
Formalization and Verification of MQTT-SN
Communication Using CSP

Wei Lin , Sini Chen, Huibiao Zhu[0000−0002−0214−8565] (B)

Shanghai Key Laboratory of Trustworthy Computing,
East China Normal University, Shanghai, China

hbzhu@sei.ecnu.edu.cn

Abstract. The MQTT-SN protocol is a lightweight version of the MQTT
protocol and is customized for Wireless Sensor Networks (WSN). It re-
moves the need for the underlying protocol to provide ordered and re-
liable connections during transmission, making it ideal for sensors in
WSN with extremely limited computing power and resources. Due to
the widespread use of WSN in various areas, the MQTT-SN protocol
has promising application prospects. Furthermore, security is crucial for
MQTT-SN, as sensor nodes applying this protocol are often deployed
in uncontrolled wireless environments and are vulnerable to a variety of
external security threats.
To ensure the security of the MQTT-SN protocol without compromising
its simplicity, we introduce the ChaCha20-Poly1305 cryptographic au-
thentication algorithm. In this paper, we formally model the MQTT-SN
communication system using Communicating Sequential Process (CSP)
and then verify seven properties of this model using Process Analysis
Toolkit (PAT), including deadlock freedom, divergence freedom, data
reachability, client security, gateway security, broker security, and data
leakage. According to the verification results in PAT, our model satisfies
all the properties above. Therefore, we can conclude that the MQTT-SN
protocol is secure with the introduction of ChaCha20-Poly1305.

Keywords: MQTT-SN Protocol · Communicating Sequential Process
(CSP) · Formal Methods · Modeling · Verification.

1 Introduction

Wireless sensor nodes in wireless sensor networks (WSN) are characterized by
their small size, ease of deployment, and low cost, making WSN widely used
in various fields, such as real-time intelligent monitoring and hazardous zone
operations [1, 2]. MQTT-SN protocol (Message Queuing Telemetry Transport
for Wireless Sensor Networks) is a topic-based publish-subscribe message trans-
mission protocol designed by IBM specifically for WSN [3]. It is a lightweight
and resource-efficient version of the MQTT protocol. Compared to the MQTT
protocol, which requires the underlying protocol to provide ordered and reliable
connections during data transmission, the MQTT-SN protocol eliminates these

2 W. Lin et al.

requirements. As a result, it is more suitable for sensor nodes in WSN with
extremely limited energy, computing capacity, storage capacity, and bandwidth.

In addition, wireless sensor nodes are usually deployed in uncontrollable and
open wireless environments where external security threats are inevitable [4]. At
the same time, sensitive data that is not intended to be accessed by outsiders
is often transmitted between wireless sensor nodes. Therefore, it is important
to investigate whether MQTT-SN communication can meet the reliability and
security requirements for data transmission in WSN.

Several studies have analyzed and tested the communication mechanism of
the MQTT-SN protocol. For example, Park et al. [5] standardized the generation,
distribution, and registration of security certificates. They then proposed a secure
MQTT-SN protocol communication architecture and tested the performance
of this architecture by building a simulation scenario. Roldán-Gómez et al. [6]
constructed an MQTT-SN protocol communication network and simulated a
series of attack behaviors to test the security of the protocol, comparing it with
communication in an environment without attacks. Diwan et al. [7] used Event-
B to propose an abstract model for the MQTT, MQTT-SN, and CoAP, and
verified their common properties.

It can be seen that most studies have conducted experiments by building
environments to simulate actual application scenarios or attacks, collecting ex-
perimental data, and analyzing the security of communication mechanisms based
on the data. However, experiments may be affected by many external factors.
Potential security issues in MQTT-SN communication may exist but have not
been discovered.

As the MQTT-SN protocol itself does not specify any security mechanism
to maintain its simplicity, this paper introduces a lightweight encryption and
authentication algorithm, ChaCha20-Poly1305 [8–10], as a security guarantee
for MQTT-SN. In this paper, we adopt a classical formal method, Communicat-
ing Sequential Process (CSP) [11], to construct models for entities involved in
MQTT-SN communication. We also introduce the intruder which can intercept
and fake messages to simulate real-world attacks. After that, we use the model
checking tool Process Analysis Toolkit (PAT) [12, 13] to verify seven properties
with the interference of the intruder, including deadlock freedom, divergence
freedom, data reachability, client security, gateway security, broker security, and
data leakage. The verification results show that the reliability and security of
the MQTT-SN protocol communication are ensured with the introduction of
ChaCha20-Poly1305.

The structure of this paper is organized as follows. Section 2 provides a brief
introduction to the communication mechanism of the MQTT-SN protocol, the
process algebra CSP, and the verification tool PAT. In section 3, we present the
detailed modeling process for the main entities in our model. In section 4, we
implement the constructed model using PAT and verify seven properties. Section
5 concludes the paper and gives a discussion about further improvement.

Formalization and Verification of MQTT-SN Communication Using CSP 3

2 Background

In this section, we start with the MQTT-SN architecture and a brief explanation
of its communication mechanism. We also give a brief introduction to CSP and
PAT.

2.1 MQTT-SN Architecture

The communication architecture of the MQTT-SN protocol is shown in Fig.1.
There are four main entities in MQTT-SN communication: clients, gateways,
forwarders, and brokers [3].

Fig. 1. MQTT-SN Architecture

– Clients: Clients can be divided into two types of roles, namely publishers
and subscribers. Clients who publish messages with topics are called pub-
lishers, while clients who subscribe to topics are called subscribers.

– Gateways: The communication between clients and gateways follows the
MQTT-SN protocol, while the communication between gateways and bro-
kers adopts the MQTT protocol. The main function of the gateway is to
adjust the format of data packets and forward them after protocol conver-
sion between MQTT-SN and MQTT. The gateway may be integrated into
the broker server or may exist independently. As the function of the gate-
way is independent of that of the broker, the gateway is assumed to be an
independent module in the subsequent modeling part.

– Forwarders: When the gateway cannot directly connect to the network
where the client is located, a forwarder is needed. The forwarder functions
basically the same as the gateway. Therefore, it is omitted for simplicity in
the subsequent modeling part.

– Brokers: All clients need to be connected to the broker via a gateway to
achieve topic-based message exchange, rather than communicating with each
other directly. The main function of brokers is to receive messages from
publishers and distribute these messages to the appropriate subscribers.

4 W. Lin et al.

2.2 Communication Mechanism of the MQTT-SN Protocol

The MQTT-SN protocol itself does not specify security mechanisms in order to
maintain its lightweight characteristics. Since a majority of the MQTT-SN clients
do not possess the ability to process and store complex data, there are higher
efficiency requirements. Therefore, this paper adopts ChaCha20-Poly1305 [8–10],
an efficient and lightweight cryptographic authentication algorithm, to ensure
the security of MQTT-SN communication.

Fig. 2. Mechanism of ChaCha20-Poly1305

The workflows of ChaCha20-Poly1305 are shown in Fig.2. The algorithm
requires the secret key K, the interference term N, the plaintext P, and the
associated data AD as input. As an assumption of this paper, the sender and the
receiver need to generate the sharedK, N, and AD that are kept confidential from
others using a secure exchange algorithm. The sender computes the ciphertext
C and the authentication tag T with the following two steps and sends them to
the receiver:

– Use K and N to produce a stream of bytes that is XORed with P. The result
of the XOR operation is C.

– Hash P with K, and then combine the hash value with N. The result is T.

After receiving these messages, the receiver needs to compute a new plaintext P
and a new authentication tag T’. Only when the T and the T’ are equal, the
receiver considers that the sender can pass the identity authentication.

The two most important entity behaviors in MQTT-SN communication are
publishing data with topics by publishers and subscribing to topics by sub-
scribers. Because these two behaviors result in similar interaction behaviors, we
will introduce the communication mechanism of MQTT-SN using the example
of a publisher publishing data with topics. The whole process of a publisher pub-
lishing data with topics mainly consists of four stages, as illustrated in Fig.3,

Formalization and Verification of MQTT-SN Communication Using CSP 5

including searching for a gateway, establishing a connection, registering a topic
name and publishing a message.

Fig. 3. MQTT-SN Communication Mechanism

In the first step, the publisher needs to find a gateway to assist in forwarding
its requests and messages. This involves the following steps:

1. The publisher broadcasts an encrypted control packet to all other devices in
the network to search for a gateway.

2. When a gateway receives the packet, it verifies the legitimacy of the pub-
lisher. If the publisher is legitimate, it replies to the publisher with a control
packet containing its own information to inform the client of its address.

3. After receiving the packet containing the gateway’s information, the client
also needs to confirm the legitimacy of the gateway’s identity. If the gateway
is legitimate, the publisher stops searching for a gateway.

MQTT-SN is based on the publish-subscribe pattern and requires a broker
to coordinate data between publishers and subscribers. In the second step, the
publisher needs to establish a connection with the broker through the gateway
to publish messages. The steps to establish a connection are as follows:

1. The client sends an encrypted packet requesting to set up a connection.
2. When the gateway receives the request, it verifies the legitimacy of the client.

If the client is legitimate, it forwards the request to the broker.
3. When the broker receives the request, it also needs to verify the legitimacy of

the gateway’s identity. If the gateway is legitimate, it replies with a response
message indicating that the broker agrees to establish a connection.

4. After the client successfully receives the response message agreeing to estab-
lish a connection, the connection is established successfully.

6 W. Lin et al.

In the third step, the publisher needs to initiate a registration process with
the gateway to obtain the TopicId corresponding to the topic name. When the
publisher publishes a message, it needs to use a fixed-length 2-byte topic id
(represented by TopicId) field to tell the broker which topic the message wants
to be published to. Using a shorter TopicId to represent the topic instead of
the topic name aims to reduce the length of the message, which is one of the
adjustments made by MQTT-SN. Here are the steps to follow:

1. The publisher sends an encrypted registration request packet to the gateway.
2. When the gateway receives the request, it first checks the legitimacy of the

publisher’s identity. If legitimate, it assigns a unique TopicId and includes
this TopicId in the response message to inform the client. The gateway
ensures that different topic names have different TopicIds.

3. If registration fails due to network or other unexpected reasons, the publisher
can initiate registration again.

The fourth step is that the publisher can send encrypted data to the gateway
using the TopicId successfully registered in the third step. The message is then
successfully published to the broker via the gateway. After the broker receives
the message, it replies with a confirmation packet. When the publisher receives
this confirmation packet, one successful publishing is complete.

2.3 CSP

Process algebra is a formal method that characterizes the communication be-
tween processes in concurrent systems. Communicating Sequential Process (CSP),
proposed by C.A.R. Hoare [11], is a type of process algebra, which has been suc-
cessfully applied to verify many parallel systems [14] and communication proto-
cols [15, 16]. Therefore, this paper uses CSP as the method to analyze and verify
the security of the MQTT-SN protocol communication mechanism.

The syntax and definitions of CSP statements are briefly introduced below,
where P and Q represent the processes, a means the atomic actions (also called
events), b stands for a boolean expression and c denotes the name of channel:

P,Q :: = SKIP | a → P | c ? v → P | c ! x → P |
P � b �Q | P 2 Q | P || Q | P ; Q

– SKIP represents that the process terminates successfully.
– a → P represents that the process performs the atomic action a first and

then executes the process P .
– c?v → P represents that the process first receives a value a through the

channel c, then assigns the value to the variable v, and finally continues to
execute the process P .

– c!x→ P represents that the process first sends a value x through the channel
c to another process, and then continues to execute the process P .

– P � b � Q represents that if b is true, process P is executed. Otherwise,
process Q is executed.

Formalization and Verification of MQTT-SN Communication Using CSP 7

– P 2 Q represents that it is uncertain whether process P or process Q is
executed and the choice is made by the external environment.

– P || Q represents that processes P and Q are executed concurrently.
– P ;Q represents that processes P and Q are executed in sequence.
– P [[a← b]] represents that the atomic event a in process P is replaced by

another atomic event b.
– P [|c|]Q represents that processes P and Q are executed in parallel through

the channels defined in set c.

3 Modeling MQTT-SN Communication

In this section, we formalize the MQTT-SN communication model based on the
mechanism presented in the previous section 2.2.

3.1 Sets, Messages and Channels

In order to formalize the behaviors of different entities in MQTT-SN, we first
need to define the sets, messages, and channels used in our model.

First, we give the definition of the sets. Entity set contains all entities during
message transmission, including the publishers, subscribers, brokers and gate-
ways. Req set denotes all request messages during the communication process,
such as topic registration requests, connection setup requests, etc. Prk set rep-
resents the set of private keys involved in communication transmission for im-
plementing encryption and authentication algorithms. Data set is composed of
plaintext data during communication. Content set contains all the other mes-
sages, which includes the Ack set for feedback messages, the Tag set for identity
authentication and the Identifier set for various identifiers.

Next, we define the following messages based on the sets described above:

MSG = MSGreq ∪MSGdata ∪MSGack

MSGreq = {msgreqa.b.E(k, t, req) | a, b ∈ Entity, k ∈ Prk,

t ∈ Tag, req ∈ Req}
MSGdata = {msgdataa.b.req.E(k, t, d) | a, b ∈ Entity, k ∈ Prk,

t ∈ Tag, req ∈ Req, d ∈ Data}
MSGack = {msgacka.b.E(k, t, ack), msgack1a.b.E(k, t, ack).id |

a, b ∈ Entity, ack ∈ Ack, id ∈ Identifier}

MSGreq represents the set of request messages used in the interaction process for
clients to find gateways and establish connections. MSGdata represents the set
of messages involving topic registration, data publishing, topic subscribing, and
data updating. MSGack represents all the confirmations and response messages.
MSG includes all the messages above.

Take one message msgack1a.b.E(k, t, ack).id as an example. It means that
entity a sends an acknowledgment message to entity b with its identifier id.

8 W. Lin et al.

E(k,t,ack) indicates that ack is encrypted with the shared private key k by
applying ChaCha20-Poly1305 algorithm and t is the generated tag value for
identity authentication.

Finally, we define two sets of channels to simulate communications between
entities. The set of channels used when there is no intruder is described as
COM PATH and it contains ComPP , ComBP , ComSS and ComBS. The
set of channels denoted as INTRUDER PATH is used when an intruder is
present and it contains FakeA, FakeB, FakeC, FakeD and FakeE.

3.2 Overall Modeling

Fig. 4. Publisher Model Fig. 5. Subscriber Model

Based on the communication model diagram for the publisher in Fig.4 and
for the subscriber in Fig.5, we define two models SystemP and SystemS. We
divide gateways into two categories: GatewayP to interact with the publishers
and GatewayS to interact with the subscribers.

SystemP = Pub [|COM PATH|]GatewayP [|COM PATH|]Broker

SystemS = Sub [|COM PATH|]GatewayS [|COM PATH|]Broker

System0 = SystemP [|COM PATH|]SystemS

SY STEM = System0 [|INTRUDER PATH|] Intruder

Then we formalize the MQTT-SN communication system without intruders
System0 by combining SystemP and SystemS. SYSTEM stands for the complete
system with the presence of intruders. In this paper, we assume that the intruders
are able to eavesdrop on messages sent through normal channels, and are also
capable of forging messages and sending them to other entities.

3.3 Publisher Modeling

It is the responsibility of the publishers to utilize gateways to transmit mes-
sages to the broker so that the broker can forward messages to other clients (i.e.
subscribers). As we mentioned before in section 2.2, the process of a publisher

Formalization and Verification of MQTT-SN Communication Using CSP 9

publishing data can be broken down into four main steps: searching for a gate-
way, establishing a connection, registering a topic id for each topic name and
publishing messages. Based on this, we give the following definition:

Pub0 = FindGWP ;Connect;TopicReg;MsgPub;Pub0

We define a recursive process Pub0 that executes FindGWP, Connect, TopicReg
and MsgPub in sequence, and finally executes itself. This definition indicates
that Pub0 can repeatedly execute itself so FindGWP, Connect, TopicReg and
MsgPub will be continuously executed, which is in line with real-world scenarios
where publishers can disconnect and reconnect to resume message publishing.

We define two special events to denote exception handling. We use fail to
indicate that the request was not processed successfully due to various reasons
while drop is adopted to represent that the response was sent by some invalid
entities and should be discarded.

FindGWP = ComPP !msgreqA.B.E(k, t, search)→
ComPP?msgack1B.A.E(k, t, ack).gwId→(SKIP� (ack == true)� (fail→ FindGWP))

� (DV(k, t′, E(k, t, ack))) �

(drop→ FindGWP)


Connect = ComPP !msgreqA.B.E(k, t, connect)→

T opicReg = ComPP !msgdataA.B.reg.E(k, t, name)→

MsgPub = ComPP !msgdataA.B.pub.E(k, t, data)→
ComPP?msgackB.A.E(k, t, ack)→(MsgPub� (ack == true)� (fail→MsgPub))

� (DV (k, t′, E(k, t, ack))) �

(drop→MsgPub)


2 ComPP !msgreqA.B.E(k, t, disconnect)→

ComPP?msgackB.A.E(k, t, ack)→

For instance, in the subprocess FindGWP, the publisher (represented by
A) first sends an encrypted search request and then waits for a response from
the gateway (represented by B). After that, it verifies whether the response
is sent by a legal gateway entity using function DV (means Decryption and
Verification). The function DV will determine the legitimacy of the entity by
comparing the tag values (i.e. t and t’). If the response is sent by an illegal
entity, the publisher will drop the response (denoted as drop), resend the search
request, and repeat the above steps. Otherwise, the publisher will judge whether
the gateway allows a connection according to the value of the ack. If ack is
true, it means that the gateway accepts communication from the publisher. The
publisher can then stop searching for a gateway, which is denoted as SKIP,
so the process Pub0 can execute the next subprocess Connect to establish a

10 W. Lin et al.

connection with the broker. However, the search request failed (denoted as fail)
when ack is false.

Subprocesses Connect, TopicReg and MsgPub are similar to FindGWP, so
we will only provide partial definitions for them. Especially, MsgPub will call
itself instead of executing SKIP to continue the recursion when a pub request
is successfully ended. This means that multiple messages can be published in a
single connection until a disconnect request is made. The general choice symbol
2 splits the handling of different requests, which are frequently used later.

The Pub0 model above does not consider the presence of intruders. Based on
the Pub0 model, we define Pub model that takes intruders into account by the
following renaming operations:

Pub = Pub0 [[ComPP ! {|ComPP |} ← ComPP ! {|ComPP |} ,
ComPP ! {|ComPP |} ← FakeB! {|ComPP |} ,
ComPP? {|ComPP |} ← ComPP? {|ComPP |} ,
ComPP? {|ComPP |} ← FakeA? {|ComPP |}]]

Here, |c| represents the set of messages that can be transmitted on channel c.

The first two lines of the above Pub definition indicate that when Pub0 sends
messages on channel ComPP, Pub can also send the same messages on channel
FakeB. This is to simulate the behavior of intruders faking messages. The last
two lines indicate that when Pub0 receives messages on channel ComPP, Pub
can also receive the same messages on channel FakeA. This is to achieve the
behavior of intruders eavesdropping on messages.

3.4 Gateway Modeling

The main function of gateways is to respond to search gateway requests and
topic registration requests from clients. Gateways also need to forward other
requests between clients and the broker. We divide and formalize the behaviors
of gateways into two processes: GatewayP which interacts with publishers and
GatewayS which interacts with subscribers.

The detail of modeling GatewayP is presented below. We omit the detail
of modeling GatewayS due to their similarity. We set a variable TpcTable for
GatewayS and GatewayP respectively, which records the corresponding relation-
ship between each topic name and its topicId.

GatewayP0(TpcTable) =

ComPP?msgreqA.B.E(k, t, search)→ComPP !msgack1B.A.E(k, t, true).gwId

�
(
DV (k, t′, E(k, t, search))

)
�

ComPP !msgack1B.A.E(k, t, false).none

→
GatewayP0(TpcTable)

2 ComPP?msgdataA.B.reg.E(k, t, name)→

Formalization and Verification of MQTT-SN Communication Using CSP 11



SKIP

� (∃entry ∈ TpcTable · entry.key == name)�

AddEntry

 ;

ComPP !msgack1B.A.E(k, t, true).TpcTable [name]

→ GatewayP0(TpcTable)


�
(
DV (k, t′, E(k, t, name))

)
�(

ComPP !msgack1B.A.E(k, t, false).none

→ GatewayP0(TpcTable)

)


2 ComPP?msgreqA.B.E(k, t, connect)→

2 ComPP?msgdataA.B.pub.E(k, t, data)→

2 ComPP?msgreqA.B.E(k, t, disconnect)→

In the first part, we describe how to handle gateway searching requests.
Upon receiving a search request from a client, the gateway first uses the DV
function to verify the legitimacy of the client. When the client is legal, the
gateway replies with a message containing a value of true for ack and its own
information represented by gwId, indicating its agreement to help the client
forward messages. The reply messages also need to be encrypted.

In the second part, we describe how to handle topic registration requests.
After receiving a registration request reg from the publisher, the gateway still
needs to verify the legitimacy of the publisher’s identity. Only when the pub-
lisher is a legal entity can the following steps be taken. The gateway searches
in TpcTable for the topic name. If the name exists, it means that the name has
been registered before and there is no need to allocate a new id. Otherwise, a
unique id is assigned to the name and this record is added to TpcTable, which is
marked as a function named AddEntry. Finally, we retrieve the corresponding
id for name using TpcTable[name] and send it to the related publisher.

Since the definitions for the other requests are similar to the first part, their
detailed modeling is omitted here.

As with the process Pub, we can define the process GatewayP that takes into
account the existence of intruders by renaming operations based on the current
process GatewayP0.

3.5 Broker Modeling

The broker is mainly responsible for two functions: first, to respond to various
requests from the gateway, and second, to coordinate messages from different
topics. If the data related to a certain topic subscribed by a subscriber changes,
the broker should push the updated data to the subscriber.

We formalize the model of the broker as below:

Broker0 = ComBS!msgdataC.D.update.E(k, t, data)→
ComBS?msgackD.C.E(k, t, ack)→

12 W. Lin et al.
(
Broker0 � (ack == true)� (fail→ Broker0)

)
�
(
DV (k, t′, E(k, t, ack))

)
�(

drop→ Broker0
)


2 ComBP?msgreqB.C.E(k, t, connect)→ComBP !msgackC.B.E(k, t, true)

�
(
DV (k, t′, E(k, t, connect))

)
�

ComBP !msgackC.B.E(k, t, false)

→ Broker0

2 ComBP?msgdataB.C.pub.E(k, t, data)→

2 ComBS?msgdataD.C.sub.E(k, t, topic)→

2

In the first part, the broker (represented by C) sends an update request to
the gateway (represented by D) interacting with the subscriber, in order to
notify the subscriber that the data of topics he has subscribed to have changed.
Then the broker waits for the response and uses the DV function to test the
legitimacy of the gateway. After authentication, if the value of ack is true, the
request is processed successfully, and vice versa. Failure to pass authentication
means that the response is from an illegal entity. For simplicity, we allow the
broker to send update requests at any time.

In the second part, the broker receives a connection setup request from the
gateway. After verifying that the gateway is legitimate, the broker gives an an-
swer with an ack value of true, indicating that the connection is allowed to be
set up. The rest parts are similar to the second part, so we omit the details here.

As with the process Pub, we can define the process Broker under the existence
of intruders by renaming Broker0.

3.6 Intruder Modeling

In this paper, we assume that intruders can intercept or fake messages via normal
communication channels ComPP , ComBP , ComSS and ComBS.

First, we define a set Fact as below, which includes all the facts the intruder
can learn at its initial state. The intruder can know all the entities in the system,
the intruder’s own private key prki and its own tag value tagi, as well as all the
encrypted messages MSG during communication.

Fact = Entity ∪ {prki, tagi} ∪MSG

In addition, the intruder can deduce new facts based on the set of facts that
it has already learned. And the specific deduction rules are as follows:

{k, d} → E (k, d)

{sk,E (sk, d)} → d

(F → f) ∧ (F ⊆ F ′) → (F ′ =⇒ f)

Formalization and Verification of MQTT-SN Communication Using CSP 13

The first rule states that the intruder can get the encrypted message E(k,d)
if it has the encryption key k and the data d. The second rule states that the
intruder can get the plaintext d if it has the decryption key sk and the encrypted
message E(sk,d). The third rule states that if the fact f can be deduced from
the fact set F, and F is a subset of F’, then the intruder can also deduce f from
the bigger set F’.

Then, we define the function Info(msg) to describe the facts that the intruder
can deduce from the different types of messages that are defined previously.

Info (msgreqa.b.E(k, t, req)) = {a, b, E(k, t, req)}
Info (msgdataa.b.req.E(k, t, d)) = {a, b, req, E(k, t, d)}

Info (msgacka.b.E(k, t, ack)) = {a, b, E(k, t, ack)}
Info (msgack1a.b.E(k, t, ack).id) = {a, b, E(k, t, ack), id}

The first rule indicates that the intruder can deduce from this kind of mes-
sage that it was sent from entity a to entity b. Also, the message content is an
encrypted packet E(k,t,req). The remaining rules are similar to the first one.

Therefore, we introduce a channel called Deduce for the intruder process to
deduce new facts through this channel, which is defined as follows:

Channel Deduce : Fact.P (Fact)

Based on all the deduction rules and the channel definition above, the model
of the intruder can be defined as follows:

Intruder0(F) = m∈MSGFake?m→ Intruder0(F ∪ Info(m))

22m∈MSG∩Info(m)⊆FFake!m→ Intruder0(F)

22f∈Fact,f /∈F,F→fInit {Data Leakage Success = false}
→ Deduce.f.F

→


(
Data Leakage Success = true

→ Intruder0(F ∪ {f})

)
� (f == data) �

Intruder0(F)


In the above definition, Fake represents the integrated set of all channels con-
tained in INTRUDER PATH , and F is a set that contains the intruder’s current
known messages. The first line states that the intruder can eavesdrop on mes-
sages through all the channels in the Fake set and add the deduced content to
its known fact set F. The second line states that the intruder can fake messages
based on known facts and send them to other entities. The remaining lines state
that the intruder can deduce new facts based on known messages through the
Deduce channel, and then add these deduced new facts to its known fact set F.
If the intruder can deduce the plaintext of a message (defined as f==data), it
indicates a data leakage scenario.

14 W. Lin et al.

Finally, we give the complete definition of the intruder process as below,
where IF represents the set of facts the intruder can get initially:

Intruder = Intruder0 (IF)
IF = {A,B,C,D,E, prki, tagi}

4 Implementation and Verification

In this section, we use the model checking tool PAT to implement the model
we constructed in section 3 and then verify seven properties of the model. The
verification results are shown at the end of this section.

4.1 Implementation

First, we give a brief introduction of the syntax and definitions of PAT as below:

– #define goal value == 1; It defines a proposition named goal that evalu-
ates to true only when the variable named value is equal to 1.

– var a = 1; It defines a global variable named a and assigns it the value 1.
– enum{a,b}; It defines two enumeration constants named a and b.
– channel c 0; It defines a channel named c with a buffer size of 0, indicating

that it is for synchronous communication. The buffer size of the channel
must be greater than or equal to 0.

– # assert P() deadlockfree; It defines an assertion to check whether the
process P will go into a deadlock state with a built-in primitive in PAT.

– # assert P() reaches goal; It defines an assertion to check whether the
process P will go into a state, where the property named goal is satisfied.

– # assert P() | = [] ! F; It defines an assertion to check whether the process
P can never reach a state where the property F holds.

4.2 Properties Verification

Property 1: Deadlock Freedom

The deadlock state refers to the situation where the system is continuously
blocked and unable to perform any actions. We can use the verification primitive
provided by PAT to check this property. The verification primitive is as follows:

assert SYSTEM deadlockfree;

Property 2: Divergence Freedom

Divergence refers to the system being trapped in an infinite loop and contin-
uously consuming resources secretly. We also use the primitive provided by PAT
to check this property. The verification primitive is as follows:

assert SYSTEM divergencefree;

Formalization and Verification of MQTT-SN Communication Using CSP 15

Property 3: Data Reachability

Data Reachability refers to the ability that all the messages published by
the clients and all the requests sent by the clients can be successfully received
and processed by the broker server. We define a state with a variable called
Data Reachability Success to indicate that this property is satisfied and then
use assert to check whether the model can reach this state.

#define Data Reachability Success data reachability == true;

#assert SYSTEM reaches Data Reachability Success;

Property 4: Client Security

Client Security refers to the situation where intruders cannot impersonate
publishers or subscribers to communicate with other entities in the system. We
define a state called Client Fake Success to indicate that the system is in a state
where intruders can successfully impersonate clients. Then we use an assert
statement with the always symbol [] defined in PAT to check whether the model
can ever reach this state.

#define client fake success (pub fake success || sub fake success);

#define Client Fake Success client fake success == true;

#assert SYSTEM | = []! Client Fake Success;

Property 5: Gateway Security

Gateway Security refers to the state in which intruders are unable to pretend
to be gateways. Similarly, we define a state called Gateway Fake Success and
then check whether the system will never enter into this state.

#define gateway fake success (gwp fake success || gws fake success);

#define Gateway Fake Success gateway fake success == true;

#assert SYSTEM | = []! Gateway Fake Success;

Property 6: Broker Security

Broker Security stands for the situation where intruders cannot imperson-
ate brokers to communicate in the system. Similarly, we define a state called
Broker Fake Success and check by using an assert statement.

#define Broker Fake Success broker fake success == true;

#assert SYSTEM | = []! Broker Fake Success;

Property 7: Data Leakage

Data leakage refers to the situation where intruders can obtain, use or share
plaintext data during the communication process, which is not allowed in a safe
system. Protecting data privacy and confidentiality is an important issue for
WSN. We define a state called Data Leakage Success to indicate the state where
intruders can access the plaintext data.

#define Data Leakage Success data leakage success == true;

#assert SYSTEM | = []! Data Leakage Success;

16 W. Lin et al.

4.3 Verification Results

According to our definitions and assertions of different properties, we verify our
model in PAT. The verification results are shown in Fig.6. We can see that the
seven properties are all valid.

Fig. 6. Verification Results in PAT

This means that our system will never run into a deadlock or divergence state
and all the clients can get the data they want. In addition, it indicates that the
intruder cannot pretend to be a normal entity during communication and there
is no risk of leaking data in our system.

5 Conclusion and Future Work

This paper analyzes and formalizes the main components of MQTT-SN commu-
nication. The MQTT-SN protocol does not specify security measures to maintain
lightweight, so this paper introduces the ChaCha20-Poly1305 algorithm as a se-
curity guarantee. Then, we list seven properties that need to be verified including
deadlock freedom, divergence freedom, data reachability, client security, gateway
security, broker security, and data leakage. Moreover, we use the model checker
PAT to verify the above properties. According to the verification results, we can
summarize that all these properties are satisfied in our model.

When modeling the MQTT-SN protocol communication system, this paper
considers the possible attack behaviors that may be encountered in the real envi-
ronment, such as eavesdropping and forgery. However, in practical applications,
there are more types of attacks that may weaken the security of the MQTT-SN
communication, such as DDoS attacks and sinkhole attacks [4, 17]. In the future,
more attack behaviors can be introduced to enrich the intruder process.

Acknowledgements. This work was partially supported by the National Key
Research and Development Program of China (No. 2022YFB3305102), the Na-
tional Natural Science Foundation of China (Grant No. 62032024), the “Digital
Silk Road” Shanghai International Joint Lab of Trustworthy Intelligent Software
(No. 22510750100), and Shanghai Trusted Industry Internet Software Collabo-
rative Innovation Center.

Formalization and Verification of MQTT-SN Communication Using CSP 17

References

1. Kandris, D., Nakas, C., Vomvas, D., Koulouras, G.: Applications of Wireless Sensor
Networks: An Up-to-Date Survey. Applied System Innovation 3(1) (2020)

2. Sharma, S., Kaur, A.: Survey on Wireless Sensor Network, Its Applications and
Issues. Journal of Physics: Conference series 1969(1), 12042 (2021)

3. Stanford-Clark, A., Truong, H.L.: MQTT for Sensor Networks (MQTT-SN) Proto-
col Specification. International business machines (IBM) Corporation version 1(2),
1–28 (2013)

4. Avila, K., Sanmartin, P., Jabba, D., Gómez, J.: An analytical Survey of Attack
Scenario Parameters on the Techniques of Attack Mitigation in WSN. Wireless
Personal Communications 122, 3687–3718 (2022)

5. Park, C.S., Nam, H.M.: Security Architecture and Protocols for Secure MQTT-SN.
IEEE Access 8, 226422–226436 (2020)

6. Roldán-Gómez, J., Carrillo-Mondéjar, J., Castelo Gómez, J.M., Ruiz-Villafranca,
S.: Security Analysis of the MQTT-SN Protocol for the Internet of Things. Applied
Sciences 12(21), 10991 (2022)

7. Diwan, M., D’Souza, M.: A Framework for Modeling and Verifying IoT Communica-
tion Protocols. In: International Symposium on Dependable Software Engineering:
Theories, Tools, and Applications. pp. 266–280. Springer (2017)

8. Sadio, O., Ngom, I., Lishou, C.: Lightweight Security Scheme for MQTT/MQTT-SN
Protocol. In: 2019 Sixth International Conference on Internet of Things: Systems,
Management and Security (IOTSMS). pp. 119–123. IEEE (2019)

9. Kao, T., Wang, H., Li, J.: Safe MQTT-SN:A Lightweight Secure Encrypted Commu-
nication in IoT. In: Journal of Physics: Conference Series. p. 012044. IOP Publishing
(2021)

10. De Santis, F., Schauer, A., Sigl, G.: ChaCha20-Poly1305 Authenticated Encryp-
tion for High-speed Embedded IoT Applications. In: Design, Automation & Test in
Europe Conference & Exhibition (DATE). pp. 692–697. IEEE (2017)

11. Hoare, C.A.R.: Communicating Sequential Processes. Prentice Hall International
(1985)

12. National University of Singapore: PAT: Process Analysis Toolkit (2007),
https://pat.comp.nus.edu.sg/

13. Sun, J., Liu, Y., Dong, J.S.: Model Checking CSP Revisited: Introducing a Process
Analysis Toolkit. In: International symposium on leveraging applications of formal
methods, verification and validation. pp. 307–322. Springer (2008)

14. Xu, J., Yin, J., Zhu, H., Xiao, L.: Modeling and Verifying Producer-consumer
Communication in Kafka Using CSP. In: 7th Conference on the Engineering of
Computer Based Systems. pp. 1–10. ACM (2021)

15. Lowe, G., Roscoe, B.: Using CSP to Detect Errors in the TMN Protocol. IEEE
Transactions on Software Engineering 23(10), 659–669 (1997)

16. Chen, S., Li, R., Zhu, H.: Formalization and Verification of Group Communica-
tion CoAP Using CSP. In: International Conference on Parallel and Distributed
Computing: Applications and Technologies. pp. 616–628. Springer (2021)

17. Abidoye, A.P., Obagbuwa, I.C.: DDoS Attacks in WSNs: Detection and Counter-
measures. IET Wireless Sensor Systems 8(2), 52–59 (2018)

