
Mälardalen University Press Licentiate Theses
No. 310

IMPROVING SOFT REAL-TIME
PERFORMANCE OF FOG COMPUTING

Vaclav Struhar

2021

School of Innovation, Design and Engineering

Copyright © Vaclav Struhar, 2021
ISBN 978-91-7485-517-3
ISSN 1651-9256
Printed by E-Print AB, Stockholm, Sweden

Abstract

Fog computing is a distributed computing paradigm that brings data processing
from remote cloud data centers into the vicinity of the edge of the network. The
computation is performed closer to the source of the data, and thus it decreases
the time unpredictability of cloud computing that stems from (i) the computation
in shared multi-tenant remote data centers, and (ii) long distance data transfers
between the source of the data and the data centers. The computation in fog
computing provides fast response times and enables latency sensitive applica-
tions. However, industrial systems require time-bounded response times, also
denoted as Real-Time (RT). The correctness of such systems depends not only
on the logical results of the computations but also on the physical time instant at
which these results are produced. Time-bounded responses in fog computing
are attributed to two main aspects: computation and communication.

In this thesis, we explore both aspects targeting soft RT applications in fog
computing in which the usefulness of the produced computational results de-
grades with real-time requirements violations. With regards to the computation,
we provide a systematic literature survey on a novel lightweight RT container-
based virtualization that ensures spatial and temporal isolation of co-located
applications. Subsequently, we utilize a mechanism enabling RT container-
based virtualization and propose a solution for orchestrating RT containers in a
distributed environment. Concerning the communication aspect, we propose a
solution for a dynamic bandwidth distribution in virtualized networks.

i

Sammanfattning

Fog computing är ett paradigm för distribuerad databehandling som innebär att
databehandling från avlägsna molndatacenter kommer in i närheten av nätver-
kets kant. Beräkningen utförs närmare datakällan och minskar därmed den
tidsmässiga oförutsägbarheten hos cloud computing som beror på i) beräkningen
i gemensamma fjärrdatacenter med flera innehavare och ii) dataöverföringar på
långa avstånd mellan datakällan och datacentren. Beräkningen i fog computing
ger snabba svarstider och möjliggör latenskänsliga tillämpningar. Industriella
system kräver dock tidsbundna svarstider, som också betecknas RT. Korrektheten
hos sådana system beror inte bara på de logiska resultaten av beräkningarna
utan också på det fysiska ögonblick då dessa resultat produceras. Tidsbegrän-
sade svarstider inom fog computing beror på två huvudaspekter: beräkning och
kommunikation.

I avhandlingen utforskar vi båda aspekterna med fokus på mjuka RT-tillämpningar
inom fog computing där användbarheten av de producerade beräkningsresul-
taten försämras när tidsfristerna inte hålls vid missade deadlines. När det
gäller beräkningen ger vi en systematisk litteraturstudie om en ny lättviktig
RT-containerbaserad virtualisering som säkerställer rumslig och tidsmässig
isolering av samlokaliserade tillämpningar. Därefter utnyttjar vi denna virtu-
aliseringsteknik och föreslår en lösning för orkestrering av RT-containrar i en
distribuerad miljö. När det gäller kommunikationsaspekten föreslår vi en lösning
för dynamisk bandbreddsfördelning i virtualiserade nätverk.

iii

Acknowledgment

Thank you Moris Behnam, Alessandro Papadopoulos, Mohammad Ashjaei and
Silviu Craciunas, for supervising my work, for your support, valuable insights,
and patience.

Apart from the knowledge gained throughout the course of my studies, I
consider meeting countless inspiring individuals as the greatest asset. Thank
you Robbert Jongeling, Salman Shaik, Gita Frasheri, Nitin Desai, Lan Van Dao,
Jean Malm, Malvina Latifaj, Zeinab Bakhshi Valojerdi, Taufik Akbar Sitompul,
Shahriar Hasan, Damir Bilic, Christoph Salomon, Zenepe Satka, Enxhi Ferko,
Predrag Filipovikj, Elena Lisova, Muhammad Abbas, Filip Markovic, Soheila
Sheikh Bahaei, Malina Adach, Sasikumar Punnekkat, Hans Hansson, Radu
Dobrin, Mohammad Loni, Joana Silva, Branko Miloradovic, Jakob Danielsson,
Mir Riyanul Islam, Shunmuga Priyan Selvaraju, Nandinbaatar Tsog, Le-Nam
Hoang, Anna Friebe, Daniel Bujosa Mateu, Thomas Nolte, Saad Mubeen,
Hossein Fotouhi, Leo Hatvani, Aida Causevic, Adnan Causevic, Paul Pop,
Wilfried Steiner, Fereidoun Moradi, Auday Al-Dulaimy, Antonio Cicchetti,
Adnan Ghaderi, Anders Lager, Bahar Houtan, Bahram Zarrin, Bjarne Johansson,
Björn Leander, Neda Maleki, Eduard Paul Enoiu, Federico Ciccozzi, Fredrik
Ekstrand, Gunnar Widforss, Jan Carlson, Svetlana Girs, Nikola Petrovic, Jan
Ruh, Alexandre Silva Venito, Eleftherios Kyriakakis, Vasileios Karagiannis,
Patrick Denzler, Mohamadreza Barzegaran, Cosmin Florin Avasalcai, Koen
Pieter Tange, Marine Kadar, Jia Qian, Stefan Schulte, Guillermo Rodriguez-
Navas, and many more.

Václav Struhár
Västerås, September 2021

v

List of Publications

Papers included in this thesis1

Paper A: Mohammed Salman Shaik, Václav Struhár, Zeinab Bakhshi, Van-
Lan Dao, Nitin Desai, Alessandro V. Papadopoulos, Thomas Nolte, Vasileios
Karagiannis, Stefan Schulte, Alexandre Venito, Gerhard Fohler. Fog-based In-
dustrial Robotic System: Applications and Challenges. In the 25th International
Conference on Emerging Technologies and Factory Automation (ETFA 2020).

Paper B: Václav Struhár, Moris Behnam, Mohammad Ashjaei, Alessandro V.
Papadopoulos. Real-Time Containers: A Survey. In the 2nd Workshop on Fog
Computing and the IoT (Fog-IoT 2020).

Paper C: Václav Struhár, Silviu S. Craciunas, Mohammad Ashjaei, Moris
Behnam, Alessandro V. Papadopoulos. REACT: Enabling Real-Time Container
Orchestration. In the 26th International Conference on Emerging Technologies
and Factory Automation (ETFA 2021).

Paper D: Václav Struhár, Mohammad Ashjaei, Moris Behnam, Silviu S. Craciu-
nas, and Alessandro V. Papadopoulos. DART: Dynamic Bandwidth Distribution
Framework for Virtualized Software Defined Networks. In the 45th Annual
Conference of the IEEE Industrial Electronics Society (IECON 2019).

1The included papers have been reformatted to comply with the thesis layout.

vii

viii

Related publications, not included in this thesis

Paper E: Shaik Mohammed Salman, Václav Struhár, Alessandro V. Papadopou-
los, Moris Behnam, Thomas Nolte. “Fogification of industrial robotic systems:
research challenges.” In the 1st Workshop on Fog Computing and the IoT
(Fog-IoT 2019).

Paper F: Václav Struhár, Moris Behnam, Alessandro V. Papadopoulos. “Work-
in-Progress: Fog Computing for Adaptive Human-Robot Collaboration.” ACM
SIGBED International Conference on Embedded Software (EMSOFT 2018).

Paper G: Mirgita Frasheri, Václav Struhár, Alessandro V. Papadopoulos, Aida
Čaušević. “Ethics of Autonomous Collective Decision-Making:the CAESAR
Method.” Submitted to: Springer Journal, Science and Engineering Ethic

List of Acronyms

API Application Programming Interface

BE Best Effort

CLM Container Level Metrics

COTS Commercially available Off-The-Shelf

DART Dynamic Bandwidth Distribution Framework

EDF Earliest Deadline First

FEC Fog and Edge Computing

FIFO First In, First Out

HD High Definition

IIoT Industrial Internet of Things

KVM Kernel-based Virtual Machine

LXC Linux Containers

NFV Network Function Virtualization

OSLM Operating System Level Metrics

OS Operating System

PLC Programmable Logic Controller

QoS Quality of Service

QoS Quality of Service

RPi Raspberry Pi

ix

x

RQ Research Question

RTAI Real Time Application Interface

RTOS Real Time Operating System

RT Real-Time

SDN Software Defined Networking

TSN Time Sensitive Networks

VLAN Virtual LAN

VM Virtual Machine

vCPU virtual CPU

Contents

I Thesis 1

1 Introduction 3
1.1 Thesis Overview . 5

2 Background and related work 11
2.1 Fog computing . 11
2.2 Resource virtualization . 13

2.2.1 Hypervisor-based virtualization 14
2.2.2 Container-based virtualization 15
2.2.3 Real-time container-based virtualization 16

2.3 Real-Time container orchestration 17
2.4 Communication bandwidth management of large IoT networks 19

3 Research overview 23
3.1 Research goals and research Questions 23

3.1.1 RQ1: What are the main technologies, approaches, and
challenges towards providing RT predictability in fog
computing? . 23

3.1.2 RQ2: How to distribute RT containers in fog computing
to achieve soft RT behavior using Kubernetes? 24

3.1.3 RQ3: How to improve a soft RT performance via quality
of service management in virtualized SDN networks? . 24

3.2 Research Process . 24

xi

xii Contents

4 Thesis contributions 27
4.1 C1: Study and compare methods and approaches to enable RT

container-based virtualization 27
4.2 C2: Orchestration of RT containers 29

4.2.1 Architecture . 29
4.3 C3: Dynamic bandwidth management 33

5 Conclusions and future work 39
5.1 Conclusions . 39
5.2 Limitation of the work . 40
5.3 Future work . 41

Bibliography 43

II Included Papers 51

6 Paper A:
Fog-based Industrial Robotic System:
Applications and Challenges 53
6.1 Related work . 56
6.2 Factory Automation Environment 57
6.3 System architecture . 58
6.4 Use-case Aspects . 61

6.4.1 Virtualization . 61
6.4.2 Real-Time Aware Orchestration 65
6.4.3 Timely and Reliable Communication 66
6.4.4 Scalability . 68
6.4.5 Dependability and Safety 69

6.5 Conclusion . 71
Bibliography . 73

7 Paper B: Real-Time Containers: A Survey 83
7.1 The Review Process . 86

7.1.1 Question Formalization 86

Contents xiii

7.2 Container-based Virtualization 87
7.2.1 Container Platforms 87
7.2.2 Real-Time Containers 87
7.2.3 Real-time Support of Linux 88

7.3 Survey Results . 88
7.3.1 Methods Based on PREEMPT_RT Patch 90
7.3.2 Methods based on Real-time Co-Kernel 91
7.3.3 Method Based on Hierarchical Scheduling of Containers 92
7.3.4 Custom Methods . 92

7.4 Challenges of Real-time Container-based Virtualization 93
7.5 Conclusion . 94
Bibliography . 95

8 Paper C: REACT: Enabling Real-Time Container Orchestration. 99
8.1 Introduction . 101
8.2 Background and Prior Work 102
8.3 Orchestration of real-time containers 105

8.3.1 System Model . 105
8.3.2 Performance Metrics 106
8.3.3 Container Level Metrics 107

8.4 Design of the RT Orchestrator 108
8.4.1 RT extension of the master node 108
8.4.2 RT Extension of Compute Nodes 112

8.5 Implementation . 113
8.6 Evaluation . 115
8.7 Conclusion . 117
Bibliography . 117

9 Paper D: DART: Dynamic Bandwidth Distribution Framework for
Virtualized Software Defined Networks 125
9.1 Introduction . 127
9.2 Background and Related Work 128

9.2.1 Software Defined Network 128
9.2.2 Network Virtualization 129
9.2.3 Bandwidth management 130

xiv Contents

9.3 DART: Dynamic Bandwidth Distribution Framework 131
9.3.1 The DART Framework 132
9.3.2 Admission Control Mechanism 133

9.4 Use Case: Surveillance System 134
9.4.1 System Setup . 135
9.4.2 System Implementation 136

9.5 Experimental results . 139
9.6 Conclusion and Future Work 140
Bibliography . 141

I

Thesis

1

Chapter 1

Introduction

Fog computing strives to extend the capabilities of the cloud to the edge of
the network and overcomes some of the main limitations of cloud computing,
for instance, tackling the limitations of unbounded communication latency [1],
variance in bandwidth availability [2], security, and privacy aspects [3] of of-
floading data to remote data centers. Fog computing enables the benefits of
offloading data collection and decision-making even in application domains
that require low latency processing, for example, in industrial automation [4],
smart manufacturing, or telecommunication [5]. Fog computing decreases the
communication latency for critical data, which can then be processed on the
decentralized computational devices on the network’s edge. To meet stringent
requirements demanded by industrial applications, fog computing has to provide
time determinism that bounds the reaction time to environmental events [6],
which is known as Real-Time (RT) systems. To bound the reaction time, fog
computing requires both communication and computation to be time determinis-
tic. While guaranteeing deterministic communication behavior between compute
nodes can be achieved through the use of, for instance, TTEthernet [7] or Time
Sensitive Networks (TSN) [8] enabled by specialized hardware, guaranteeing
the time deterministic behavior of computation can be challenging.

Fog computing utilizes shared computational platforms to host several di-
verse applications that pose comprehensive resource and timing requirements.
Fog computing consists of distributed heterogeneous computing devices based

3

4 Chapter 1. Introduction

on Commercially available Off-The-Shelf (COTS) components and general-
purpose Operating Systems (OSs) whose objectives are to make the average
computation faster [9] and to provide good interactive performance while maxi-
mizing the overall utilization [10]. However, these technologies provide limited
RT support. The employment of the COTS components may impair the timing
predictability of co-located applications due to the simultaneous access to shared
resources. Moreover, one of the main enablers of fog computing, resource
virtualization, may introduce an additional source of unpredictability [11]. The
presence of shared resources facilitates neither a composable analysis nor the
computation of upper bound on the key timing parameters [9]. Moreover, the
workload characterization of applications deployed in fog computing is complex
and may change rapidly over time. Hence, providing time predictability in fog
computing is challenging. The goal of this thesis is to explore both computa-
tional and communication areas of fog computing and introduce mechanisms
that improve time predictability in such distributed systems.

In this thesis, we motivate the research problem of the need for RT fog
computing. Subsequently, we provide a systematic literature survey on RT
container-based virtualization as a lightweight technology that enables the co-
existence of spatially and temporally isolated applications in a shared platform.
We focus on the RT aspect of such virtualization. After that, we introduce a
solution that enables the orchestration of RT containers across a cluster of hosts
taking into account the timing requirements and possible timing interference.
The solution includes the architecture, performance metrics of container-based
virtualization, and implementation of an extension to the well-established orches-
trating systems know as Kubernetes. Finally, to complement the computational
part of fog computing, we focus on the communication part and we propose a
solution for a dynamic distribution of network bandwidth in large virtualized
networks to maintain a certain level of Quality of Service (QoS). Figure 1.1 de-
picts the context of the thesis. Although all the parts of the thesis (virtualization,
orchestration, and bandwidth management) can stand separately, we frame the
research under the fog computing theme.

1.1 Thesis Overview 5

System Orchestrator

Cloud Layer

 Robot Robot

Router/Switch
Device Layer

SensorsSensors

Fog Layer

Real-Time
Orchestration

Real-Time
Container-based

Virtualization

Bandwidth Management

Figure 1.1. The context of the research carried out in this thesis.

1.1 Thesis Overview

This thesis is based on a collection of papers and is divided into two parts. The
first part provides an introduction to the topic, the research overview, and the
relation between included papers. Within the first part, Chapter 2 provides
background and related work of fog computing, RT virtualization, RT orchestra-
tion, and communication bandwidth management. Chapter 3 defines research
questions and introduces the research process adopted in this thesis. Chapter 4
summarizes the thesis contributions. Finally, Chapter 5 concludes the thesis,

6 Chapter 1. Introduction

provides a discussion and presents the future work. The second part of this
thesis includes a collection of published papers which their overview is provided
below.

Paper A

Title: Enabling Fog-based Industrial Robotics Systems [12]
Authors: Mohammed Salman Shaik, Václav Struhár, Zeinab Bakhshi, Van-
Lan Dao, Nitin Desai, Alessandro V. Papadopoulos, Thomas Nolte, Vasileios
Karagiannis, Stefan Schulte, Alexandre Venito, Gerhard Fohler.
Status: Published in ETFA 2020
Abstract: Low latency and on-demand resource availability enable fog com-
puting to host industrial applications in a cloud-like manner. One industrial
domain which stands to benefit from the advantages of fog computing is robotics.
However, the challenges in developing and implementing a fog-based robotic
system are manifold. To illustrate this, in this paper we discuss a system in-
volving robots and robot cells at a factory level and then highlight the main
building blocks necessary for achieving such functionality in a fog-based system.
Further, we elaborate on the challenges in implementing such an architecture,
with emphasis on resource virtualization, memory interference management,
RT communication, and system scalability, dependability, and safety. We then
discuss the challenges from a system perspective where all these aspects are
interrelated.
Paper contributions: The contribution of this paper is to identify the key
research challenges in the implementation of fog computing in industrial areas.
The paper discusses key aspects such as resource orchestration, network scal-
ability, virtualization, and memory management techniques supported by RT
communication paradigms. Further, the paper identifies inter-relations between
the identified challenges.
My role: The paper is a joint work composed with colleagues from the
FORA1 project. Together with Salman, I was the main driver of the paper
and we completed major parts of the paper together. I have completed the
sections related to my research (section IV.A, virtualization, and section IV.B,

1https://fora-etn.eu

https://fora-etn.eu

1.1 Thesis Overview 7

orchestration), and I have also defined the system architecture (Section II).

Paper B

Title: Real-Time Containers: A Survey [13]
Authors: Václav Struhár, Moris Behnam, Mohammad Ashjaei, Alessandro V.
Papadopoulos
Status: Published in Fog-IoT 2020
Abstract: Container-based virtualization has gained significant importance
in the deployment of software applications in cloud-based environments. The
technology entirely relies on operating system features and does not require
a virtualization layer (hypervisor) that introduces a performance degradation.
Container-based virtualization allows to co-locate multiple isolated containers on
a single computation node as well as to decompose an application into multiple
containers distributed among several hosts. Such technology seems promising
in other domains as well, e.g., in industrial automation, automotive, and aviation
industry where mixed-criticality containerized applications from various vendors
can be co-located on shared resources. However, such industrial domains often
require RT behavior (i.e, a capability to meet predefined deadlines). These
capabilities are not fully supported by container-based virtualization yet. In
this work, we provide a systematic literature survey study that summarizes the
effort of the research community on bringing RT properties in container-based
virtualization. We categorize existing work into main research areas and identify
possible immature points of the technology.

Paper contributions: The paper provides a systematic literature survey on the
novel RT container-based virtualization. It provides an overview of enabling
technologies for such virtualization. In The last part, the paper identifies pitfalls,
challenges, and future research directions for RT container-based virtualization.

My role: I was the primary driver of the paper including formulating the
problem and writing the paper. The supervising team provided their valuable
feedback during the work.

8 Chapter 1. Introduction

Paper C

Title: REACT: Enabling Real-Time Container Orchestration
Authors: Václav Struhár, Silviu S. Craciunas, Mohammad Ashjaei, Moris
Behnam, Alessandro V. Papadopoulos
Status: Published in ETFA 2021
Abstract: Fog and edge computing offer the flexibility and decentralized ar-
chitecture benefits of cloud computing without suffering from the latency and
security issues inherent in the cloud. This makes fog computing very attractive in
RT and safety-critical applications, especially if combined with container-based
technologies. Whereas different orchestration mechanisms are available to man-
age the container placement based on their resource demand, no orchestration
tool is considering RT requirements for containerized applications. In this paper,
we present the architecture and design of an RT container orchestrator based
on Kubernetes. Moreover, this paper defines metrics for the performance evalu-
ation of RT containers and describes an initial model for allocating a mixture
of RT and non-RT containers. We present an initial implementation of our RT
container extension and evaluate its feasibility on Linux-based systems.
Paper contributions: The paper presents an orchestrating system that allows
the distribution of a mixture of RT and non-RT containers. The system considers
the timing requirements of RT containers in the container placement process.
The paper includes the architecture of such a system, container performance
metrics, a mathematical model of the orchestration problem, and implementation
in an existing open-source orchestration system Kubernetes.
My role: I was the primary driver of the paper including formulating the
problem, writing the paper, implementing the extension of Kubernetes, and
performing the experiments. The supervising team provided their valuable
feedback during the work.

Paper D

Title: DART: Dynamic bandwidth distribution framework for virtualized
software-defined networks [14]
Authors: Václav Struhár, Mohammad Ashjaei, Moris Behnam, Silviu S. Craci-
unas, Alessandro V. Papadopoulos

1.1 Thesis Overview 9

Status: Published in IECON 2019
Abstract: In this paper we address a network architecture that uses a combi-
nation of network virtualization and software defined networking in order to
reduce complexity of network management and at the same time support high
quality of service. Within this network architecture, we propose a framework to
be able to dynamically distribute the network bandwidth to various services such
that the network resources are utilized efficiently. In many industrial domains,
multiple services may use the same hardware platform for the sake of better re-
source utilization. Therefore, bandwidth distribution among the services should
be done efficiently during run-time. We also develop an admission control
in this framework which dynamically coordinates the bandwidth distributions
based on the requested quality of services. We show the applicability of the
proposed framework by implementing it on a common Software Defined Net-
working (SDN) controller. Moreover, we conduct a set of experiments to show
the performance of the proposed framework.
Paper contributions: In this paper, we propose a framework, which we name
dynamic bandwidth distribution (DART), based on a virtualized SDN architec-
ture that makes the fully dynamic bandwidth allocation on a physical network
feasible. Moreover, we propose an admission control mechanism to distribute
the network bandwidth during run-time based on the QoS level requested by the
Industrial Internet of Things (IIoT) devices. The admission control mechanism
resides within the proposed framework. We also show the applicability of the
proposed framework on a use case study where the proposed admission control
mechanism is implemented within an SDN controller, known as Floodlight.
Finally, we conduct a set of experiments to present the performance of the
implemented framework and mechanism.
My role: I was the primary driver of the paper including formulating the
problem, writing the paper, implementing SDN controller, and performing the
experiments. The supervising team provided their valuable feedback during the
work.

Chapter 2

Background and related work

In this section, we provide a background and related work to the fog computing
paradigm, RT virtualization that enables time deterministic computation, RT or-
chestration that allows distributing RT applications in a cluster of computing
nodes, and a communication bandwidth management that improves communica-
tion related QoS in large computer networks.

2.1 Fog computing

The term fog computing has been coined in [1] as a highly virtualized platform
that provides compute, storage, and networking services between end devices
and traditional cloud computing data centers near the edge of the network. The
platform overcomes drawbacks of cloud computing issuing from bandwidth
limitations and unpredictable network links towards the remote cloud data
centers [15]. Fog computing similarly brings services as the cloud in the vicinity
of the source of the data [16], it offers on-demand resource provisioning and
elastic infrastructure for applications. The computation is distributed among
participating devices located at the edge of the network, core network, and cloud.
The interconnected devices that share part of their resources are denoted as
fog nodes (sometimes also denoted as micro data centers and cloudlets [17]).
The network of fog nodes, called the fog layer, comprises an intermediate layer
between the cloud and device layer. The generic architecture of fog computing

11

12 Chapter 2. Background and related work

is depicted in Figure 2.1.

Core NetworkEdge Network Cloud Data Centres

Device Layer Fog Layer Cloud Layer

Figure 2.1. Generic fog computing architecture [16].

The participating devices are distributed between three layers consisting of
(i) cloud layer, (ii) fog layer, and (iii) device layer. The cloud layer provides a
high computing capacity but offers limited-time predictability due to varying
data transmission latencies and unpredictable resource sharing amongst multiple
tenants. The fog layer provides an elastic environment in the vicinity of the
origin of the data. It consists of many interconnected physical fog nodes that are
capable of hosting software applications. While the processing power of the fog
layer is lower than that of the cloud layer, the network latencies, are shorter and
more predictable. The device layer consists of resource-limited devices such as
sensors and actuators that typically pre-process data and transmit it to fog nodes
for further processing.

In industrial domains (e.g., in the context of industrial automation or smart
manufacturing), fog computing strives to meet strict requirements of industrial
applications where the time aspects are crucial. For example, robot control
applications require reaction time in milliseconds [18] and once the timing
requirements are not met, the manufacturing process may be severely impaired.
In the current state of the practice, critical automation systems are controlled
by dedicated controllers designed to meet timing constraints under any circum-
stance [19]. In contrast, applications in fog computing are distributed amongst
fog nodes and a cloud and share resources with other co-located applications.
The resource sharing between applications and data transmissions may lead to
time unpredictability.

The correctness of an RT application depends not only upon its logical
correctness but also upon the time in which it is performed [20]. RT systems

2.2 Resource virtualization 13

are classified into three categories: hard, firm, and soft, distinguished by the
consequences of missing a deadline. Hard RT systems have a set of strict
deadlines, missing a deadline is considered a system failure and may cause a
catastrophic consequence. Missing a deadline in soft and firm RT systems may
lead to QoS degradation, however, the system failure does not occur. While the
utility of the result becomes zero after the deadline miss in firm RT systems, the
utility of the result decreases with the deadline miss in soft RT systems.

2.2 Resource virtualization

Resource virtualization is the key enabler for fog computing [21] as it enables the
consolidation of applications with various requirements in a shared platform. It
provides guest environments separated from the underlying hardware and gives
the applications an illusion to be running on exclusive hardware. Virtualization
enables several new capabilities, e.g., an entire environment including the OS,
and all the applications running on it can be stopped, saved, and then restored
and restarted on a different physical machine [22]. Virtualization provides
spatial isolation that guarantees that an application can not alter the private data
of other co-located applications. More specifically, virtualization offers the
following three main features [22]: Isolation, Partitioning, and Encapsulation.
Isolation ensures that the applications can not alter the data of other co-located
applications in another partition. A crash of an application in one partition
should not affect applications in other partitions. Partitioning ensures that several
applications and OSs are supported in a single physical computing system by
partitioning (separating) the available resources. Encapsulation provides the
ability to encapsulate the entire environment (applications, their dependencies,
and even the entire OS) into a distributable file.

There are two common virtualization technologies: hypervisor- and container-
based virtualization. Hypervisor-based virtualization utilizes a hypervisor that is
a software layer that creates the different partitions within which each virtualized
instance of an OS runs. In contrast, container-based virtualization utilizes kernel
features to create an isolated environment for processes [23]. In the following
text, we describe the individual technologies. The overview of both technologies
is depicted in Figure 2.2.

14 Chapter 2. Background and related work

Hardware

Host OS

Hypervisor

Virtual Machine

Guest
Processes

Binaries/Libraries

Guest OS

Virtual Machine

Guest
Processes

Binaries/Libraries

Guest OS

(a) Hypervisor-based virtualization (type
2).

Hardware

Host OS

Guest
Processes

Container

Binaries/Libraries

Guest
Processes

Container

Binaries/Libraries

(b) Container-based virtualization.

Figure 2.2. Comparison of hypervisor-based and container-based virtualization.

2.2.1 Hypervisor-based virtualization

For a long time, the term virtualization implied talking about hypervisor-based
virtualization [23]. This type of virtualization introduces a concept of a hyper-
visor, which is a software layer that creates and runs Virtual Machines (VMs)
that emulate the complete hardware of a computer [23]. This technology allows
one computer to host multiple guests VM. The hypervisor runs directly on the
hardware (type 1 hypervisor) or on the top of a host’s operating system (type
2 hypervisor) [24]. Inside of each VM instance runs a full OS and installed
software [25].

The need for running an entire OS inside of each instance of VM results in
higher overheads and worse performance in comparison to container-based virtu-
alization. For example, Felter et al. [26] experience 40% slowdown when using
Kernel-based Virtual Machine (KVM) virtualization, while container-based vir-
tualization shows only a 2% slowdown in the experiment. Joy et al. [27] show
that hypervisor-based virtualization achieves three times lower performance than
container-based virtualization. Shichao et al. [28] provide a comparison between
hypervisor-based virtualization and container-based virtualization showing that
the instantiation time of a VM is 100 times slower and both image size and
memory footprint is 20 times bigger than container-based virtualization.

2.2 Resource virtualization 15

Using VMs is not adaptable to fog computing. For example, the boot-up time
of a VM is several minutes, which is too long for RT applications. For a large
number of access points, the characteristics of fog computing are affected by
the number of VMs because the performance of physical machines is degraded
when the number of VMs increases. The overhead of a hypervisor exponentially
increases when more VMs run within the same machine [29, 30]. Moreover,
since VMs are resource-intensive, they are not the best virtualization approach
for resource-constraint devices [30].

2.2.2 Container-based virtualization

In contrast, container-based virtualization does not emulate an entire VM, instead
it utilizes kernel features to create an isolated environment for processes [23].
It introduces a concept of containers that are sets of resource-limited processes
that are isolated from the rest of the system and other containers. This type of
virtualization utilizes the resources more efficiently and permits the deployment
of more virtualized applications [27]. Container-based virtualization does not
impose any requirements on hardware support for virtualization, and hence,
such virtualization can be utilized on a broader range of devices. The container-
based virtualization is achieved by the host OS [31] (in this thesis we consider
Linux), namely by utilizing two kernel features: namespaces and control groups
(cgroups). Namespaces virtualize global resources (e.g., processes, network,
inter-process communication) in the way that a group of processes can see and
use one subset of resources while another group can use a different subset of
resources. Cgroups provide a mechanism for aggregating and partitioning sets
of tasks, and all their future children, into hierarchical groups with specialized
behaviour1. It allows to organize processes hierarchically and distribution system
resources (e.g., CPU, memory) along the hierarchy.

Containers co-located on a single computing node run as user-space isolated
tasks and make use of functions of the host’s OS. From the user’s perspective,
each container appears and executes like a standalone OS [31]. In comparison
to hypervisor-based virtualization, container-based virtualization provides a

1https://www.kernel.org/doc/Documentation/cgroup-v1/cgroups.
txt

https://www.kernel.org/doc/Documentation/cgroup-v1/cgroups.txt
https://www.kernel.org/doc/Documentation/cgroup-v1/cgroups.txt

16 Chapter 2. Background and related work

negligible overhead, is more resource-efficient (e.g., 29.4 times less memory use
than a VM in a use-case presented in [32]), has higher flexibility, provides fast
booting times [33], and enables a near-native performance [31, 34, 35, 26].

Fog computing can strongly benefit from this type of virtualization as the
lower overhead allows to co-locate a higher number of applications, wider
hardware support allows to employ more devices and low startup times allows
to deal with elasticity (i.e, fast deployment of applications). On the other hand,
the container-based virtualization provides a low level of isolation for memory,
disk, and network operations [36]; hence, such operations may lead to degrading
QoS of the virtualized applications and may damage their time predictability.

2.2.3 Real-time container-based virtualization

In addition to spatial isolation, RT application requires temporal isolation in or-
der to minimize temporal interference between co-located applications. Several
hypervisors support RT virtualization, for instance, RT-Xen [37], µRTZVisor [38],
Hermes [39]. However, they do not solve high overheads and slow instantiation
times, and high memory footprint [28] inherent to hypervisor-based virtualiza-
tion.

The support of the RT capability of container-based virtualization is a novel
research topic as our research shows [13]. The first research in this direction
started in 2015 as shown in Figure 2.3, while the container-based virtualization
itself appeared in the current form in 2006 with process containers developed
by Google. The RT capabilities of container-based virtualization depend on the
underlying OS. In this thesis, we consider the general-purpose OS Linux as it
offers several benefits for fog computing: wide hardware support, virtualization
capabilities, and light-weightness. While Linux was not originally designed for
RT computing, there are considerable efforts to improve the time determinism
on several levels, e.g., introducing RT scheduling policies as a standard kernel
feature and providing time-predictable kernel behavior through full preemption.
In recent years, Linux has gained several characteristics of a real-time operating
system [40]. On the task scheduling level, there are RT scheduling policies in
the Linux kernel: First In, First Out (FIFO) and Round Robin combined with
priority queues to provide different priority levels for tasks, and Earliest Deadline
First (EDF) and Constant-Bandwidth Server that prioritizes tasks dynamically

2.3 Real-Time container orchestration 17

Real-Time Containers

2
0
1
5

2
0
1
6

2
0
1
7

2
0
1
8

2
0
1
9

2
0
1
3

2
0
0
6

D
oc

ke
r

Pr
oc

es
s

C
on

ta
in

er
s

1
9
7
9

Unix V7 (chroot)
FreeBSD Jails
Linux VServer
Solaris Containers
Open VZ LX

C
2
0
0
8

(1)

(3)

(6)

(4)

Figure 2.3. Timeline of RT container-based virtualization with important milestones.
The numbers in brackets denote the number of publications related to RT

container-based virtualization [13]
.

according to their deadlines [41]. As shown later in this thesis, there is an
effort to connect the container-based virtualization with the improved Linux RT
features.

2.3 Real-Time container orchestration

While the RT container-based virtualization enables co-location of spatially and
temporally isolated applications on compute nodes, the container orchestration
automates the deployment, execution, and maintenance of containers in clusters
of heterogeneous computing nodes [42]. The orchestration consist of two
major components: the orchestrator and a local container manager that provides
functionalities for setting up containers in the local node. The Figure 2.4 shows
phases of a container life cycle. A container manager (e.g., Docker) provides
API to support the following phases: acquire, build, deliver containers, while
the container orchestrator provides functions to automatize deployment, run,
and maintenance of containers in a cluster of compute nodes [43]. The acquire
phase gets the containers from a repository, build phase packs the application and
libraries for a container image, deliver phase brings the application in production,
deploy, run, maintain [43].

18 Chapter 2. Background and related work

Acquire

Deploy

BuildMaintain

DeliverRun

Orchestration

Container
Manager

Figure 2.4. The container life cycle [43].

The principal functionality of container orchestrators is to automate the
deployment of containers in a cluster of compute nodes following placement
policies and user-supplied placement constraints. The ultimate goal of the
orchestrators is to choose an optimal compute node to deploy the requested
containers on. The orchestrator matches the resource requirements with the
resource capacity of the nodes, e.g., CPU, memory, and disk storage capacity,
and applies strategies to maximize the performance (e.g., the highest spread of
containers). Additionally, orchestrators address fault-tolerance of the deployed
containers, scaling or removing containers, load balancing, container health
monitoring, and efficient resource utilization [42].

There are several available container orchestrating tools, for instance Kuber-
netes2 and Docker Swarm3. The container orchestrators can be easily extended
to be used in fog computing as shown in [44, 45]. However, the current orches-
trators [42] and their fog computing extensions lack support for the deployment
and maintenance of containers based on their RT requirements and RT-related
QoS.

2https://kubernetes.io
3https://docs.docker.com/engine/swarm

https://kubernetes.io
https://docs.docker.com/engine/swarm

2.4 Communication bandwidth management of large IoT networks 19

Although container orchestration, per se, is a mature area from both research
and practice perspectives, it still lacks some (even non-RT-related) functions [46].
For instance, Casalicchio et al. [46] emphasize in their container orchestrator
survey the research challenges in the following areas: advanced monitoring
and workload characterization, container performance models, and adaptation
models for container orchestration. Such research challenges are amplified in
RT computing where they add an additional dimension of the problem in terms
of defining RT-related QoS metrics, their measurement, and prediction.

There are attempts to connect the virtualization and orchestration for instance
in [47] Xi et al. use OpenStack4 to orchestrate RT VMs based on RT-Xen.
However, this work does not consider possible interference between VMs.

The challenge is to connect the emerging RT container-based virtualization
technology with the orchestrating technology to enable matchmaking between
RT containers and compute nodes taking into account RT requirements of the
containers and RT capabilities of the compute nodes. Moreover, it is crucial
to consider the inherently low isolation level of co-located containers that may
influence the overall performance of the system.

2.4 Communication bandwidth management of large
IoT networks

Computer infrastructures may consist of a large number of interconnected de-
vices. It is estimated that the total number of devices will grow up to 80 billion
in 20255. With such many devices, the complexity of network management
increases significantly. The networking and cloud community will have to
find ways on many levels to deliver services that satisfy intrinsic demands
on availability and QoS, while also requiring support for heterogeneous and
multi-vendor equipment [48]. On the computing level, the shift to edge and fog
computing is inevitable to alleviate the limitations of cloud computing. On the
networking level, the promising technology to mitigate the complexity of the net-

4https://www.openstack.org/
5https://idc-cema.com/dwn/SF_177701/driving_the_digital_

agenda_requires_strategic_architecture_rosen_idc.pdf

https://www.openstack.org/
https://idc-cema.com/dwn/SF_177701/driving_the_digital_agenda_requires_strategic_architecture_rosen_idc.pdf
https://idc-cema.com/dwn/SF_177701/driving_the_digital_agenda_requires_strategic_architecture_rosen_idc.pdf

20 Chapter 2. Background and related work

works and to provide dynamically QoS control is a mixture of SDN and network
virtualization [49]. SDN decreases the complexity of network management by
decoupling network control and forwarding functions [50] (Figure 2.5). Network
virtualization provides isolation between multiple network services, simplifies
network management, and abstracts the physical network resources [48].

The combination of SDN and network virtualization may not be fully com-
patible as network virtualization disrupts the centralized view of the network
expected by SDN. Such a combination of the two technologies may introduce
some issues, for instance, a problem of shared resources among multiple virtual
networks [48] when it is not clear how to control the incoming traffic to the
shared resources.

SDN is comprised of three layers: a) The Application layer consists of SDN
business applications written in common languages controlling the underlying
SDN enabled devices via the SDN controller, b) The Control layer fetches
various statistics from the physical devices (usage statistic, topology details,
state details) and enables the communication between SDN applications and
SDN devices, and c) The Infrastructure layer is composed of physical SDN
switches. The need for service isolation and diverse resource requirements
within one physical network brings the topic of network virtualization into the
focus of the researcher community [51, 52]. Network virtualization enables the
coexistence of multiple logical networks sharing the same underlying physical
network [53]. One technique in this context is network slicing [54] where
there is a division of the shared physical network into multiple logical isolated
sub-networks (slices). Besides being isolated from each other, slices may be
optimized for different purposes (e.g., high bandwidth High Definition (HD)
video streaming, low latency video gaming) [54]. Slicing allows infrastructure
providers to adapt the sharing of the underlying physical network to customer
requirements while at the same time providing isolation of the network resources.
Network virtualization requires a network hypervisor that creates an abstraction
layer on top of physical hardware and allows the creation of virtual networks.

There are several resource reservation techniques in processor and com-
munication domains which most of which focus on a static reservation of
bandwidth. For instance, in the processor domain, supporting multimedia appli-
cations [55] and hierarchical reservation techniques [56] are presented, whereas

2.4 Communication bandwidth management of large IoT networks 21

Application layer
App

Control layer
Control layer

Network ServicesNetwork Services

Control layer
Infrastructure layer

Northbound Interface

Southbound Interface

SDN Controller

Business Applications

Programmable Switches

Figure 2.5. SDN Architecture separates a network into three layers: Application,
Control, and Infrastructure layer.

in the distributed level communication bandwidth reservation for multimedia
systems [57], adaptive QoS control [58] and a platform to support end-to-end
timing [59] are presented.

Chapter 3

Research overview

3.1 Research goals and research Questions

The overall research goal of this thesis is to improve soft RT predictability in
fog computing systems assuming COTS hardware-based systems and general-
purpose OS Linux. We break down the overall research goal into three Research
Questions (RQs). The outcomes of the RQs are published in relevant peer-
reviewed conferences (e.g., ETFA, IECON) and workshops (e.g., Fog-IoT). The
first RQ aims to identify technology, approaches, challenges, shortcomings of
technology enabling RT computation in fog computing. The second RQ points to
the problem of distribution of RT containers among a cluster of compute nodes.
The third RQ focuses on a communication aspect to improve RT performance.
The questions are elaborated below:

3.1.1 RQ1: What are the main technologies, approaches, and chal-
lenges towards providing RT predictability in fog computing?

Fog computing is a distributed paradigm that allows to seamlessly utilize re-
sources at the edge of the network. Industrial domains often require a capability
to meet predefined deadlines. However, fog computing, to the best of our knowl-
edge, does not provide such capabilities yet. By answering this question, we
identify the main technologies, approaches, challenges, and shortcomings of

23

24 Chapter 3. Research overview

fog computing and RT container-based virtualization that is one of the main
enablers of fog computing for the industrial domain.

3.1.2 RQ2: How to distribute RT containers in fog computing to
achieve soft RT behavior using Kubernetes?

Following the previous question, the advance in RT container-based virtualiza-
tion is not reflected in container orchestration systems. Existing orchestration
systems do not take into account RT requirements of containerized applications
and RT capabilities of compute nodes. In order to answer to this question,
we propose an extension to an orchestration system Kubernetes that enables
the orchestration of RT containers. We propose an architecture of the system,
mathematical model, admission control mechanism, and validate the solution
using experimental study.

3.1.3 RQ3: How to improve a soft RT performance via quality of
service management in virtualized SDN networks?

The increasing number of network devices raises a need for network infras-
tructure sharing. An infrastructure can be shared between devices belonging
to various domains having various QoS requirements. This setting calls for a
combination of network virtualization to isolate individual domains and SDN
that enables dynamic, programmatic control of a network. However, these
two technologies are not fully compatible. SDN expects full knowledge of
the network while the network virtualization breaks the network into smaller
sub-networks. The answer to this question shows how to connect SDN and
network virtualization and how to enable bandwidth management in case of
overlapping resources present in multiple sub-networks.

3.2 Research Process

In this thesis, we use the hypothetico-deductive method described in [60] that
includes steps depicted in Figure 3.1. To hypothesize the RQs and validate
the proposed solutions, the research process adopts specific steps described

3.2 Research Process 25

Literature survey

Identify a list of problems

Select and formulate new problem

Literature survey
Domain experts discussion

Propose the solution

Experimental evaluation

Desired results
achieved?

No

Yes

No

Yes

Publish the solution and the result

Possible to
reformulate
the problem?

Reformulate the problem

Figure 3.1. The research methodology followed in this thesis.

below. The research is conducted in a collaboration with our industrial partners:
TTTech1 and with ABB2. We continuously discuss the research direction and
results achieved in order to reflect industry needs and requirements. The process
consists of the following steps:

1. Literature survey: Publications related to the thesis topic are reviewed
and then a shortlist of the relevant literature is obtained as a result of this
step.

1https://www.tttech.com/
2https://abb.com

https://www.tttech.com/
https://abb.com

26 Chapter 3. Research overview

2. Identify a list of problems: We identify issues in the emerging fog
computing area related to soft RT behavior. The result of this step is a list
of problems that can be solved with different techniques and technologies.

3. Select and formulate a new problem: From the list of problems identi-
fied in the previous step, we choose a specific problem that we clarify and
formulate as a research question.

4. Literature survey and domain expert discussion: We perform a litera-
ture survey to identify the current state-of-the-art of each of the selected
problems. We continuously discuss with the domain experts to assess the
relevance of the problem and the feasibility of the possible solution from
the industrial perspective.

5. Propose the solution: Based on the domain expert discussion, we pro-
pose a new solution that tackles the problem and overcomes the existing
drawbacks of other solutions or improves the system performance com-
pared to others.

6. Experimental evaluation: The proposed solution is implemented and
evaluated through a set of experiments.

7. Publish the solution: After the evaluation of the solution, we publish it
in a peer-reviewed article.

Chapter 4

Thesis contributions

This section provides a summary of the thesis contributions. Firstly, we study
and compare methods and approaches to enable RT containers, we utilize the
knowledge and propose a solution for the orchestration of RT containers across a
cluster of hosts. Subsequently, we propose a solution for the dynamic distribution
of network bandwidth in large virtualized networks to maintain a certain level
of QoS.

4.1 C1: Study and compare methods and approaches to
enable RT container-based virtualization

The first contribution is based on findings in Paper B [13] where we conduct a
systematic literature survey on RT container-based virtualization. The research
is motivated together with our industrial partner TTTech that is exploring pos-
sible techniques enabling co-location of multiple RT applications on a shared
industrial edge computing platform1. An important aspect of such application
co-location is the minimization of possible overheads and timing interference
between the applications. The promising technique for that purpose is low
footprint container-based virtualization, however, container-based virtualization
does not support directly RT capabilities. In the survey, we extract available

1https://www.tttech-industrial.com/products/nerve/

27

https://www.tttech-industrial.com/products/nerve/

28 Chapter 4. Thesis contributions

literature related to RT and container-based virtualization. After the extraction,
we aim to identify the techniques and approaches enabling RT container-based
virtualization, the context where such virtualization is currently being used, and
current shortcomings and immature aspects that prevent full adoption of RT
container-based virtualization in the industry.

From the surveyed literature we identify and explain the main directions
to enabling RT container-based virtualization, namely PREEMPT_RT patch-
based, co-kernel based, hierarchical scheduling based. Below, we provide a
brief description of these techniques:

• PREEMPT_RT patch-based approaches [61, 62, 63, 64, 65]: The research
in this area aims to improve the time predictability of co-located container-
ized applications through the use of the PREEMPT_RT patch.

• Co-kernel methods: RT micro-kernel runs in parallel to Linux kernel.
The RT co-kernel handles time-critical activities (for instance handling
interrupts and scheduling RT threads), the standard Linux kernel runs
only when the co-kernel is idle. In comparison to the PREEMPT_RT,
the co-kernel approach offers lower latencies and lower jitter. On the
other hand, it requires a special Application Programming Interface (API),
tools, and libraries for application development. Additionally, there are
impediments with scaling co-kernel solutions on large platforms

• Hierarchical scheduling: Inspired by a similar concept in the hypervisor-
based virtualization where a global scheduler assigns CPU time for the
VM, the second layer scheduler schedules the individual tasks of the VM.

In the surveyed literature, we recognize the following shortcomings and
possible immature aspects in container-based virtualization related to the RT
aspect that prevents such a technology to be adopted in the industry. It can
be summarized into three categories: (i) tools, frameworks, and middleware
support, (ii) RT communication support, and (iii) miscellaneous.

The literature included in the survey shows that there is a lack of tools,
frameworks, and middlewares supporting RT container-based virtualization. For
instance, there is a need for an orchestration tool that can schedule RT containers
based on pre-configured capabilities [66]. Moga et al. [61] emphasize a lack of

4.2 C2: Orchestration of RT containers 29

a middleware that is aware of both communication needs as well as run-time
and performance isolation needs. Also, there is a need for a framework that
exposes runtime requirements of RT applications running inside containers
while optimizing the resources usages such that more applications can share
resources. [61]. Related to the communication aspect, Goldschmidt et al. [63]
and Moga et al. [61] put stress on insufficient communication methods and data
management of RT containers. Hofer et al. [66] promote an investigation on
container security restricted container access and intra-container communication.
Additionally, there is a lack of latency and performance tests of recent releases
of a patched Linux Kernel. As well as a proper analysis of the configuration of
the Linux kernel parameters that may improve overall task determinism [66].
There is missing safety and security analysis of RT containers and vulnerability
management for the acceptance in industry [67, 63].

4.2 C2: Orchestration of RT containers

Container orchestrators are well-established tools that are used in production
environments to automate the deployment, management, networking, and scaling
of containers. However, as the RT container-based virtualization is an emerging
technology, the orchestrators do not consider RT requirements or RT capabilities
of compute nodes [66, 61]. To bridge the gap, in Paper C, we propose an RT-
aware container orchestration system that enables the scheduling of both RT
and non-RT Best Effort (BE) containers while considering timing requirements
defined for time-critical applications. We define a mathematical model for
the RT components, performance metrics to evaluate the performance of RT
containers, and we implement such a system.

4.2.1 Architecture

We propose an RT-aware orchestrating system that is based on the master-minion
architecture that consists of a master node (denoted as RT orchestrator) and a
set of minion compute nodes connected in a cluster as described in [42]. The
core of the system is the master node that makes global decisions about the
cluster; it receives users’ requests for container deployments enhanced with RT

30 Chapter 4. Thesis contributions

requirements, continuously monitors states of compute nodes in the cluster, and
schedules containers on computing nodes.

Every compute node, depicted in Figure. 4.1b, provides an environment for
hosting RT containers2 and contains a node agent that communicates with the
master node through dedicated APIs. The node agent takes container deployment
specifications defining container requirements and deployment parameters.

The master node depicted in Figure 4.1a is a central point in the architecture;
it accepts user-defined container deployment specifications enhanced with RT
interface and task annotations. It provides mechanisms for admission control
and scheduling of containers. Additionally, it continuously collects performance
Operating System Level Metrics (OSLM) and Container Level Metrics (CLM)
metrics (described later).

Each container deployment specification, which is supplied to the master
node via a dedicated API, contains the specification of the RT interface and the
container annotation. The RT interface specifies the CPU reservation (i.e., CPU
budget over a time period) of the respective container following the periodic
resource model of the hierarchical scheduling framework (c.f. [68]). The con-
tainer specification contains the description of the tasks inside the container to
compute the CLM during run-time.

The admission control determines if there are nodes in the cluster with
enough available resources (e.g., memory and storage) to accommodate the
resource demands of the new container. Moreover, it performs necessary
utilization-bound schedulability tests that reject those nodes on which the RT
timing requirements cannot be met.

Performance metrics

To evaluate the performance of the system, we propose to use OSLM [69]. Such
metrics are useful to estimate the suitability of the system to run RT tasks. For
instance, Interrupts with a non-preemptable section that can influence the RT
performance of the system [70], CPU Utilization, number of handled interrupts
per second, number of I/O requests per second, and amount of data read/written.

2Enabled by the use of the hierarchical patch by Abeni et al. available at https://github.
com/lucabe72/LinuxPatches/tree/HCBS.

https://github.com/lucabe72/LinuxPatches/tree/HCBS
https://github.com/lucabe72/LinuxPatches/tree/HCBS

4.2 C2: Orchestration of RT containers 31

Real-Time
Orchestrator

Compute
Node 1

C
o
n
ta

in
e
r

1

C
o
n
ta

in
e
r

m
1

...

C
o
n
ta

in
e
r

1

...

C
o
n
ta

in
e
r

1

...

...

Container Specification 1

task 1 task 2 task n1

Resource
Specification

RT
Interface

...

Tasks Annotation

task 1 task 2 task nj

Resource
Specification

...

Tasks Annotation

RT
Interface

Compute
Node 2

Compute
Node n

RT Admission
Control

RT Container
Scheduler

RT Resource
Monitor

C
L
M

,
O

S
L
M

RT Manager RT Manager RT Manager

C
o
n
ta

in
e
r

m
2

C
o
n
ta

in
e
r

m
3

Container Specification j

(a) Real-time Aware Container Orchestration
System.

Compute Node

RT Manager

...

RT Deployment

RT Monitoring

Container n

Taskn 1

Taskn 2

Taskn m

...

CLM
OSLM

Reporting

Container 1

Task1 1

Task1 2

Task1 m

...

Orchestrator

Deployment
Request

(b) Compute Node.

Figure 4.1. A high-level architecture of the RT-aware orchestration system and the
compute node

There are several tools for collecting performance data as shown in [71], for
instance, mpstat and iostat tools collect the performance data from proc and
cgroups directories to estimate the OSLM.

On the container level, there is a lack of measurement methodology, tools,
and best practices, as well as a lack of metrics on the characterization of the
container overhead [71]. Available tools, e.g., docker stats and cAdvisor allow
estimating the basic set of container-related metrics (e.g., CPU and memory
utilization). However, when considering the RT performance evaluation of
containers, the available tools are lacking such capabilities. Therefore, we define
CLM that evaluates the RT performance of tasks inside RT containers, namely:
the total number of deadline misses, maximum lateness, maximum response time.
The total number of deadline misses characterizes the total number of deadline

32 Chapter 4. Thesis contributions

0

10

20

30

40

50

60

70

80

90

100

1 3 5 7

overhead non-real-time container real-time containers

C
P

U
 B

a
n

d
w

id
th

 [
%

]

Number of real-time containers
Overheadnon-real-time Containerreal-time Container 7real-time Container 6real-time Container 5real-time Container 4real-time Container 3real-time Container 2real-time Container 1

Figure 4.2. Distribution of CPU in a multi-container environment.

misses of tasks inside of the container within a time period, maximum lateness
characterizes the maximum lateness encountered by a task inside the container
within a time period, and response time characterizes the maximum response
time encountered by a task inside the container within a time period.

We have performed a set of experiments that attempts to co-locate multiple
RT and BE containers on a single compute node (Figure 4.2). We have attempted
to attack the obtained CPU bandwidth that was reserved in the compute node
by the orchestrator. One of the containers runs resource-intensive computation
generating an excessive amount of I/O requests and interrupts. The results show
that the RT containers are getting the reserved CPU resources. In future work,
we plan to design more sophisticated experiments that will show the loss of
performance and interference between containers.

4.3 C3: Dynamic bandwidth management 33

4.3 C3: Dynamic bandwidth management

As the third contribution, we propose a framework Dynamic Bandwidth Distri-
bution Framework (DART) based on a virtualized SDN architecture. It enables
communication across SDN controllers in order to make the fully dynamic
bandwidth allocation on a physical network feasible. The network virtualization
splits the physical network into multiple sub-networks (also known as virtual
networks or slices). Each sub-network is controlled by a single SDN controller
that expects complete knowledge of the network. However, network virtualiza-
tion limits the knowledge of the controllers to the corresponding sub-networks.
Here, the problem emerges when two or more sub-networks share resources,
for example, a file server or a fog node. The shared resources may experience
network congestion as the access control is uncoordinated and divided between
multiple SDN controllers. This problem is depicted in Figure 4.3.

Physical Network

Virtual Network
2

Virtual Network
1

Shared
Network

SDN Controller 1 SDN Controller 2

Link congestion

Figure 4.3. Overview of DART framework.

In Paper D, we propose the DART framework that enables the communi-
cation between SDN controllers. Moreover, we propose an admission control
mechanism on the SDN controller level to distribute the network bandwidth
during run-time that dynamically adapts the system based on the current need.

34 Chapter 4. Thesis contributions

We also show the applicability of the proposed framework on a use case study
where the proposed admission control mechanism is implemented within the
Floodlight SDN controller3.

The DART framework is a generic concept that can be applied to any
virtualized SDN architecture. Figure 4.5 depicts the DART framework. On the
bottom left side, an architecture with several sub-networks in a physical network
is shown. Note that in this architecture we assume that the sub-networks can
share a part of the physical network to increase the efficiency of utilizing the
resources, however, the framework covers the cases with fully isolated sub-
networks as well. The proposed framework is depicted on the right side of the
architecture, which consists of two main components: a distributed component
and a centralized component.

The distributed component deals with synchronizing the bandwidth man-
agement among the sub-network. As each SDN controller can only coordinate
its own sub-network, it is essential to have a general view of the network status
when allocating the bandwidth. The distributed component ensures that the
SDN controllers collaborate on bandwidth management, leading to coherent
bandwidth utilization.

The admission control mechanism is divided into centralized and distributed
components. The centralized component contains the logic of bandwidth man-
agement. The distributed component, however, resides on top of the SDN
controller to provide information about the corresponding sub-networks to the
centralized component.

The sending nodes decompose the data into multiple data streams (see
Figure 4.4). The data streams can have different priorities which are set by the
sender nodes depending on the importance of the data. The primary goal of
the admission control is to check the priority of the data streams and allocate
bandwidth for the links that the data stream is transmitting. In order to do that
the admission control defines a priority limit. Any received data stream with a
priority higher than the priority limit will be forwarded to its destination, whereas
the data streams with priority less than the priority limit will be prevented for
transmission. The priority limit is defined in the centralized component of the

3https://floodlight.atlassian.net/wiki/spaces/
floodlightcontroller/overview

https://floodlight.atlassian.net/wiki/spaces/floodlightcontroller/overview
https://floodlight.atlassian.net/wiki/spaces/floodlightcontroller/overview

4.3 C3: Dynamic bandwidth management 35

prio 1
prio 2
prio 3

prio 1
prio 2
prio 3

stream

sender
admission

control
receiver

prio 1
prio 2 stream

Figure 4.4. Admission control mechanism.

admission control for all sub-networks. In a normal case, priority limits are equal
and thus the bandwidth is uniformly distributed among the sub-networks. If
there is a request for priority limit change (detected by a distributed component),
the centralized component adjusts the limits accordingly in order to a) increase
bandwidth in the requesting sub-network, b) keep the total bandwidth used by
all sub-networks constant.

We set up a testbed consisting of two virtual networks and we place two
sending devices within each of the virtual networks. The receiving device is
set on a shared segment of the two virtual networks and receives data from
the sending devices. The result of the experiment is shown in Figure 4.6. The
Figure shows the average network utilization, in the case of no bandwidth
adaptation (Fig. 4.6a), and with bandwidth adaptation (Fig. 4.6b). In both cases,
between time 60 and time 120, a motion is detected, and additional traffic is
generated from the sending node 1. In Fig. 4.6a, the bandwidth limit is exceeded
for all the periods when the motion is present, while Fig. 4.6b shows that the
SDN controller 1 detects high importance traffic, and the system increases the
priorities for sub-network 1 and decreases the priorities allowed for sub-network
2, resulting in a better allocation of the bandwidth over the high-priority traffic.

SDN SDN

Network Hypervisor

Physical Network

Slice 2
Slice 1 Communication Module

App 1 App 2 App n
...

Application Layer

Subscription
Module

Shared Storage
Module

Communication Module

Publishing Module

Distributed Admission Control

C
en

tr
al

iz
ed

D
is

tr
ib

u
te

d

Distributed Admission Control

Figure 4.5. An architecture of a system using the DART framework.

 0

 20

 40

 60

 80

 100

 120

 140

 0 20 40 60 80 100 120 140 160 180

b
a
n
d

w
id

th
 %

time [s]

Sending Node 1
Sending Node 2
Total bandwidth
Bandwidth Limit

(a) Without bandwidth adaptation.

 0

 20

 40

 60

 80

 100

 120

 140

 0 20 40 60 80 100 120 140 160 180

b
a
n
d

w
id

th
 %

time [s]

Sending Node 1
Sending Node 2
Total bandwidth
Bandwidth Limit

(b) With bandwidth adaptation using the DART framework.

Figure 4.6. Average bandwidth utilization.

Chapter 5

Conclusions and future work

This Chapter concludes on the contributions and obtained results presented in
the previous chapters, and outlines potential directions of research for future
work.

5.1 Conclusions

Fog computing is an emerging paradigm that adds another layer between edge
devices and the cloud. It helps to maintain the increasing number of devices
that produce a massive amount of data that can not be properly handled by
cloud computing. In comparison to cloud computing, one of the supreme
benefits of fog computing is a reduction of network latencies and increasing
time predictability. Such properties enable new applications that are not feasible
with cloud computing. However, decreased latencies and predictability, per
se, are not enough for RT systems that require stringent response time. The
adoption of fog computing in such systems requires additional considerations
and techniques to provide temporal isolation and guarantees of a certain level of
time predictability.

In this thesis, we have explored container-based virtualization that has
the potential to be the foundation of RT fog computing. It offers the desired
properties for fog computing, namely: it is lightweight with low overheads
(thus, it enables a large amount of co-located applications), and it provides

39

40 Chapter 5. Conclusions and future work

rapid startup times (thus, it enables fast application migration). Nevertheless,
container-based virtualization in general-purpose OS (e.g., Linux) lacks RT
support. For that reason, we have performed a systematic literature survey on the
topic of RT container-based virtualization and identified the main directions that
the research community considers for enabling RT behavior of container-based
virtualization.

As we have identified from the surveyed literature and from a survey of
current container orchestrators, there is a lack of container orchestration tools
and mechanisms that take into account containers’ RT requirements during
the orchestration processes. Thus, we have extended a container orchestration
architecture, propose RT container performance metrics, and RT admission
mechanism. Subsequently, we have provided an implementation in Kubernetes.

Finally, we have explored the communication aspect of large networks with
a multitude of connected devices. We have introduced the DART framework that
enables the collaboration of multiple SDN controllers among virtualized net-
works. Subsequently, we have implemented a use-case of a surveillance system
that utilizes the framework. The results have shown that SDN controllers can
cooperatively make decisions, prioritize, and distribute the bandwidth between
virtual networks to mitigate congestion of shared resources. The framework
introduced does not have to be restricted to bandwidth distribution only but
it can be extended to support numerous applications that can benefit from the
collaboration of virtual networks.

5.2 Limitation of the work

The RT enhancement of fog computing is a large research area concerning
myriads of topics and sub-topics. In this thesis, we have investigated three major
building blocks (i.e., virtualization, orchestration, and network management) of
fog computing systems. However, we may not have captured all aspects of the
building blocks.

For example, the RT container-based virtualization is not only a term contain-
ing one specific approach but a chain of interconnected underlying technologies
and mechanisms ranging from scheduling theory, resource reservation, Linux-
specific features, resource interference. Not all the aspects were fully mentioned

5.3 Future work 41

in the thesis and the included papers. We have omitted some aspects of fog
computing, e.g., the collaboration of fog nodes with a remote cloud. Fog com-
puting serves in the thesis as a unifying topic that connects the building blocks.
However, we have not completely connected all the mentioned topics from the
technological point of view, for example, the SDN network management part
stays apart from the rest of the thesis. However, it opens an interesting field for
future work to connect these topics.

5.3 Future work

The future work follows the research presented in this thesis and aims to conduct
research in the areas described below. We would like to utilize the developed
infrastructure (e.g., the SDN and RT Kubernetes testbed) and knowledge gained
while compiling this thesis. Additionally, we plan to explore the following:

• Identification, prediction, and prevention of interference of container-
based virtualization. Paper C proposes a framework for orchestration and
performance metrics of RT containers. However, we need to profoundly
evaluate the proposed metrics and identify factors of interference between
RT and BE containers.

• Advanced admission system for RT containers: In Paper C we propose
an admission control system for RT containers. However, the admission
control system is simple and needs to be extended with additional factors
including OSLM and CLM performance metrics presented in Paper C.

• Online re-dimensioning of containers’ resources: The container-based
virtualization, as it is implemented now in the major OSs, does not take
into account interference that originates due to concurrent use of shared
resources, e.g.: memory, cache, and data buses. As a consequence,
co-located containers may mutually influence the temporal isolation of
each other and they may not deliver the requested performance. We
plan to more sophisticated control system for resource (re-)allocation for
container-based virtualization.

Bibliography

[1] Flavio Bonomi, Rodolfo Milito, Jiang Zhu, and Sateesh Addepalli. Fog
computing and its role in the internet of things. In Proceedings of the first
edition of the MCC workshop on Mobile cloud computing, 2012.

[2] Jens Myrup Pedersen, M Tahir Riaz, Joaquim Celestino Junior, Bozydar
Dubalski, Damian Ledzinski, and Ahmed Patel. Assessing measurements
of qos for global cloud computing services. In 2011 IEEE Ninth Inter-
national Conference on Dependable, Autonomic and Secure Computing.
IEEE, 2011.

[3] Frank Pallas, Philip Raschke, and David Bermbach. Fog computing as
privacy enabler. IEEE Internet Computing, 2020.

[4] P. Pop, M. L. Raagaard, M. Gutierrez, and W. Steiner. Enabling fog
computing for industrial automation through time-sensitive networking
(tsn). IEEE Communications Standards Magazine, 2018.

[5] César Augusto García-Pérez and Pedro Merino. Experimental evaluation of
fog computing techniques to reduce latency in lte networks. Transactions
on Emerging Telecommunications Technologies, 2018.

[6] Giorgio C. Buttazzo. Hard Real-Time Computing Systems: Predictable
Scheduling Algorithms and Applications. 3rd edition, 2011.

[7] Hermann Kopetz, Astrit Ademaj, Petr Grillinger, and Klaus Steinhammer.
The time-triggered ethernet (TTE) design. Int. Symp. on Object-oriented
Real-time distr. Comp. (ISORC), 2005.

43

44 Bibliography

[8] Institute of Electrical and Electronics Engineers. Time-Sensitive Net-
working Task Group. http://www.ieee802.org/1/pages/tsn.
html, 2016.

[9] Dakshina Dasari, Benny Akesson, Vincent Nelis, Muhammad Ali Awan,
and Stefan M Petters. Identifying the sources of unpredictability in cots-
based multicore systems. In 2013 8th IEEE international symposium on
industrial embedded systems (SIES). IEEE, 2013.

[10] CS Wong, IKT Tan, RD Kumari, JW Lam, and W Fun. Fairness and
interactive performance of o (1) and cfs linux kernel schedulers. In 2008
International Symposium on Information Technology. IEEE, 2008.

[11] Younggyun Koh, Rob Knauerhase, Paul Brett, Mic Bowman, Zhihua Wen,
and Calton Pu. An analysis of performance interference effects in virtual
environments. In 2007 IEEE International Symposium on Performance
Analysis of Systems Software, 2007.

[12] Mohammed Salman Shaik, Václav Struhár, Zeinab Bakhshi, Van-Lan
Dao, Nitin Desai, Alessandro V Papadopoulos, Thomas Nolte, Vasileios
Karagiannis, Stefan Schulte, Alexandre Venito, et al. Enabling fog-based
industrial robotics systems. In 2020 25th IEEE International Conference
on Emerging Technologies and Factory Automation (ETFA). IEEE, 2020.

[13] Václav Struhár, Moris Behnam, Mohammad Ashjaei, and Alessandro V
Papadopoulos. Real-time containers: A survey. In 2nd Workshop on Fog
Computing and the IoT (Fog-IoT 2020). Schloss Dagstuhl-Leibniz-Zentrum
für Informatik, 2020.

[14] Václav Struhár, Mohammad Ashjaei, Moris Behnam, Silviu S Craciunas,
and Alessandro V Papadopoulos. Dart: Dynamic bandwidth distribution
framework for virtualized software defined networks. In IECON 2019-45th
Annual Conference of the IEEE Industrial Electronics Society. IEEE, 2019.

[15] Mohamed Firdhous, Osman Ghazali, and Suhaidi Hassan. Fog comput-
ing: Will it be the future of cloud computing? The Third International
Conference on Informatics & Applications (ICIA2014), 2014.

http://www.ieee802.org/1/pages/tsn.html
http://www.ieee802.org/1/pages/tsn.html

Bibliography 45

[16] Redowan Mahmud, Ramamohanarao Kotagiri, and Rajkumar Buyya. Fog
computing: A taxonomy, survey and future directions. In Internet of
everything. 2018.

[17] Mudassar Ali, Nida Riaz, Muhammad Ikram Ashraf, Saad Qaisar, and
Muhammad Naeem. Joint cloudlet selection and latency minimization in
fog networks. IEEE Transactions on Industrial Informatics, 2018.

[18] Torsten Kröger. On-Line Trajectory Generation in Robotic Systems. 2009.

[19] Shaik Mohammed Salman, Vaclav Struhar, Alessandro V Papadopoulos,
Moris Behnam, and Thomas Nolte. Fogification of industrial robotic
systems: research challenges. In 1st Workshop on Fog Computing and the
IoT (Fog-IoT 2019), 2019.

[20] Giorgio C Buttazzo. Hard real-time computing systems: predictable
scheduling algorithms and applications. 2011.

[21] Shanhe Yi, Cheng Li, and Qun Li. A survey of fog computing: concepts,
applications and issues. In Proceedings of the 2015 workshop on mobile
big data, 2015.

[22] Matthew Chapman, Daniel J Magenheimer, and Parthasarathy Ran-
ganathan. Magixen: Combining binary translation and virtualization.
HP Enterprise Systems and Software Laboratory, 2007.

[23] Michael Eder. Hypervisor-vs. container-based virtualization. Future Inter-
net (FI) and Innovative Internet Technologies and Mobile Communications
(IITM), 2016.

[24] Ankita Desai, Rachana Oza, Pratik Sharma, and Bhautik Patel. Hypervisor:
A survey on concepts and taxonomy. International Journal of Innovative
Technology and Exploring Engineering, 2013.

[25] Roberto Morabito, Jimmy Kjällman, and Miika Komu. Hypervisors vs.
lightweight virtualization: A performance comparison. In IEEE Int. Conf.
on Cloud Eng., 2015.

46 Bibliography

[26] W. Felter, A. Ferreira, R. Rajamony, and J. Rubio. An updated performance
comparison of virtual machines and Linux containers. In IEEE Int. Symp.
on Perf. Analysis of Syst. and Soft. (ISPASS), 2015.

[27] Ann Mary Joy. Performance comparison between linux containers and vir-
tual machines. In 2015 International Conference on Advances in Computer
Engineering and Applications, 2015.

[28] Chen Shichao and Mengchu Zhou. Evolving container to unikernel for
edge computing and applications in process industry. Processes, 2021.

[29] Juan Luo, Luxiu Yin, Jinyu Hu, Chun Wang, Xuan Liu, Xin Fan, and Haibo
Luo. Container-based fog computing architecture and energy-balancing
scheduling algorithm for energy iot. Future Generation Computer Systems,
2019.

[30] Olena Skarlat and Stefan Schulte. Fogframe: a framework for iot applica-
tion execution in the fog. PeerJ Computer Science, 2021.

[31] M. G. Xavier, M. V. Neves, F. D. Rossi, T. C. Ferreto, T. Lange, and C. A. F.
De Rose. Performance evaluation of container-based virtualization for
high performance computing environments. In Euromicro Int. Conf. on
Par., Distr., and Netw. Proc. (PDP), 2013.

[32] S. He, L. Guo, Y. Guo, C. Wu, M. Ghanem, and R. Han. Elastic application
container: A lightweight approach for cloud resource provisioning. In
IEEE Int. Conf. on Adv. Inform. Netw. and Appl. (AINA), 2012.

[33] Thuy Linh Nguyen and Adrien Lebre. Conducting thousands of experi-
ments to analyze vms, dockers and nested dockers boot time. Research
Report RR-9221, INRIA, 2018.

[34] Miguel Gomes Xavier, Marcelo Veiga Neves, and Cesar Augusto Fonti-
cielha De Rose. A performance comparison of container-based virtual-
ization systems for mapreduce clusters. In Euromicro Int. Conf. on Par.,
Distr., and Netw. Proc. (PDP), 2014.

Bibliography 47

[35] F. Ramalho and A. Neto. Virtualization at the network edge: A performance
comparison. In IEEE Int. Symp. A World of Wirel., Mob. and Multim. Net.
(WoWMoM), 2016.

[36] M. G. Xavier, I. C. De Oliveira, F. D. Rossi, R. D. Dos Passos, K. J.
Matteussi, and C. A. F. D. Rose. A performance isolation analysis of
disk-intensive workloads on container-based clouds. In Euromicro Int.
Conf. on Par., Distr., and Netw. Proc. (PDP), 2015.

[37] Sisu Xi, Justin Wilson, Chenyang Lu, and Christopher Gill. RT-Xen:
Towards real-time hypervisor scheduling in Xen. In ACM Int. Conf. Em-
bedded Software, 2011.

[38] José Martins, João Alves, Jorge Cabral, Adriano Tavares, and Sandro Pinto.
µrtzvisor: A secure and safe real-time hypervisor. Electronics, 6(4), 2017.

[39] Neil Klingensmith and Suman Banerjee. Hermes: A real time hypervisor
for mobile and iot systems. In Proceedings of the 19th International
Workshop on Mobile Computing Systems & Applications, 2018.

[40] Daniel Bristot De Oliveira and Romulo Silva De Oliveira. Timing analysis
of the preempt rt linux kernel. Software: Practice and Experience, 2016.

[41] Luca Abeni, Giuseppe Lipari, and Juri Lelli. Constant bandwidth server
revisited. SIGBED Rev., 2015.

[42] Maria A Rodriguez and Rajkumar Buyya. Container-based cluster orches-
tration systems: A taxonomy and future directions. Software: Practice
and Experience, 2019.

[43] Emiliano Casalicchio and Stefano Iannucci. The state-of-the-art in con-
tainer technologies: Application, orchestration and security. Concurrency
and Computation: Practice and Experience, 2020.

[44] Cecil Wöbker, Andreas Seitz, Harald Mueller, and Bernd Bruegge. Foger-
netes: Deployment and management of fog computing applications. In
NOMS 2018-2018 IEEE/IFIP Network Operations and Management Sym-
posium. IEEE, 2018.

48 Bibliography

[45] D. Santoro, D. Zozin, D. Pizzolli, F. De Pellegrini, and S. Cretti. Foggy: A
platform for workload orchestration in a fog computing environment. In
2017 IEEE International Conference on Cloud Computing Technology and
Science (CloudCom), 2017.

[46] Emiliano Casalicchio. Container orchestration: A survey. Systems Model-
ing: Methodologies and Tools, 2019.

[47] Sisu Xi, Chong Li, Chenyang Lu, Christopher D Gill, Meng Xu, Linh TX
Phan, Insup Lee, and Oleg Sokolsky. Rt-open stack: Cpu resource man-
agement for real-time cloud computing. In 2015 IEEE 8th International
Conference on Cloud Computing. IEEE, 2015.

[48] S. Aglianò et al. Resource management and control in virtualized SDN
networks. In RTEST, 2018.

[49] Andreas Blenk, Arsany Basta, Martin Reisslein, and Wolfgang Kellerer.
Survey on network virtualization hypervisors for software defined network-
ing. IEEE Communications Surveys & Tutorials, 2015.

[50] B. A. A. Nunes et al. A survey of software-defined networking: Past,
present, and future of programmable networks. IEEE Comm. Surv. Tut.,
2014.

[51] L. Xingtao et al. Network virtualization by using software-defined net-
working controller based Docker. In ITNEC, 2016.

[52] A. Blenk et al. Pairing SDN with network virtualization: The network
hypervisor placement problem. In NFV-SDN, 2015.

[53] NM Mosharaf Kabir Chowdhury and Raouf Boutaba. A survey of network
virtualization. Computer Networks, 2010.

[54] Rob Sherwood et al. Flowvisor: A network virtualization layer. OpenFlow
Switch Consortium, Tech. Rep, 2009.

[55] Xiang (Alex) Feng. Towards real-time enabled microsoft windows. In The
5th ACM International Conference on Embedded Software, 2005.

Bibliography 49

[56] Saowanee Saewong et al. Analysis of hierarchical fixed-priority scheduling.
In ECRTS, 2002.

[57] Michal Sojka et al. Modular software architecture for flexible reservation
mechanisms on heterogeneous resources. Journal of Sys. Arch., 2011.

[58] T. Cucinotta and L. Palopoli. QoS control for pipelines of tasks using
multiple resources. IEEE Trans. Computers, 2010.

[59] A. B. Oliveira, A. Azim, S. Fischmeister, R. Marau, and L. Almeida. D-
RES: Correct transitive distributed service sharing. In IEEE Emerging
Technology and Factory Automation, 2014.

[60] Gordana Dodig-Crnkovic. Scientific methods in computer science. In
Proceedings of the Conference for the Promotion of Research in IT at New
Universities and at University Colleges in Sweden, Skövde, Suecia, 2002.

[61] Alexandru Moga, Thanikesavan Sivanthi, and Carsten Franke. OS-level
virtualization for industrial automation systems: are we there yet? In ACM
Symp. on Applied Computing (SAC), 2016.

[62] Thomas Goldschmidt, Stefan Hauck-Stattelmann, Somayeh Malakuti, and
Sten Grüner. Container-based architecture for flexible industrial control
applications. J. of Syst. Architecture, 2018.

[63] Thomas Goldschmidt and Stefan Hauck-Stattelmann. Software containers
for industrial control. In Euromicro Conf. on Soft. Eng. and Adv. Appl.
(SEAA), 2016.

[64] Philip Masek, Magnus Thulin, Hugo Andrade, Christian Berger, and Ola
Benderius. Systematic evaluation of sandboxed software deployment for
real-time software on the example of a self-driving heavy vehicle. In 2016
IEEE 19th International Conference on Intelligent Transportation Systems
(ITSC), 2016.

[65] C. Mao, M. Huang, S. Padhy, S. Wang, W. Chung, Y. Chung, and C. Hsu.
Minimizing latency of real-time container cloud for software radio access

networks. In 2015 IEEE 7th International Conference on Cloud Computing
Technology and Science (CloudCom), 2015.

[66] Florian Hofer, Martin Sehr, Antonio Iannopollo, Ines Ugalde, Alberto
Sangiovanni-Vincentelli, and Barbara Russo. Industrial control via appli-
cation containers: Migrating from bare-metal to IAAS. In IEEE Int. Conf.
on Cloud Computing Technology and Science (CloudCom), 2019.

[67] Kilian Telschig, Andreas Schonberger, and Alexander Knapp. A real-time
container architecture for dependable distributed embedded applications.
IEEE Int. Conf. Automat. Science and Eng., 2018.

[68] Insik Shin, Arvind Easwaran, and Insup Lee. Hierarchical scheduling
framework for virtual clustering of multiprocessors. In Euromicro Conf.
on Real-Time Syst. (ECRTS), 2008.

[69] M. Jägemar, A. Ermedahl, S. Eldh, and M. Behnam. A scheduling archi-
tecture for enforcing quality of service in multi-process systems. In IEEE
Int. Conf. on Emerging Tech. and Factory Aut. (ETFA), 2017.

[70] L. Abeni, A. Goel, C. Krasic, J. Snow, and J. Walpole. A measurement-
based analysis of the real-time performance of Linux. In IEEE Real-Time
and Emb. Tech. and Appl. Symp. (RTAS), 2002.

[71] Emiliano Casalicchio and Vanessa Perciballi. Measuring docker perfor-
mance: What a mess!!! In ACM/SPEC on Int. Conf. on Perf. Eng. (ICPE),
2017.

II

Included Papers

51

Chapter 6

Paper A:
Fog-based Industrial Robotic
System:
Applications and Challenges

Mohammed Salman Shaik, Václav Struhár, Zeinab Bakhshi, Van-Lan Dao,
Nitin Desai, Alessandro V. Papadopoulos, Thomas Nolte, Vasileios Karagiannis,
Stefan Schulte, Alexandre Venito, Gerhard Fohler.

In the 25th International Conference on Emerging Technologies and Factory
Automation (ETFA 2020).

53

54 Paper A

Abstract

Low latency and on demand resource availability enable fog computing to host
industrial applications in a cloud like manner. One industrial domain which
stands to benefit from the advantages of fog computing is robotics. However,
the challenges in developing and implementing a fog-based robotic system are
manifold. To illustrate this, in this paper we discuss a system involving robots
and robot cells at a factory level, and then highlight the main building blocks
necessary for achieving such functionality in a fog-based system. Further,
we elaborate on the challenges in implementing such an architecture, with
emphasis on resource virtualization, memory interference management, real-
time communication and the system scalability, dependability and safety. We
then discuss the challenges from a system perspective where all these aspects
are interrelated.

55

Industrial robots are widely used in different automation applications such
as painting and welding in automotive facilities and packaging in the food
industry [1]. More recently, the domain of robotics has evolved to support
warehouse automation with mobile robots and, at the same time, emphasis on
collaborative robots has also gained significant attention [2]. However, existing
solutions are limited in addressing the demands of such applications due to
limited computational resources and the strong coupling of the software and the
computing hardware [3]. The on-demand availability of resources and reduced
communication latency as offered by the fog computing paradigm [4] makes an
interesting case for investigating the use of fog computing for addressing existing
limitations. For example, the localization and mapping tasks of mobile robots
which may be computationally intensive, have been successfully implemented
using fog computing resources, improving the computation time significantly [5].
Furthermore, an optimized offloading algorithm which targets fog computing
resources has been designed for robotic mission planning to show the benefits
of fog computing [6]. While these approaches show the benefit of using fog
computing in industrial robots, practical implementation of fog-based robotics
systems remains a challenge.

To facilitate further discussions on fog-based industrial robotics systems,
and to identify the challenges that should be addressed to enable fog-based
control of robots, in this paper, we provide an overview of the different technical
aspects that are necessary for a practical realization of a fog network based
on the OpenFog reference architecture [7] in Section 6.3. In Section 6.2, we
describe a robotic cell-based factory automation environment and a robot control
application. In Section 6.4 we use the factory automation environment to
contextualize the technical aspects of the fog system and identify the potential
challenges that should be addressed to enable a fog-based industrial robotics
system. Here, we focus primarily on virtualization, resource orchestration, multi-
core memory management and RT communication along with a discussion on
challenges from the dependability, safety and scalability perspectives. Finally,
Section 6.5 concludes the paper.

56 Paper A

6.1 Related work

Industrie 4.0, intelligent manufacturing, factories of the future, smart factories,
industrial internet of things(IIoT) etc. are used to describe the growing trend to
digitize industrial domains that were once considered to be largely analogue. A
considerable body of research has been devoted, in recent times, to advancing
or bridging the digital divide in traditional manufacturing industries. Recent
works such as [8] [9] discuss how control system architectures have changed
in industrie 4.0 domains. One of the strongest drivers for flexible manufac-
turing systems is network connectivity to the Cloud. With the rapid advanced
being made in the wireless 5G domain, manufacturing systems stand to benefit
immensely from near zero latency connectivity which is the major bottleneck
to implementation [10]. An alternate technological paradigm, Time Sensitive
Networking or TSN is also being inducted into the Ethernet standards and is
being touted as a RT variant of standard Ethernet [11]. However, a limitation
of TSN thus far has been its lack of support for wireless networking which is
seen as a requirement for mobility-based services. Research has been ongoing
in this direction as well [12][13][14]. Of particular relevance is [15] where the
authors discuss a novel method to integrate 5G with TSN which can be a game
changer in the industry. Another work [16] gives a very detailed overview of
how the two so-called competing technological paradigms can be integrated ef-
fectively. Challenges related to using these technologies in smart factories have
been detailed in [17][18] where the authors discuss methods to use OPC-UA,
a unified communications paradigm and Cloud computing for smart factories.
With increasing data points, comes the need for intelligently handling such a
deluge. Authors in [19] [20] elaborate on the role of data analytics and ma-
chine learning techniques in the smart factories. A rather in-depth study of
various challenges involved in adopting TSN in industrial automation domain
is provided in [21]. A performance study of industrial communication in the
context of a real world use case is detailed in [22]. Readers interested in a survey
of industrial communication trends in distributed systems are referred to [23]
which provides a comprehensive background on the development of industrial
communications in distributed environments such an automation facility or a
smart factory.

6.2 Factory Automation Environment 57

6.2 Factory Automation Environment

A common factory automation setup is composed of a set of robotic cells [24].
A robotic cell consists of either a single robot or a set of robots grouped together
with additional non-robotic machines to accomplish a task such as painting and
welding. We categorize multi-robot cells as (i) coordinated cell, (ii) uncoordi-
nated cell and (iii) mixed cell. In a coordinated cell, all the robots work in a
synchronized manner on a single object. In an uncoordinated cell, the robot may
work on different objects and need not be synchronized. For example, a pick
and place cell with two robots operating on different objects on two different
conveyors need not be in sync with each other. In many cases, a supervisory
controller may control the workflow between the robots and other machines
within the cell.

Each robot within a cell may be fitted with additional sensors and actuators,
such as seam tracking lasers, force sensors, or vision systems, while actuators
are typically end-effector tools, such as an arc torch [25]. The sensors and
actuators are physically connected to an interface device, which processes the
sensor data for transmission over a RT network. It is possible that some of the
sensors and actuators can be directly connected to the robot controller through
a wired or a wireless connection. In some cases, sensors and actuators are still
physically attached to the interface device but the interface device itself can
communicate wirelessly with the controller. Fig. 6.2 illustrates the different
possible connections within a fog network.

At the robot level, the runtime robot behaviour is directed through a task
specification interface, where a user typically specifies the way-points that the
robot should pass through, the maximum speed the robot is allowed to take, along
with other attributes such as, if the robot should pass through the way-points
or just within a range of the way-points. The user is also able to define logical
behaviour such as to wait until a specific signal is set or a timer has expired
before moving to the next way-point. Finally, depending on the configuration
and the user task specification, the robot software determines the trajectory of
the robot using motion planning and trajectory generation algorithms [26, 27].
The information from the trajectory generation is fed to a low-level controller
that runs periodically, usually, with a fixed cycle time having a typical value of

58 Paper A

Position
Information Manipulator

Sensors

Kinematic
Controller

Dynamic
Controller

Sensors

Offline
Program

Pd

Pe

Qd

Qe

P

Robot Controller

Figure 6.1. Robot controller block diagram.

1 millisecond to control the joints of the robots [27]. To achieve this, a robot
controller software, composed of diverse components, is systematically put
together to provide a coherent mechanism for manipulator control supported
by a RT operating system. Fig. 6.1 illustrates the block diagram of a robot
controller. The position information component of the robot controller reads
the desired values either from sensors or a pre-defined program and forwards
it to the kinematic controller. The kinematic controller generates the necessary
reference values which are used by the dynamic controller to generate the
required actuator commands for each joint. The sensors component provides the
feedback information to the kinematic controller and the dynamic controllers.

6.3 System architecture

While several fog computing architectures have been proposed in the litera-
ture, [7, 28, 29], for our discussion, we adopt the IEEE OpenFog reference
architecture and deployment model for fog computing [7]. Here, we assume
that the participating devices are distributed between three layers (see Fig. 6.2)
consisting of (i) cloud layer, (ii) fog layer, and (iii) device layer. The cloud
layer provides a high computing capacity, but offers limited time predictability
due to varying data transmission latencies. The fog layer provides an elastic
environment in the vicinity of the origin of the data. It consists of a number of
interconnected physical hardware devices (fog nodes) that are capable of hosting
software applications on the shared node resources. While the processing power
of the fog layer is less than that of the cloud layer, the network latency, however,

6.3 System architecture 59

 Robot Robot

Fog Layer

Fog Node Fog Node

System Orchestrator

Cloud Layer
Cloud

Fog Node: Software Platform

Operating System

Real-time Support

Fog Node: Hardware Platform

Fog Node

Container Virtualization

Container

Container Environment

Containerized
Application

Container Container

Router/Switch

SensorsSensors

IO Interface

Sensors

Container Environment

Containerized
Application

Container Environment

Containerized
Application

a)

Device Layer

b)

Container Management

Figure 6.2. a) The three-layered fog network with the device layer consisting mainly of
sensors and actuators and a fog layer with a RT orchestrator managing the distribution

of workload between the fog nodes. b) An abstract view of a fog node. The fog
hardware platform is supported by the software platform composed of container

virtualization on top of an operating system.

is improved. The device layer consists of resource limited devices such as sensor
and actuator devices that typically pre-process data from sensors and transmit
it to the fog nodes, but also smart sensors and actuators, that are capable of
communicating directly with the fog nodes.

Fog Software Components and Services:

We assume a fog computing architecture to be composed of a network of fog
nodes, which can be viewed as a single logical entity [30]. The network is
assumed to be hybrid of wired and wireless networks to exploit the benefits of
both advanced wired and wireless technologies under the practical constraints
of reliability, timeliness, and security for industrial environments. We briefly
discuss some of the software components and services necessary for such a fog
architecture below:

• System Orchestration: The system level orchestrator is responsible for en-

60 Paper A

suring that application requirements such as latency and memory are met
by assignment of the applications to fog nodes. It takes into account the
hardware capabilities, applications already running, task schedulability
and application latency requirements. Additionally, it provides interfaces
that enable seamless connection and disconnection of devices (e.g., ad-
ditional fog nodes, robots, sensors and actuators) as well as interfaces
for application providers for deploying applications in the fog system.
Moreover, it continuously monitors the status of fog nodes in terms of
availability, resource usage, and communication status and assesses the
quality of service provided to the applications.

• Application Virtualization: The application virtualization component pro-
vides necessary functionality that allows to co-locate multiple independent
applications on a single physical device in such a way that interference
between the applications is minimized. It ensures proper allocation of
resources and isolation between applications on the shared hardware
building virtualized environments.

• Memory Management: Memory management component is responsible
for ensuring spatial isolation among the tasks running on the same hard-
ware. Applications have bounded memory space and cannot exceed these
limits. Shared memory is allowed as long as it is explicitly declared by
the applications and allowed by the operating system.

• Real-time Communication: The communication component is respon-
sible for ensuring connectivity between the nodes and the sensor and
actuator interfaces to ensure RT data freshness, correlation and separation
constraints of the applications [31]. It is also responsible for non RT
communication and supports both wired and wireless communication.

• Scalability: Services related to scalability are responsible for adding new
physical and virtual compute nodes (as well as sensing and actuating
devices) to the system in a dynamic manner. Due to such scalability
services, the system level orchestrator is agnostic of discovery and integra-
tion mechanisms, but is able to consider all the available computational
resources for the execution of the applications.

6.4 Use-case Aspects 61

• Dependability and Safety: The dependability services provide a set of
functionality for ensuring system dependability including the safety as-
pects by providing means for fault prevention, fault tolerance, fault re-
moval, and fault forecasting [32] .

6.4 Use-case Aspects

Cyber physical systems such as industrial robots are dependent not only on
the logical correctness of the computations but also the time at which the
computations are completed. For example, the dynamic controller as shown
in Fig. 6.1 is dependent on new reference values from the kinematic controller
to be available during each new cycle of the control loop for better control.
Using stale information may result in the robot deviating from the expected path.
In order to cover such scenarios, as a fog-based industrial robotic system, we
denote a fog computing system enhanced with RT capabilities, i.e., capabilities
to guarantee that a computational task is finished and its result is transmitted
within a predefined amount of time. Further, such a system should have the
following properties: timeliness (the results of the computation must be available
and transmitted within a predefined time), predictability (the system must be
analyzable to guarantee performance of the applications), efficiency (the system
should efficiently utilize available resources), scalability (the system should be
able to grow in size dynamically when new cloud/fog nodes are discovered) and
fault tolerance (the system should provide mechanisms to deal with unpredictable
failures). We note that security is a critical property for enabling fog-based
robotic systems, however, it is beyond the scope of this paper, and interested
readers are referred to [33, 34, 35, 36, 37]. In the following sections, we
elaborate in detail on the elementary set of aspects of fog computing in the
context of factory automation environments.

6.4.1 Virtualization

Fog computing allows co-location of independent applications on a shared fog
node in a fog network. To host such applications, for example, the different
kinematic controllers of different robots, the fog nodes must provide virtual en-

62 Paper A

vironments that ensure a proper isolation, resource allocation and the fulfilment
of the demands of the applications. Virtualization abstracts physical hardware
from the applications running on that hardware, and thus, emulates computing
environments in such a way that it appears for the applications that they are
executed exclusively on a dedicated hardware. Virtualization allows to host mul-
tiple isolated applications and their software dependencies on a single physical
device, and thus, reducing resource wastage. However, sharing resources may
lead to (time) unpredictability, and consequently, the timing constraints may be
violated.

There are two main classes of virtualization technologies: Hypervisor-based
virtualization and container-based virtualization [38]. Hypervisor-based virtual-
ization utilizes a hypervisor that distributes resources among virtual machines
that behaves like independent virtual computers containing dedicated operat-
ing systems and scheduling mechanisms. This solution requires support from
hardware and, additionally introduces non-negligible overheads [39] and per-
formance degradation. The container-based virtualization is provided purely by
the host OS and it offers near-native performance, rapid startup times and low
overhead, however the resource isolation may be weaker [40].

The solutions addressing RT in hypervisor-based virtualization, e.g., RT-
Xen [41] or PikeOS1. However, time predictability in container-based virtualiza-
tion is a novel topic. As summarized in [42], RT behavior of container-based
virtualization must be supported by a predictable host operating system and RT
scheduling policies that are container-aware. The former is addressed by the
application of a RT patch that makes the Linux Kernel fully preemptive [43]
or by the use of a RT co-kernel that runs side-by-side with a standard Kernel.
Real-time aware scheduling policy for containers is addressed by utilization of
hierarchical scheduling that provides temporal isolation of containers [44].

For a full adoption of RT virtualization, we see the following challenges: (i)
Minimizing the interference between virtualized applications (e.g., co-located
memory or cache-intensive applications may experience performance degrada-
tion of the physical fog nodes). (ii) Lack of RT communication mechanisms
between virtualized applications (that may be executed on different devices) and
enabling the communication in a time-predictable, secure, and safe manner. (iii)

1https://www.sysgo.com/products/pikeos-hypervisor

https://www.sysgo.com/products/pikeos-hypervisor

6.4 Use-case Aspects 63

The possibility of supporting a mixture of both hypervisor-based virtualization
(to satisfy hard RT requirements) and container-based virtualization (to satisfy
less stringent requirements) in a single fog computing system should be ex-
plored. (iv) Dealing with unpredictability of communication between virtualized
applications in a fog computing architecture due to network performance.

Multi-core Platforms

Additional set of problems hampering timing predictability of virtualized ap-
plications is caused by the use of a Multi-Core Processor (MCP). General
Commercial Off-The-Shelf (COTS) MCPs share hardware resources like cache
and main memory. Sharing such resources is one of the primary sources of Worst
Case Execution Time (WCET) unpredictability [45] of a task. In an MCP, the
task execution time not only depends on the task itself, but it is also significantly
influenced by the applications running on the other cores (intercore interference).
Nowotsch et al. [46] showed that the latency of a single memory store request
can increase up to 25.82 times when the number of active cores increases from 1
to 8.

Virtualization aims for resource optimization and allows co-execution of
independent applications such as the control tasks of different robots on the
same hardware. Since sharing hardware resources leads to execution time un-
predictability, bounding the WCET is necessary for the use of schedulability
analysis and admission tests by the orchestrator. Such analysis allows the or-
chestrator to optimally allocate the resources for the applications while meeting
the timing constraints imposed by the applications.

There are some proposed solutions based on a memory bandwidth manage-
ment system to improve, and also to guarantee the tasks’ WCET on an MCP
in the context of RT systems, like in Yun et al. [47] and Agrawal et al. [48].
However, it is necessary to know the WCET of a task to schedule a set of tasks,
and since the WCET depends on the inter-core interference, and which in turn
is dependent on the schedule, we need solutions that address both memory
bandwidth and scheduling problems together.

The solutions based on time and memory bandwidth management are well
suited for time-triggered applications in a context where we know the number of
active cores at the same time, and the maximal inter-core interference introduced

64 Paper A

by these cores. It becomes unrealistic for a industrial robotic system where the
number of applications and their requirements change dynamically and during
runtime. As an example, unlike in regular RT systems, where the execution be-
haviour can be modelled via different task models based on WCETs, modelling
the execution time of motion planning tasks is complicated. The reason for this
variability is twofold. One, the user of the robotic system is free to program
the robot motion as desired. Two, the non-deterministic nature of the motion
planning and trajectory generation algorithms. Some commonly used planning
algorithms such as the Probabilistic Road Map (PRM) sample the joint space to
find a collision free path [26]. In the best case, if a connection between initial
point and the target point is established without collisions in the first iteration, no
further computation is required. The execution time in this case can be minimal.
While in the worst case, possibly in the presence of multiple obstacles, the
number of samples that need to be checked for connectivity and collision can be
huge, requiring larger computational time. This makes the motion and trajectory
planning algorithms non-deterministic [49]. Given such a scenario, using tra-
ditional WCET-based analysis and design can result in significant wastage of
resources. Therefore, to achieve RT guarantees in a system running on a MCP,
we have (i) to ensure the temporal isolation of tasks and containers taking the
platform resource contentions into account, and (ii) to design a resource sharing
mechanisms for managing access to shared resources, such as bus and memory
controller, taking dynamic applications scenarios into account.

The worst-case number of memory accesses that an application can issue
depends on many different factors, for instance, hardware like in 32 or 64
bits platform, system configuration, and operating system. However, it is also
unrealistic to assume that the maximum memory bandwidth necessary for each
critical task is known. To address the lack of this data, a solution is to bind the
containers that run critical tasks to a specific core and monitor their execution
progress in predefined checkpoints along the time, to check if the execution is
going according to the schedule. In case execution is late, the other non-critical
containers can be paused to reduce the inter-core interference preventing the
critical one from missing a deadline.

COTS MCP are designed primarily for the average-case performance and
that is not enough to meet the RT requirements of robotic applications. Therefore,

6.4 Use-case Aspects 65

to address the loss of predictability in such platforms, we need to apply new
mechanisms and know the application resource needs better.

6.4.2 Real-Time Aware Orchestration

The role of the orchestrator in the fog-based industrial computing systems is
to deploy and maintain virtualized applications in the shared fog and cloud
computing environment in such a way that the resource and timing requirements
are fulfilled. Although there has been extensive research on orchestration,
taking into account various resources and optimization goals, and there are
several mature orchestrator systems available2, none address timing-related
requirements [50]. Therefore, we envision the following RT enhancements of
the orchestrator that can serve in fog computing systems. The RT orchestrators
should provide functionality for resource selection, RT deployment, RT aware
service monitoring and RT resource control.

Resource Selection The orchestrator must be aware of timing requirements of
applications as well as RT capabilities provided by fog nodes. The orchestrator
must perform schedulability tests that ensure that the virtualized applications will
be granted enough CPU time for performing time-critical actions. Additionally,
the orchestrator should be aware of interference between virtualized applications
and try to minimize such impacts during the resource selection phase.

Real-time Deployment The orchestrator should provide a bounded time for
the deployment of virtualized applications. It should take into account trans-
mission times of the applications from the repository to the fog node and the
startup time of the application. This enhancement is important for safety and
dependability aspects, e.g., during the re-deployment of a failed application.

Real-time Aware Service Monitoring Due to imperfections of the underly-
ing operating systems (e.g., Linux) that may not provide accurate temporal
isolation for virtualized environments, the orchestrator must monitor the quality

2e.g., Kubernetes (https://kubernetes.io/), Docker Swarm (https://docs.
docker.com/engine/swarm/), or OpenStack(https://www.openstack.org/)

https://kubernetes.io/
https://docs.docker.com/engine/swarm/
https://docs.docker.com/engine/swarm/
https://www.openstack.org/

66 Paper A

of service delivered by the virtualized applications (e.g., deadline misses or
lateness3). The orchestrator should use this information during the resource
selection phase.

Real-time Aware Resource Control Based on RT related metrics mentioned
previously, the orchestrator should perform migration of virtualized applications
in order to improve their RT behavior. This can be a case of a memory or
cache-intensive application that may experience performance degradation when
it is co-located with another memory or cache-intensive application on a single
node.

6.4.3 Timely and Reliable Communication

The fog nodes should communicate with a number of sensors, actuators and other
devices in different layers, using both wired and wireless connections to ensure
the smooth operation of the robot tasks. In many instances, the communication
should be in RT. For example, the sensors providing the feedback information as
shown in Fig. 6.1, may be wireless, and for the feedback based dynamic control
algorithms, the sensor data should be available before the beginning of the
computation of next cycle of the control loop. However, when the probability of
losing a packet goes up, especially in a wireless network, for example, due to the
noise in industrial environments combined with the Doppler effect, multi-path
fading, and dynamic wireless channel [51], a re-transmission technique may be
necessary to improve communication reliability. This can lead to an increase
of end-to-end latency resulting in unavailability of the sensor values in a timely
manner. This in turn may affect the path accuracy of the robots.

Therefore, to enable RT robot control, the wireless communication protocols
should be designed to fulfil both strict timeliness and reliability requirements.
For example, the wireless protocols should be able to guarantee an upper bound
end-to-end latency of 1 millisecond along with a probability that a packet does
not reach its destination before the deadline to not exceed 10−7 [52].

For wired networks, more recently, Time Sensitive Networking (TSN) has
emerged as a front-runner and a competing technology to the well established

3The delay of a task completion with respect to its deadline.

6.4 Use-case Aspects 67

field-bus standards that have been the staple of industrial and automotive net-
working [53]. TSN is a set of standards that provide RT guarantees over standard
Ethernet. Hence, current IEEE 802.1Q standards [54] come integrated with TSN
so that vendors can directly provide properties such as timeliness, fault-tolerance,
reliability and availability to their networking products.

Since wired networks can offer deterministic communications, wireless ones
should also guarantee deterministic reliable communications at the same level.
In this context, Medium Access Control (MAC) protocols and relaying strate-
gies are central in achieving the desired requirements. Rajandekar et al. [55]
concluded that the hybrid MAC protocols can meet the stringent requirements
of reliability and timeliness. Furthermore, since the fog nodes need to support
for a large number of IoT devices in a massive IoT scenario such as in a factory-
to-factory communication (Section 6.4.4), the proposed MAC protocols must
support a large number of simultaneous connections. Li et al. [56] proposed a hy-
brid Time Division Multiple Access (TDMA) Non Orthogonal Multiple Access
(NOMA) scheme for cellular-enabled machine-to-machine communications.
With NOMA, multiple nodes can be served simultaneously utilizing the same
time-frequency resources but different power levels. The proposed time-sharing
scheme is introduced to deal with the massive deployment of devices, while
improving the total transmission time and energy efficiencies. This solution
is suitable for fog networks where a NOMA transceiver may be deployed at
the fog nodes [57]. Another approach, Hoang et al. [58] proposed a relaying
sequence that considers all cases that can happen in each time slot. Hence, the
probability of an error is an exact value compared to an upper bound value as is
the case in other solutions related to multi-hop communication. Moreover, the
authors introduced a method of group based relaying on a hybrid TDMA-CSMA
(Carrier-Sense Multiple Access) protocol to address the drawback in relaying
sequencing where a relayer keeps silent if it does not have any correct copy
of the packet [59]. Therefore, the relaying strategies combined with packet
aggregation are practical techniques that can be implemented on the fog nodes.
However, further research on these techniques based on a hybrid protocol with
NOMA is needed to minimize the end-to-end latency, especially in the case of
the large number of connections.

To obtain timely and reliable communication necessary for the robot con-

68 Paper A

trol, we observe several challenges including: (i) the placement of fog nodes’
transceiver must minimize the probability of error and end-to-end latency, (ii)
hybrid protocols with NOMA should be further studied and improved to deal
with the massive connection, and (iii) in industrial environments, such as those
of the factory automation environments, there are strict constraints, i.e., a limited
number of relay nodes and re-transmissions are possible, and therefore, specific
relaying strategies should be defined.

6.4.4 Scalability

Another aspect of the proposed use case is scalability [60]. In an industrial setting
(as discussed in Section 6.2), the number of participating compute nodes can
become very large depending on the size of the factory, because compute nodes
may include cloud and fog nodes as well as the interface devices. Furthermore,
apart from interconnecting the compute nodes of one factory, there is also the
possibility of interconnecting various factories with each other. This can be
beneficial when, for instance, the production of an item in a factory is reduced
or halted due to faults in the hierarchical or vertical communication of the nodes
(see Section 6.4.5). In such cases, another factory which produces the same
product (and is able to increase production) can change its production plans in
order to compensate for the faults. This can be achieved by coordinating the
function of multiple factories through fog and cloud nodes.

Along with the potential benefits of interconnected factories, and the ad-
vantages that fog computing will bring to industrial environments, there are
also related concerns. For example, the communication overhead from the
interactions among the distributed cloud and fog nodes, needs to remain limited
so that it does not interfere with the operation of the applications [60], and it
does not compromise the functionality of nodes which execute tasks with strict
deadlines (see Section 6.4.1). Most applicable fog computing approaches aim at
enabling computing close to the edge of the network [61]. However, they do not
consider scalability metrics (e.g., communication overhead) which show that
scaling a fog computing system to a large degree (i.e., adding many compute
nodes), does not compromise the performance of the applications [62].

In an industrial fog computing setting (as discussed in Section 6.2), when
adding new compute nodes (e.g., new controllers, fog, and cloud nodes) these

6.4 Use-case Aspects 69

Table 6.1. Overview of the aspects and their inter-relation and challenges.

Aspect/Relation Virtualization & Orchestration Multi-Core Platform Communication Safety & Dependability Scalability
Virtualization & Orchestration – Platform abstraction

and efficient resource
management.

Resource allocation for
achieving tight end-to-
end communication.

Provide predictability
and fault tolerance.

Complexity.

Multi-Core Platform Provide RT guarantees
and predictability.

– Virtualization & Or-
chestration isolates the
platform.

Intra-core isolation and
predictability.

Challenges wrt. hierar-
chical architectures &
legacy.

Communication Heterogeneity, combi-
nation of wired and
wireless networks.

Virtualization & Or-
chestration isolates the
platform.

– Trade-off between reli-
ability and safety.

Large numbers along
with big data commu-
nication.

Safety & Dependability Heterogeneous safety
levels.

Certification. Tight end-to-end com-
munication and fault
tolerance.

– Redundancy overhead.

Scalability Runtime reconfigura-
tion.

Hardware architecture. Congestion. Increased complexity. –

nodes need to be discovered and integrated in the system [63]. This means that
the existing nodes need to store the new nodes’ information (e.g., IP addresses,
amount of computational resources, etc.) so that they can communicate (e.g.,
using widely-used communication protocols [64]). This creates the problem
of determining which nodes a new node should connect to [65]. A simple
solution to this problem would be that each node maintains a global view of the
system, i.e., stores the information of all the other nodes. However, this might
be impractical since the compute nodes at the edge (e.g., the fog nodes) may be
able to store only a small number of other compute nodes due to having limited
computational resources [66]. For this reason, scalability still poses a challenge
in the proposed use case.

6.4.5 Dependability and Safety

Dependability

While fog-based systems address some of the limitations of existing architec-
tures [3], they introduce new challenges for ensuring dependability attributes,
for instance, reliability and availability. For example, the fog-based software
architecture demands frequent data exchange between the different nodes of the
fog layer to accomplish a functionality such as trajectory generation and control
if we assume that the trajectory generators are placed on a different fog nodes.
This puts more focus on ensuring reliability and availability of the fog platforms.

The attributes of the fog services, such as compute and communication,
are challenged by dependability threats viz., errors, faults and failures [32],

70 Paper A

which in turn might disrupt the entire functionality of the system. Threats
related to computational resources include the occurrence of faults in fog nodes.
Dependability threats associated with the orchestrator may lead to either a
performance failure or wastage of resources. Another example is A failure in
data storage that might result in data loss. This can result in loss of user-specified
tasks or the configuration settings mapping different sensors to the user task
specifications and data variables. Additionally, data stored for future analysis in
the cloud may not be accessible. Threats related to communication are faults
that might disrupt or prevent the connectivity between the different nodes as well
as the different layers in the architecture. Loss of communication between the
nodes and the edge devices can result in stoppage of robots as the new trajectory
parameters are not available for the low level controllers. Such failures can have
a cascading effect within a robotic cell. For example, if a robot stops in the
worskpace of another robot, the safety system may force the independent robot
to take mitigating actions such as slowing down or stopping altogether. This
situation may be undesirable It is therefore critical to preserve a tight end-to-end
communication, while providing suitable fault tolerance mechanisms.

Dependability approaches for fog computing in the literature are mainly
proposed to address dependability requirements using fault management solu-
tions and redundancy techniques [67]. Fault management solutions proposed
are mainly considering threat detection tools like monitoring [68] for fault pre-
vention and fault removal, or failure recovery solutions like reconfiguration
upon failure [69]. Redundancy techniques proposed in the literature focus
on addressing different dependability requirements of the fog platform. For
instance, improving reliability [70], and availability [71], of the system by
introducing redundancy in the form of a redundant node [70], in a network,
redundant communication channels [72] and task offloading [73] or application
migration [74].

The proposed dependability solutions are mainly tied to redundancy methods
and replication techniques, for instance, using passive/ active replicas of the
system components. However, using replicas for each component will result in
overhead of cost and consumption of resources [75], and it can also impact the
scalability of the overall system. Therefore, we need further research to improve
the system dependability.

6.5 Conclusion 71

Safety

Safety in robotics involves multiple domains such as the design of the manip-
ulator arm and the layout of the cell. We focus on safety from the software
perspective. We define safety in the present use-case as the property of the
system which guarantees the timely and correct execution of safety-critical
tasks (with hard RT deadlines) under all operational conditions [76] [77]. This
encompasses scenarios wherein the system reverts to a safe state in the event
of a safety violation or hazard. For instance, applications using motion control
algorithms for robot arm movements need safety guarantees in terms of the
range of motion that is allowed to prevent hazardous motions. Typically a safety
function (or task) is responsible for ensuring the said guarantees. Catastrophic
consequences (such as loss of life, danger to the surrounding environment) can
ensue in case of a failed execution of safety-critical tasks occur [78].

To ensure that such failure scenarios are well handled, it is necessary that
timing analysis, schedulability tests and the network schedule are designed
considering the potential threats to safety. The fact that a single failure scenario
can pose a threat to safety is the principal challenge for the verification and
validation of multi-core platforms, and more in general for fog architectures.

Therefore to ensure safety of users and of the equipment, we need to ensure
such threats are handled at the design phase itself, even in presence of heteroge-
neous safety levels. Additionally, as in all safety systems, there needs to be no
single point of failure. Along with these challenges, it is necessary to investigate
if RT applications running in the fog provide the same level of safety guarantees
that the existing safety-certified robotics systems provide.

6.5 Conclusion

Fog-computing brings cloud-like capabilities to low latency applications but
the practical implementation of a fog architecture for RT applications such as
robot control is non-trivial. To move a step forward in this direction, we need a
holistic approach that considers different technical aspects independently but
also in conjunction with each other. We summarize the relationship between the
different aspects in Table 6.1.

72 Paper A

To make effective use of the fog resources, we need virtualization techniques
such as hypervisors and containers with RT capabilities to support the timing
requirements of robotic cells and robot motion. To provide temporal isolation,
hypervisors and containers need memory management techniques to limit the
interference of shared caches and buses within the multi-core architectures.
By providing bounds on the interference, we can enable the orchestrator with
the capabilities to use RT schedulability analysis and appropriate scheduling
algorithms to allocate applications to fog nodes, to ensure timing predictability.
Since the fog platform is a distributed system involving fog nodes and edge
devices such as low-level controller and sensors, we need RT communication
mechanisms. Such communication can be wired or wireless. The constraints
imposed by communication technologies further guide the scheduling and alloca-
tion of resources by the orchestrator. For robotic applications, dependability and
safety are important attributes to prevent any damage to the equipment and more
importantly, to safeguard the health of the operators working in close proximity
to such robots. To this end, we need solutions that consider the requirements
of the applications as well as the new challenges imposed by the fog platforms.
In this paper, we briefly discussed a robotic cell environment to highlight the
usefulness of fog-based solutions and discussed key aspects such as resource
orchestration and network scalability, virtualization and memory management
techniques supported by RT communication paradigms. Further we discussed
the dependability and safety issues that need to be considered when moving
towards the fog-based architectures for robotic applications.

Bibliography

[1] Martin Hägele, Klas Nilsson, J. Norberto Pires, and Rainer Bischoff. In-
dustrial robotics. In Springer Handbook of Robotics. 2016.

[2] Valeria Villani, Fabio Pini, Francesco Leali, and Cristian Secchi. Survey on
human–robot collaboration in industrial settings: Safety, intuitive interfaces
and applications. Mechatronics, 2018.

[3] Shaik Mohammed Salman, Vaclav Struhar, Alessandro V. Papadopoulos,
Moris Behnam, and Thomas Nolte. Fogification of industrial robotic
systems: Research challenges. In Proceedings of the Workshop on Fog
Computing and the IoT, 2019.

[4] Flavio Bonomi, Rodolfo Milito, Jiang Zhu, and Sateesh Addepalli. Fog
computing and its role in the internet of things. In Proceedings of the first
edition of the MCC workshop on Mobile cloud computing, 2012.

[5] Swarnava Dey and Arijit Mukherjee. Robotic slam: a review from fog com-
puting and mobile edge computing perspective. In Adjunct Proceedings
of the 13th International Conference on Mobile and Ubiquitous Systems:
Computing Networking and Services, 2016.

[6] Ajay Kattepur, Hemant Kumar Rath, and Anantha Simha. A-priori esti-
mation of computation times in fog networked robotics. In 2017 IEEE
International Conference on Edge Computing (EDGE). IEEE, 2017.

[7] IEEE. Ieee adoption of openfog reference architecture for fog computing,
2018.

73

74 Bibliography

[8] S. S. P. Olaya, M. Wollschlaeger, and S. S. Perez Olaya. Control as an
industrie 4.0 component: Network-adaptive applications for control. In
2017 22nd IEEE International Conference on Emerging Technologies and
Factory Automation (ETFA), 2017.

[9] T. Kuhn, P. O. Antonino de Assis, M. Damm, A. Morgenstern, D. Schulz,
C. Ziesche, and T. Müller. Poster: Industrie 4.0 virtual automation bus. In
2018 IEEE/ACM 40th International Conference on Software Engineering:
Companion (ICSE-Companion), 2018.

[10] M. Gundall, J. Schneider, H. D. Schotten, M. Aleksy, D. Schulz, N. Franchi,
N. Schwarzenberg, C. Markwart, R. Halfmann, P. Rost, D. Wübben,
A. Neumann, M. Düngen, T. Neugebauer, R. Blunk, M. Kus, and
J. Grießbach. 5g as enabler for industrie 4.0 use cases: Challenges and
concepts. In 2018 IEEE 23rd International Conference on Emerging
Technologies and Factory Automation (ETFA), 2018.

[11] P. Pop, M. L. Raagaard, M. Gutierrez, and W. Steiner. Enabling fog
computing for industrial automation through time-sensitive networking
(tsn). IEEE Communications Standards Magazine, 2018.

[12] C. Cruces, R. Torrego, A. Arriola, and I. Val. Deterministic hybrid archi-
tecture with time sensitive network and wireless capabilities. In 2018 IEEE
23rd International Conference on Emerging Technologies and Factory
Automation (ETFA), 2018.

[13] H. Wang, L. Zeng, M. Li, and C. Yang. A protocol conversion scheme
between wia-pa networks and time-sensitive networks. In 2019 Chinese
Automation Congress (CAC), 2019.

[14] O. Seijo, Z. Fernández, I. Val, and J. A. López-Fernández. Sharp: Towards
the integration of time-sensitive communications in legacy lan/wlan. In
2018 IEEE Globecom Workshops (GC Wkshps), 2018.

[15] D. Ginthör, J. von Hoyningen-Huene, R. Guillaume, and H. Schotten.
Analysis of multi-user scheduling in a tsn-enabled 5g system for industrial

Bibliography 75

applications. In 2019 IEEE International Conference on Industrial Internet
(ICII), 2019.

[16] A. Neumann, L. Wisniewski, R. S. Ganesan, P. Rost, and J. Jasperneite.
Towards integration of industrial ethernet with 5g mobile networks. In 2018
14th IEEE International Workshop on Factory Communication Systems
(WFCS), 2018.

[17] T. Kobzan, S. Heymann, S. Schriegel, and J. Jasperneite. Utilizing sdn
infrastructure to provide smart services from the factory to the cloud.
In 2019 15th IEEE International Workshop on Factory Communication
Systems (WFCS), 2019.

[18] C. Nagpal, P. K. Upadhyay, S. Shahzeb Hussain, A. C. Bimal, and S. Jain.
Iiot based smart factory 4.0 over the cloud. In 2019 International Confer-
ence on Computational Intelligence and Knowledge Economy (ICCIKE),
2019.

[19] D. J. Ahn, J. Jeong, and S. Lee. A novel cloud-based fog computing
network architecture for smart factory big data applications. In 2018 South-
Eastern European Design Automation, Computer Engineering, Computer
Networks and Society Media Conference (SEEDA_CECNSM), 2018.

[20] N. Desai and S. Punnekkat. Enhancing fault detection in time sensitive
networks using machine learning. In 2020 International Conference on
COMmunication Systems NETworkS (COMSNETS), 2020.

[21] L. Lo Bello and W. Steiner. A perspective on ieee time-sensitive network-
ing for industrial communication and automation systems. Proceedings of
the IEEE, 2019.

[22] L. Seno, F. Tramarin, and S. Vitturi. Performance of industrial commu-
nication systems: Real application contexts. IEEE Industrial Electronics
Magazine, 2012.

[23] P. Gaj, J. Jasperneite, and M. Felser. Computer communication within
industrial distributed environment—a survey. IEEE Transactions on Indus-
trial Informatics, 2013.

76 Bibliography

[24] Jiafan Zhang and Xinyu Fang. Challenges and key technologies in robotic
cell layout design and optimization. J. Mech. Eng. Science, 2017.

[25] P. Kah, M. Shrestha, E. Hiltunen, and J. Martikainen. Robotic arc welding
sensors and programming in industrial applications. International Journal
of Mechanical and Materials Engineering, 2015.

[26] Steven M. LaValle. Planning Algorithms. 2006.

[27] Torsten Kröger. On-Line Trajectory Generation in Robotic Systems. 2010.

[28] Flavio Bonomi, Rodolfo Milito, Preethi Natarajan, and Jiang Zhu. Fog
Computing: A Platform for Internet of Things and Analytics. 2014.

[29] A.V. Dastjerdi, H. Gupta, R.N. Calheiros, S.K. Ghosh, and R. Buyya.
Chapter 4 - fog computing: principles, architectures, and applications. In
Rajkumar Buyya and Amir [Vahid Dastjerdi], editors, Internet of Things.
2016.

[30] Eva Marín Tordera, Xavi Masip-Bruin, Jordi Garcia-Alminana, Admela
Jukan, Guang-Jie Ren, Jiafeng Zhu, and Josep Farré. What is a fog node a
tutorial on current concepts towards a common definition. 2016.

[31] R. Gerber, Seongsoo Hong, and M. Saksena. Guaranteeing real-time
requirements with resource-based calibration of periodic processes. IEEE
Trans. on Softw. Eng., 1995.

[32] A. Avizienis, J. . Laprie, B. Randell, and C. Landwehr. Basic concepts and
taxonomy of dependable and secure comput. IEEE Trans. on Dep. and
Secure Comp., 2004.

[33] I. Stojmenovic, S. Wen, X. Huang, and H. Luan. An overview of fog
computing and its security issues. Concurrency Computation, 2016.

[34] S. Yi, Z. Qin, and Q. Li. Security and privacy issues of fog computing: A
survey. Lecture Notes in Computer Science (including subseries Lecture
Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2015.

Bibliography 77

[35] M. Mukherjee, R. Matam, L. Shu, L. Maglaras, M.A. Ferrag, N. Choud-
hury, and V. Kumar. Security and privacy in fog computing: Challenges.
IEEE Access, 2017.

[36] P. Zhang, M. Zhou, and G. Fortino. Security and trust issues in fog
computing: A survey. Future Generation Computer Systems, 2018.

[37] A. Khalid, P. Kirisci, Z.H. Khan, Z. Ghrairi, K.-D. Thoben, and J. Pannek.
Security framework for industrial collaborative robotic cyber-physical
systems. Computers in Industry, 2018.

[38] Roberto Morabito, Jimmy Kjällman, and Miika Komu. Hypervisors vs.
lightweight virtualization: A performance comparison. In IEEE Int. Conf.
on Cloud Eng., 2015.

[39] S. Hoque, M. S. De Brito, A. Willner, O. Keil, and T. Magedanz. Towards
container orchestration in fog computing infrastructures. In 2017 IEEE 41st
Annual Computer Software and Applications Conference (COMPSAC),
2017.

[40] Miguel G Xavier, Israel C De Oliveira, Fabio D Rossi, Robson D Dos Pas-
sos, Kassiano J Matteussi, and César AF De Rose. A performance isolation
analysis of disk-intensive workloads on container-based clouds. In 2015
23rd Euromicro International Conference on Parallel, Distributed, and
Network-Based Processing.

[41] Sisu Xi, Justin Wilson, Chenyang Lu, and Christopher Gill. RT-Xen:
Towards real-time hypervisor scheduling in Xen. In ACM Int. Conf. Em-
bedded Software, 2011.

[42] Václav Struhár, Moris Behnam, Mohammad Ashjaei, and Alessandro V
Papadopoulos. Real-time containers: A survey. In 2nd Workshop on Fog
Computing and the IoT (Fog-IoT 2020). Schloss Dagstuhl-Leibniz-Zentrum
für Informatik, 2020.

[43] Alexandru Moga, Thanikesavan Sivanthi, and Carsten Franke. OS-level
virtualization for industrial automation systems: are we there yet? In ACM
Symp. on Applied Computing (SAC), 2016.

78 Bibliography

[44] Luca Abeni, Alessio Balsini, and Tommaso Cucinotta. Container-based
real-time scheduling in the Linux kernel. ACM SIGBED Review, 2019.

[45] S. Schliecker, M. Negrean, and R. Ernst. Bounding the shared resource
load for the performance analysis of multiprocessor systems. In Design,
Automation Test in Europe Conf. Exhibition (DATE), 2010.

[46] J. Nowotsch, M. Paulitsch, D. Bühler, H. Theiling, S. Wegener, and
M. Schmidt. Multi-core interference-sensitive wcet analysis leveraging
runtime resource capacity enforcement. In Euromicro Conf. on Real-Time
Systems (ECRTS), 2014.

[47] H. Yun, G. Yao, R. Pellizzoni, M. Caccamo, and L. Sha. Memory band-
width management for efficient performance isolation in multi-core plat-
forms. IEEE Trans. on Comp., 2016.

[48] Ankit Agrawal, Gerhard Fohler, Johannes Freitag, Jan Nowotsch, Sascha
Uhrig, and Michael Paulitsch. Contention-Aware Dynamic Memory Band-
width Isolation with Predictability in COTS Multicores: An Avionics Case
Study. In Euromicro Conf. on Real-Time Syst., 2017.

[49] Miguel Alcon, Hamid Tabani, Leonidas Kosmidis, Enrico Mezzetti, Jaume
Abella, and Francisco J. Cazorla. Timing of autonomous driving software:
Problem analysis and prospects for future solutions. In IEEE Real-Time
and Embedded Technol. and Appl. Symp., 2020.

[50] Maria A Rodriguez and Rajkumar Buyya. Container-based cluster orches-
tration systems: A taxonomy and future directions. Software: Practice
and Experience, 2019.

[51] A. Willig, K. Matheus, and A. Wolisz. Wireless technology in industrial
networks. Proceedings of the IEEE, 2005.

[52] R. Candell and M. Kashef. Industrial wireless: Problem space, success
considerations, technologies, and future direction. In Resilience Week,
2017.

Bibliography 79

[53] N. Finn. Introduction to Time-Sensitive Networking. IEEE Commun.
Standards Mag., 2018.

[54] IEEE Standard for Local and Metropolitan Area Network–Bridges and
Bridged Networks - Redline. IEEE Std 802.1Q-2018 (Revision of IEEE
Std 802.1Q-2014) - Redline, 2018.

[55] A. Rajandekar and B. Sikdar. A survey of MAC layer issues and protocols
for machine-to-machine communications. IEEE Internet of Things J.,
2015.

[56] Z. Li and J. Gui. Energy-efficient resource allocation with hybrid tdma–
noma for cellular-enabled machine-to-machine communications. IEEE
Access, 2019.

[57] H. Tezuka, M. Moriyama, K. Takizawa, and F. Kojima. A UL-NOMA
system providing low E2E latency. In IEEE VTS Asia Pacific Wireless
Commun. Symp., 2019.

[58] Le-Nam Hoang. Relaying for Timely and Reliable Applications in Wireless
Networks. PhD thesis, Halmstad University, 2017.

[59] L. Hoang, E. Uhlemann, and M. Jonsson. Relay grouping to guarantee
timeliness and reliability in wireless networks. IEEE Commun. Lett., 2019.

[60] V. Karagiannis, S. Schulte, J. Leitão, and N. Preguiça. Enabling fog
computing using self-organizing compute nodes. In IEEE Int. Conf. Fog
and Edge Comput., 2019.

[61] Vasileios Karagiannis and Apostolos Papageorgiou. Network-integrated
edge computing orchestrator for application placement. In Int. Conf. Netw.
and Service Manage., 2017.

[62] V. Karagiannis and S. Schulte. Comparison of alternative architectures in
fog computing. In IEEE Int. Conf. Fog and Edge Comput., 2020.

[63] Vasileios Karagiannis, Nitin Desai, Stefan Schulte, and Sasikumar Pun-
nekkat. Addressing the node discovery problem in fog computing. In
Workshop Fog Comput. and IoT, 2020.

80 Bibliography

[64] Vasileios Karagiannis, Periklis Chatzimisios, Francisco Vazquez-Gallego,
and Jesus Alonso-Zarate. A survey on application layer protocols for the
internet of things. Trans. on IoT and Cloud comput., 2015.

[65] Vasileios Karagiannis. Compute node communication in the fog: Survey
and research challenges. In Workshop on Fog Comput. and IoT, 2019.

[66] Rajiv Ranjan, Omer Rana, Surya Nepal, Mazin Yousif, Philip James,
Zhenya Wen, Stuart Barr, Paul Watson, Prem Prakash Jayaraman, Dimitrios
Georgakopoulos, et al. The next grand challenges: Integrating the internet
of things and data science. IEEE Cloud Computing, 2018.

[67] Zeinab Bakhshi and Guillermo Rodriguez-Navas. A preliminary roadmap
for dependability research in fog computing. ACM SIGBED Review, 2020.

[68] Xiao Yuan, Chimay J. Anumba, and M. Kevin Parfitt. Cyber-physical
systems for temporary structure monitoring. Automation in Construction,
2016.

[69] Y. Xiao, Z. Ren, H. Zhang, C. Chen, and C. Shi. A novel task allocation
for maximizing reliability considering fault-tolerant in VANET real time
systems. In IEEE Int. Symp. on Personal, Indoor, and Mobile Radio
Communications, 2017.

[70] A. Aral and I. Brandic. Quality of service channelling for latency sensitive
edge applications. In IEEE Int. Conf. Edge Computing, 2017.

[71] X. Chen, X. Wen, L. Wang, and W. Jing. A fault-tolerant data acquisition
scheme with mds and dynamic clustering in energy internet. In IEEE Int.
Conf. Energy Internet, 2018.

[72] K. E. Benson, G. Wang, N. Venkatasubramanian, and Y. Kim. Ride: A
resilient IoT data exchange middleware leveraging SDN and edge cloud
resources. In IEEE/ACM Third Int. Conf. Internet-of-Things Design and
Implementation, 2018.

[73] M. T. Saqib and M. A. Hamid. FogR: A highly reliable and intelligent
computation offloading on the internet of things. In IEEE Region 10 Conf.
(TENCON), 2016.

[74] O. Osanaiye, S. Chen, Z. Yan, R. Lu, K. R. Choo, and M. Dlodlo. From
cloud to fog computing: A review and a conceptual live vm migration
framework. IEEE Access, 2017.

[75] Z. Bakhshi, G. Rodriguez-Navas, and H. Hansson. Dependable fog com-
puting: A systematic literature review. In Euromicro Conf. Software Eng.
and Adv. Appl., 2019.

[76] Radu Dobrin, Nitin Desai, and Sasikumar Punnekkat. On fault-tolerant
scheduling of time sensitive networks. In Int. Workshop on Security and
Dependability of Critical Embedded Real-Time Syst., 2019.

[77] Nitin Desai and Sasikumar Punnekkat. Safety of fog-based industrial
automation systems. In Proceedings of the Workshop on Fog Computing
and the IoT, 2019.

[78] N. Desai and S. Punnekkat. Safety-oriented flexible design of autonomous
mobile robot systems. In 2019 International Symposium on Systems
Engineering (ISSE), 2019.

Chapter 7

Paper B: Real-Time Containers:
A Survey

Václav Struhár, Moris Behnam, Mohammad Ashjaei, Alessandro V. Papadopou-
los.

In the 2nd Workshop on Fog Computing and the IoT (Fog-IoT 2020).

83

84 Paper B

Abstract

Container-based virtualization has gained a significant importance in a deploy-
ment of software applications in cloud-based environments. The technology
fully relies on operating system features and does not require a virtualization
layer (hypervisor) that introduces a performance degradation.

Container-based virtualization allows to co-locate multiple isolated containers
on a single computation node as well as to decompose an application into
multiple containers distributed among several hosts (e.g., in fog computing
layer). Such a technology seems very promising in other domains as well,
e.g., in industrial automation, automotive, and aviation industry where mixed
criticality containerized applications from various vendors can be co-located
on shared resources.

However, such industrial domains often require RT behavior (i.e, a capability
to meet predefined deadlines). These capabilities are not fully supported by
the container-based virtualization yet. In this work, we provide a systematic
literature survey study that summarizes the effort of the research community
on bringing RT properties in container-based virtualization. We categorize
existing work into main research areas and identify possible immature points
of the technology.

85

Fog Computing as well as cloud computing relies extensively on resource
virtualization. In this area, the container-based virtualization is gaining its im-
portance as a lightweight alternative of hypervisor-based virtualization. The
container technology allows to execute applications and their software depen-
dencies in a virtual environment independently on the software ecosystem of
their hosts. A host can accommodate multiple containers at a time, providing
means for container isolation and resource control for the containers. Container-
based virtualization (sometimes referred as an OS level virtualization) does not
require a hypervisor and therefore it provides near-native performance [1, 2],
rapid deployment times and a low overhead while still retaining a certain level
of resource isolation and resource control. The containers are a de-facto stan-
dard for development of large scale web applications adopted by a number of
companies [3].

The benefits of the container-based virtualization are aligned with the strive
of the companies in other areas such as in industrial and robot control, auto-
motive and aviation. In these industrial domains, there are strong requirements
to (i) consolidate computational resources (Electronic Control Units, physical
controllers) and (ii) provide a flexible environment for running (RT) applications.
Additionally, container-based virtualization can enable interruption-free hard-
ware and software maintenance, dynamic system redundancy change and system
redundancy healing [4]. However, in such fields stringent RT requirements are
often needed. This means that the applications inside of a container should meet
predefined deadlines independently on other co-located containers.

In this survey, we summarize the research carried out in the area of RT
containers since the introduction of containers in Linux (i.e. 20081).

The main contributions of this paper include:

• Systematic literature survey of the RT containers.

• Overview of the approaches and technology enabling RT behavior of
containers.

• Identification of pitfalls, challenges and future research directions for RT
containers.

1https://lwn.net/Articles/256389/

https://lwn.net/Articles/256389/

86 Paper B

7.1 The Review Process

The systematic literature survey is carried out with the guidance in [5]. The
research questions are defined together with search queries and sources of the
studies and, subsequently, we extract the data and answer to the questions. We
apply the snowballing [6] method to identify relevant papers outside the search
query. Databases used: Scopus and IEEE. Only full peer review papers published
between 2008-2019 are considered. We search the databases using the following
search queries:

(Real-time OR RT) AND (Containers OR Container)

The search string extracts 1855 articles in Scopus and 609 articles in IEEE.
Out of that, we identify 38 and 23 potentially relevant articles by the title. As
the number of articles is low, we fully screen each potentially relevant paper
(abstract and full text) to make the decision for inclusion/exclusion into this
survey. In total, we include 14 papers as seen in Table 7.1.

7.1.1 Question Formalization

In this work, we elaborate the following questions:

• RQ1: Why and in which context have RT containers been used? Answer-
ing this question will give an overview of the motivation behind the use of
RT containers, expected benefits and areas where RT containers are used.

• RQ2: What approaches are used for enabling RT behavior of containers?
The answer will give an overview of the approaches and technologies, their
combinations and their usages for the RT container-based virtualization.

• RQ3: What are the pitfalls and weak points of using RT containers that
prevent full adoption of such technology in industry? The answer for
this question will give a list of research challenges and problems for RT
container computing.

7.2 Container-based Virtualization 87

7.2 Container-based Virtualization

From the runtime perspective, a container is a set of resource-limited processes
that are isolated from the rest of the system and from other containers. This is
achieved by utilizing two Linux kernel features: (i) Namespaces and (ii) Control
groups (cgroups). Namespaces virtualize global resources (e.g., processes,
network, inter-process communication) in the way that a group of processes can
see and use one set of resources while another group can use different set of
resources. Cgroups provide a mechanism for aggregating and partitioning sets
of tasks, and all their future children, into hierarchical groups with specialized
behaviour2. It allows to organize processes hierarchically and distribute system
resources along the hierarchy.

7.2.1 Container Platforms

There are several container solutions, all of them rely on cgroups and namespaces.
Thus, all the platforms pose similar options and performance [7]. The philosophy
of using the two most commonly used container platforms Linux Containers
(LXC) and Docker differs. Docker containers are microservice-based (each
container should contain a single application), whereas LXC, similarly to Virtual
Machines, allows to run a complex ecosystem of applications which is beneficial
for emulation of legacy systems.

7.2.2 Real-Time Containers

The term RT implies that the correctness of the system depends not only on
the results of the computation but also on the time at which the results are
produced [8]. Real-time systems can be categorized into three groups: hard, firm
and soft RT. Missing a deadline in a hard RT system may cause catastrophic
consequences, whereas missing deadline in a firm RT system leads to the com-
plete loss of the utility of the result. Missing deadline in a soft RT system just
degrades the utility of the result.

2cgroupsdocumentation

cgroupsdocumentation

88 Paper B

A RT container is a container that provides resource isolation, resource
control and additionally provides time deterministic and predictable behavior
for the containerized application.

7.2.3 Real-time Support of Linux

To ensure the time predictable behavior of the containers, the operating systems
must provide such capability. Default (Vanilla) Linux does not give any time
guarantees on execution of tasks and therefore the predictability is low [9].
However, there are several approaches to improve the predictability: the RT
patch that improves preemptability of the Linux kernel and co-kernel approaches
that run a RT micro kernel in parallel to the Linux kernel. Containerized
applications are scheduled in the same way as native applications using the host’s
scheduler, the Default Linux kernel provides three schedulers: (i) Completely
Fair Scheduler: Aims to maximize CPU utilization while also maximizing
interactive performance. It does not give any time guarantees. (ii) Real-Time
scheduler: The scheduler allows to schedule tasks in the fixed priority manner
using First In First Out or Round Robin policies. The tasks run till they yield
or are preempted by higher priority tasks. The Real-Time group scheduling3

extension allows to divide and allocate CPU time between RT and non RT tasks.
(iii) Earliest Deadline First Scheduler Uses Constant Bandwidth Server [10]
and allows to associate to each task a budget and a period.

7.3 Survey Results

In this section, we summarise relevant papers. There are four main directions
for enabling RT behavior of containers: (i) RT patch based, (ii) co-kernel based,
(iii) hierarchical scheduling based and (iv) custom approach. A short summary
is provided in Table: 7.1.

3https://www.kernel.org/doc/Documentation/scheduler/
sched-rt-group.txt

https://www.kernel.org/doc/Documentation/scheduler/sched-rt-group.txt
https://www.kernel.org/doc/Documentation/scheduler/sched-rt-group.txt

7.3 Survey Results 89

Study Main focus Approach & Technology Communication aspects
Cinque et al. [11, 12] · Architecture defi-

nition

· Faulty tasks mon-
itoring

· Implementation
details

· Real Time
Application
Interface (RTAI)

· Docker

· Fixed priority
scheduling

-

Cucinotta et al. [13, 14, 15] · Temporal Interfer-
ence between con-
tainers

· Hierarchical
Scheduling

-

Tasci et al. [16] · Architecture defi-
nition

· Real-time com-
munication
between contain-
ers

· Combination of
Real-Time patch
and Xenomai

· Docker

Design of mes-
saging system
based on Ze-
roMQ.

Moga et al. [17] · Feasability study

· Communication
between contain-
ers

· Communication
overheads

· Docker

· Real-Time patch

Network per-
formance
and overhead
measurements
between con-
tainers using
default Docker
Linux NAT
Bridge.

Hofer et al. [18] · Experimental
comparison be-
tween Real-Time
patch, Xenomai,
Vanilla Linux

· Real-Time patch

· Xenomai

· Vanilla Linux

-

Goldschmidt et al. [19, 4] · Architecture defi-
nition

· Feasibility study

· Real-Time patch

· Legacy systems
emulation in RT
containers

-

Telschig et al. [20] · Model-based
architecture and
analysis

· Dependable
RT container
computing.

· LXC -

Mao et al. [21] · Minimizing laten-
cies in software-
based Radio Ac-
cess Networks

· Docker

· Real-Time patch

Application of
fast packet pro-
cessing using
Intel Data Plane
Development
Kit.

Masek et al. [22] · Systematic eval-
uation of sand-
boxed software

· Real-Time patch -

Wu et al. [23] · Dynamic CPU
allocation for
mixed-criticality
RT systems

· Custom schedul-
ing mechanism

· Docker

-

Table 7.1. Summary of studies elaborating on RT containers.

90 Paper B

7.3.1 Methods Based on PREEMPT_RT Patch

The RT patch (PREEMPT_RT) improves the kernel’s locking primitives to
maximize preemptible sections. The advantage of the patch is that there is no
need for special libraries or API needed by the application developers.

Moga et al. [17] considers RT containers in the context of industrial automa-
tion systems that works with RT data and have RT deadlines on detection and
response to events. The paper emphasises the need for OS-level virtualization in
an industrial automation and gives examples of timing requirements of industrial
applications (e.g. motor drive typically requires cycle time between 1ms to
250µs) and a need for synchronization between the containers. The evaluation
of the effects of containers on performance of industrial automation systems is
provided in two cases: (i) Cyclic behavior of a containerized application, (ii) Vir-
tual networking performance for communications between containers. Cyclic
behavior test evaluates the ability to execute application logic at pre-defined
intervals, measures accuracy and jitter. Virtual networking test evaluates the
ability to communicate between co-located containers in a time-bounded man-
ner. The researches see the RT container computing as a promising technology,
however communication mechanisms between containers are not clear.

The work in [4] (and previously [19]) addresses a container based architec-
ture for RT controllers that allow a flexible function deployment and a support of
legacy control applications. Such architecture is needed to preserve a functional-
ity of legacy control programs and to reduce maintenance cost of legacy systems
(in which the software is often bounded to a specific hardware and software
ecosystem). The researchers investigate the feasibility of building a RT capable
system (for legacy systems) based on RT containers, they target Programmable
Logic Controller (PLC) and automation controllers with the cycle time between
100ms to 1s. They perform a set of tests under various load scenarios (i) using
containerized applications inside of Docker and (ii) running complete operating
system (PowerPC) inside LXC. They conclude that a containerized execution of
control applications can meet requirements of PLC and automation controllers.

From the latency point of view, Masek et al. [22] performed a literature
review on sandboxed RT software on the example of self-driving vehicles. The
researchers were interested in the question: How does the execution environment
influence the scheduling precision and input/output performance of a given

7.3 Survey Results 91

application? The result shows that docker does not impose additional overhead
(similarly to [24]) for scheduling and input/output performance. However,
selecting the correct kernel has a greater impact on the scheduling precision and
input/output performance of containers.

Mao et al. [21] uses RT containers to enable software-based RAN (Radio
Access Network) in order to avoid high capital and operating expenditures
during deployment of new standards. However, the software based RAN has
strict deadlines to satisfy (1ms). The researchers use RT patch to decrease the
latency, interestingly they improve the latency 13.9 times by applying the patch
in comparison to the vanilla Kernel.

7.3.2 Methods based on Real-time Co-Kernel

In this approach, a RT micro-kernel runs in parallel to Linux kernel. The RT
co-kernel handles time critical activities (e.g., handling interrupts and scheduling
RT threads), standard Linux kernel runs only when the co-kernel is idle. In
comparison to the RT patch, the co-kernel approach offers lower latencies and
lower jitter. On the other hand, it requires special APIs, tools and libraries for the
application development. Additionally, there are impediments with scaling co-
kernel solutions on large platforms (e.g., many cores platforms). There are two
co-kernel alternatives: Real Time Application Interface (RTAI) and Xenomai.

RTAI aims to minimize latencies to the lowest technically possible values.
Real-time tasks are compiled as kernel modules and ran in the kernel space.
Xenomai [25] is a fork of RTAI. Its mission is to enable RT tasks in the user
space. It consists of an emulation layer that is capable of reusing code from
other Real Time Operating System (RTOSs).

Tasci et al. [16] elaborates on modularization of RT control applications
into RT containers. Such modular architecture needs two essential parts: (i)
Computational part, enabled by a RT operating system (combination of Xenomai
and RT patch), and (ii) Messaging part that allows passing messages between
containers in a RT manner. Traditional monolithic architectures communicate
through function calls and shared memory, the containers do not make the
assumption if they are running on the same host or in a distributed environment
(they communicate through standard OS networking stack), therefore direct
passing messages through shared memory is not directly supported. Hence,

92 Paper B

the researchers provide a design and implementation of a custom made RT
messaging system for containers based on ZeroMQ4.

Hofer et al. [18] use the RT containers in the context of control applica-
tions. The paper presents comparison between type 1 hypervisor, Vanilla Linux,
Xenomai co-kernel and Linux with RT patch for various idle and stress scenarios.

7.3.3 Method Based on Hierarchical Scheduling of Containers

Inspired by a similar concept in the hypervisor-based virtualization where a
global scheduler assigns CPU time for the virtual machines, the second layer
scheduler schedules the individual tasks of the VM.

Cucinotta, Abeni et al. [14, 15, 13] proposed the use of RT containers on
the field of Network Function Virtualization (NFV), where the functionality of
traditional physical network devices (e.g., firewalls) is transformed into software
components (in containers) that are consolidated in a single computing device.
NFV has critical latency requirements inducted by the need of time critical per-
packet processing. The researchers modified the Linux scheduling mechanism
to provide two levels hierarchical scheduling. First level Earliest Deadline First
scheduler selects the container to be scheduled on each CPU. Subsequently
the second level Fixed Priority scheduler selects a task in the container. CPU
reservation (runtime quota and period) is assigned to each of the containers.

7.3.4 Custom Methods

Wu et al. [23] proposed the Flexible Deferrable Scheduler for containerized
mixed-criticality RT systems that consist of RT and non RT containers. The
scheduler guarantees the allocated CPU capacity to RT containers and dynam-
ically distributes the unused capacity to non RT containers. The work supple-
ments Completely Fair Scheduler with a Workload Adjustment Module that
collects CPU utilization by containers and Dynamic Adjustment Module that
allocates CPU to the container.

Cinque et al. [12] (previously [11]) implemented RT containers using Linux
patched with RT co-kernel (RTAI) and utilizing custom made monitoring and

4https://zeromq.org/

https://zeromq.org/

7.4 Challenges of Real-time Container-based Virtualization 93

policy enforcing modules. Their solution allows to co-habit containers with
different criticality levels and to prevent fixed-priority hard RT periodic tasks
inside of the containers to affect the temporal guarantees of other containers.
The temporal guarantees are provided by two mechanisms: (i) proper tasks
priority assignments to tasks inside the containers and (ii) monitoring and
enforcing temporal protection policies. The former ensures that tasks inside of
the high-criticality containers are assigned higher priorities than tasks in the
lower-criticality containers and thus they are never preempted by tasks of lower
criticality containers. The latter monitors the tasks and, in case of overruns or
overtimes, it enforces one of the temporal protection policy (i.e., kill or suspend
the faulty task, suspend the task until the next period).

7.4 Challenges of Real-time Container-based Virtual-
ization

In the reviewed papers, we identified shortcomings and immature aspects of RT
container virtualization that prevents the expansion of the technology. Below, we
listed them categorized in three groups: (i) tools support, (ii) RT communication
support, and (iii) miscellaneous.

Lack of tools for RT container management: The reviewed papers empha-
sises a need for supporting tools for RT containers. Tools that enable deployment
on containers taking into account RT requirements of containers and properties
of computational nodes.

• The need for an orchestration tool that can schedule RT containers based
on pre-configured capabilities [18].

• Middleware that is aware of both communication needs as well as run-time
and performance isolation needs [17].

• Framework to expose the runtime requirements of RT application running
inside containers and to enforce an optimal allocation of containers to
resources [17].

Communication between RT containers: Real-time communication be-
tween a container and its environment has to be further researched. Currently,

94 Paper B

the reviewed papers emphasize the following issues:

• Need for a RT communication among containers [17].
• Further investigation on container security restricted container access and

intra-container communication [18].
• A research on data management shared across containers [19].

Miscellaneous: In addition to generic issues that may harm the RT be-
haviour (e.g., shared caches, memory and I/O), the studies reviewed highlight
the following points and questions:

• Lack of safety, security analysis of RT containers and vulnerability man-
agement for the acceptance in industry [20, 19].

• Lack of latency and performance tests of recent releases of a patched Linux
Kernel. As well as a proper analysis of configuration of the Linux kernel
parameters that may improve overall task determinism. [18].

• The measurements of memory overhead of the container solution and is it
acceptable for real world applications [19].

• Processes in different containers may use the same resources in the same
way because of their independent views of the system (i.e., processes are
not aware of a resource-limited isolated environment co-located with other
containers). This results in poor resource utilization as well as a potential
violation of the RT execution assumptions [17].

• Container approaches are a new technology. Will this create problems due
to its possible immaturity [19]?

7.5 Conclusion

Container-based virtualization has become popular as a lightweight alternative of
hypervisor-based virtualization. The technology has proven its viability in large
cloud-based systems, it has been adopted by a number of enterprise companies
and it is supported by a large scale of tools (e.g., container orchestration and
monitoring tools).

However, in industrial domains where the RT behavior is required, the
container-based virtualization seems not to be mature enough. In this paper, we

7.5 Conclusion 95

summarize the research carried out in the field of RT containers. We show in
what contexts, what approaches and technologies are used, and what are the
possible immaturity points of the RT container-based virtualization.

Bibliography

Bibliography

[1] W. Felter, A. Ferreira, R. Rajamony, and J. Rubio. An updated performance
comparison of virtual machines and linux containers. In 2015 IEEE
International Symposium on Performance Analysis of Systems and Software
(ISPASS), 2015.

[2] Cristian Spoiala, Alin Calinciuc, Cornel Turcu, and Constantin Filote. Per-
formance comparison of a webrtc server on docker versus virtual machine.
13th International Conference on DEVELOPMENT AND APPLICATION
SYSTEMS, Suceava, Romania, May 19-21, 2016, 2016.

[3] Thanh Bui. Analysis of docker security. ArXiv, 2015.

[4] Thomas Goldschmidt, Stefan Hauck-Stattelmann, Somayeh Malakuti, and
Sten Grüner. Container-based architecture for flexible industrial control
applications. J. of Syst. Architecture, 2018.

[5] Jo Hannay, Dag Sjøberg, and Tore Dybå. A systematic review of theory
use in software engineering experiments. Software Engineering, IEEE
Transactions on, 2007.

[6] Claes Wohlin. ACM International Conference Proceeding Series, 2014.

[7] Roberto Morabito, Jimmy Kjällman, and Miika Komu. Hypervisors vs.
lightweight virtualization: A performance comparison. In IEEE Int. Conf.
on Cloud Eng., 2015.

[8] Giorgio C Buttazzo. Hard real-time computing systems: predictable
scheduling algorithms and applications. 2011.

96

Bibliography 97

[9] Claudio Scordino and Giuseppe Lipari. Linux and real-time: Current
approaches and future opportunities. In IEEE Internafional Congress
ANIPLA, 2006.

[10] Luca Abeni, Giuseppe Lipari, and Juri Lelli. Constant bandwidth server
revisited. Acm Sigbed Review, 2015.

[11] Marcello Cinque and Domenico Cotroneo. Towards lightweight temporal
and fault isolation in mixed-criticality systems with real-time containers.
In 2018 48th Annual IEEE/IFIP International Conference on Dependable
Systems and Networks Workshops (DSN-W). IEEE, 2018.

[12] Marcello Cinque, Raffaele Della Corte, Antonio Eliso, and Antonio Pec-
chia. Rt-cases: Container-based virtualization for temporally separated
mixed-criticality task sets. In Euromicro Conf. Real-Time Syst., 2019.

[13] Tommaso Cucinotta, Luca Abeni, Mauro Marinoni, Alessio Balsini, and
Carlo Vitucci. Reducing temporal interference in private clouds through
real-time containers. In IEEE Int. Conf. on Edge Comp. (EDGE), 2019.

[14] Tommaso Cucinotta, Luca Abeni, Mauro Marinoni, Alessio Balsini, and
Carlo Vitucci. Virtual network functions as real-time containers in private
clouds. In IEEE Int. Conf. on Cloud Comp. (CLOUD), 2018.

[15] Luca Abeni, Alessio Balsini, and Tommaso Cucinotta. Container-based
real-time scheduling in the linux kernel. SIGBED Rev., 2019.

[16] Timur Tasci, Jan Melcher, and Alexander Verl. A container-based architec-
ture for real-time control applications. In IEEE Int. Conf. on Eng., Tech.
and Innov. (ICE/ITMC), 2018.

[17] Alexandru Moga, Thanikesavan Sivanthi, and Carsten Franke. OS-level
virtualization for industrial automation systems: are we there yet? In ACM
Symp. on Applied Computing (SAC), 2016.

[18] Florian Hofer, Martin Sehr, Antonio Iannopollo, Ines Ugalde, Alberto
Sangiovanni-Vincentelli, and Barbara Russo. Industrial control via appli-
cation containers: Migrating from bare-metal to IAAS. In IEEE Int. Conf.
on Cloud Computing Technology and Science (CloudCom), 2019.

[19] Thomas Goldschmidt and Stefan Hauck-Stattelmann. Software containers
for industrial control. In Euromicro Conf. on Soft. Eng. and Adv. Appl.
(SEAA), 2016.

[20] Kilian Telschig, Andreas Schonberger, and Alexander Knapp. A real-time
container architecture for dependable distributed embedded applications.
IEEE Int. Conf. Automat. Science and Eng., 2018.

[21] C. Mao, M. Huang, S. Padhy, S. Wang, W. Chung, Y. Chung, and C. Hsu.
Minimizing latency of real-time container cloud for software radio access
networks. In 2015 IEEE 7th International Conference on Cloud Computing
Technology and Science (CloudCom), 2015.

[22] Philip Masek, Magnus Thulin, Hugo Andrade, Christian Berger, and Ola
Benderius. Systematic evaluation of sandboxed software deployment for
real-time software on the example of a self-driving heavy vehicle. In 2016
IEEE 19th International Conference on Intelligent Transportation Systems
(ITSC), 2016.

[23] J. Wu and T. Yang. Dynamic cpu allocation for docker containerized mixed-
criticality real-time systems. In 2018 IEEE International Conference on
Applied System Invention (ICASI), 2018.

[24] A. Krylovskiy. Internet of things gateways meet linux containers: Per-
formance evaluation and discussion. In 2015 IEEE 2nd World Forum on
Internet of Things (WF-IoT), 2015.

[25] Philippe Gerum. Xenomai - implementing a RTOS emulation framework
on GNU/Linux. White Paper, Xenomai, 2004.

Chapter 8

Paper C: REACT: Enabling
Real-Time Container
Orchestration.

Václav Struhár, Silviu S. Craciunas, Mohammad Ashjaei, Moris Behnam, Alessan-
dro V. Papadopoulos.

In the 26th International Conference on Emerging Technologies and Factory
Automation (ETFA 2021).

99

100 Paper C

Abstract

Fog and edge computing offer the flexibility and decentralized architecture
benefits of cloud computing without suffering from the latency issues inher-
ent in the cloud. This makes fog computing very attractive in real-time and
safety-critical applications, especially if combined with container-based tech-
nologies. Whereas different orchestration systems are available to manage
the container placement based on their resource demand, no orchestration
system is considering real-time requirements for containerized applications.
In this paper, we present the architecture and design of a real-time container
orchestrator based on Kubernetes. Moreover, this paper defines metrics for
the performance evaluation of real-time containers, and describe an initial
model for allocating a mixture of real-time and non-real-time containers. We
present an initial implementation of our real-time container extension and
evaluate its feasibility on Linux-based systems.

8.1 Introduction 101

8.1 Introduction

Fog and Edge Computing (FEC) are conceived to overcome some of the main
limitations of cloud computing, e.g., tackling the limitations of unbounded com-
munication latency and variance in bandwidth availability [1]. FEC enables the
benefits of offloading data collection and decision-making even in application
domains that require RT guarantees, e.g., in industrial automation [2, 3]. FEC
systems decrease the communication latency for critical data, which can then
be processed on the decentralized computational devices on the network’s edge.
While guaranteeing deterministic communication behavior between nodes can
be achieved through the use of, e.g., TTEthernet or TSN, guaranteeing the RT
behavior of computation functions can be challenging. The RT execution of
functions on nodes cannot always be maintained in the same way due to the
complexity and non-determinism of hardware artifacts (e.g., caches), and soft-
ware layers within the compute nodes (e.g., OS layers, network stack, interrupts).
Hence, to maintain the RT behavior of functions, isolation and adaptation/re-
allocation of functions at run-time is necessary. Typically, the re-allocation and
the isolation of functions have been facilitated through the use of virtualization
technologies.

Container-based virtualization is gaining importance in industrial domains
as a lightweight alternative to full-blown virtualization [4, 5]. Containers are
standalone self-containing software packages, comprising applications and their
software dependencies, that simplify the deployment of software [6]. The
technology enables sharing of computation resources among several contain-
ers while preserving isolation. Recently, there has been an effort to enhance
container-based virtualization with time predictability (i.e., RT containers), en-
abling container applications with RT requirements [7, 8, 9]. Through these
enhancements, containers may be used for time-critical applications required by
many industrial systems such as robot control in fog computing [2, 3]. In parallel,
due to the continuous change in resource usage by applications running in fog
and the availability of the resources, there is a need to dynamically manage and
deploy containers in a cluster of compute nodes necessitating container orchestra-
tors that take into account both resource requirements and resource availability.
Additionally, container orchestrators offer further benefits, e.g., scalability and

102 Paper C

availability, fault-tolerance, and efficient resource utilization [10].
RT systems require additional constraints regarding the reaction time to

environmental events [11]. So far, container orchestrators do not consider RT
requirements of applications running inside containers, neither from the theoret-
ical nor practical points of view. There are no mechanisms of the distribution of
containers based on their RT requirements without violating these requirements
and how to manage the co-execution of RT and BE containers on the same
node. RT containers are a novel topic [9]. There are no strategies for dealing
with dynamic changes in container workloads that may change interference be-
tween RT containers. Containers do not provide strict resource isolation as they
share not only physical resources but also OS kernel [12], and hence, they are
prone to performance degradation in the presence of other competing containers.
For example, disk-intensive workloads can induce performance degradation
up to 35% [13]. Therefore, if the benefits of containers are to be exploited
for RT systems, run-time monitoring and container orchestration that continu-
ously evaluates QoS metrics and uses them in container scheduling decisions is
necessary.

This paper proposes a container orchestration architecture to support the
co-existence of RT and BE containers with temporal isolation. Specifically, the
contributions of this paper are as follows:

• The design of a container orchestration architecture enabling the deploy-
ment and online adaptation of both RT and BE containers considering the
timing requirements defined for time-critical applications;

• The definition of a mathematical model for the RT components of the
designed orchestration architecture, and of the performance metrics needed
to implement run-time monitoring and orchestration of the RT containers;

• The implementation of the proposed orchestration over the existing open-
source container orchestrator Kubernetes.

8.2 Background and Prior Work

RT systems are computing systems that require deterministic temporal behavior
since the correctness of their functionality depends not only on the value but also
on the timing of the computed result [11]. Many software applications utilize

8.2 Background and Prior Work 103

periodic tasks that are cyclically executed [14]. Typically, RT systems require
that tasks finish their execution in every period instance to be considered correct
(assuming an implicit deadline for the tasks).

Virtualization is a technology that allows multiple virtualized applications
or systems to be co-located onto the same shared platform [15]. There are two
prevalent virtualization technologies: hypervisor- and container-based virtualiza-
tion. Hypervisor-based virtualization utilizes a hypervisor that is a software layer
that creates the different partitions within which each virtualized instance of an
OS runs. In contrast, container-based virtualization utilizes OS features to create
an isolated environment for processes. Container-based virtualization does not
impose any requirements on hardware support for virtualization. Hence, such
technology can be utilized on a broad range of devices. Containers co-located
on a single computing node run as user-space isolated tasks and share functions
of the host’s OS (e.g., scheduling, memory allocation). From the user’s view,
each container appears and executes like a stand-alone OS. In comparison to the
hypervisor-based virtualization, container-based virtualization has a negligible
overhead, is more resource efficient (e.g., 29.4 times less RAM usage than a
VM [16]), has higher flexibility, provides fast booting times [17], and enables
a near-native performance [6, 4, 5]. However, container-based virtualization
provides a low level of isolation for memory, disk, and network operations [13];
hence, such operations may lead to degrading QoS of the applications.

The container-based virtualization relies on namespaces and control groups,
referred to as cgroups, implemented in the host OS [18]. Namespaces partition
global resources, e.g., tasks, network, inter-process communication, into differ-
ent sets, only visible by different task groups [9]. cgroups enable the organisation
of tasks into hierarchical subgroups with various configurable runtime properties,
that allows a dynamic resources redistribution among the subgroups [19].

Looking at the RT support for container-based virtualization, three major
directions are aiming to improve RT behavior of containers: hard RT co-kernel
that co-exists with a standard Linux Kernel [20, 21, 22], solutions based on the
preempt_rt patch for Linux that aims to minimize the latency in the Kernel [23,
24, 25], and solutions that employ hierarchical scheduling [7, 18, 8]. The RT
properties of container-based virtualization depend on the underlying OS. In this
paper, we consider the general-purpose OS Linux. While Linux was not designed

104 Paper C

for RT operation, there are considerable efforts to improve the time determinism
on several levels, e.g., introducing RT scheduling as a standard kernel feature and
providing time-predictable kernel behavior through full preemption. On the task
scheduling level, there are RT scheduling policies in the Linux kernel: First-In-
First-Out and Round Robin combined with priority queues to provide different
priority levels for tasks, and Earliest Deadline First/Constant-Bandwidth Server
that prioritizes tasks dynamically according to their deadlines.

RT scheduling support for containers has been added in [18] through the im-
plementation of hierarchical scheduling combining standard fixed priority sched-
uler (SCHED_FIFO or SCHED_RR scheduling policy) and SCHED_DEADLINE,
consistent with the multiprocessor periodic resource analysis from [26]. The ker-
nel is extended with a reservation-based scheduling policy in which each virtual
CPU (vCPU) is assigned a quota and a period, bounding the execution of the
vCPU to the respective quota in each time interval of length equal to the period.
On the container level, the global SCHED_DEADLINE policy selects at each
time instant the container with the earliest deadline, while at the task level, the
SCHED_FIFO/SCHED_RR policy is used to schedule tasks within containers.
Once there is no task to be scheduled by the SCHED_FIFO, other BE tasks, are
executed via the default scheduling policy. This enables the co-existence of RT
and BE containers. We use this hierarchical patch as the implementation basis
for our environment to host containers in compute nodes.

Container orchestrators automate the deployment, management, and scaling
of containers in clusters of heterogeneous computing nodes. The main func-
tionality of container orchestrators is the placement of containers in a cluster
of compute nodes following placement policies and user-supplied placement
constraints. The goal is to choose an optimal compute node to start the requested
containers on. The orchestrator matches the resources requirements with the
resource capacity of the nodes, e.g., CPU, memory, and disk storage capacity,
and applies strategies to maximize the performance (e.g., the highest spread of
containers). Additionally, orchestrators address fault-tolerance of the deployed
containers, scaling or removing containers based, load balancing, container
health monitoring, and efficient resource utilization. There are several container
orchestrators available: Kubernetes, Docker Swarm, None of them support the
deployment of containers based on their timing requirements [10]. Closest to

8.3 Orchestration of real-time containers 105

our work is [27], where Xi et al. utilizes OpenStack to orchestrate RT VMs.

8.3 Orchestration of real-time containers

This paper introduces a solution to enable the orchestration of RT containers
so that the RT requirements are taken into account during the scheduling pro-
cess. We define a set of scheduling policies, run-time monitoring mechanisms,
performance metrics, and an implementation that supports the deployment and
execution of RT containers. The RT container orchestrator provides the follow-
ing functionalities:

• Placement of RT and BE containers: The orchestrator places the RT con-
tainers according to their RT requirements (i.e., quota and budget). The
orchestrator prevents over-reservation of the resources at the container
scheduling level by performing a utilization-bound schedulability test.

• Run-time monitoring of RT QoS of the containers: The orchestrator contin-
uously monitors resource usage and the delivered QoS expressed by a set
of metrics of the containers deployed in the compute nodes administrated
by the orchestrator. As the OS does not enforce strong container isolation,
there may be an interference with other noise-perturbing containers that
may influence the timing behavior of RT containers. The orchestrator takes
the information into account in the next scheduling decisions.

8.3.1 System Model

In this section, we define our system model including infrastructure, compute
node, container, and task elements.
Infrastructure: We consider a system S consisting of a container orchestrator
F and n connected compute nodes denoted by f1, . . . , fn.
Compute node: Each node fj offers memory and storage resources of a given
capacity, denoted with fMj and fSj , respectively. Each compute node fj is
capable of hosting a mixture of RT containers and BE containers. We define
the set of RT and BE containers on node fj with Πrt

j and Πbe
j , respectively. We

introduce the OSLM property of a node fj , denoted by OSLMj , to quantify its
performance.

106 Paper C

Container: Each container πk has memory (πMk) and storage (πSk) demands.
An RT container πk ∈ Πrt

j has RT interface expressed as (Pk, Qk) where Qk is
a CPU quota over period Pk. We introduce the metric of a container πk, denoted
by CLMk, to capture the performance of RT containers.
Task: Each container πk accommodates a set of tasks denoted by Tk. Each RT
task τi is defined by the tuple 〈ai, Ci, Ti, Di〉, where ai represents the release or
arrival time (i.e., the time relative to the period when the task becomes active),
Ci is the worst-case execution time bound, Ti is the period, andDi is the relative
deadline of the task. We use two functions Li(t0, t1), and Ri(t0, t1) to capture
the maximum lateness and maximum response time of the task τi in the interval
[t0, t1). The lateness represents the delay of the task’s completion with respect
to its deadline, while the response time measures the difference between the
finishing and arrival time of a task. The functions return a set of lateness and
response time values, respectively, corresponding to the task instances executed
within the given time interval. We also use a counter defined as µi(t0, t1) to
capture the number of deadline misses for task τi in the time interval [t0, t1).
Tasks assigned to BE containers do not have any timing requirements.

There are methods [28] to abstract the timing requirements of a set of RT
tasks under certain scheduling algorithms into a periodic resource model in a
form similar to the RT interface (Qk, Pk) of the containers. If the appropriate
scheduling mechanisms are in place, the abstracted resource guarantees that
when the resource receives an allocation of Qk over a period Pk, all RT tasks
within the resource will meet their RT requirements [28].

8.3.2 Performance Metrics

There are several metrics, collectively defined as OSLM [29], to evaluate the
performance of a system in terms of task execution. Such metrics are useful to
estimate the suitability of the system to run RT tasks. E.g., Interrupts with a non-
preemptable section that can influence the RT performance of the system [30],
CPU Utilization, number of handled interrupts per second, number of I/O
requests per second, and amount of data read/written. There is a number of
tools for collecting performance data [31]: mpstat, iostat. These tools collect
the performance data of tasks from proc and cgroups directories to estimate the
OSLM.

8.3 Orchestration of real-time containers 107

On the container level, there is a lack of measurement methodology, tools,
and best practices, as well as a lack of metrics on the characterization of the
container overhead [31]. Available tools, e.g., docker stats and cAdvisor allow
to estimate the basic set of container-related metrics (e.g., CPU and memory
utilization). However, when considering the RT QoS evaluation of containers,
the available tools are lacking such capabilities. In this paper, we define CLM
that helps to evaluate the performance of RT containers.

8.3.3 Container Level Metrics

Several metrics are used to evaluate the timeliness [11] of tasks running in
the system, which we adapt to assess the RT performance of containers. The
following properties characterize the RT performance of a task:

• Number of deadline misses: represents the number of times that a deadline
of a task was exceeded.

• Lateness: represents the delay of a task with respect to its deadline [11]. If
the task finishes before its deadline, the lateness is negative.

• Response time: represents the difference between the finishing time and the
start time of a task. [11]

We define CLM to evaluate the RT performance of tasks running in the
respective container. For each of the tasks in a container πk, the CLM are:

• Number of deadline misses: characterizes the total number of deadline
misses of tasks inside of the container πk between time t0 and t1:

Mk(t0, t1) =
∑
τi∈Tk

µi(t0, t1).

• Maximum lateness: characterizes the maximum lateness encountered by a
task inside the container between time t0 and t1:

Lmax
k (t0, t1) = max

τi∈Tk
{Li(t0, t1)}

• Maximum response time: characterizes the maximum response time en-
countered by a task inside the container between time t0 and t:

Rmax
k (t0, t) = max

τi∈Tk
{Ri(t0, t1)}.

108 Paper C

We express CLM within the observation interval [t0, t1) (usually from system
start at t0 = 0 until the current time) as follows:

CLMk(t0, t1) = [Mk(t0, t1),Lmax
k (t0, t1),Rmax

k (t0, t1)]

8.4 Design of the RT Orchestrator

The orchestration system is based on the master-minion architecture that consists
of a master node and a set of minion compute nodes connected in a cluster
as described in [10]. The core of the system is the master node that makes
global decisions about the cluster; it receives users’ requests for container
deployments, continuously monitors states of compute nodes in the cluster and
schedules containers on computing nodes. The master node’s functionality
can be distributed across several physical machines to avoid a single point of
failure [10].

The compute nodes, depicted in Figure 8.1, provide an environment for
hosting containers and run a node agent that communicates with the master node
through defined APIs. The node agent takes container deployment specifications
defining container requirements and deployment parameters.

8.4.1 RT extension of the master node

The master node depicted in Fig. 8.2 is a central point in the architecture;
it accepts user-defined container deployment specification enhanced with RT
interface and task annotations. It provides mechanisms for admission control
and scheduling of containers. Additionally, it continuously collects performance
metrics of compute nodes and containers. In the following text, we elaborate on
the proposed enhancements:

Container Deployment Specification

Each container deployment specification, which is supplied to the master node
via a dedicated API, contains the specification of the RT interface and the
container annotation. The RT interface specifies the CPU reservation (Pk, Qk) of
the respective container following the periodic resource model of the hierarchical

8.4 Design of the RT Orchestrator 109

scheduling framework (c.f. [32]). The container specification contains the
description of the tasks inside the container to compute the CLM during run-
time.

RT Resource Monitor

RT Resource Monitor stores the OSLM and CLM from individual compute
nodes. The data are accessible to RT Admission Controller and RT Container
Scheduler to support the scheduling decisions.

RT Admission Control

The admission control determines if there are nodes in the cluster with enough
available resources to accommodate the resource demands of the new container.
Moreover, it performs necessary utilization-bound schedulability tests that reject
those nodes on which the RT timing requirements cannot be met.

We perform the checks as defined below to decide if a new container, denoted
by πnew, can be allocated to a certain node.
1) We check if the available resources (memory, storage), when considering
both RT and BE containers, are enough to fit the resource demands of the new
container:

∀fi ∈ S :

πMnew +

∑
πk∈Πrt

i ∪Πbe
i

πMk ≤ fMi

πSnew +
∑

πk∈Πrt
i ∪Πbe

i

πSk ≤ fSi
(8.1)

2) We check that the new container will not make the existing RT containers
unschedulable by performing a necessary utilization-based test [11]:

∀fi ∈ S :
Qnew
Pnew

+
∑

πk∈Πrt
i

Qk
Pk
≤ 1− δi (8.2)

where, δi refers to the system overhead of node fi (discussed in detail below),
which reduces the amount of CPU bandwidth available to the containers/tasks.
We remind the reader that (Pk, Qk) is the RT interface of a RT container πk,
which defines that the container will be scheduled for at most Qk time units over

110 Paper C

a period of Pk time units. Hence, this utilization-based test (c.f. [14]) defines
that if the utilization of the RT containers (including the utilization of the new
container) exceeds the bandwidth of the CPU, then the RT requirements of the
new container cannot be guaranteed. Please note that the check is not sufficient,
i.e., if the check is passed, it does not mean that the RT behavior will always be
guaranteed since the actual execution of the RT tasks diverges from the ideal
RT schedule due to e.g., timer resolution, scheduling jitter, locking mechanisms
(c.f. [30]) or the overhead introduced by the container mechanism.

RT Container Scheduler

The Container Scheduler decides which of the feasible nodes in the cluster, the
feasibility being determined through the admission control tests defined above,
to assign the new container to. The decision is based on the CLM and OSLM
introduced above, which are constantly monitored at run-time. Additionally, the
scheduler might decide to change some properties of already running containers
(e.g., the RT interface) to be able to fit the new container on a node. Hence, the
problem of where to place new containers according to their RT requirements
or which containers to modify can be viewed as a multi-objective optimization
problem. While the exact mechanism on how to assign (and re-dimension)
containers is out of the scope of this paper, we give a brief discussion on the
important aspects of this orchestration problem and leave the definition and
solution of this optimization problem for future work. Furthermore, selecting
the best mix of metrics and optimization objectives to use is also not in the scope
of this paper. However, we will briefly discuss several strategies below.

In terms of the observed OSLM properties, we identify several important
aspects and strategies which we briefly discuss below.

The system overhead (δ) reduces the amount of CPU bandwidth that the
containers can use. We show in the experiment section (Sect. 8.6) that the over-
head when co-locating RT and BE containers influences only the BE containers
while the RT containers are guaranteed their allotted budget (c.f. Fig. 8.4). We
see that the overhead remains constant and jitters around the constant value
both when changing the RT container period and when increasing the number
of RT containers. Please note that the overhead analysis needs to be extended
in future work to create a more accurate overhead model that produces a safe

8.4 Design of the RT Orchestrator 111

upper bound for admission control. However, even though the overhead model
is deduced empirically and not analytically, we can still use it in the admission
control since any overhead impact on RT containers will be corrected by the
online reconfiguration algorithm.

Another objective may be to perform load balancing on nodes to not over-
utilize some of the nodes. This decreases the probability of deadline misses
and lateness for tasks and increases the probability of fitting future container
requests.

The optimization function may also select nodes with a low number of
context switches as this also influences the system utilization, leaving more CPU
bandwidth available for container execution. Furthermore, nodes with a high
number of interrupts/sec are more likely to lead to deadline misses due to the
irregular nature of interrupt arrivals. Hence, they might not be the best selection
for placing RT containers.

In terms of CLM properties, nodes with few (or zero) deadline misses
are better candidates for new RT containers. However, adding additional RT
containers might increase the number of deadline misses or the lateness/response
times of tasks. The container scheduler needs to consider if an increased rate
of timing failures is acceptable, depending on the nature of the running RT
containers.

When using EDF to schedule containers, the admission test above also
becomes necessary, i.e., if the test is passed, the new container can, in theory,
be scheduled on the respective node. However, the divergence from the real
schedule (described in [30]) can lead to deadline misses and/or negative effects
on the lateness and response times of tasks. Hence, the run-time monitoring of
the CLM properties can give hints about which containers to re-assign or re-
dimension. The observation interval in the CLM properties can be dynamically
adjusted to identify which of the new containers has a negative impact on the
RT properties of the already running containers.

Feedback-based resource reservation mechanisms can be used to adapt the
CLM properties at run-time while keeping hard RT guarantees for all the RT
containers [33]. Such mechanisms can be implemented at the orchestration
level to compensate for potential unforeseen over-or under-runs, providing a
limited impact on the other RT containers. The overhead for feedback-based

112 Paper C

resource reservation is minimal since it requires implementing an integral control
strategy for each container. Such approaches have proven successful also in
other domains, such as mixed-critical systems [34].

8.4.2 RT Extension of Compute Nodes

We enable RT containers on node-level through the use of the preempt_rt patch,
hierarchical scheduling of containers [18], hard RT co-kernel, or a combination
of these technologies. The overview of the compute node extension is depicted
in Fig. 8.1. A module responsible for the RT related functionality is denoted as
RT manager. The process of deployment of RT containers is as follows: Upon
receiving a deployment request from the orchestrator, the RT manager locate a
requested image (either locally or in a remote repository), the container image
is fetched, and instantiated with the requested parameters that set-up resources
for the container. Concerning the RT functionality, the RT Manager offers the
following:

• Deployment of RT containers: The containers have to be instantiated in RT
mode and must be assigned the requested quota and period.

• Monitoring of RT performance: The monitoring functionality assesses
the wellness and the performance of the compute node and the containers
deployed. There are two monitoring parts: the OSLM monitor and the
CLM monitor. The OSLM monitor collects data through the proc and
cgroup file-system, which contain information related to interrupts, memory
usage, CPU utilization. The CLM monitor evaluates the timelines of the
containerized tasks in the RT containers.

• Reporting of the performance metrics to the orchestrator: The compute
nodes report the OSLM and CLM to the master node, that uses the collected
data for the admission control and container scheduling and, additionally, it
can take decisions whether to re-allocate and/or re-assign resources of the
containers.

8.5 Implementation 113

8.5 Implementation

In order to show the feasibility of the proposed system, we have extended the
existing open-source orchestrator Kubernetes with the ability to schedule con-
tainers onto compute nodes while taking into account their RT requirements.
The RT behavior of containers on compute nodes is enabled by using the hier-
archical patch1 presented in [18] which we have extended with the monitoring
capabilities. The system allows users to define RT requirements of the contain-
ers which need to be deployed (i.e., quota and period) and ensures that at the
container scheduling level, the allocation to compute nodes respects the given
requirements and does not lead to an overload in the respective node. Addi-
tionally, as the containers do not provide strong resource isolation, the system
provides run-time monitoring of the container’s performance. The implemented
extension consists of the following components:

• The RT Scheduler Extender on the Master node is an extension of the
Kubernetes control plane, which provides admission control and scheduling
of RT containers onto compute nodes in the cluster.

• The RT Manager on compute nodes provides functionality to deploy RT
containers and periodically evaluate and report the RT performance to the
Master node.

The architecture of the Kubernetes extension is described in Fig. 8.3. The Ku-
bernetes Master receives a deployment request to deploy a set of containers
(denoted as a Pod in the context of Kubernetes). A new Pod is placed in a queue
with other unscheduled pods, the Kubernetes scheduler (kube-scheduler) period-
ically checks the queue. If there is an unassigned pod, the Kubernetes scheduler
attempts to place the Pod in a suitable node. First, the scheduler filters out
infeasible nodes with insufficient available resources (e.g., insufficient memory
or storage) as described in Section 8.4.1. Subsequently, so-called custom web-
hooks are triggered during each schedule polling cycle. The webhooks permit to
attach custom actions to scheduling events (e.g., filtering and prioritizing events).
We have implemented a custom rt-filter webhook that takes into account the
utilization of the node as well as the RT interface as requested in the container
deployment specification. If the utilization, including the new RT container, is

1Available at https://github.com/lucabe72/LinuxPatches/tree/HCBS

https://github.com/lucabe72/LinuxPatches/tree/HCBS

114 Paper C

above a certain level, the node filtered out as infeasible and not used for hosting
the container. In this way, we avoid overloading the host.

The RT Scheduler Extender performs a secondary filtering as described
in Section 9.3 and ranks the nodes with the custom rt-scoring webhook. The
rt-scoring ranks the nodes according to their suitability to host the RT container.
For this work, the scoring is computed as the remaining unreserved CPU capacity.
However, the rt-scoring step can incorporate additional properties of the compute
node given in the OSLM and CLM to minimize the number of, e.g., deadline
misses on compute nodes. As the orchestration is not part of the current paper,
we leave this extension to future work.

The Pod is then assigned to the node with the highest score. The node agent
on the compute node identifies that the Pod is assigned to its node and deploys
it with the given RT parameters. The RT Manager continuously monitors the
node’s state beyond the understanding of the default Kubernetes monitoring
metrics and reports them back to the master node. The RT manager monitors
the previously described CLM and OSLM: i.e., the number of context switches,
interrupts per second, I/O access, as well as task deadline misses, response time,
and lateness.

As an input, the Kubernetes master accepts a Pod deployment request that
contains the deployment specification of a group of one or more containers. If
there are multiple containers in a pod, these are assigned and scheduled on the
same node and run in a shared context (i.e., sharing memory and network). As
a simplification, we assume that each Pod contains at most one RT container.
We amend the deployment configuration (stored in the annotation part of the
deployment file) to contain the RT interface (Qk, Pk) as well as the list of tasks
and their 〈Ci, Ti, Di〉 parameters.

The RT manager runs as a Kubernetes daemon set and provides functionality
for run-time monitoring and reporting of the performance of the RT containers
and the system. A daemon runs on every compute node in the cluster. The moni-
toring part continuously monitors OSLM and CLM. The OSLM are computed
by utilizing the Linux special procfs file system (/proc and /cgroups) that contain
information about tasks, similar to [31]. The CLM are derived from the custom
tracepoints that we injected into the schedulers implementing the SCHED_FIFO
and SCHED_DEADLINE policies in the Linux Kernel. The following events

8.6 Evaluation 115

are recorded and periodically evaluated by the daemon:
• Container Started: The container is in a running state, the quota/period has

been allocated, and the container’s tasks are ready to run.
• Container Throttled: The container used more CPU quota than the allocated

one and therefore, the scheduler throttled the container.
• Task Instance started: The start of jth instance of task τi.
• Task Instance finished: The end of jth instance of task τi.

From these tracepoints, we compute deadline misses, lateness, and response
times of tasks within the RT containers.

8.6 Evaluation

In this section, we show the system’s behavior for co-located RT and BE contain-
ers on a single compute node. The set of experiments illustrates the distribution
of the CPU time amongst co-located containers. Tables 8.1, 8.2 and 8.3 show
the feasibility of having a mixture of RT and BE containers on a single com-
pute node. We change the reservation period and budget from values 0.1ms to
1000ms and measure the overhead (described below). We show the behavior
of low utilization containers (10%) and high utilization (90%). We investigate
if RT containers with very short periods introduce significantly more overhead
than those with large periods. In the experiments, we instantiate an RT con-
tainer and a heavy load BE container. The experiments for Table 8.1, 8.2 use
containers that run CPU intensive operations. We measure the actual time that
the containers spend on the CPU. The rest of the CPU that is not used by any
container is considered as an overhead. Table 8.3 shows a similar experiment
where the BE container runs stress-ng to generate an excessive workload aiming
to affect the assigned CPU time of the RT containers. The stress generating
BE containers execute 10 CPU intensive threads, 10 HDD intensive threads, 10
threads generating I/O stress, and 10 threads generating context switches.

We use an Intel i5 machine with 8GB RAM running Debian Linux, Kernel
5.2. patched with Hierarchical Scheduling Patch [18], and Docker v20.10.

We consider the overhead to be the part of the CPU capacity that is not used
for any computation of the containerized tasks. It is caused by system-related

116 Paper C

Table 8.1. RT containers (10% utilization) on a single core with noise generated by 10
CPU intensive containers.

(1ms, 0.1ms) (10ms, 1ms) (100ms, 10ms) (1000ms, 100ms)
RT Containers 10.0607% ± 0.00193% 10.0021% ± 0.00002% 9.9983% ± 0.00002% 9.9978% ± 0.00002%
NRT Containers 88.7870% ± 0.00406% 88.8963% ± 0.00280% 88.8713% ± 0.00222% 88.8906% ± 0.00264%
overhead 1.1522% ± 0.0035% 1.1016% ± 0.0028% 1.1304% ± 0.0022% 1.1115% ± 0.0025%

Table 8.2. RT containers (90% utilization) on a single core with noise generated by 10
CPU intensive containers.

(1ms, 0.9ms) (10ms, 9ms) (100ms, 90ms) (1000ms, 900ms)
RT Containers 89.9037% ± 0.00031 89.8597% ± 0.00042% 89.8818% ± 0.00066% 89.7780% ± 0.00316%
NRT Containers 9.0345% ± 0.00212 9.0368% ± 0.00193% 9.0349% ± 0.00045% 9.0658% ± 0.00164%
overhead 1.0618% ± 0.0022 1.1035% ± 0.0019% 1.0833% ± 0.0005% 1.1563% ± 0.0018%

tasks, context switches or docker-related processes, etc. In the experiments, we
execute RT and BE containers simultaneously. Each of the containers executing
a loop with a CPU-heavy computation. In theory, the containerized processes
should fully utilize the processor; however, the full CPU capacity is not used
exclusively for these processes. We can see that the overhead stays the same
even when using an RT container with a very short period.

To investigate the overhead, we utilize systemTap, which is an instrumenta-
tion framework for Linux-based kernels. SystemTap allows instrumenting Linux
events with user-defined code in form of loadable kernel modules. We monitor
the following events in the Linux kernel:

• scheduler.cpu_on: The process is beginning execution on a CPU.
• scheduler.cpu_off : The process leaving the CPU.

From the recorded events, we are getting the total measurement time (from the
first event to the last one) and each containerized task’s total time.

The utilization test in Fig. 8.4 shows the distribution of CPU time on a single

Table 8.3. RT containers (10% utilization) on one core with noise generated by BE
containers executing stress-ng.

(1ms, 0.1ms) (10ms, 1ms) (100ms, 10ms) (1000ms, 100ms)
RT Containers 10.0508% ± 0.00045% 10.0065% ± 0.00005% 9.9956% ± 0.00006% 9.9956% ± 0.00002%
NRT Containers 89.0251% ± 0.00091% 88.9333% ± 0.00034% 88.8779% ± 0.00296% 88.9798% ± 0.00142%
overhead 0.9241% ±0.0037% 1.0602% ±0.0031% 1.1265% ±0.0024% 1.0246% ± 0.0029%

8.7 Conclusion 117

core amongst multiple RT and BE containers when increasing the number of RT
containers from 1 up to 7. Each RT container has a RT demand of 10% of the
CPU bandwidth (RT period = 100ms, RT budget = 10ms). The experiments indi-
cate that hierarchically scheduled containers using the Hierarchical Scheduling
Patch [18] can keep the allocated CPU resource even when competing with BE
containers under heavy load. Moreover, the RT containers keep their reserved
resource allocation (CPU budget over the periods) with very low run-time jitter
on a single core. The system overhead does not influence the RT containers but
reduces the remaining CPU utilization used by BE containers.

The experiments indicate that RT containers maintain the target resource
reservation even in the presence of heavy RT and BE load. The overhead
(indicated in red in Fig. 8.4) remains relatively constant when increasing the
number of containers scheduled on the same node.

8.7 Conclusion

In this paper, we have introduced a container orchestration for RT systems
designed to prevent over-reservation of the CPU at the container scheduling
level. Additionally, we considered the weak isolation inherent in container-based
virtualization (e.g., the effects of the use of shared resources or context switches),
which can lead to an interference and thereby harm temporal guarantees of
RT containers. We have proposed metrics for measuring the RT performance
at the container and node levels, which can be used for both the admission
control and the online re-configuration of container deployment in order to
guarantee timely behavior. We have implemented a scheduler extension and
node monitoring system on top of an orchestrating system Kubernetes and have
shown the feasibility of co-locating RT and BE containers on the same node in
a series of experiments.

We aim to address the optimization problem arising from the orchestration
needs in RT containerized systems in future work. This orchestration includes
both the admission/allocation of new container requests as well as the online
resource re-dimensioning of already deployed RT containers in case of run-time
performance drops.

118 Paper C

Compute Node

RT Manager

...

RT Deployment

RT Monitoring

Container n

Taskn 1

Taskn 2

Taskn m
...

CLM
OSLM

Reporting

Container 1

Task1 1

Task1 2

Task1 m

...

Orchestrator

Deployment
Request

Figure 8.1. Compute node.

Real-Time
Orchestrator

Compute
Node 1

C
o
n
ta

in
e
r

1

C
o
n
ta

in
e
r

m
1

...

C
o
n
ta

in
e
r

1

...

C
o
n
ta

in
e
r

1

...

...

Container Specification 1

task 1 task 2 task n1

Resource
Specification

RT
Interface

...

Tasks Annotation

task 1 task 2 task nj

Resource
Specification

...

Tasks Annotation

RT
Interface

Compute
Node 2

Compute
Node n

RT Admission
Control

RT Container
Scheduler

RT Resource
Monitor

C
L
M

,
O

S
L
M

RT Manager RT Manager RT Manager

C
o
n
ta

in
e
r

m
2

C
o
n
ta

in
e
r

m
3

Container Specification j

Figure 8.2. A high-level container orchestration system architecture enhanced with RT
capabilities.

8.7 Conclusion 119

Kubernetes Master Worker Node

Kubelet

RT manager

Container Deployment Request

Real-time Interface
Task Annotation

Scheduler

Report() Allocate()

Advertise()

Filter(), Score()

Request()

Bind()
RT Scheduler Extenter

Figure 8.3. Scheduling process of Kubernetes.

0

10

20

30

40

50

60

70

80

90

100

1 3 5 7

overhead non-real-time container real-time containers

C
P

U
 B

a
n

d
w

id
th

 [
%

]

Number of real-time containers
Overheadnon-real-time Containerreal-time Container 7real-time Container 6real-time Container 5real-time Container 4real-time Container 3real-time Container 2real-time Container 1

Figure 8.4. Distribution of CPU in a multi-container environment.

Bibliography

Bibliography

[1] Flavio Bonomi, Rodolfo Milito, Jiang Zhu, and Sateesh Addepalli. Fog
computing and its role in the internet of things. In Proceedings of the first
edition of the MCC workshop on Mobile cloud computing, 2012.

[2] Shaik Mohammed Salman, Václav Struhár, Alessandro V. Papadopoulos,
Moris Behnam, and Thomas Nolte. Fogification of industrial robotic
systems: Research challenges. In W. on Fog Comp. and IoT (Fog-IoT),
2019.

[3] M. S. Shaik, V. Struhár, Z. Bakhshi, V. L. Dao, N. Desai, A. V. Papadopou-
los, T. Nolte, V. Karagiannis, S. Schulte, A. Venito, and G. Fohler. Enabling
fog-based industrial robotics systems. In 2020 25th IEEE International
Conference on Emerging Technologies and Factory Automation (ETFA),
2020.

[4] F. Ramalho and A. Neto. Virtualization at the network edge: A performance
comparison. In IEEE Int. Symp. A World of Wirel., Mob. and Multim. Net.
(WoWMoM), 2016.

[5] W. Felter, A. Ferreira, R. Rajamony, and J. Rubio. An updated performance
comparison of virtual machines and Linux containers. In IEEE Int. Symp.
on Perf. Analysis of Syst. and Soft. (ISPASS), 2015.

[6] Miguel Gomes Xavier, Marcelo Veiga Neves, and Cesar Augusto Fonti-
cielha De Rose. A performance comparison of container-based virtual-
ization systems for mapreduce clusters. In Euromicro Int. Conf. on Par.,
Distr., and Netw. Proc. (PDP), 2014.

[7] Tommaso Cucinotta, Luca Abeni, Mauro Marinoni, Alessio Balsini, and
Carlo Vitucci. Virtual network functions as real-time containers in private

120

Bibliography 121

clouds. In IEEE Int. Conf. on Cloud Comp. (CLOUD), 2018.

[8] Tommaso Cucinotta, Luca Abeni, Mauro Marinoni, Alessio Balsini, and
Carlo Vitucci. Reducing temporal interference in private clouds through
real-time containers. In IEEE Int. Conf. on Edge Comp. (EDGE), 2019.

[9] Václav Struhár, Moris Behnam, Mohammad Ashjaei, and Alessandro V
Papadopoulos. Real-time containers: A survey. In 2nd Workshop on Fog
Computing and the IoT (Fog-IoT 2020). Schloss Dagstuhl-Leibniz-Zentrum
für Informatik, 2020.

[10] Maria A Rodriguez and Rajkumar Buyya. Container-based cluster orches-
tration systems: A taxonomy and future directions. Software: Practice
and Experience, 2019.

[11] Giorgio C. Buttazzo. Hard Real-Time Computing Systems: Predictable
Scheduling Algorithms and Applications. 3rd edition, 2011.

[12] Chang Zhao, Yusen Wu, Zujie Ren, Weisong Shi, Yongjian Ren, and Jian
Wan. Quantifying the isolation characteristics in container environments.
In Net. and Par. Comp. (NPC), 2017.

[13] M. G. Xavier, I. C. De Oliveira, F. D. Rossi, R. D. Dos Passos, K. J.
Matteussi, and C. A. F. D. Rose. A performance isolation analysis of
disk-intensive workloads on container-based clouds. In Euromicro Int.
Conf. on Par., Distr., and Netw. Proc. (PDP), 2015.

[14] C. L. Liu and James W. Layland. Scheduling algorithms for multiprogram-
ming in a hard-real-time environment. J. ACM, 20(1), 1973.

[15] S. Xi, J. Wilson, C. Lu, and C. Gill. RT-Xen: towards real-time hypervisor
scheduling in Xen. In ACM Int. Conf. on Emb. Soft. (EMSOFT), 2011.

[16] S. He, L. Guo, Y. Guo, C. Wu, M. Ghanem, and R. Han. Elastic application
container: A lightweight approach for cloud resource provisioning. In
IEEE Int. Conf. on Adv. Inform. Netw. and Appl. (AINA), 2012.

[17] Thuy Linh Nguyen and Adrien Lebre. Conducting thousands of experi-
ments to analyze vms, dockers and nested dockers boot time. Research
Report RR-9221, INRIA, 2018.

[18] Luca Abeni, Alessio Balsini, and Tommaso Cucinotta. Container-based
real-time scheduling in the Linux kernel. ACM SIGBED Review, 2019.

122 Bibliography

[19] Dirk Beyer, Stefan Löwe, and Philipp Wendler. Benchmarking and re-
source measurement. In Model Checking Software, 2015.

[20] Philippe Gerum. Xenomai - implementing a RTOS emulation framework
on GNU/Linux. White Paper, Xenomai, 2004.

[21] Timur Tasci, Jan Melcher, and Alexander Verl. A container-based architec-
ture for real-time control applications. In IEEE Int. Conf. on Eng., Tech.
and Innov. (ICE/ITMC), 2018.

[22] Florian Hofer, Martin Sehr, Antonio Iannopollo, Ines Ugalde, Alberto
Sangiovanni-Vincentelli, and Barbara Russo. Industrial control via appli-
cation containers: Migrating from bare-metal to IAAS. In IEEE Int. Conf.
on Cloud Computing Technology and Science (CloudCom), 2019.

[23] Alexandru Moga, Thanikesavan Sivanthi, and Carsten Franke. OS-level
virtualization for industrial automation systems: are we there yet? In ACM
Symp. on Applied Computing (SAC), 2016.

[24] Thomas Goldschmidt, Stefan Hauck-Stattelmann, Somayeh Malakuti, and
Sten Grüner. Container-based architecture for flexible industrial control
applications. J. of Syst. Architecture, 2018.

[25] Thomas Goldschmidt and Stefan Hauck-Stattelmann. Software containers
for industrial control. In Euromicro Conf. on Soft. Eng. and Adv. Appl.
(SEAA), 2016.

[26] Arvind Easwaran, Insik Shin, and Insup Lee. Optimal virtual cluster-based
multiprocessor scheduling. Real-Time Syst., 2009.

[27] Sisu Xi, Chong Li, Chenyang Lu, Christopher D Gill, Meng Xu, Linh TX
Phan, Insup Lee, and Oleg Sokolsky. Rt-open stack: Cpu resource man-
agement for real-time cloud computing. In 2015 IEEE 8th International
Conference on Cloud Computing. IEEE, 2015.

[28] Insik Shin and Insup Lee. Periodic resource model for compositional
real-time guarantees. In IEEE Real-Time Syst. Symp. (RTSS), 2003.

[29] M. Jägemar, A. Ermedahl, S. Eldh, and M. Behnam. A scheduling archi-
tecture for enforcing quality of service in multi-process systems. In IEEE
Int. Conf. on Emerging Tech. and Factory Aut. (ETFA), 2017.

[30] L. Abeni, A. Goel, C. Krasic, J. Snow, and J. Walpole. A measurement-
based analysis of the real-time performance of Linux. In IEEE Real-Time
and Emb. Tech. and Appl. Symp. (RTAS), 2002.

[31] Emiliano Casalicchio and Vanessa Perciballi. Measuring docker perfor-
mance: What a mess!!! In ACM/SPEC on Int. Conf. on Perf. Eng. (ICPE),
2017.

[32] Insik Shin, Arvind Easwaran, and Insup Lee. Hierarchical scheduling
framework for virtual clustering of multiprocessors. In Euromicro Conf.
on Real-Time Syst. (ECRTS), 2008.

[33] Alessandro Vittorio Papadopoulos, Martina Maggio, Alberto Leva, and
Enrico Bini. Hard real-time guarantees in feedback-based resource reser-
vations. Real-Time Syst., 2015.

[34] Alessandro Vittorio Papadopoulos, Enrico Bini, Sanjoy Baruah, and Alan
Burns. AdaptMC: A control-theoretic approach for achieving resilience in
mixed-criticality systems. In Euromicro Conf. on Real-Time Syst. (ECRTS),
2018.

Chapter 9

Paper D: DART: Dynamic
Bandwidth Distribution
Framework for Virtualized
Software Defined Networks

Václav Struhár, Mohammad Ashjaei, Moris Behnam, Silviu S. Craciunas, and
Alessandro V. Papadopoulos

In the 45th Annual Conference of the IEEE Industrial Electronics Society
(IECON 2019).

125

126 Paper D

Abstract
In this paper we address a network architecture that uses a combination of
network virtualization and software defined networking in order to reduce
complexity of network management and at the same time support high quality
of service. Within this network architecture, we propose a framework to
be able to dynamically distribute the network bandwidth to various services
such that the network resources are utilized efficiently. In many industrial
domains, multiple services may use the same hardware platform for the sake
of a better resource utilization. Therefore, bandwidth distribution among the
services should be done in an efficient way during run-time. We also develop
an admission control in this framework which dynamically coordinates the
bandwidth distributions based on requested quality of services. We show the
applicability of the proposed framework by implementing it on a common
SDN controller. Moreover, we conduct a set of experiments to show the
performance of the proposed framework.

9.1 Introduction 127

9.1 Introduction

With the advent of IIoT, where manufacturing processes are monitored and
supported by a tremendous number of devices, the need for flexible and effi-
cient resource management in industrial networks is gaining its importance [1].
The emergence of IIoT brings intensification of resource sharing in physical
networks, introduce new challenges in flexible network reconfiguration and chal-
lenges in providing various QoS levels in a physical network. To address these
issues, both industry and research community are considering a combination of
two emerging technologies, which are network virtualization [2] and SDN [3].
Network virtualization finds its roots in computing virtualization mechanisms
where multiple virtual machines are running on a same hardware platform.
Through network virtualization a physical network is partitioned into several
logical networks, known as slices, which are isolated and managed separately.
Moreover, SDN on top of the network virtualization provides an architecture
in which the slices are managed via a centralized point without knowing the
underlying physical network details. We use the term virtualized SDN for the
described architecture throughout this paper. In this architecture, each network
slice is managed by an SDN controller, and commonly the SDN controllers have
different requirements when coordinating their associated slices.

Motivation. Commonly, in IIoT applications resources are limited, both
in computation and in communication resources. Therefore, in the context of
communication resources, several IIoT devices share a physical network to
communicate. Although, the virtualized SDN architecture provides means in
managing network resources, not much attention has been paid in supporting
dynamicity of resource utilization which is a prominent factor in IIoT appli-
cations. Several works have proposed similar architectures focusing on QoS
provisioning [4], network timing properties in RT communication [5] and cre-
ating network slices according to application requests [6]. On the other hand,
there are very few works addressing a fully dynamic network resource allocation
in industrial systems. In this paper, we only focus on the network bandwidth as
the resources could be energy or other constraints. For instance, the proposal
in [7] attempts to develop an admission control in an SDN controller in order to
bound the network bandwidth utilization for multiple network services. Nev-

128 Paper D

ertheless, the proposal is limited to a small network architecture without any
smart decision making algorithms for efficient bandwidth allocation.

Contributions. In this paper, we propose a framework, which we name it
dynamic bandwidth distribution (DART), based on a virtualized SDN architec-
ture which makes the fully dynamic bandwidth allocation on a physical network
feasible. Moreover, we propose an admission control mechanism to distribute
the network bandwidth during run-time based on the QoS level requested by the
IIoT devices. The admission control mechanism resides within the proposed
framework. We also show the applicability of the proposed framework on a use
case study where the proposed admission control mechanism is implemented
within a well-known SDN controller. Finally, we conduct a set of experiments
to present the performance of the implemented framework and mechanism.

Organization. The rest of the paper is organized as follows. Section 9.2
briefly describes the background and related work. Section 9.3 presents DART
framework and the bandwidth distribution mechanism. Section 9.4 presents the
use case, while Section 9.5 shows a set of experiments. Finally, Section 9.6
concludes the paper with future directions.

9.2 Background and Related Work

In this section we introduce the basic concepts of SDN and network virtualization
as well as a survey in the area of dynamic bandwidth management.

9.2.1 Software Defined Network

SDN helps to decrease the complexity of network management by decoupling
network control and forwarding functions [8]. Network control is handled in a
centralized manner by an SDN controller that has a complete knowledge of the
network. SDN is comprised of three layers (Fig. 9.1): a) The Application layer
consists of SDN business applications written in common languages controlling
the underlying SDN enabled devices via the SDN controller, b) The Control
layer fetches various statistics from the physical devices (usage statistic, topol-
ogy details, state details) and enables communication between SDN applications
and SDN devices, and c) The Infrastructure layer is composed of physical

9.2 Background and Related Work 129

SDN switches. The OpenFlow [9, 10] protocol enables communication between
SDN controllers and network devices. The aim of the OpenFlow protocol is to
overcome the proprietary systems of network hardware vendors and create a
set of communication instructions for the interconnection of multiple vendors
devices.

SDN switches contain hierarchically-chained flow tables defining rules and
actions for handling incoming network traffic by SDN controllers. Flow tables
are comprised of the following fields [10]:

• Match fields: The match fields consist of ingress ports, packet header fields,
Virtual LAN (VLAN), priority and metadata.

• Actions: Actions to be performed for the matched data frame (e.g., forward
data frame to a predefined port, drop the frame, send the frame to the
controller). The actions can be chained in more complex actions.

• Counter: Statistic for matching data frames including count of data frames
and their total sizes.

• Priority: Used if the incoming frame satisfies multiple match fields.

Every time a frame is received by an SDN enabled switch, the frame header
is extracted and matched with records in local flow tables. If the match is
found, the corresponding action is triggered. Otherwise, a copy of the frame is
forwarded to the SDN controller that decides an action for the incoming frame.
The action together with the matching rule is returned to the switch that stores
in the flow table.

9.2.2 Network Virtualization

The need for service isolation and diverse resource requirements within one
physical network brings the topic of network virtualization into the focus of the
researcher community [11, 12]. Network virtualization enables the coexistence
of multiple logical networks sharing the same underlying physical network [2].
One technique in this context is network slicing [13] where there is a division
of the shared physical network into multiple logical isolated sub-networks
(slices). Besides being isolated from each other, slices may be optimized for

130 Paper D

Application layer
App

Control layer
Control layer

Network ServicesNetwork Services

Control layer
Infrastructure layer

Northbound Interface

Southbound Interface

SDN Controller

Business Applications

Programmable Switches

Figure 9.1. SDN Architecture separates a network into tree layers: Application, Control
and Infrastructure layer.

different purposes (e.g., high bandwidth HD video streaming, low latency video
gaming) [13]. Slicing allows infrastructure providers to adapt the sharing of the
underlying physical network to customer requirements while at the same time
providing isolation of the network resources. Network virtualization requires a
Network Hypervisor which creates an abstraction layer on the top of physical
hardware and allows the creation of virtual networks.

9.2.3 Bandwidth management

There are several resource reservation techniques in processor and communica-
tion domains which most of them focus on static reservation of bandwidth. For
instance, in the processor domain, supporting multimedia applications [14] and
hierarchical reservation techniques [15] are presented, whereas in the distributed

9.3 DART: Dynamic Bandwidth Distribution Framework 131

level communication bandwidth reservation for multimedia systems [16], adap-
tive QoS control [17] and D-RES platform to support end-to-end timing [18] are
presented.

In the context of using SDN architectures, Seokhong et al. [6] extended
FlowVisor, as the network hypervisor, to guarantee the bandwidth requirements
with an admission control and traffic scheduling. Moreover, Tomovic et al. [19]
present a new SDN/OpenFlow control environment for dynamic adjustment
based on Quality of Service (QoS) provisioning. In this solution, a centralized
QoS SDN control system monitors the state of the network and automatically
manages and configures network devices to provide the required QoS level
for multimedia applications. There are several works, like HyperFlow [20],
Onix [21], Kandoo [22], and devolved controllers [23], that use multiple SDN
controllers on a single physical network (or a slice), either in a distributed
or layered approach, where the orchestration goal between controllers is on
controller redundancy and load balancing. The main focus is therefore to
address the challenges that centralized SDN architectures introduce (c.f. [24])
rather than address network management. The closest work to this paper is a
resource management solution for virtualized SDN networks in which each slice
is governed by an SDN controller in terms of admission control for incoming
traffic [7]. However, the dynamicity was limited to static parameters and the
SDN controllers are not communicating for a better decision on bandwidth
allocation. Nevertheless, the mentioned works either focused on static bandwidth
reservation or they proposed a level of dynamicity in bandwidth management
with different goal than reducing resource utilization, which is the primary
objective of DART.

9.3 DART: Dynamic Bandwidth Distribution Framework

This section presents the concept of DART framework as well as the proposed
admission control mechanism. The framework defines an overall concept to en-
able dynamic bandwidth management of networks, while the admission control
mechanism, as part of the framework, facilitates the functionality of dynamic
bandwidth redistribution.

132 Paper D

SDN SDN

Network Hypervisor

Physical Network

Slice 2
Slice 1

Distributed Admission Control
Distributed Admission Control

DART FrameworkSystem Architecture

Communication Module

App 1 App 2 App n
...

Application Layer

Subscription
Module

Shared Storage
Module

Communication Module

Publishing Module

C
en

tr
al

iz
ed

D
is

tr
b
u
te

d

Figure 9.2. An architecture of a system using DART framework.

9.3.1 The DART Framework

The DART framework is a generic concept that can be applied on any virtualized
SDN architecture. Fig. 9.2 depicts the DART framework on a virtualized SDN
architecture. On the left side of the figure, an architecture with several slices
in a physical network is shown. Note that in this architecture we assume that
the slices can share a part of the physical network to increase the efficiency
of utilizing the resources, however the framework covers the cases with fully
isolated slices as well. The proposed framework is depicted on the right side
of the architecture, which consists of two main components: a distributed
component and a centralized component. Following we describe the components
in details.

The distributed component deals with synchronizing the bandwidth manage-
ment among the network slices. As each SDN controller can only coordinate
its own slice, it is essential to have a general view of the network status when
allocating the bandwidth. The distributed component ensures that the SDN con-
trollers collaborate on bandwidth management, leading to a coherent bandwidth

9.3 DART: Dynamic Bandwidth Distribution Framework 133

utilization. This component contains two main modules, which are commu-
nication and publishing modules. The communication module is responsible
to send and receive information from and to the centralized component. The
publishing module is the counterpart of the subscription module resided in the
centralized component. Moreover, the coordination between SDN controllers
are done using this component.

Another component in the framework is the centralized component which
is responsible to coordinate the decision making for bandwidth allocation over
the entire network. In case the changes in the bandwidth is requesting locally
in one slice, the centralized component will decide on the allocation. However,
if there is a shared part of the network that requires a change, SDN controllers
need to negotiate on the bandwidth allocation from their slices. The centralized
component is then responsible to advice the best possible bandwidth.

The admission control mechanism in this framework can be activated by any
signal from various sources, including the load, priority and packet loss ratio,
to start redistributing the network bandwidth. In this paper, as an initial phase,
we specify priorities for the traffic to be sources of initiating the redistribution.
Each IIoT device can transmit traffic with various priority levels depending on
the QoS level it requires. Based on the traffic priority, the device can request for
higher bandwidth during run-time. The details of this mechanism is presented
in the following section.

9.3.2 Admission Control Mechanism

Following the DART framework, the admission control mechanism is divided
into the centralized and distributed components. The centralized component
contains the logic of the bandwidth management. The distributed component,
however, resides on top of the SDN controller to provide information about the
corresponding slices to the centralized component.

The sending nodes decompose the data into multiple data streams (see
Fig. 9.3). The data streams can have different priorities which are set by the
sender nodes depending on the importance of the data. Note that we consider
only eight priority levels accepted by Ethernet frame. The primary goal of
the admission control is to check the priority of the data streams and allocate
bandwidth for the links that the data stream is transmitting. In order to do that

134 Paper D

prio 1
prio 2
prio 3

prio 1
prio 2
prio 3

stream

sender
admission

control
receiver

prio 1
prio 2 stream

Figure 9.3. Admission Control Mechanism.

the admission control defines a priority limit. Any received data stream with
priority higher than the priority limit will be forwarded to its destination, whereas
the data streams with priority less than the priority limit will be prevented for
transmission. The priority limit is defined in the centralized component of the
admission control for all slices. In a normal case, priority limits are equal and
thus the bandwidth is uniformly distributed among the slices. If there is a request
for priority limit change (detected by a distributed component), the centralized
component adjusts the limits accordingly in order to a) increase bandwidth in
the requesting slice, b) keep the total bandwidth used by all slices constant.

9.4 Use Case: Surveillance System

To analyse the feasibility of the cooperation between the SDN controllers and
to show the application of the DART framework, we present a use case of
surveillance system in which the bandwidth is cooperatively adjusted based on
traffic priorities. We present a factory-wide surveillance system (see Fig. 9.4),
where the network is partitioned into several slices in order to keep virtual
network domains separated (e.g., shop floor, administrative offices) and to allow
to differentiate QoS levels across the slices. However, some of the services
needed in both slices overlaps and must be available for both slices simulta-
neously. In the surveillance system, devices (senders) with attached cameras
are transmitting video streams to a centralized location (receiver) where the
video streams are processed and monitored by security guards in RT. Senders
have limited processing capacity that allows to perform simple motion detection
algorithms. Based on the result they are able to ask for higher bandwidth by

9.4 Use Case: Surveillance System 135

Virtual Slice 2

Shared Slice

Virtual Slice 1

SDN Controller 2

SDN Switch

SDN Controller 1

Figure 9.4. The use case of a factory-wide surveillance system.

increasing priority of the traffic. SDN controllers monitor the corresponding
virtual network slices and allow only traffic of certain priority levels to pass.

We have simplified the use case and implemented it as shown in Fig. 9.5.
We consider three nodes. Two of them are sending nodes that are transmitting a
video stream to the receiving node. The sending nodes are separated into two
virtual network slices, these devices have cameras connected and periodically
send sequences of images to the receiving node that stores and analyses the
images. The receiving node resides in shared network slice and thus provides
services for both of the slices.

The bandwidth in the shared slices is limited. Thus, there must be a traffic
control in order to prevent network congestion in the shared slice.

9.4.1 System Setup

For the implementation, the following hardware and software components are
used (see Fig. 9.5):

• Raspberry Pi (RPi) devices: One RPi located on shared network slice acts
as a data receiver, the rest of the RPi devices are separated on different

136 Paper D

network slices used as data senders. The data senders are connected to RPi
cameras.

• Aruba SDN enabled switch: Three ports are used for connecting RPi
devices, the fourth port is used for connection to the laptop that provides
network hypervisor (FlowVisor) and SDN controllers (FloodLight).

• FlowVisor1: FlowVisor is an OpenFlow controller serving as a transparent
proxy between OpenFlow switches and SDN Controllers. It creates rich
network slices defined by any combination of switch ports, src/dst ethernet
address or type, src/dst IP address or type, and src/dst TCP/UDP port or
ICMP code/type.

• FloodLight: FloodLight is an Java based open-source SDN controller of-
fering a modular architecture that allows to extend its functionality with
custom tailored applications.

9.4.2 System Implementation

The system requires implementation of four components: sending node, cen-
tralized bandwidth controller, SDN controller module and receiving node. With
respect to DART, the bandwidth controller acts as a centralized component
used for sharing states between the SDN controllers, and the SDN controller
module represents the distributed part of the framework. The scheme of the
implementation of the SDN controller module and the bandwidth controller is
depicted in Figure 9.6.

The sending nodes are detecting motion in the video stream and transmitting
video frames with corresponding priorities. The SDN controller modules are
detecting priority changes in received data, reporting it to the centralized band-
width controller, that decides the priority thresholds for corresponding SDN
controllers in order to deliver higher importance video frames (with detected
motion) with higher data rate to the receiving node.

1https://github.com/OPENNETWORKINGLAB/flowvisor/wiki

https://github.com/OPENNETWORKINGLAB/flowvisor/wiki

9.4 Use Case: Surveillance System 137

FlowVisor

SDN 1 SDN 2

FloodLight Controllers

S1 S2 Slice 2Slice 1

SDN Switch

R

Figure 9.5. The experimental setup.

Sending nodes The sending nodes are continuously obtaining video frames,
detecting movement, fragmenting the video frames into smaller segments and
sending the segments to the receiving node at a constant rate. Based on the
detected movement, the sender changes priorities of sent frames. The following
steps are taken:

• Motion detection: The implemented motion detection algorithm compares a
current video frame with the previous one, measures the amount of changed
pixels and compares it with a pre-set threshold. If a motion is detected, the
priorities in the sent data are increased.

• Video frame fragmentation: Due to payload limitation of IEEE 802.1Q
Ethernet Frames (1500 Bytes), the video frame has to be fragmented into
several frames. Payload of each frame contains a header (id of video frame,
sequence of the the fragment, total) and video frame fragment data.

• Traffic differentiation: To differentiate the traffic to help SDN controllers to
filter the data, the frames are uniformly distributed into data streams having

138 Paper D

FloodLight

Communication
Module

CooperativeAdmissionController
- Receive Frame()
- Admission Control()
- Create Rule()
 - Create Forwarding Rule
 - Create Droping Rule

Bandwidth Controller

Communication Module

H
TT

P

FloodLight

Communication
Module

CooperativeAdmissionController
- Receive Frame()
- Admission Control()
- Create Rule()
 - Create Forwarding Rule
 - Create Droping Rule

- Priority Limit Controller 1
- Priority Limit Controller 2
- Make decision()

Figure 9.6. Overview of the collaborative admission control using DART framework.

priorities (0-5). If a video frame is detected, the sender increases the priority
level of the traffic to (1-6).

SDN control The FloodLight SDN controller is extended by a Java module
that is governing incoming video frame streams. Based on priorities of the
incoming data and limits imposed by the shared bandwidth controller, the data
is either accepted and a forwarding rule to the shared slice is created, or the data
transmission for particular priority level is blocked. The module performs the
following:

• Receiving frames and creating rules: The module is receiving Ethernet
frames from the SDN switch that needs actions to be resolved. Based on
frame fields and custom data header, the the action the frame (MAC address
of the sender, MAC address of the receiver, VLAN, priority) is established.
There are two actions that the module can take: a) Create forwarding rule:

9.5 Experimental results 139

Forward matching packets to receiving node, b) Create dropping rule: Drop
matching packets.

• Collaborative admission control: The controller filters data frames by creat-
ing flow rules based with cooperation with the bandwidth controller.

Bandwidth controller The bandwidth controller is implemented as a Java
based application that provides functionality for a centralized bandwidth control,
it provides REST API to enable communication between the bandwidth con-
troller and the components distributed among SDN controllers. The application
keeps track of the traffic in virtual networks and assigns priorities limits to
distributed components residing on the top of the SDN controllers. The priority
limits are assigned according to the Table 9.1. The priority limits (S1 and S2
priority) are changed based on detected movement (S1 and S2 state).

Receiving node The receiving node, located on the shared network slices,
is collecting video frame fragments from the multiple slices, verifying data
consistency and merging video frame parts in order to reconstruct the original
images.

9.5 Experimental results

The purpose of the experiment is to show the behavior of the dynamic bandwidth
allocation in sliced networks by a set of SDN controllers that are communicating
through shared entity (the bandwidth controller). We consider transmissions

Table 9.1. Priority limits.

S1 state S2 state S1 priority S2 priority
no movement no movement 4 4
movement no movement 6 2
no movement movement 2 6
movement movement 4 4

140 Paper D

from each slice with different importance that is changing dynamically during
the experiment, in an event-based fashion. We assume that the traffic triggered
by specific events, e.g., motion detection or alerts, are high priority traffic.

The sending nodes are transmitting sequence of video frames at a constant
rate to the receiving node. The video frames have been prerecorded. The
network hypervisor and two FloodLight controllers together with the shared
bandwidth controller application run in a single computer, thus the network
communication overhead between these entities is negligible. The node on a
shared slice is receiving and reconstructing data. Also, the receiving node is
recording all the arriving frames. The size and the sender of the frame is known,
thus the network utilization can be reconstructed. The parameters of the system
are the following: Image size ∼ 40kB (depends on the scene, the image sizes
may differ slightly).

Fig. 9.7 shows the average network utilization over 20 runs of the same ex-
periment, in the case of no bandwidth adaptation (Fig. 9.7a), and with bandwidth
adaptation (Fig. 9.7b). In both cases, between time 60 and time 120, a motion is
detected, and additional traffic is generated from the sending node 1. In Fig. 9.7a,
the bandwidth limit is exceeded for all the period when the motion is present,
while Fig. 9.7b shows that the SDN controller 1 detects high importance traffic,
and the system increases the priorities for slice 1 and decreases the priorities
allowed for slice 2, resulting in a better allocation of the bandwidth over the
high-priority traffic. The reaction time from the frame reception by the SDN
controller, decision making by the bandwidth controller to the alteration of
the rules in SDN switch is 60ms. The communication time between the SDN
controller and bandwidth controller is 3ms.

9.6 Conclusion and Future Work

Connection between network virtualization and Software Defined Networking
plays an important role in Industrial Internet of Things due to the need for
domain separation, provision of various levels of QoS in a single physical
network and ability of dynamic network reconfiguration. Shared segments of
virtualized networks can be used for sharing services and resources among
separated segments. However, in order for efficient usage and utilization of

9.6 Conclusion and Future Work 141

shared resources, a collaborative approach must be set.
In this work, we introduced the DART Framework that enables collabora-

tion multiple SDN controllers among virtualized networks. Subsequently, we
implemented an use case of a surveillance system that utilizes the Framework.
he results shows that SDN controllers can cooperatively take decisions and
prioritize and distribute the bandwidth between slices to mitigate a congestion of
shared resources. The Framework introduced here does not have to be restricted
to bandwidth distribution only but it can be extended to support numerous appli-
cation that will benefit from the inter-slice collaboration, e.g.: distributed access
control lists, firewall and traffic scheduling.

The DART Framework opens the door for a design of smart algorithms for
dynamic reconfiguration of the network that can utilize proactive monitoring of
the flow/port usages in the separated virtual network.

142 Paper D

 0

 20

 40

 60

 80

 100

 120

 140

 0 20 40 60 80 100 120 140 160 180

b
a
n
d

w
id

th
 %

time [s]

Sending Node 1
Sending Node 2
Total bandwidth
Bandwidth Limit

(a) Without bandwidth adaptation.

 0

 20

 40

 60

 80

 100

 120

 140

 0 20 40 60 80 100 120 140 160 180

b
a
n
d

w
id

th
 %

time [s]

Sending Node 1
Sending Node 2
Total bandwidth
Bandwidth Limit

(b) With bandwidth adaptation.

Figure 9.7. Average bandwidth utilization over 20 runs.

Bibliography

[1] E. Sisinni et al. Industrial internet of things: Challenges, opportunities,
and directions. IEEE Trans. Ind. Inf., 2018.

[2] NM Mosharaf Kabir Chowdhury and Raouf Boutaba. A survey of network
virtualization. Computer Networks, 2010.

[3] H. Kim and N. Feamster. Improving network management with software
defined networking. IEEE Comm. Mag., 2013.

[4] Murat Karakus and Arjan Durresi. Quality of service (QoS) in software
defined networking (SDN). Journal of Net. and Comp. Appl., 2017.

[5] K. Ahmed, J. O. Blech, M. A. Gregory, and H. Schmidt. Software defined
networking for communication and control of cyber-physical systems. In
ICPADS, 2015.

[6] Seokhong Min et al. Implementation of an OpenFlow network virtualiza-
tion for multi-controller environment. In ICACT, 2012.

[7] S. Aglianò et al. Resource management and control in virtualized SDN
networks. In RTEST, 2018.

[8] B. A. A. Nunes et al. A survey of software-defined networking: Past,
present, and future of programmable networks. IEEE Comm. Surv. Tut.,
2014.

[9] Nick McKeown et al. Openflow: Enabling innovation in campus networks.
SIGCOMM Comput. Commun. Rev., 2008.

143

144 Bibliography

[10] ONF. OpenFlow switch specification. Technical report, Open Networking
Foundation, 2015.

[11] L. Xingtao et al. Network virtualization by using software-defined net-
working controller based Docker. In ITNEC, 2016.

[12] A. Blenk et al. Pairing SDN with network virtualization: The network
hypervisor placement problem. In NFV-SDN, 2015.

[13] Rob Sherwood et al. Flowvisor: A network virtualization layer. OpenFlow
Switch Consortium, Tech. Rep, 2009.

[14] Xiang (Alex) Feng. Towards real-time enabled microsoft windows. In The
5th ACM International Conference on Embedded Software, 2005.

[15] Saowanee Saewong et al. Analysis of hierarchical fixed-priority scheduling.
In ECRTS, 2002.

[16] Michal Sojka et al. Modular software architecture for flexible reservation
mechanisms on heterogeneous resources. Journal of Sys. Arch., 2011.

[17] T. Cucinotta and L. Palopoli. QoS control for pipelines of tasks using
multiple resources. IEEE Trans. Computers, 2010.

[18] A. B. Oliveira, A. Azim, S. Fischmeister, R. Marau, and L. Almeida. D-
RES: Correct transitive distributed service sharing. In IEEE Emerging
Technology and Factory Automation, 2014.

[19] S. Tomovic, N. Prasad, and I. Radusinovic. SDN control framework for
QoS provisioning. In TELFOR, 2014.

[20] Amin Tootoonchian and Yashar Ganjali. Hyperflow: A distributed control
plane for openflow. In INM/WREN, 2010.

[21] Teemu Koponen et al. Onix: A distributed control platform for large-scale
production networks. In OSDI, 2010.

[22] Soheil Hassas Yeganeh and Yashar Ganjali. Kandoo: A framework for
efficient and scalable offloading of control applications. In HotSDN, 2012.

[23] A. S. . Tam, Kang Xi, and H. J. Chao. Use of devolved controllers in data
center networks. In INFOCOM WKSHPS, 2011.

[24] Akram Hakiri et al. Software-defined networking: Challenges and research
opportunities for future internet. Comp. Net., 75, 2014.

	mdh_titelsidor_L310 (1)
	_Licentiate_Vaclav__Improving_Soft_Real_time_Performance_of_Fog_Computing (68)
	Thesis
	Introduction
	Thesis Overview

	Background and related work
	Fog computing
	Resource virtualization
	Hypervisor-based virtualization
	Container-based virtualization
	Real-time container-based virtualization

	Real-Time container orchestration
	Communication bandwidth management of large IoT networks

	Research overview
	Research goals and research Questions
	RQ1: What are the main technologies, approaches, and challenges towards providing RT predictability in fog computing?
	RQ2: How to distribute RT containers in fog computing to achieve soft RT behavior using Kubernetes?
	RQ3: How to improve a soft RT performance via quality of service management in virtualized SDN networks?

	Research Process

	Thesis contributions
	C1: Study and compare methods and approaches to enable RT container-based virtualization
	C2: Orchestration of RT containers
	Architecture

	C3: Dynamic bandwidth management

	Conclusions and future work
	Conclusions
	Limitation of the work
	Future work

	Bibliography

	Included Papers
	Paper A: Fog-based Industrial Robotic System: Applications and Challenges
	Related work
	Factory Automation Environment
	System architecture
	Use-case Aspects
	Virtualization
	Real-Time Aware Orchestration
	Timely and Reliable Communication
	Scalability
	Dependability and Safety

	Conclusion
	Bibliography

	Paper B: Real-Time Containers: A Survey
	The Review Process
	Question Formalization

	Container-based Virtualization
	Container Platforms
	Real-Time Containers
	Real-time Support of Linux

	Survey Results
	Methods Based on PREEMPT_RT Patch
	Methods based on Real-time Co-Kernel
	Method Based on Hierarchical Scheduling of Containers
	Custom Methods

	Challenges of Real-time Container-based Virtualization
	Conclusion
	Bibliography

	Paper C: REACT: Enabling Real-Time Container Orchestration.
	Introduction
	Background and Prior Work
	Orchestration of real-time containers
	System Model
	Performance Metrics
	Container Level Metrics

	Design of the RT Orchestrator
	RT extension of the master node
	RT Extension of Compute Nodes

	Implementation
	Evaluation
	Conclusion
	Bibliography

	Paper D: DART: Dynamic Bandwidth Distribution Framework for Virtualized Software Defined Networks
	Introduction
	Background and Related Work
	Software Defined Network
	Network Virtualization
	Bandwidth management

	DART: Dynamic Bandwidth Distribution Framework
	The DART Framework
	Admission Control Mechanism

	Use Case: Surveillance System
	System Setup
	System Implementation

	Experimental results
	Conclusion and Future Work
	Bibliography

