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Abstract. We propose a test-case generation method for testing cyber-
physical systems by using learning and statistical model checking. We
use timed game automata for modelling. Different from other studies, we
construct the model from the environment’s perspective. After building
the model, we synthesize policies for different kinds of environments by
using reinforcement learning in Uppaal and parse the policies for test-
case generation. Statistical model checking enables us to analyse the test
cases for finding the ones that are more likely to detect bugs.

1 Introduction

Cyber-physical systems (CPS) are becoming pervasive in modern society. Such
systems are not pure software or hardware but consist of cyber components
(i.e., software controllers) and physical components. With the development of
artificial intelligence, autonomous systems, a recent example of CPS, are be-
coming more and more realistic. Such systems, e.g., self-driving cars, run au-
tonomously by perceiving the environment via sensors, making decisions via
controlling software and interacting with the environment, such as moving and
carrying goods. CPS are often designed to accomplish specific tasks that are
repetitive and tedious for humans. On some occasions, CPS have to work along-
side humans, such as on construction sites. In this case, the safety guaran-
tee of CPS are crucial as a subtle fault in the system can lead to casualties.
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Figure 1 depicts an exam-
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tonomous quarry. The quarry
contains various autonomous
CPS such as trucks and wheel
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Fig. 1. An example of CPS: an autonomous quarry porting stones in a quarry,
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where wheel loaders dig and load stones, and trucks transport stones. First,
the wheel loaders need to move to stone piles, dig stones, and load them into
trucks. Then, the trucks carry on to transport the stones to the primary crush-
ers, where stones are crushed into coarse fractions before they are carried to the
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secondary crushers. When working in the quarry, the CPS must transport a cer-
tain amount of stones within 24h to keep a high level of productivity. They also
must avoid obstacles such as rocks and other machines and visit the charging
point periodically. To achieve the goal, the CPS must be able to find safe tra-
jectories, track the trajectories closely to avoid obstacles and be ready to handle
unexpected situations, such as animals suddenly appearing in the field.

When testing such systems, knowing whether the control software is func-
tioning correctly is not enough. For example, when a wheel loader is putting
stones in a truck, even if its controller sends the correct signals to the arm and
bucket, the collaboration may still fail because the truck, which is part of the
environment from the wheel loader’s perspective, may be parking at the wrong
position or turning to a wrong orientation. Therefore, testing must consider not
only the system itself but also its working environment. Additionally, the wheel
loader must be unloading stones preciously at the right moment when the truck’s
position is under its bucket. Hence, the correctness of the system depends on its
own functions, the working environment, and the temporal order and timing of
performing actions.

Another factor that makes the problem even more difficult is that the environ-
ment can be uncertain. In the example of the autonomous quarry, all machines
are collaborating, so we can assume the environment to be friendly, which means
every system is working toward the same goal. However, in some situations, the
environment is neutral or even antagonistic. For example, from a self-driving
car’s perspective, pedestrians and other drivers are hard to predict. Some of
them are friendly but some of them are aggressive, e.g., suddenly turning their
direction without using the indicator. To test CPS working in such an environ-
ment, we need to cover all the possible situations so that the system is ready for
emergencies. However, the environment is hard to model, and some even contain
rare events that are very unlikely to happen but once they appear, accidents
occur. In summary, testing such systems is extremely difficult and we need to
consider not only the system but also the environment.

In this paper, we propose a method that uses reinforcement learning [9] to
train various traffic agents such that the combination of their behaviour can form
different types of environments. Based on the design of the reward function for
reinforcement learning and the primitive behaviours of the environment, we can
train the environment to behave in different ways, and the training is carried out
in Uppaal Stratego! [4]. The tool enables us to not only perform the training
but also verify the results by using its statistical model checker (SMC) [3]. The
trained environment provides the test cases for the CPS and we use the quanti-
tative answers of verification to evaluate the quality of the generated test cases.
Most importantly, as the modelling, training, and verification are all done by
using formal methods, the unreliable results of reinforcement learning are now
strengthened by the rigour of formal methods, and the automatically generated
test cases can be used for finding sophisticated bugs, like the ones concerning

! Uppaal Stratego is now integrated into Uppaal 5: uppaal.org.
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the temporal order of task execution and the timing constraints, which is not
achievable by other automatic testing techniques, such as fuzzing [8].

2 Test-Case Generation by Learning in Uppaal

In this section, we introduce the method for the generation of test cases for cyber-
physical systems. In this method, we use the modelling language timed game au-
tomata to build the model of CPS and environment. Timed game automata (TG)
are special timed automata (TA). The latter is finite-state automata extended
with real-valued variables that increase at the same rate one [1]. TG further
extends TA by partitioning actions into controllable and uncontrollable ones.

Figure 2 depicts an example of TG, in which solid ar-
rows represent controllable actions of the system and dot-
ted arrows are uncontrollable actions of the environment.
In Uppaal, circles are called locations and arrows are called
edges, whose formal definitions are in the literature [4].
However, readers are not required to understand these con-
cepts for reading this paper. Intuitively, when the TG ex-
ample is at location LO, it has three options of controllable
actions. Two are explicit, that is, going to location L1 and
going to location L2. The third option is waiting at LO un-
til an uncontrollable action takes place, which is implicit as it is shown in the
automaton. In Fig. 2, since there is no uncontrollable action at location LO, to
choose to wait there means to stay at LO for an unbounded time. At location
L1, the uncontrollable actions may lead the model back to LO or further to L2,
whereas at location L2, there is only one uncontrollable action getting back to
LO. Policy synthesis means calculating a set of state-action pairs that shows the
TG which controllable actions to choose at each of the states such that the model
satisfies some properties, e.g., eventually coming back to the initial location LO
within two steps or five time units.

TG have been applied in many real-world case studies [5][2][7]. In these stud-
ies, CPS are modelled as TG where controllable actions belong to the system and
uncontrollable actions belong to the environment. Then they use reinforcement
learning in Uppaal to synthesize policies for guiding the controllable actions of
the system and analyse the results by using SMC or exhaustive model check-
ing. In this paper, we construct the model in the opposite way. We model the
environment’s behaviour as controllable actions and the system’s behaviour as
uncontrollable actions. Then we use reinforcement learning to synthesize poli-
cies for the environment such that it knows how to win the game. If we switch
the controllable and uncontrollable actions in the TG example and train an un-
friendly environment, the resulting policy could tell the environment to go to
location L2 when the model is at L1, which makes the system lose the game, i.e.,
coming back to LO within two steps.

Fig. 2. TG example
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Fig. 3. The process of test-case generation, gome of them are bad runs that are
adapted from the literature [6]. abandoned for learning. After a cer-
tain amount of learning episodes, the policy becomes stable and we generate test
cases, which represent the environment’s behaviour. Further, we can use SMC
in Uppaal to analyse those test cases for finding the ones that are more likely to
detect bugs in the CPS.

In summary, our method is able to train different kinds of environments,

which is crucial for testing CPS. Although the training is via reinforcement
learning, because of the formal techniques in our method, we can generate test
cases that are proven to be more likely to detect bugs in the systems, and the
bugs can be sophisticated such as temporal-logic-based ones.
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