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Abstract

Estimating the response times of real-time tasks and applications is impor-
tant for the analysis and implementation of real-time systems. Probabilistic
approaches have gained attention over the past decade, as they provide a mod-
eling framework that allows for less pessimism for the analysis of real-time
systems. Among the different proposed approaches, Markov chains have been
shown to be effective for the analysis of real-time systems, in particular, in the
estimate of the pending workload probability distribution and of the deadline
miss probability. However, this has been analyzed only for discrete emission
distributions, but not for continuous ones. In this paper, we propose a method
for analyzing the workload probability distribution and bounding the deadline
miss probability for a task executing in a Constant Bandwidth Server, where
execution times are described by a Markov model with Gaussian emission dis-
tributions. In the evaluation, deadline miss probability bounds and estimates
are derived with a workload accumulation scheme. The results are compared
to simulation and measured deadline miss ratios from tasks under the Linux
Constant Bandwidth Server implementation SCHED_DEADLINE.
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9.1 Introduction

Real-time systems are commonly characterized as hard or soft real-time sys-
tems. In a hard real-time system deadlines must always be met, but in a soft
real-time system deadline misses can be tolerated to some extent. Deadline
misses in a soft real-time system lead to a deterioration of the Quality of Ser-
vice (QoS) [10] or Quality of Control (QoC) [28]. The number of deadline
misses must be sufficiently low so that the QoS or QoC is retained at an ac-
ceptable level [8].

Hidden Markov Models (HMMs) have been utilized to model execution
times in systems with dependencies, and where there is regularity in the vari-
ation of the execution times. In [5, 16], the authors have modeled execu-
tion times as Markov models with discrete emission distributions, including
estimating the deadline miss probability under a Constant Bandwidth Server
(CBS). Emission distributions have also been modeled as continuous Gaussian
distributions [18, 17], with the advantage of potentially providing more robust
estimates from a lower number of samples. Gaussian distributions also allow
for representation with only two parameters, as opposed to the case where in-
dividual probabilities of each discrete execution time value are stored. The
application of HMMs with continuous emission distributions has been limited
to the estimation of the sole execution time [18].

This paper focuses on the problem of bounding and estimating the deadline
miss probability of a real-time application, exploiting HMMs. In the literature,
two concepts related to probabilistic deadlines are commonly used. The Dead-
line Miss Probability (DMP) is interpreted as the ratio of missed deadlines to
the number of jobs in a long (tending to infinite) time interval. The Worst-Case
Deadline Failure Probability (WCDFP) is interpreted as an upper bound on the
probability of a deadline miss for any single job [12]. In this paper, we focus
on the DMP as the long-run frequency interpretation, for the overall HMM and
for each state separately.

More specifically, in this paper, we address the problem of upper bounding
the workload distribution and deadline miss probability under CBS of a peri-
odic task where execution times are modeled by a Markov chain with Gaus-
sian emission distributions. We propose an iterative workload accumulation
scheme, where workload distributions are accumulated sequentially over task
periods. The scheme starts from a point of workload depletion, that is a task
period with zero carry-in workload. The method provides an upper bound on
the deadline miss probability in each state and overall under certain assump-
tions.

The method is evaluated by comparing the obtained results with the dead-
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line miss ratio of tasks running under the Linux kernel implementation of CBS,
SCHED_DEADLINE [22], and with results from simulation.

The paper is structured as follows. In Section 9.2, related work is dis-
cussed. The notation used in the paper and the system model is outlined in
Section 9.3. The analysis for upper bounding the deadline miss probability
is described in Section 9.4, and in Section 9.5 the parts are combined in an
overall workload accumulation process. In Section 9.6 the evaluation is pre-
sented and results are provided. Conclusions and future work are discussed in
Section 9.7.

9.2 Related Work

Davis and Cucu-Grosjean provide a comprehensive survey on probabilistic
schedulability analysis techniques [12], along with a survey on probabilistic
timing analysis [13].

Diaz et al. [14] presented a response time analysis for periodic tasks where
execution times are independent random variables and showed that the backlog
is a Markov chain.

Maxim and Cucu-Grosjean [29] showed that in systems where execution
times, deadlines, and interarrival times are independent random variables, the
Worst-Case Response Time (WCRT) can be found by synchronous release if
deadlines are constrained and jobs are aborted when their deadline is missed.

Ivers and Ernst [19] addressed the case where execution times are depen-
dent and proposed the use of Fréchet bounds and probability boxes.

Extreme Value Theory (EVT) has been applied in measurement-based sta-
tistical analysis of response times to find the probabilistic WCRT (pWCRT).
This is an upper bound on the probability of exceeding a response time for
every valid sequence of program executions and is based on finding the dis-
tribution of the extreme values, the distribution’s tail. Most of the work in
this regard has been done by Lu et al. [26, 25, 24]. Maxim et al. [30] have
shown that the methods based on EVT provide sound results. EVT is appli-
cable in cases of dependence, as long as there is stationarity [20] or extremal
independence [33].

Real-time queuing theory [21] provides methods for analyzing the
response time distribution specifically in the case of heavy traffic when
utilization is close to 1.

Bozhko et al. [7] proposed a response time analysis with Monte Carlo sim-
ulation for fixed-priority preemptive scheduling with execution times as inde-
pendent random variables.
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Von der Briiggen et al. [35] provided a method for over-approximating the
WCDFP under EDF for tasks with different execution modes. This includes
derivation for acyclic task chain dependencies among a bounded number of
subsequent jobs. The number of intervals considered is substantially reduced
due to the observation that the probability of a deadline miss in an interval is
bounded by the probability that the processor does not idle in the same interval.

Mills and Anderson [31] provide response time and tardiness bounds for
soft real-time tasks with stochastic execution times, in a server-based sched-
uler. In this work, execution time dependence is considered within but not
across time windows. A larger window leads to greater tardiness bounds. Liu,
Mills, and Anderson [23] further proposed the use of independence thresholds,
where independence is assumed for execution times exceeding a determined
threshold value.

The CBS is described in Section 9.3. It was introduced by Abeni and But-
tazzo [2], and used to obtain probabilistic deadlines for QoS guarantees [3].
Analysis under CBS has been performed with execution times [4, 32] and in-
terarrival times [6, 27] modeled with probability distributions.

Tasks with dependent execution times have been modeled as Markov
chains and been analyzed under CBS by Frias et al. [16, 5]. The steady-state
response time distribution was calculated. The results were compared to
running the task under Linux SCHED_DEADLINE. The time required for the
analysis depends on the range of computation times, the number of states, and
the resampling factor [34].

Execution times have been modeled as continuous Gaussian distributions
in the context of emission distributions in a Markov chain [18, 17]. We are not
aware of any work that analyzes this model in terms of response times or dead-
line miss probabilities. In this paper, we aim to bridge this gap and enable the
use of an HMM with Gaussian emission distributions for schedulability anal-
ysis. Similarly as in the work of Frias et al. [16, 5], dependencies are explicit
in the HMM, and the task is running in a CBS. The CBS provides isolation
from other tasks on the system, so that the pending workload considered is
carry-in workload from previous jobs of the same task, instead of workload
from other tasks as in most work concerning response times. The choice of
Gaussian distribution is partly based on simplicity and tractability. In [18] a
HMM with Gaussian emission distributions was shown to be a valid model
in a video decompression case. Modeling the execution times of each state
as a Gaussian distribution may seem simplistic. However, several states with
Gaussian distributions can be combined to form a more general distribution
shape. In addition, if the means of the states’ distributions differ significantly,
the Markov Model transition probabilities may affect the response times to a
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greater extent than the state distribution shapes. As an example, a high likeli-
hood of several consecutive jobs in the state with the longest execution times
will lead to much longer response times, compared to a case where there is
high likelihood that a job in this state is followed by a job in the state with
the shortest execution times. Nevertheless, the use of the Gaussian distribu-
tion is a limitation of this work, and therefore the method is also evaluated
for non-Gaussian distributions. Here, an exponential distribution is chosen.
Exponential-tail distributions have been used in pWCET analysis[9, 1, 11], as
the tail beyond a certain point is a safe upper bound of light-tailed distributions.

The iterative approach that we propose in this paper provides a bound/
estimate already after a few accumulation periods, while the method proposed
by Frias et al. requires the calculation of the full steady state response time
distribution.

9.3 System Model and Notation

The notation used in the paper is outlined in Table 9.1. We use the notation &
to indicate the estimate of a variable X, and we use the superscripts *, T and ¥
for the true values, upper, and lower bounds, respectively.

We will use the concept or upper bounding random variables, as defined in
Definition 9.3.1.

Definition 9.3.1 (cf. [15, 13]). Let X and Y be two random variables. We say
that X is greater than or equalto Y (i.e., X upper bounds )), if the Cumulative
Distribution Function (CDF) of X is never above that of Y, and we denote this
relation by X > ).

To upper bound workload distributions, we will use the partial Gaussian
distribution, as defined in Definition 9.3.2. Let us consider a Gaussian
N(u,0?) with probability density function f(z|u,0?). @(z) is the
cumulative density function of the standard normal distribution.

Definition 9.3.2. We define a partial Gaussian distribution N (p1, o2, o),
originated from a Gaussian distribution N (1, 0%), as:

tail 2 O’ xSa 21
falmot ) =91 ialue?) o> a o

@(M)

o

In a partial Gaussian distribution, the probability for the elements of the
Gaussian distribution lower than « are set to zero and the remaining is normal-
ized so that the distribution integrates into one.
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Table 9.1: Overview of notation used in this paper.

‘ Symbol ‘ Description ‘
Basic notation

T Task period

Ji Job at task period ¢

a; Arrival time of J;

d; Absolute deadline of J;

D Relative deadline

P Server period

Q Server budget

n Number of server periods in a task period

k Number of server periods in a relative deadline

S Number of Markov states

M State transition matrix

N Number of task periods in workload accumulation
Values of random variables

Ci Execution time of .J;

fi Finishing time of J;

v; Workload at task period 7

h Accumulation sequence of state visits

in Markov chain since workload depletion
= Accumulation vector of the number of visits
in each Markov state since workload depletion

Probability distributions and probabilities
C Execution time distribution
Workload distribution associated with

Vh, Vj, .
an accumulation sequence or vector
m;; Transition probability from state  to state j
&(s) Stationary probability of being in s
pin(s, h) Probability of entering s with i
Peols, 3 ) Probability that  in s carries
S workload to the next task period
Pwd(s) Probability of workload depletion in s
Pdm Deadline miss probability

B(s)n | Probability of being in state s with  longer than N.

In the derivation of workload distributions, we use convolutions as defined
in Definition 9.3.3.

Definition 9.3.3. The convolution of f and g, denoted with the x operator is:

sde= [ " f(z - w)g(a) da

9.3.1 Task Model

A real-time task 7 consists of a sequence of jobs .J;, ¢ € N. The arrival time of
J; is a;. The tasks are periodic, with no jitter, i.e., a;+1 = a; 47, with ag being
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Figure 9.1: An illustration of the task model and the CBS.

the arrival time of the first job. The execution time of J; is ¢; and its finishing
time is f;. The jobs may be preempted, and f; > a; + ¢;. The execution time
¢; is modeled as a random variable. The random variable R models the time
from activation time to finish time of a job.

The deadline of a job J; is d; = a; + D, where D is the relative deadline.
Jobs are executed until completion, even when a deadline is missed. The rel-
ative deadline can be longer than the task period. We consider the probability
of a deadline miss pgy,, that is the overall probability that a job finishes after
the deadline, pg,,, = p(R > D).

9.3.2 Scheduling Algorithm

The considered scheduling algorithm is reservation-based, namely the Con-
stant Bandwidth Server (CBS). Each task has its own server. Within each
server period P, the task is guaranteed to receive () units of processing time.
The fraction of the processing resource dedicated to this task, the bandwidth,
is B = @Q/P. We choose the server period so that it divides the task period
evenly, i.e., T' = nP, where n is a positive integer. We also define %, a pos-
itive integer that is the number of server periods in the relative deadline D,
D =kP.

An illustration of the task model and CBS is shown in Figure 9.1. In this
illustration, the task period is divided into three server periods, and the band-
width is 0.5. As illustrated, the deadline of a job does not need to be within
a task period from the arrival; the relative deadline may be longer than the
period.
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Figure 9.2: Illustration of the period by period workload accumulation sequence.

9.4 Execution Time Model and Analysis

9.4.1 Markov Chain Execution Times

In this section, we consider a task, where the execution time distribution is
described by a Markov model characterized by the triplet (S,M,C). S =
{1,2,...,S5} is the set of S states, S € N. M is the S x S state transition
matrix, where the element m, ; represents the conditional probability of be-
ing in state b at task period ¢ + 1, given that at task period ¢ the state is a.
C = {C1,Cy,...,Cg} is the set of execution time distributions, or emission
distributions related to the respective state. These are modeled as Gaussian

distributions with mean i, and variance 02, i.e., Cs ~ N (u1s, 72).

9.4.2 Overview of the Proposed Approach

To upper bound the deadline miss probability of the task running under CBS,
we propose a method based on a workload accumulation scheme. The main
idea is outlined below, followed by the details in the remaining subsections.
In each task period, task 7 is guaranteed n() units of processing time. The
pending workload at the i-th task period is denoted as v; and defined as in [3]:

v; = max(0,v;—1 — nQ) +¢; (9.2)

~
carry-in workload

where the first term accounts for the previous workload, initially set to 0, and
the first period is v; = c;. An example of how the workload evolves according
to the Markov chain model is shown in Figure 9.2. We start with zero initial
pending workload and add one task period at a time of workload accumulation.
In the figure, the dashed red and solid blue lines depict two possible workload
accumulation sequences that are in state 2 at task period 5 from workload de-
pletion. The accumulation sequence is modeled as a random variable 7{ that
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can take the values of any possible workload accumulation path. In the exam-
ple from Figure 9.2, in the dashed red path it takes the value h = (S, S, 1,2, 2).

Davis and Cucu-Grosjean [12] define the deadline miss probability for a
task as the average deadline miss probability of task jobs during a hyperpe-
riod. In this work, using the CBS allows us to discard pending workload from
other tasks in the task set. The notion of hyperperiod is therefore irrelevant,
and we define the Deadline Miss Probability DMP as the average deadline
miss probability of the task’s jobs. We do this by considering accumulation
sequences. More specifically, we define the probability of a job arrival leading
to the accumulation sequence h as p;,(h). Since each job arrival leads to one
specific accumulation sequence, the sum of p;,(h) over all h equals 1. We
define the conditional deadline miss probability for a job with accumulation
sequence h as pgm, (h). Then, the DMP is defined as the sum of the deadline
miss probabilities for each accumulation sequence weighted with their respec-
tive probabilities:

DMP =" pin(h)pam (1) 9.3)
Yh

Problem: The sum of Equation (9.3) has a countably infinite number of terms.
This paper investigates how to find a bound for DMP with a finite number of
terms.

In the remainder of this section, we will provide an upper bound on DMP
by finding the upper bounds on p;, and pg,,. The process is divided into two
steps. First, we compute the upper bounds on p;, and pg,, of accumulation
sequences up to length N, thus approaching the true deadline miss probability.
To make a safe bound, we then sum the p;, values in the remaining accu-
mulation sequences of length N + 1 to infinity, assuming that pg,, for these
periods is 1. This sum is referred to as /3. This finally leads to the safe over-
approximation of DMP.

The steps for deriving a bound on DMP are presented in this paper as
follows:

Section 9.4.3: To determine upper bounds on pg,,, and p;,, in Equation (9.3)
we need to find upper bounds on the pending workload distributions associated
with each state and accumulation sequence. This is done in Equations (9.20)
and (9.24).

Section 9.4.4: Bounds on p;, depend on the probability of carry-over
workload p., from the previous step and the transition probabilities m. In
the first step of the accumulation process, p;, depends on the probability of
workload depletion p,,4 for each state. With p,,; propagating along the accu-
mulation, each p;, is a linear combination of p,,4 for the different states.
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Initialize first workload accumulation
period, Section 9.4.4 and initialize 5.

v

Calculate bounds

for pyq and papm,
Sections 9.4.5 and 9.4.6.

Calculate 3, Sec-
tion 9.4.7 or Section 9.4.8
A

A 4

Add next workload
accumulation pe-
riod, Section 9.4.4.

Stopping criteria met?

Workload accumu-
lation and p,,q
bounds completed.

Figure 9.3: The workload accumulation process.

Section 9.4.5: Bounds on p,,; are derived, these rely on the sum of p;;, in
accumulation periods after /V, denoted as S.

Section 9.4.6: In this section bounds on pg, are presented, using the
bounds on V, p;, and 5. The upper bound of pg,, for a state is defined in
Equation (9.30).

Section 9.4.7: In this section, we derive a bound on 3. 3 is the minimum
of Equations (9.31) and (9.32), and is utilized for computing the lower bounds
on Pin, Peo and finally V.

Section 9.4.8: In this section, we derive an estimate of J as an alternative
to the bound.

The parts are tied together in the iterative workload accumulation algo-
rithm presented along with an example in Section 9.5. In Figure 9.3 the pro-
cess is illustrated with reference to the different sections. Section 9.4.3 is not
referenced in the figure as it is a basis for all the remaining sections.

9.4.3 Bounding the Conditional Pending Workload Distribution
Associated with a Workload Accumulation Sequence

We seek upper and lower bounds of the conditional pending workload distri-
bution conditioned on having a given accumulation sequence since the most
recent point of workload depletion. As an example from Figure 9.2, we want
to define the pending workload distribution in state 2 at task period 5, provided
that the transitions since workload depletion have been along the path marked
as dashed red, h = (95, 5,1,2,2).



108 9.4. Execution Time Model and Analysis

>

= 01 T ]

g 0.08 |- a Exact convolution
;, 0.06 —— N ypper bound
= 0.04 |-

E 0.02 / .

© | ! !

ks 0

0 10 20 30 40 50
Pending workload

Figure 9.4: Illustration of a convolution result with an upper bounding partial Gaus-
sian distribution.

We denote the conditional pending workload distribution, conditioned on
a given accumulation sequence h as Vp, with a probability density function
p(v|H = h).

The lower and upper bounds for this conditional pending workload dis-
tribution depend only on the number of visits in each state in the accumula-
tion sequence and are independent of their order. We model the accumulation
vector as a random variable A that takes values as S-dimensional vectors of
non-negative integer values, where each value represents the number of visits
in a state. This means that the dashed red and the solid blue accumulation se-
quence lines in Figure 9.2 will contribute to the same accumulation vector at
task period 5 since they both have the same number of visits in each state, that
is h = [1,2,...,2]. We define the operation h[s] as taking the s-th element
of h. We also define iL+s as h with the s-th element incremented by one, to
simplify the notation of the accumulation vector in s with carry-in workload
from h.

The number of possible bounded pending workload distributions of length
N in a system with S states is (N+]§_1) = %, as opposed to SV which
would be needed if ordering were taken into account. For a fixed number of
states S, the number of distributions to consider increases with the number of
periods considered as O(N°~1).

Recalling Definition 9.3.1, we derive an upper bound conditional pending
workload distribution V;L > Vh.

In the following, we show that a partial Gaussian distribution (see Defi-
nition 9.3.2) upper bounds the conditional pending workload distribution. An
illustration is in Figure 9.4, where the blue curve and red line upper bounds the
black workload distribution, lower probability values (blue area) are moved to
higher (orange area).

Theorem 9.1. The conditional pending workload distribution associated
with each state s and accumulation vector h is upper bounded by
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N (pu(h), * (), a(h, )).

We prove this by induction. For clarity we state a Lemma 9.2 for the base
case, and Lemma 9.3 for the inductive step.

Lemma 9.2. The partial Gaussian distribution N" (s, 02, 0) upper bounds
the conditional pending workload distribution V; in state s immediately after
a point of workload depletion.

Proof. In the first step after workload depletion, the conditional pending work-
load distribution V}, equals the execution time distribution of the entered state
s. Excluding negative values and normalizing gives an upper bounding distri-
bution, as probabilities are moved from lower workload values to higher. Thus,
N1, 02, 0) is an upper bound. O

With non-zero carry-over workload in a transition from state s, with
accumulation vector h, and an upper bound on the workload distribution
N (1u(h), 0%(h), a(h, s,)), into state s, we will show that the conditional
pending workload distribution is upper bounded by the partial Gaussian
distribution N (ju(h.y),0%(his), a(his,s)). Below, in Equations (9.4)
and (9.5) we define y1(h, ) and o2(h,). Equations (9.6) and (9.7) are used
to simplify the expression of the starting value a(ﬁ+s,s) of the resulting
upper bounding distribution, defined in Equation (9.8). Here sf~1(q, u, 02)
denotes the inverse survival function at g of a Gaussian distribution with mean
u, and variance o2, Equation (9.7) defines K (ﬁ, sp), the normalization factor
needed for the conditional probability calculation. We perform a convolution
with the upper bounding workload distribution in s, with h extending past
the task period. K (l~1, sp) 1 is the integral of this part, to get a probability
distribution integrating to one.

S

plhes) = ps+ ) Blil(pi — nQ) (94)
=1
S
o*(hys) =02+ Y hlilo? 9.5)
=1
aa(h, sp) = max(0, a(h, s,) — nQ) (9.6)
~ ~ -1
K(h,sy) = |® ph) =nQ — an(h, 3p)>] 9.7
o) = [o (M= o)

(9.8)

=
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Lemma 9.3. When transitioning with non-zero carry-over workload
from state s, with accumulation vector h into state s, and with an upper
bound on the workload distribution in the previous task period V' as
N@il(u(h), o%(h), a(h, sp)), the conditional pending workload distribution is
upper bounded by N (u(hy ), 0%(hys), a(hys, s)).

Proof. The strictly positive carry-over workload distribution is the normalized
workload tail beyond the task period processing time, which can be written as
N (u(R) — nQ, 02 (h), max(0, a(h, 5,) — nQ)).

The execution time distribution in state s is described by A (us, 02). The

resulting upper bound on the conditional workload distribution V;L in state s
+s

with accumulation vector /i is the result of the convolution, Definition 9.3.3,
of the probability density functions of the execution time and the upper bound
on the positive carry-over workload. This holds because execution times are
independent random variables and the dependence of the Markov model is
restricted to the transition probabilities.

To simplify the notation in the convolution expansion, we introduce the
following:

(2 = ps)o®(h) + (u(h) — nQ)o?
r(2) = S 9.9
#r(2) o2 + o2(h) e
2 a*(h)
= s AW 9.10
7R = 02 +o2(h) ( )
psa = ps + p(h) — (9.11)
o0& =0o%+5%(h) (9.12)
Expanding the convolution for V}L
| 1= sl oD i) - 1Q,0* (), as) da
=K(h,sp) [ f(z—lus,02) f(@|p(h) — nQ, 0*(h)) da
= K(hsy)fGlusao?) | Flalunz),0h) da ©.13)

where the last step isolated the part of the expression that is independent of
x. We recognize the integral in the second factor of Equation (9.13) as the
survival function or 1-CDF at aa of N(ug(z),0%). This is monotonically

increasing and goes to 0 as z goes to —oc and to 1 as z goes to co. Thus,
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we can find a value a(iL+5, s) where the area under the curve of the exact
convolution of the pending workload distribution up to a(ﬁ+ s, 8) equals the
area between the curves of the exact pending workload distribution and the
partial Gaussian distribution, N?(psa, 0%, a(hys,s)) from a(hys,s). An
illustration is provided in Figure 9.4. Using K for normalization of the partial
Gaussian distribution ensures that the tail of the upper bound approaches the
tail of the full convolution asymptotically. We find the «v(h,, s) which gives:

o0

K(ﬁ,sp)/  f(zlpsa,0d) de =1 (9.14)
Oz(h+375)

As we know that the result of the convolution integrates to one, this shows that
the two regions described and illustrated in Figure 9.4 have the same area. Re-
placing the exact convolution with the partial Gaussian is equivalent to moving
probability weight from lower pending workload values to higher, leading to
an overestimate. We have:

pi(hys) = pea (9.15)
o2(hys) = 0% (9.16)
~ 1
alhys,s) =s 1< — ,o2> 9.17
(his,s) = sf K 1m0 (9.17)
This concludes our proof. (]

Considering all states s, containing the accumulation vector h, we define:

aa(h) = max(0, Hvlaxa(fl, sp) —n@Q) (9.18)
Sp

We use this instead of Equation (9.6) in Equations (9.7) and (9.8). With these

lemmas we are ready to prove Theorem 9.1.

Proof. We prove this by induction.

Base case: For the task period after workload depletion, this follows by
Lemma 9.2.

Inductive hypothesis: If we have such a workload distribution upper bound
for all states and accumulation vectors in one task period, it also holds for the
next period.

Inductive step: This follows from Lemma 9.3 and taking the maximum « in
Equation (9.18). O

With similar reasoning, we can use a Gaussian distribution as a lower
bound of the pending workload distribution Vg < V. This is illustrated in
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Figure 9.5: An illustration of a convolution result and the Gaussian distribution that
forms a lower bound.

Figure 9.5. As K > 1, and the area under the curve equals one for both
the Gaussian distribution with mean gy and variance 0’% and the result of
the convolution, replacing the workload distribution with the Gaussian implies
moving probability weight from higher workload values to lower, thus provid-
ing a lower bound.

9.4.4 Bounds on the Probability of Entering a State with an Accu-
mulation Vector

Each state s in each task period is associated with one or more accumulation
vectors, h. Each accumulation vector in a state is associated with lower and
upper bounds on the probability of entering this state with the associated accu-
mulation vector pfn(s, h) and pZTn(s, h). Each accumulation vector in a state is
also associated with lower and upper bounds on the probability of the workload
contributing to carry-over into the next period, pﬁo(s, ﬁ) and plo(s, B)

In the first period, with no carry-in workload, each state is associated with
a single accumulation vector containing zeros except for the current state that
is set to 1. The probability of entering a state in the first period after workload
depletion depends on the stationary probabilities £(s) of being in each state,
the probability of workload depletion p,,4(s) in each state, and the transition
matrix. The stationary probabilities and the transition matrix are known, but
the probability of workload depletion in each state is unknown at this stage.
In Section 9.4.5 we will describe how to retrieve this. Assuming that we have

lower and upper bounds on the probabilities of workload depletion, pi) 4(s) and

pl} 4(s), we can calculate lower and upper bounds on the probability of entering
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the states in the first workload accumulation period as

pm s, h) 25 Sp) pwd (5p)mis,.s (9.19)
sp—l

pm s, h) Zﬁ Sp) pwd (8p)Mis,.s (9.20)
sp=1

Since there is only one accumulation vector in each state in the first accumula-
tion period, there is no dependency on h.

For the following periods, accumulation vectors are created by copying
each accumulation vector from the states in the previous task period and in-
crementing the current state element by 1. We denote this vector as iL+ s Note
that paths from different states in the previous period can lead to the same
accumulation vector. The probability of entering s with iL+ s depends on the
probability of h contributing to carry-over into the next period in all states, and
transition probabilities.

The probability that the workload contributes to carry-over into the next
period is the probability of entering the state with this accumulation vector
times the probability that the conditional pending workload exceeds the avail-
able processor time in a task period. This probability is bounded by pio(s, B)
and plo(s, h), then calculated as:

1

pro(s, k) = vy, (s. )p(V} > nQ) ) (9.21)
= pi, (8, PN (u(h), 0% (h)) > nQ)

0 s 7 S I n

plo(s, 1) = Pl (5, M)p(V] > nQ) (9.22)

= P (5, PN (u(R), 0% (), a(R)) > nQ)

The probability of entering state s with the accumulation vector h is lower
and upper bounded by:

ACNNE Z Peo(ps h)s, s (9.23)
sp—l

Pin(s,hys) = Z Plo(8p, )M, . (9.24)
sp=1

9.4.5 Bounds on the Probability of Workload Depletion

Bounds on the probability of workload depletion for each state are used to
calculate p;, in the first step after workload depletion in Equations (9.19)



114 9.4. Execution Time Model and Analysis

1 /o)
Pin (2) \\\ “
o) S \ :lpjud valid region
(2) 1 4 ~——1
S e )(2) 4 - pl}d search region
> 1. - -~ l-dim pT region limit
\ ~ wd
B2) |
o
\
3
B elpi)(1)

E(1) pi (1)
Figure 9.6: An illustration of the possible valid region of pfnz for two states, if the
true probabilities of workload depletion would be used as pi} 4 in Equation (9.19).

and (9.20), and are further propagated to all p;,. The true workload deple-
tion probability p? , is unknown, and in this section we will derive bounds

for it. Had p; , been known, and input as pi}

of the lower bounds on the probabilities pfnx associated with all accumulation
vectors accounted for would be lower than the stationary probabilities for all
states. Using h € (s,17) to denote the set of accumulation vectors associated

with state s in task period ¢, we formulate:

4 in Equation (9.19), the sum

P (5, Dwa) Z > pr(s.h) <&(s), Vs (9.25)
i= lhe(s,z)

We define [(s)y as the probability of being in s with workload accumula-

tion past N. We also define e(p}>

) as the error introduced by using the lower
bounding Gaussian distribution in place of the true convolution result. Had

we known the true p;, ; and input it as pi} 4 in Equation (9.19) that would give

values of pfnz in the blue area of Figure 9.6.

Had the true workload depletion probability p’ ;, been known and input as
p; 4 in Equation (9.20), the sum of the upper bounds of the probabilities pjnz
associated with all accumulation vectors would be greater than the stationary
probabilities minus the probability of being in the state with longer accumula-

tion vectors [(s), for all states. This is outlined in Equation (9.26):
Py (. Pwa) Z > pl(s,h) = €(s) = B(s)n, Vs (9.26)
=1 he(s,i)

We define e(pjn2 ) the error introduced by using the upper bounding partial
Gaussian distribution in place of the true convolution result. If we input true
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Figure 9.7: An illustration of the possible valid region of p;rnz for two states, if the
true probabilities of workload depletion would be used as p; 4 in Equation (9.20).

workload depletion probabilities as pIU 4 1in Equation (9.20) the resulting pjnz

would be in the range depicted as green in Figure 9.7. This allows us to bound
the true workload depletion probabilities to values mapping within both the
blue region of Figure 9.6 and the green region of Figure 9.7.

An upper bound of the workload depletion probability p,q is found for
each state as the maximum of the values that lead to pf along the orange lines
of Figure 9.6.

Theorem 9. 4 The state-wise maximum of p,q taken within the region of pyq
leading to pm ( ) < &(8) for all states, and where equality holds for all but at
most one s is an upper bound of pq.

Proof. Each pfn(s, B) is a linear combination of p,,4 for all states, this follows
from Equations (9.19), (9.21) and (9.23). Combined with Equation (9.25) it
follows that pf (s) is also a linear combination of p,,q for all states, which for
some positive factors A; ; we can write:

Py (. Pwd) ZAZ Pwdi 9.27)

Assume that we have the true workload depletion probability py ;. For an
arbitrary state dimension j in p,,4, we can increase p,,q(j) with an amount d ;
so that we reach a plane defined by Equation (9. 28) For the lowest d, ;, the
first plane we encounter along the line, we have p ( ) < €(7), Vi # s.

pif(svad) = Aj,s(pwd + 55] Z Az spwd 5(3) (928)
i=1,i#j
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Because the true p; , gives pfng (s) < &(s) and due to the linear combina-
tion, it follows that at least one dimension of p,,q is an upper bound at every
point in the planes defined by pfnz (8, pwa) = &(s), including the point with
equality for all s - the upper right corner on the orange lines in Figure 9.6. If
a particular dimension does not have an upper bound at this point, we have an
upper bound on one of the planes, as the black dot in the illustration in Fig-
ure 9.6. The plane separating the region of the plane with upper bounds on this
dimension from the region with underestimates will cross at least one of the
orange lines, which ensures that an upper bound will be found in the region.
Illustrations of possible separating planes are dashed lines in Figure 9.6. This
concludes the proof. (]

Similarly, a lower bound on the workload depletion probability p,q is
found for each state as the minimum of the values that lead to pjnE along the
orange lines of Figure 9.7. By using the lower bound from Figure 9.7 to deter-
mine the endpoints of the orange sections in Figure 9.6 and the upper bound
from Figure 9.6 to determine the endpoints of the orange sections in Figure 9.7
e(pfnE ) and e(pZTnE ) can be ignored. The endpoints are adjusted if they are out-
side the valid range for p,,q, that is if the probabilities are lower than O or
higher than 1. As all pfnz (s) and pjn2 (s) depend linearly on all p,,4(s), we only
need to consider the endpoints of the orange sections.

9.4.6 Upper Bounding the Deadline Miss Probability

We can then calculate an upper bound on the deadline miss probability as de-
fined in Equation (9.3). The upper bound on the deadline miss probability pgm
conditioned on an accumulation vector / and a state s is:

Pl (s:0) = p(V] > kQ)

-, (9.29)
= pWN(u(h),07(h)) > kQ).
The upper bound on the deadline miss probability in a state is
N ~ ~
) Aok | Tt St Pl (8, 1Dy (5,1) ©30)
amn £(s) £(s) ' '

9.4.7 Bounding the Probability of Longer Workload Accumula-
tion

The sum of p;;, in task periods beyond N, £ is still unknown, and in this section
a bound is derived. 3 decreases monotonically with each accumulated period,
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as all probabilities are non-negative. For each period, 3(s) decreases with at
least the lower bound on the probability of being in the state in the same period,
ie.
B(s)v < B(s)n—1— Y ph(s,h)Vs (9.31)
he(s,N)
We also know that 8 is at most the stationary probability minus the lower
bound on the probabilities accounted for, i.e.

N
Bls)n < &(s) — Pin(s: 1) (9.32)

Thus, given a safe bound for the probability of accumulation vectors not ac-
counted for, /3, in one accumulation period, we can obtain safe bounds for
subsequent periods as the minimum of Equations (9.31) and (9.32).

9.4.8 Estimating the Probability of Longer Workload Accumula-
tion

As an alternative or complement to the bound of 3 presented in Section 9.4.7,
B can be estimated. First, the probability of workload depletion is estimated as
the mean of the upper and lower bounds.

1 T
__ pLytp
Prog = —vd—~wd 5 d (9.33)

Then we estimate 3 according to
B(S)N = 5(3) - pz‘n(37h)7 (934)

where p,,q is used instead of pt) , in Equation (9.19) for the first accumulation
period. A new estimate is retrieved for each accumulation period. /3 of the first
period is estimated as:

1. Let the probabilities of the first task period be &.

2. Calculate the probability of carry over into s in the second period from all
C; and M.

3. Set B (s) to the probability of being in the second period relative to the sum
of both periods, scaled with £(s).
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9.5 Iterative Workload Accumulation

We propose an iterative approach where workload periods are successively
accumulated. The process is illustrated in Figure 9.3 and ends when one of the
following stopping criteria is met:

1. The upper bounds of the workload depletion probability of all states have
turned from decreasing to increasing, or the lower bounds have turned from
increasing to decreasing.

2. A maximum number of task periods is reached.

The first condition is met if the workload depletion probability bounds con-
verge, or if the region within the bounds starts to grow. With each accumu-
lation period, a convolution is performed, potentially increasing the error in-
troduced by using the upper and lower bounding distributions in place of the
true convolution result. This is illustrated by the white space between the blue
area and the orange lines in Figure 9.6, and by the white space between the
green area and the orange lines in Figure 9.7. If the increase in this error is not
compensated by a sufficiently low probability of the associated accumulation
vectors, the bounding region of the workload depletion probability can start to
increase, and we stop at the period with the tightest bound.

The second condition is needed in the case where the bounds on the work-
load depletion probabilities or deadline miss probabilities diverge from the
beginning. This may be due to insufficient bandwidth provided to the task in
the CBS, or because the errors introduced are too large. The second condition
is also activated when we have a slow convergence of the workload depletion
probability bounds.

As an example we take a Markov model defined by:

09 0.1

S=2 M= (0.7 0.3

> ) C = {N(20,9),N(40,16)}.

The stationary probabilities are 0.875 for state 1 and 0.125 for state 2. In
our example, the CBS is defined such that there are n = 4 server periods within
each task period, and the budget in each server period is () = 8. The deadline
is defined by k = 8.

First, we use the bound on the probability of longer workload accumulation
as described in Section 9.4.7. We initialize the accumulation with one period
after workload depletion, and /3 to (0.1238,0.0397), the probability of being
in states 1 and 2 respectively with workload carried over from at least one task
period. These probabilities are obtained from the simulation. In Figure 9.8 the
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Figure 9.8: Bounds and estimates on j3 for the two states in black, along with prob-
ability estimates of longer accumulation histories obtained from simulation in blue.
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Figure 9.9: The region between the upper and lower bounds/ estimates on the per-state
probability of workload depletion in the example, along with the estimates obtained
from simulation in red.

obtained bounds for beta for the two states as we add accumulation periods are
displayed in black. Estimated probabilities of longer accumulation histories
obtained from simulation are displayed in blue.

The upper and lower bounds of the probabilities of workload depletion ob-
tained with these values for 8 are shown in black in Figure 9.9, along with
estimates obtained by simulation shown as red lines. The workload accumula-
tion stops at the maximum number of task periods, 20.

In Figure 9.10 the bounds on the deadline miss probabilities during the
workload accumulation process of our example are displayed. The parts of the
second terms resulting from the sum over the accumulation vectors are shown
as dashed. In the example this sum approaches the pg,,, from simulation, and
the pessimism comes from the pessimism in 3. These bounds are compared to
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Figure 9.10: The bounds and estimates on the deadline miss probabilities during the
workload accumulation process of the example, along with results from simulation.

the results from the simulation.

Using estimates on [ as outlined in Section 9.4.8 in our example gives the
values displayed in Figure 9.8. Here the initial values of beta are taken as an
estimate of the probability of being in the second accumulation period for each
state.

Using these estimates of 3 to find upper and lower estimates of the prob-
abilities of workload depletion gives the results shown in Figure 9.9. The
workload accumulation process stops after 10 accumulation periods.

The estimates of the deadline miss probabilities for each state during the
workload accumulation process, along with the deadline miss probabilities
from the simulation, are shown in Figure 9.10. The parts stemming from the
second term of Equation (9.30) are dashed.

Comparing the two approaches, the bound on (3 is a safe overestimate, but
relies on having a bound or close estimate for the first accumulation period.
The estimate on (3, however, is not a safe bound but can be initiated with a
rough estimate in the first accumulation period. Using the estimate of 3 results
in a lower first term in the deadline miss probability psz calculation of Equa-
tion (9.30). In the example, this estimate is about 2.5 times higher than the
deadline miss ratio obtained in simulation, while the bound is about 5 times
higher.

9.6 Evaluation

9.6.1 Goal of the Evaluation

We aim to evaluate the proposed method of bounding and over-estimating the
deadline miss probability pg,, for a task implementing a Markov Model, where
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the execution times of the jobs vary depending on the task’s state. In addition,
we aim to investigate the method’s sensitivity to the shape of the execution
time distribution.

For this purpose, we use a test program with a known Markov Chain struc-
ture. The deadline miss probability bounds and estimates calculated with the
proposed method are compared to deadline miss probabilities from simula-
tions, and to the deadline miss ratio obtained when running a task under the
Linux SCHED_DEADLINE scheduling policy that implements CBS based on
EDF. To investigate the sensitivity to the distribution shape, test programs with
two shapes of execution time distributions are implemented, one with Gaus-
sian and one with shifted/ translated exponential distributions. The Gaussian
distribution is used to evaluate the method with the conditions fulfilled. We
choose exponential distributions for comparison. With a lower bound on the
computation times, at which the probability density is highest and a wider tail
compared to the Gaussian distribution, it is chosen as a challenge to the pro-
posed method.

A test program with a three-state Markov chain structure is implemented
that activates jobs periodically. In each job, a state transition may be per-
formed, and different computations are performed depending on the current
state. Execution time traces are obtained from running the program under
FIFO scheduling. These traces are used to estimate the means and standard
deviations for the three states of the Markov model. They are also used to es-
timate the rate and translation parameter for the exponential distribution used
in the simulation for comparison with the exponential test program. The tran-
sition matrix is known from the test program implementation.

The Markov models obtained in this way are used with the methods de-
scribed in Section 9.4 to calculate the deadline miss probability bounds and
estimates. The maximum number of accumulation periods is set to 20. Three
different configurations of server budget and period ratios are used. For each of
these configurations, two relative deadlines are evaluated. The configurations
are listed in Table 9.2.

The test program is run under SCHED_DEADLINE with the different con-

Table 9.2: Server parameters.

Qms) | n | k1| ko
100 417 | 8
120 317 8
90 419 |10
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figurations of server budget, period ratio, and deadline. The deadline miss
ratios are calculated and compared to the estimates.

A simulation is performed, where the Markov Model is used to generate
execution time samples for 10° task periods. Gaussian distributions with the
parameters from Table 9.3 are used in the simulation for comparison with the
Gaussian test case. Translated exponential distributions with translation and
rate parameters from Table 9.4 are used in the simulation for comparison with
the exponential test program. The workload in simulation is tracked according
to Equation (9.2). Deadline miss ratios for each state and the overall deadline
miss ratio are recorded.

9.6.2 Test Setup

A test program with three states has been implemented. The program executes
periodically, and jobs perform a state transition according to a transition ma-
trix, followed by a state-dependent computation with a pseudo-random vari-
ation. We evaluate two versions of the task, one where the execution times
of each state are distributed according to a Gaussian and one where they are
distributed according to an exponential distribution. That is, a number is gener-
ated from a Gaussian or exponential distribution with parameters depending on
the current state. An iteration of additions, modulo operations, and swaps are
performed in a small (100 integers) memory area, and the number of iterations
is proportional to the generated number. The test program versions are imple-
mented so that the means and standard deviations of the states’ distributions
are similar. The exponential distributions are shifted to accommodate this.
The test program contains a deadline miss counter, and at the end of each job,
a check for deadline miss is performed. The program activates 500 jobs be-
fore termination. The tests are performed on a Raspberry Pi 3B+ single-board
computer with Arch Linux ARM kernel 4.14.87 patched with PREEMPT_RT
4.14.87-49, configured with a fully preemptible kernel and timer frequency of
100Hz. The test program is pinned to a core set up as an exclusive cpuset,
and the scaling governor is set to performance.

9.6.3 Timing Traces and Markov models

Timing information is collected with the ftrace framework, trace—cmd is
run, recording sched_switch events. The execution time is calculated as
the time from the process is switched in until the time when it is switched out.
Executions of the program for collecting timing information are performed un-
der FIFO scheduling with maximum user-space priority. The traces are used
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for estimating means and standard deviations of the states. The first 50 execu-
tion time measurements are excluded because in some cases there have been
outliers in this region. The execution times from the traces are classified into
states by cutoff points at 250 ms and 400 ms. The means and standard devia-
tions need to be estimated. Although we know the parameters of the distribu-
tions to generate the random numbers, we do not know how these translate into
execution times. The means and standard deviations are calculated incremen-
tally. The first estimate uses the first execution time trace, then traces are added
until the addition of a trace changes all means and standard deviations by less
than 1%. This results in 7 traces being included in the estimate for the Gaus-
sian distributions and 9 traces for the exponential distribution. Histograms of
the traces can be seen in Figure 9.11.
The transition matrix of the test program is

0.7 0.2 0.1
M=|(05 03 02], (9.35)
0.5 0.4 0.1

which gives stationary probabilities of 0.625, 0.25, and 0.125 for the respective
states. The means and standard deviations for the states are shown in Tables 9.3
and 9.4. In Table 9.4 the rate and translation parameters of the exponential
distribution are also shown. The rate parameter is o', and the translation
parameter is p — o.

Histograms of all execution times from the traces are shown in Figure 9.11.
Gaussian distributions with the means and standard deviations are overlaid and
scaled with the stationary probabilities.

9.6.4 Evaluated Methods for Deriving a Deadline Miss Probability

In the evaluation, we compared four different methods for deriving the
deadline-miss probability. Those are:

* Linux-CBS : A deadline-miss ratio using a Linux CBS evaluation with a
SCHED_DEADLINE. For each evaluated combination of server budget @),

Table 9.3: Characterization of the states of the Gaussian version traces.

State | mean (ms) | standard deviation (ms)
1 107.111 8.513
2 321.611 10.853
3 536.221 12.174
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Figure 9.11: Histograms of the execution times from the Gaussian (a) and exponential
(b) version FIFO traces with the Gaussian distributions used in the method and the
exponential distributions used in the simulation for (b) overlaid.

task to server period ratio n and the relative deadline to server period ratio k,
60 runs of the program under SCHED_DEADLINE are performed. Deadline
misses after the first 50 periods of each run are recorded, as there appears to
be an increased number of deadline misses in a run-in period. The bandwidth
is 50%.

» SIM: A deadline-miss probability derived with Markov chain simulation.
The obtained Markov models are used to simulate a sequence of 10% sam-
ples. For the Gaussian test program we use the Gaussian parameters in Ta-
ble 9.3, and for the exponential test program we use the rate and translation
parameters from Table 9.4. The output execution time sequence is analyzed
with the different configurations of server reservation, period ratio, and dead-
line as listed in Table 9.2. The workload depletion ratio and the deadline miss
ratio for each state are recorded.

* Bound: A safe bound on the deadline-miss probability, using the accumula-
tion process defined in Section 9.5 with the upper bound on 3 as defined in
Section 9.4.7.

* Estimate: An estimate of the deadline-miss probability, using the accumu-

Table 9.4: Characterization of the states of the exponential version traces.

State | mean (ms) | stddev (ms) | rate (ms~!) | translation (ms)
1 106.960 8.891 0.11248 98.0696
2 321.761 11.143 0.089742 310.6178
3 535.293 12.242 0.081688 523.0508
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Figure 9.12: Result from test program with Gaussian emission distributions.

lation process defined in Section 9.5 with the estimate on 5 as defined in
Section 9.4.8.

9.6.5 Results & Discussion

The deadline miss probability bounds and estimates pg,, obtained during the
workload accumulation process are shown in Figures 9.12 and 9.13. Here, we
also show deadline miss ratios of simulation with the Markov Model and the
mean deadline miss ratios of the executions under SCHED_DEADLINE.

From the results shown in Figure 9.12, it is clear that the calculated bound
adds significant pessimism compared to the estimates. The pessimism in-
creases with 5 to 70 times when using the bounds on 8 compared to the es-
timates. Estimates and bounds are tightest for the state with the highest dead-
line miss probability. The pessimism in the overall case is 5 to 20 times higher
compared to state 3. We also see lower pessimism for the cases with lower
utilization and for shorter deadlines. In the case with 8 estimates and Q/n/k =
100/4/7 the pessimism in state 3 is 1%, but with parameters 120/3/8 it increases
to 40%.

When compared to the test with exponential execution time distributions
as shown in Figure 9.13, we see that as expected the shape of the execution
time distribution affects the deadline miss probability. When the assumption of
Gaussian distributions does not hold, in one case (state 3 with server/ deadline
parameters 100/4/7), the resulting deadline miss probability estimate, 3.11%,
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Figure 9.13: Result from test program with exponential emission distributions.

is lower than the deadline miss ratio obtained from simulation, 3.38%.

9.7 Conclusions and Future Work

In this paper, we proposed a workload accumulation scheme for upper bound-
ing or estimating the deadline miss probability of a task executing in a Con-
stant Bandwidth Server (CBS), having execution times modeled by an Hidden
Markov Model (HMM) with Gaussian emission distributions. The deadline
miss probability bounds and estimates obtained with the method are compared
with deadline miss ratios of tasks running under the Linux kernel implemen-
tation of CBS. The bounds and estimates are also compared with the results
from the simulation for each state separately and for the overall case. Tasks
with Gaussian and exponential execution time distributions are evaluated. The
comparison of the analytical and empirical results shows that the proposed
methods result in a safe upper bound, except in one experiment instance. With
Gaussian distributions all bounds and estimates are overestimates. The esti-
mate for the state with the highest DMP is optimistic in one experiment in-
stance performed on the exponential distribution. The estimate over all states
is still safe in this case.

The performed evaluation has focused on assessing the pessimism intro-
duced for a case where assumptions hold, and getting an initial estimate of the
feasibility of the approach when the shape of the emission distributions differs
from the Gaussian assumption. In future work, we intend to perform further
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evaluation. First, we will evaluate the method with a more realistic work-
load. Second, we will evaluate the scalability of the approach, in comparison
to the method proposed by Frias et al. [16, 5], and investigate the usefulness of
the proposed method in adaptive settings. The estimates could potentially be
used for monitoring changes in the deadline miss probability and adapting the
Quality-of-Service (QoS) level.
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