the MSE trend line in Figures 10 and 12. Starting with the
results of reduce_data_mutator, both GB and SVR models showed relatively
high performance on unseen data, with the R2 test reaching a maximum value
of 0.92 and 0.91 respectively. The R2 train for both models is consistently high,
indicating effective learning during the training process. After 60% of the train-
ing data is reduced, both models start to show over-fitting behavior where the
training performance is exceptionally high, unlike the degrading R2 test values.
The R2 test in both models remains stable until 70% of the training data is
removed, where the R2 test begins to show a downward trend. This trend is also
reflected in the behavior of MSE, where it first shows a consistent trend, then a
significant increase is observed after the 7th iteration of the data mutation.
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Fig. 10: The application of reduce_data_mutator in G3 dataset using SVR and GB
models. Maximum and Minimum values are annotated.
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Fig. 12: The application of select_data_mutator in G3 dataset using SVR and GB
models. Maximum and Minimum values are annotated.
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Figure 12 illustrates the results of the application of the select_data_mutator
in G3 dataset. The values of R2 train and R2 test in the GB and SVR models
are relatively similar and show stable behavior. However, a significant decrease
in MSE is observed after the 2nd iteration, reaching 1.31 and 0.9 in SVR and
GB, respectively. Another steep decline is observed after the 6th iteration where
the error value decreases by 79.7% and 73.7% in SVR and GB, respectively.

4.3 Effect Analysis

For a coherent comparison of the results among data mutators and models, the
fluctuation trends in the R2 test and the MSE values are visualized in Figures 14,
16. Section 4.3 is structured to answer the RQs 1-3 presented in Section 3.1
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Fig. 14: Reduce_data_mutator comparison results in G1 and G3 datasets. Iterations
of data mutation is on x-axis, and relative change in values of R2 test and MSE on
y-axis.

RQ1: How does the reduction in training data influence the resilience
of the ML model?

Despite some similarities in the behavior of GB and SVR, in both datasets G1
and G3, GB performed better and showed greater resilience to the reduction in
the mutation of the training data. The highest R2 test and lowest MSE were
attained at the 6th iteration indicating that, for ASOs data, collecting a large
training dataset does not necessarily improve the performance of the ML model.
In this case, 30% of the available data were sufficient to achieve the best perfor-
mance.

In the case of G3 dataset, which is a more noisy and volatile dataset, the
GB model showed high resilience in the predicted R2 test; however, after the 5th

iteration, the MSE fluctuations recorded slightly higher changes. Both models
performed closely until the 5th iteration, where 50% of the training data was
removed. In subsequent iterations, the models showed an increase in MSE and
a spiking pattern in the case of the SVR model, as shown in 14. The obtained
results are expected since the ML model needs more data to be able to sustain
good performance in noisy data and generalize without fitting the noise.
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RQ2: How does the selection of the size of a certain class of data
influence the resilience of the ML model?

In response to the select_data_mutator both models seem to have identical
fluctuating behavior in the MSE values. The change in the R2 test values is nearly
negligible. As a result, in the G1 dataset, both models show similar unpredictable
performance in response to the decrease in one class of the data.

Despite the fluctuating performance in response to the reduction of a specific
class from the ASOs data, GB model showed slightly better resilience corre-
sponding to the MSE pattern across iterations in G3 data. The resilience of the
models during the first four iterations shows relatively stable behavior, contrary
to smaller datasets.

RQ3: How to evaluate the resilience of different ML models in
response to different data mutators?

The fluctuations in MSE values in response to the reduce_ and select_data_
mutators were more significant than that of the R2 test as shown in Figure
14 and Figure 16. Therefore, MSE shows higher sensitivity to data mutation
changes compared to other investigated metrics.
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Fig. 16: Select_data_mutator comparison results in G1 and G3 datasets. Iterations of
data mutation is on x-axis, and relative change in values of R2 test and MSE on y-axis.

5 Conclusion

To test the resilience of ML models to multiple intentionally triggered faults,
we present a Fault Injection for Undesirable Learning in the input data (FIUL-
Data) testing framework. The proposed framework is evaluated on a case study
of ASOs data where the performance of GB and SVR models is compared for
each data mutator. In response to reduce_data_mutator, both models show rela-
tively high resilience in larger datasets with GB outperforming SVR. We observe
that 30% of the available data were sufficient to achieve the best performance.
Regarding the second type of mutation, the models show greater resilience in
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the G3 dataset with a decreasing trend of MSE compared to G1, which had
unpredictable performance. This shows that when the size of the -P=O data is
smaller, an ML model performs better. The highest R2 test and lowest MSE were
achieved at the sixth iteration of the reduced data mutation. Thus in the case
of ASOs data, collecting a large training dataset does not necessarily improve
the performance of the ML model. Regarding the evaluation metrics, MSE is
considered as a sensitive metric since small data mutation significantly changed
the MSE behavior. Therefore, we recommend monitoring the MSE metric when
testing the resilience of ML models to data mutations.

For generalization purposes, the FIUL-Data framework could apply to any
ML system where the researcher has pre-trained models and can define data
mutators. The flexibility of the proposed framework comes from the ability to
customize multiple steps depending on the application under study. The FIUL-
Data framework can be used in many interesting applications, such as studying
how a trained model responds to different kinds of data faults, quantifying and
evaluating the trade-off between model resilience and prediction accuracy, and
investigating tuning models based on the type of fault in the data.

6 Threats to Validity

External Validity

In any research, generalization of results is important to contribute to the field
of study. Despite the application of FIUL-Data on a use case from the analytical
chemistry field, the general and flexible design of the proposed framework allows
its application in many domains. At every stage of the framework, the user
could customize the steps to suit the use case. For example, the data mutators
designed in this paper could be modified as the user sees convenient. The ML
models applied were trained and optimized for these ASOs datasets; in other
applications, other ML models could be studied and compared.

Reproducibility of Results

To ensure the reproducibility of the results, we provide a detailed description
of the methodology and the experimental setup. The controlled random split of
the train and test sets supports reproducibility.

Selection of Datasets

The evaluation results of the FIUL-Data framework depend on the datasets
used. The datasets are generated based on specific and controlled experiments
conducted in the Chemistry Department of Karlstad University. Therefore, the
ASO compounds are limited to the sequences purchased for the purpose of the
experiment. This kind of data has a special characteristic: up to 3 compounds
could be derivatives from the same original compound sequence. Therefore, an
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ASO compound and the derivative compounds resulting from the separation pro-
cess share similar characteristics, such as phosphorothioation and the frequency
of nucleotide bases in the sequence. Since these characteristics are transformed
into features, the underlying similarity could impact the models’ performance
during the mutation process despite the data’s shuffling and random split before
the ML application.
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