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Abstract—Multi-robot systems can be prone to failures during
plan execution, depending on the harshness of the environment
they are deployed in. As a consequence, initially devised plans
may no longer be feasible, and a re-planning process needs to
take place to re-allocate any pending tasks. Two main approaches
emerge as possible solutions, a global re-planning technique using
a centralized planner that will redo the task allocation with the
updated world state information, or a decentralized approach
that will focus on the local plan reparation, i.e., the re-allocation
of those tasks initially assigned to the failed robots. The former
approach produces an overall better solution, while the latter
is less computationally expensive. The goal of this paper is to
exploit the benefits of both approaches, while minimizing their
drawbacks. To this end, we propose a hybrid approach that
combines a centralized planner with decentralized multi-agent
planning. In case of an agent failure, the local plan reparation
algorithm tries to repair the plan through agent negotiation.
If it fails to re-allocate all of the pending tasks, the global re-
planning algorithm is invoked, which re-allocates all unfinished
tasks from all agents. The hybrid approach was compared to
planner approach, and it was shown that it improves on the
makespan of a mission in presence of different numbers of
failures, as a consequence of the local plan reparation algorithm.

Index Terms—Multi-Agent Systems, Autonomous Agents, Cen-
tralized Planning, Decentralized Planning

I. INTRODUCTION

Automated planning is the process of defining a set of
actions for an autonomous system to achieve a prescribed
set of goals. The problem of automated planning has been
a central research topic in artificial intelligence for the last
decades [6], and it has become particularly relevant in the
context of Multi-Agent Systems (MASs) [20].

Several approaches have been proposed to address the
automated planning problem, and they are divided into two
major categories: centralized and distributed planning. While
there are clear advantages of centralized algorithms related to
optimality of the computed plan with respect to an objective
function, the curse of dimensionality has been the main
limitation of such approaches. On the other hand, distributed
algorithms provide a more robust alternative towards faults [7],
[19], safety [1], [18], and security [8], [10].
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The trade-off between the optimality of centralized solu-
tions, and the flexibility and robustness to potential failures of
distributed approaches is the main focus of this paper. In ad-
dition, this trade-off is studied in the context of agent or robot
failures 1. When a failure occurs, the centralized approach will
compute a new plan based on the current conditions, referred
to as re-planning, whereas the decentralized approach will rely
on self-organization, which allows agents to perform a local
plan reparation.

In this paper, a novel hybrid approach for multi-agent
automated planning, GLocal, is proposed. GLocal exploits the
advantages of both approaches, i.e., optimality and robustness,
while limiting their inherent disadvantages. In particular, this
paper investigates what is the effect of failures in MAS auto-
mated planning, and it shows the robustness of the proposed
hybrid approach. When a failure occurs, agents in the MAS
attempt to repair the plan locally, by negotiating with one
another over the assignment of the pending tasks, i.e., tasks
initially assigned to the failed agent. Agent collaboration is
shaped by their willingness to interact, which captures the
utility of being assigned to a given task. In case at least
one task remains un-allocated, agents make a request to the
centralized global planner for a re-plan, and as a result they
switch from a local to a global strategy. More specifically, this
paper focuses on the following research questions (RQs)

RQ1 How does the number of replans from a centralized
planner impact on the overhead and quality of the solution
of a MAS?

RQ2 How can the agents minimize the number of calls to the
planner by collaborating with one another?

These questions are addressed through computer simulations,
where the GLocal approach was compared to a planner-only
approach, for different number of failures, as well as sizes of
problem instances. The results reveal that GLocal produces
solutions with shorter mission make-spans in the presence of
failures, as a consequence of reduced calls to the centralized
global planner.

The rest of the paper is organized as follows. Section II
describes the background of the paper, and the problem
addressed in this paper is presented in Section III. Section IV
describes the design of the MAS that controls the behavior
of the robots, while Section V presents the centralized global
planner for the agents. Section VI describes the simulation

1In this paper the terms agent and robot will be used interchangeably.



setup, and Section VII presents the experimental results. Fi-
nally, Section VIII discusses the related work, and Section IX
concludes the paper.

II. BACKGROUND

In real world applications, the operation of agents or robots
can be disrupted by environments changes, which occur re-
gardless of the agent’s activities. Disruption can also occur
due to unforeseen events such as faulty sensors or actuators,
thus making an agent incapable of performing certain tasks.
Additionally, the goals, toward which such agents are working
for, can themselves be subject to change. In order to cope
in such complex situations, distributed and continual planning
approaches have been proposed, that (i) distribute the planning
process among a group of agents, and (ii) allow for planning
to be an incremental process that happens continuously during
the operation of agents, as well as (iii) combined approaches
for distributed continual planning (DCP) [3]. Multi-agent plan-
ning has been defined as the problem of creating a plan for and
by a group of agents [2]. Furthermore, five stages of MAP have
been identified such as goal allocation to agents, refinement
of goals into sub-tasks, sub-task scheduling by considering
other constraints, communication of planning decisions, and
plan execution.

Depending on the perspective, distributed planning can refer
to either cooperative distributed planning (CDP), also known
as cooperative and distributed multi-agent planning (MAP)
2, or to negotiated distributed planning [21]. In the former
view, the goal is to create a global plan, whereas in the
latter the emphasis is on the agents ability to fulfil their
own local objectives. While a CDP focuses on issues as plan
representation and generation, task allocation, communication
and coordination, in the scope of an NDP, the focus is
on collaboration and cooperation between agents. Continual
planning on the other hand allows agents to revise their plans
during operation as unforeseen events occur. Examples include
reactive planning systems, where an agent considers only the
next step and does not look ahead further in the future; and
flexible plan execution systems, which allow for some look
ahead, and delay sketching out the detailed plan as much as
possible.

Centralized planning implies that decisions are not made
independently and locally, but rather holistically at a global
level. Utilizing centralized planning to solve multi-agent plan-
ning problems is a widely accepted approach. Landa-Torres et
al. [11] used a centralized planner, based on the evolutionary
algorithms, to solve an underwater multi-agent mission plan-
ning problem for a swarm of autonomous underwater vehicles.
Similarly, the solution to the problem of mission planning
for a swarm of unmanned aerial vehicles was presented by
Ramirez-Atencia et al. [17]. The problem is modeled as

2A recent survey on cooperative and distributed MAP, referred to also as
multi-agent coordination of actions in decentralized systems, provides a taxon-
omy of existing approaches in the literature based how they deal with issues
such as agent distribution, computational process, plan synthesis schemes,
communication mechanisms, heuristic search, and privacy preservation [20].

a constraint satisfaction problem and solved using a multi-
objective Genetic Algorithm (GA). A different approach to a
similar problem is taken by Karaman Sertac et al. [9] where
process algebra is used to model the problem that is later
solved with the GA.

This paper is concerned with the investigation of methods
that combine centralized and negotiated distributed planning
approaches in order to optimize the execution of plans in a
failure prone context, simultaneously increasing the robustness
of the system by allowing agents to perform a local plan
reparation online.

III. PROBLEM FORMULATION

The problem that is being addressed in this paper is a
relaxed version of the Extended Colored Traveling Salesperson
Problem (ECTSP) [14]. The original problem is simplified by
the removal of the precedence constraints among tasks.

Assume a set of n tasks, v ∈ V := {v1, v2, . . . , vn}, m
agents, s ∈ S := {s1, s2, . . . , sm}, and k capabilities, c ∈
C := {c1, c2, . . . , ck} where m,n, k ∈ N. Each agent s ∈ S
has a set of capabilities Cs ⊆ C assigned to it. Each task v ∈ V
requires one capability in order to be successfully completed.
A capability matrix of an agent s, As ∈ {0, 1}n×n, can be
defined as:

aijs =

{
1, fc(vi) ∈ Cs ∧ fc(vj) ∈ Cs
0, otherwise,

(1)

Agents are allowed to move in a 2D space Z, that is
represented as a continuous map, and are able to communicate
with one another with broadcast, without limitation in range.

The problem consists of allocating n tasks to m agents with
respect to given constraints in the form of agent capabilities
and task requirements for such capabilities in order to mini-
mize the make-span of a mission.

Objective function: The goal is to complete all the tasks
in the environment while minimizing mission’s duration, even
in presence of one or more agent failures. Agent failures may
be due to a physical failure of the robot performing a specific
task, or of the equipment that is required to perform said task.

In MASs, a mission can involve optimization of many dif-
ferent parameters. Commonly, mission duration is minimized,
however, a duration of a mission can be defined in various
ways [13]. The objective function used in this work tends
to minimize the makespan, i.e., duration between the starting
time of the first task and end time of the last task over all
agents in the mission. This objective function is also known
as “minMax”, as it minimizes the maximum duration of an
agent’s makespan over all agents.

IV. AGENT DESIGN

The agent design consists of three core aspects: (i) the archi-
tecture comprising of a finite state machine which captures the
different behaviours of an agent, (ii) the willingness to interact
abstraction and its role in shaping collaborative behaviour, and
(iii) the interaction protocols used in any collaboration.
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A. Agent Architecture

Each agent is designed as a finite state machine composed
of four states, idle, interact, execute, interact & execute
(Fig. 1), and starts its operation in idle. Agents in idle are not
committed to any task. Note that, depending on the application,
other types of behaviours could be implemented in this state.
Agents are able to create tasks on their own, e.g., reaching
an object location after detecting its presence. Additionally,
they are able to get a list of tasks by another entity, e.g.,
a centralized planner; this is the case studied in this paper.
When an agent commits to performing a task, it switches to
execute and proceeds with the task execution. Once an agent
completes all its tasks, it reverts back to the idle state. As soon
as a new task is detected or received, an agent, residing either
in idle or execute, switches to interact, or interact & execute,
respectively. Thereafter, a negotiation process is initiated with
other agents in order to allocate every new task. The outcome
of the negotiation is zero or more agents assigned to perform
each task. An agent with no assignment at the end of the
negotiation goes back to either idle or execute, respectively,
i.e., the state it was in before the negotiation round.

B. Willingness to Interact

The collaborative behaviour of an agent ai is determined by
its willingness to interact wi(t) ∈ [−1, 1], i.e., the likelihood
of asking and giving help to other agents at time t. A positive
willingness indicates that ai is able to help others wi(t) > 0,
whilst a negative willingness indicates that ai needs help
performing its tasks wi(t) < 0, with wi(t) = −1 indicating
that an agent must ask for help at time t, and wi(t) = 0
denotes a neutral disposition. The willingness is affected
by both the state of an agent, which captures the general
attitude towards potential collaboration with others (explored
in previous work [5]), and by the properties of the specific

task considered during any negotiation, namely the utility of
performing such task.

In this paper the focus is solely on how the utility of
performing a particular task τj affects the willingness to in-
teract (wi(t) = 0). Two factors are considered, the equipment
required by τj and the distance d to the task. The case in which
agent ai does not have the necessary equipment required by
task τj , will reflect in a negative willingness to interact. It is
possible to distinguish two circumstances in which an agent ai
considers the allocation of τj , (i) ai has no previous allocation,
and (ii) ai is already allocated to a set of tasks. In case (i), d
is the distance between the agent’s location and τj’s location,
with utility calculated as:

uτj (t) = 1/d. (2)

In case (ii), d is the minimum distance to τj considering the
ai’s location, and the location of the other tasks allocated to
ai, given by:

d = min({dkj ,∀k ∈ L}), (3)

where L is the set containing the locations of agent ai and its
tasks, and dkj is the distance between the kth element in L
and task τj . The final value of the willingness to interact with
respect to task τj is expressed by

wiτj (t) = wi(t) + uτj (t). (4)

Although the willingness to interact is itself an expression
of utility, in this paper its notion and that of task utility are
separated. This is done in order to have a clear distinction
between what affects the general disposition to collaborate,
and what affects the utility of a performing a single task.

C. Interaction Protocol

Several assumptions hold concerning the interaction be-
tween agents. Firstly, no two agents can start the negotiation
for a unique task at the same time. Secondly, agents can have
the knowledge of each other’s allocations, as well as the tasks
that are completed. Thirdly, this knowledge is not necessarily
available for every time-step, and can come to the knowledge
of an agent with a certain delay. As a consequence of the last
two assumptions it can happen that a task is repeated more
than once.

The interaction protocol defines how agents negotiate with
one another over the assignment of tasks which are to be
completed (Fig. 2). Requests for help can be initiated by any
agent in the event of the detection of a full failure of an
agent 3. The first agent to detect the failure of another agent
initiates a negotiation with others to re-allocate the tasks of
the failed agent. For each task to be assigned, a request for
help is broadcast. Afterwards, the responses of other agents,
consisting of the respective willingness and utility values,
are collected. Note that, replies from agents with negative
willingness are ignored. Thereafter, the rest of the responses

3Such detection mechanisms are outside the scope of this paper. Further
details on the implementation are given in Section VI.
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are ordered based on the combined value of willingness and
utility, and the agent with the highest willingness will be
allocated to the task.

V. CENTRALIZED GLOBAL PLANNER

The process of mission planning first starts with the creation
of a mission. This is done by a human operator who defines the
mission parameters (tasks to be done, available vehicles and
the overall goal of the mission) in the Mission Management
Tool (MMT) [14]. After this step, the mission is sent to the
planner which solves the mission and produces the necessary
set of actions (plan) for mission execution.

Algorithms used to solve this kind of problems are usually
divided into two groups, exact and meta-heuristic. While
exact algorithms can guarantee that the produced solution is
optimal, meta-heuristics usually have no guarantees at all.
However, meta-heuristic algorithms can produce a reasonably
good solution within a short period of time. This is sometimes
more important than having an optimal plan, especially in
situations where re-planning might be necessary. Although the
initial plan making is not bounded by time, the re-planning
is. Re-planning, in this case, can be seen as planning again
with new initial conditions. Since multi-agent missions are
usually costly and autonomy of agents is limited as well, the
re-planning process should be very fast. For that reason, the
algorithm behind the global planner, in this paper, is a Genetic
Algorithm (GA), which is adapted to planning and scheduling
problems. Chromosomes are encoded in the same way as in
[14], thus two arrays of integers, representing the genes, are
used. The first array consists of integers representing tasks and
agents, whereas the second array represents task parameters
(equipment requirements, task duration, and location). Chro-
mosome length varies from n + 1 to a maximum of n + m
genes, depending on the number of agents used in a mission.

The initial population is randomly created with the respect
to given constraints, hence, initial candidate solutions are in
the feasible region of the search space.

The crossover operator has not been used since it did not
have positive effects on the convergence process. Mutation is
the only source of variability as it allows genetic diversity in
the population. Every individual has a low probability to be
selected for mutation. In this paper, two types of mutation
schemes are introduced. One operates on the task genes

Agent 1

Agent 2

Agent 3

Agent i

Environment

Clock

Planner

Fig. 3: Simulation components.

through swapping tasks and inserting new genes, whereas the
other mutates agent genes through growing (adding agents)
and shrinking (removing agents) from the chromosome.

A task swap mutation swaps two task genes in a chromo-
some, meaning that it can both swap tasks within a single agent
or between two agents. An insert mutation chooses a task and
inserts it in a new location in a chromosome, similarly to the
previously explained mutation, the insertion can be within the
same agent or different one.

An agent shrink mutation removes one agent from a chro-
mosome, reallocating its tasks to other agents. Growth agent
mutation adds a new agent to the plan. The new agent gene
is randomly inserted, acquiring tasks from that location in
the chromosome up to the next agent gene or end of the
chromosome. If there are conflicting (a task not supported by
assigned agent) tasks, they are randomly reallocated to other
agents. Both algorithms take into account given constraints
ensuring that the mutation process does not produce infeasible
solutions.

VI. SIMULATION DESIGN

The combined approach consisting of the integration of a
centralized planner and decentralized agents was compared to
the planner-only approach. Both approaches were evaluated
and compared in simulations. This section initially provides
a general description of the simulation design, followed by
implementation details concerning each of the approaches
separately.

A. Simulation Design

The agent simulation (Fig. 3) is built on top of the ROS
(robot operating system) middle-ware [16]. Agents, called
nodes in ROS terminology, are of two types, (i) operative
agents described in Sect. IV, and (ii) special purpose agents
such as the clock and the environment agents.

Operative agents have the goal of completing the tasks
which are part of the mission. Agents are heterogeneous
with respect to the set of capabilities they have. In addition,
more than one agent can have the same capability and one
agent can have more than one capability. Furthermore, they
are homogeneous with respect to the implemented motion
model with a maximum velocity vmax set to 10m/s. Their
behaviour in the idle state, i.e., remaining stationary, is also
the same. Agents communicate with one another through the
publish/subscribe broadcast mechanism, and are able to listen



to messages from each other, i.e., without a limitation in
range. When an agent makes a request, it will wait until the
first replies arrive or until a specified timeout of 5 seconds
has passed. Consequently, not all responses from all other
operative agents are necessarily considered. During the course
of the simulation, any such operative agent can experience
a full failure (determined in the environment node), which
means that it has broken down and cannot do any task, or
communicate with others.

The clock agent keeps track of the simulation time. After a
simulation is initiated, the clock starts ticking when a plan has
arrived from the planner. This is to ensure that across different
runs of the simulations, the arrival time of the plan is the
same and deterministic. The clock tick count is increased by
1 time unit every time all non broken down operative agents
and the environment node have updated their state once. Also,
it is assumed that any interaction between operative agents
happens within the same time-step, i.e., the clock stops ticking
when they are interacting, and resumes once the interaction has
finished. The communication with the clock agent is realized
through ROS one-to-one service calls.

The environment agent is used for three purposes: to keep
track of information that concerns all agents, to determine
which agent will fail at a given time-step, and as a locking
mechanism. With respect to the first purpose, the information
collected by the environment consists of the locations of agents
and tasks in a 2D-space, as well as lists of allocated and
completed tasks by every operative agent. After the data is
collected, it is broadcast as a whole – through the ROS publish-
subscribe mechanism – to all operative agents, with the update
taking place at every time-step. As a result, agents are aware
of how tasks are allocated, and which tasks are completed at
every time-step. Delays of a couple of time-steps might occur
if some messages are lost or not received in time.

The second purpose of the environment is to simulate both
the failure of an agent in the system, and the detection of such
failure by other agents. Regarding the former, the environment
initially calculates the time-step tf in which to inject the
failure as follows:

tf = randint(0.2 ·mD, 0.8 ·mD) + trp, (5)

where the function randint generates a random integer that
lies between the two given arguments, mD is the estimated
mission duration, and trp is the time the previous re-plan has
taken place, whether by the planner or the agents. Additionally,
the environment randomly selects an agent to fail from a list
of agents that are currently executing. Regarding the latter,
after the occurrence of a failure is simulated, the environment
node informs all agents, one by one, through ROS one-to-one
service calls. Note that, if an operative agent completes a task
at time tf , there is no time for such information to propagate
to the rest. As a result, such a task will be reallocated and its
execution will be repeated by another agent. The third purpose
of the environment is to lock the tasks and the invocation of
the planner. This means that, (i) two agents will not be able

to initiate a negotiation for the same task at the same time-
step, and (ii) agents cannot contact the planner after a call has
already been placed and before a new plan has been received.
In the meantime, operative agents drop their assigned tasks and
change the state to idle. In order to lock, either the tasks or
calls to the planner, agents communicate with the environment
through ROS one-to-one service calls.

B. Simulation Scenarios

Every mission starts with a human operator defining a set
of tasks to be executed in the MMT. After mission creation, it
is forwarded to the automated high-level planner described in
the Sect. V, where it is translated into ECTSP model [14]. The
result of the planning process is a plan that is then forwarded
to agents for execution. In both scenarios, the planner initiates
the agent simulation by sending a plan with tasks allocated
to agents and other mission relevant information such as the
initial locations for agents and tasks, the required equipment,
the task duration, and the physical capabilities and limitations
of involved agents.

a) The planner-only approach scenario: In this ap-
proach, the planning and re-planning is only performed by
the centralized planner. After the initial plan is generated,
the planner goes into the idle state, waiting for re-planning
requests, whereas agents begin executing the assigned tasks.
When a failure is detected, the first agent that is able to lock the
planner through the environment node, will immediately issue
a re-planning request. Noticeably, there is no collaboration
between operative agents. While waiting for the new plan, the
clock node keeps ticking and all agents switch to the idle state.
When the new plan arrives, trp is set to the current time tn.
It is important to emphasize that failures are induced in such
a way that they cannot make a mission infeasible, i.e., the
re-planning process will always be able to produce a feasible
plan.

The GA planner is configured as follows. The population
size is fixed to 500, and the number of generations is limited
to 5000. The crossover operator was omitted, and the mutation
probability is set to 10%, In addition, elitism is set to 5% in
order to preserve the best candidate solutions from the previous
generation.

b) The GLocal approach scenario: In this approach, the
planner and agent approaches are combined, i.e., agents are
able to collaborate with one another and re-allocate tasks in
the case of a failure during mission execution. As in the
previous approach, after the initial plan, the planner goes to
the idle state, while the agents begin the execution of the
assigned tasks. When a failure is detected, all other operative
agents compute the list of tasks Vx assigned to the failed
agent x, removing those tasks perceived as complete. Then,
a negotiation round begins for every task v ∈ Vx. The first
agent that manages to lock the task through the environment
node, will initiate the corresponding re-allocation, by sending
out help requests to all other agents. An agent will wait for a
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maximum time of tw = 5 seconds 4 for any replies, or until
the some replies have arrived, i.e., if the list of replies is not
empty when an agent makes the check, then the waiting stops,
and the agent proceeds with the negotiation using the list of
replies available at that moment. Thereafter, it will order the
replies in descending order of the willingness to interact value,
and will assign the task to the agent that has the highest value.
In case the agent has the necessary equipment for completing
the task, then it will itself be part of the candidates that could
be assigned to the task. In case such negotiation fails, e.g., the
agent does not get any positive replies, and if the agent itself is
not capable of performing the task, then a re-planning request
will be issued. This request will invoke the centralized planner
with the updated world state information. Note that, one failed
negotiation is sufficient for triggering a call to the centralized
planner. On the other hand, if agents manage to re-allocate all
the tasks by themselves, the planner is not engaged. In case
the planner is called after an agent failure, then trp is set to the
time of the arrival of the new plan. Otherwise, trp is calculated
as tf +3, as it is assumed that most agents will have received
such information within the 3 time-steps. A re-allocation that
happens as a result of the negotiation between agents takes
place within a tf time-step. Three more extra time-steps are
added to give enough time to agents to propagate the new
information pertaining the newly allocated tasks, before a new
failure is introduced.

VII. RESULTS

The results of the comparison of the two aforementioned
approaches are presented in this section. In order to gain an
insight into the differences between the approaches, a series
of statistical tests were conducted. We formulate the null
hypothesis as “A hybrid approach that combines a centralized
and decentralized planner has no significant effect to the over-
all results compared to a centralized planner-only approach.”

4Note that, the length of the timeout is chosen arbitrarily. Depending on
the needs of the application, a shorter or longer timeout could be selected. It
is assumed that for the purposes of this paper tw = 5 seconds is an adequate
upper bound.

The data used for the comparison consist of execution times
per each of 30 runs for every test case. The sample data has
no normal distribution, i.e., data can be highly skewed and can
have extended tail. This is the reason why the median value
was chosen over the mean value and consequently the non-
parametric Wilcoxon rank sum test is used. The results of the
test are shown in Table I. Based on the results we can reject
the null hypothesis since it is clear that the hybrid approach
performs better with statistical significance. The agent only
approach has been omitted from this comparison since it is
generally accepted that decentralized planning results in worse
sub-optimal plans compared to centralized planning in failure-
free, non time-critical scenarios. This applies to the production
of the initial plan in presented scenarios.

a) Benchmark Settings: There are four benchmark set-
tings which differ on the number of agent failures f that can
happen in the system, f ∈ {0, 1, 2, 3}. Each settings has 3
different problem instances varying in the number of tasks
nT ∈ {50, 100, 150} , where nA is the number of agents. In
total 36 distinct simulations are run. The number of repetitions
for each case is nR = 30. The number of agents in the system
is fixed to nA = 10. A failure cannot make the completion
of the mission infeasible, i.e., there will always be at least
one non-broken agent with the necessary equipment needed
by any task. Additionally, the simulations run until all tasks
have been completed. Therefore, all tasks will eventually be
completed by the agents.

b) Scenario Comparison: The average execution times
across the different number of failures, task instances, and the
two approaches are given in Fig. 4. It can be observed that with
the increase of the number of failures, the mission makespan
increases as well in the planner-only approach. Whereas in the
hybrid approach, due to the plan reparation performed by the
agents, the makespan is on average lower than in the planner
approach. Additionally, as the size of the problem instance
increases, the average disparity between the two approaches
also increases in most cases. Similarly, as the number of the
failures increases in a problem instance, the p-value decreases
(Tab. I). The distribution of the execution times for each of the
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Fig. 5: The distribution of the execution times for each of the three failures in each problem instance.

TABLE I: Wilcoxon rank sum test applied on results obtained by planner only and hybrid approach.

Problem Instance 1 Problem Instance 2 Problem Instance 3
1 failure 2 failures 3 failures 1 failure 2 failures 3 failures 1 failure 2 failures 3 failures

p-Value 1.3× 10−6 1.2× 10−8 6.1× 10−10 2.3× 10−8 1.4× 10−8 2.1× 10−10 6.5× 10−7 6.6× 10−11 3.3× 10−11

test cases can be seen in Fig. 5. The dashed lines represent
median values. It can be observed that the median value of
the hybrid approach is always better (in this measure lower
is better) than the median value of the planner-only approach.
Although, some of the solutions overlap, it is clear that the
hybrid approach, in general, produces better solutions than the
planner-only approach.

For the hybrid approach, the cumulative number of re-plans

by the planner and the agents for each failure case across the
three problem instances is calculated, and given in Fig. 6. Note
that the total number of re-plans in a simulation run is equal
to the number of failures f . As a result, the total number
of re-plans can be calculated as f · nR = {0, 30, 60, 90}.
Additionally, by inspecting Figs. 4 and 6, it is possible to note
the influence of the number of times agents locally repair the
plan over the execution times. In problem instance 1, failure
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Fig. 6: Normalized cumulative number of re-plans over 30 runs for each problem instance.

case f = 1, agents do not invoke the planner 67% of the time
a re-plan is needed (Fig. 6), thus impacting the variability of
the execution times, which partly overlaps the results gained
with the planner-only (Fig. 4). It can be noted that, depending
on the problem instance, when a re-plan is needed the local
plan reparation technique, involving only agents, is able to
overcome the failure in the system and re-allocate tasks from
the failed agent in 67–88% of the cases.

VIII. RELATED WORK

To the best of authors’ knowledge, only two works aim at
addressing the problem of combining centralized and decen-
tralized planning approaches in order to solve multi-robot task
allocation problems. Le Pape has argued for the necessity of
combining centralized and decentralized planning approaches
to deal with uncertainties and unforeseeable events in dynamic
environments [12]. Agents were given the option to create
their own individual plans in a decentralized way. However,
in the case of addition of new tasks into the system, e.g., as a
result of the action taken by a human operator, agents invoke
the centralized planner to make the task allocation of newly
added tasks. Thereafter, agents proceed with the execution of
the tasks. Duan et al. consider the online dispatching problem
for dynamic autonomous taxi operations, the aim of which is to
assign requests to the taxis in the system, while maintaining
the feasibility of existing routes [4]. Requests can arrive at
any time, and the time aspect is divided into short-term and
long-term horizons. An immediate request is part of the short-
term horizon, and is dealt with by a centralized planner that
makes the assignment. Reservation requests, on the other hand,
belong to the long-term horizon, and are dealt with by the
autonomous taxis. In this approach, the taxis integrate these
requests such that their routes remain feasible, until they are
part of the short-term horizon and the planner makes the
assignment. Their goal is to reduce the planner workload from
requests that are too far in the future.

A more detailed comparison, from the problem definition
viewpoint, is provided by expressing the problems addressed
in related works, as well as the problem tackled in this

paper, through the TAMER model proposed by Miloradović
et al. [15] (Tab. II). TAMER is an entity relationship model
that characterizes multi-robot allocation problems through
four entities – Robot, Environment, Mission, Task and the
relationships between these entities such as teamed (Team.),
communicate with (Comm. with), deployed (Depl.), includes
robots (Incl. R.), includes tasks (Incl. T.), allocation (Alloc.),
depend on (Dep. on), and decomposed off (Dec. off) 5 Teamed
and Communicate with capture the relationship between in-
stances of the Robot entity, in terms of how robots collaborate
with one another, and lower level concerns for communication,
e.g., bandwidth, range etc. A Mission instance is deployed in
an instance of Environment. Additionally, a Mission includes
a set of Robot and Task entities. Task entities are connected
with one another through the depend on and decomposed off
relationships. Finally, the Robot, Task, and Mission entities are
linked through the allocation relationship that captures prop-
erties such as the allocation type (instantaneous assignment
versus time-extended) and utility function.

IX. CONCLUSION

In this work, a hybrid approach for multi-agent mission
re-planning is proposed. This approach combines high-level
global planning realized by a centralized planner, with a
local plan reparation technique carried out in a decentralized
manner by a group of agents. In the event of full failures, i.e.,
agent breakdowns, the remaining agents attempt to repair the
plan locally by re-allocating any pending tasks among each
other. If at least one task remains un-allocated, agents invoke
a centralized planner which generates a new plan, for all
agents and unfinished tasks, based on the updated information
received from the agents. The hybrid approach is compared to
a planner-only approach in simulations, and it is shown that on
average it achieved better results, i.e., shorter mission make-
span as compared to the latter, in the presence of different
numbers of failures.

5The act relationship binding the Robot and Environment entities has been
omitted from Table II, due to no specification in the given works.



TABLE II: Using the TAMER model [15] to classify the problems addressed in combined centralized and decentralized
planning.

Entities Relationships Approach

Ref.
TAMER Robot Env Mission Task Team. Comm. with Depl. Incl. (R&T) Alloc. Dep. on Deco. of

Le Pape [12] finite number of
sensors; can
determine action
outcome; can plan;
can generate goals

uncertainty
(open);

tasks;
capability
constraints

single-robot
task;
capability
needed
(mobility)

– communica-
tion with
planner;
communica-
tion between
agents; asyn-
chronous
communica-
tion

Graph n heterogeneous
R;

minimize plan
duration; wait or
plan with current
knowledge; 2
planning levels
(planner &
robot);
time-extended

precedence divisible
into
actions

Human/agent give planner a new
goal; planner informs available
agents; agents create individual
plans for achieving the goal;
planner collects the proposals and
makes the final allocation; agents
execute in a decentralized way

Duan et al. [4] state (availability,
location); able to
estimate travel times;
single-task robot

uncertainty
(closed);
discrete;

tasks; timing
constraints;

single-robot
task;

– communica-
tion with:
planner,
clients, and
other taxis

Graph n functionally
homogeneous R;
constantly
incoming T
(requests)

minimize plan
duration;
minimize disjoint
paths for
traversing all
nodes;
time-extended

timing atomic Planner deals with requests in the
short-term horizon; agents
incorporate reservations far in the
future in the long-term horizon, in
order to maintain route feasibility;

Proposed
Approach

state (location); finite
number of
capabilities; adaptive
autonomy; determine
who is broken;
generate own goals

uncertainty
(open);
observability
(fully); de-
terministic;
discrete
(with respect
to time);

tasks;
capability
constraints;
number of
robots
constraints

single-robot
task;
equipment
needed

teams of
size 1;
no hier-
archy
between
agents

broadcast 2D space n heterogeneous
R;
m heterogeneous
T

minimize plan
duration;
time-extended

no dependencies atomic Plan initially issued by the
centralized planner; agents attempt
execution; on failure agents
attempt to repair the plan; in case
of non-success in re-allocation
agents ask for a re-plan.

There are three lines of inquiry for future work. First, it is of
interest to investigate the performance of the hybrid approach
in the presence of partial failures of agents. A partial failure
could mean a faulty equipment for an agent that prevents the
execution of some of the tasks allocated to the agent. Second,
the proposed approach – with additional local strategies by
agents for an efficient local re-planning – can be applied to
solve the ECTSP with precedence constraints among others.
Finally, different strategies for determining the re-planning
threshold, i.e., when to call the planner, are to be investigated.
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