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Abstract

Intelligent devices, interconnectivity, and information exchange are charac-
teristics often associated with Industry 4.0. A peer-to-peer-oriented architec-
ture with the network as the system center succeeds the traditional controller-
centric topology used in today’s distributed control systems, improving infor-
mation exchange in future designs. The network-centric architecture allows
for the usage of IT solutions such as cloud, fog, and edge computing in the au-
tomation industry. These are IT solutions that rely on virtualization techniques
such as virtual machines and containers. Virtualization technology, combined
with virtual instance management, provide the famous elasticity that cloud
computing offers. Container management systems like Kubernetes can scale
the number of containers to match the service demand and re-deploy containers
affected by failures.

Distributed control systems constitute the automation infrastructure core
in many critical applications and domains. The criticality puts high depend-
ability requirements upon the systems, i.e., dependability is essential. High-
quality software and redundancy solutions are examples of traditional ways
to increase dependability. Dependability is the common denominator for the
challenges addressed in this thesis. Challenges that range from concurrency
defect localization with static code analysis to utilization of failure recovery
mechanisms provided by container management systems in a control system
context.

In this thesis, we evaluate the feasibility of locating concurrency defects
in embedded industrial software with static code analysis. Furthermore, we
propose a deployment agnostic failure detection and role selection mechanism
for controller redundancy in a network-centric context. Finally, we use the
container management system Kubernetes to orchestrate a cluster of virtual-
ized controllers. We evaluate the failure recovery properties of the container
management system in combination with redundant virtualized controllers -
redundant controllers using the proposed failure detection and role selection
solution.
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Sammanfattning

Sammankoppling och informationsutbyte mellan intelligenta enheter
förknippas ofta med Industri 4.0. För styrsystem innebär Industri 4.0 att en
plattare arkitektur, där nätverket är centrum för systemet, efterträder dagens
controllercentrerade styrsystemtopologi och förbättrar informationsutbytet.
Den nätverkscentrerade arkitekturen möjliggör ökad användning av teknik
utvecklad för IT-ändamål i styrsystemskontext - teknik som möjliggör en
högre grad av flexibilitet i automationssammahang. Flexibiliteten möjliggörs
till stor del av virtualisering i form av virtuella maskiner, containers och
hanteringen av dessa. Containerhanteringssystem, som Kubernetes, kan öka
och minska antalet containers för att matcha behov och omfördela containers
som exponerats för fel. I styrsystemsammanhang kan den här typen av system
användas för att förbättra tillgänglighet och flexibilitet.

Distribuerade styrsystem är kärnan i automationsinfrastrukturen för kri-
tiska system, tex. driften av oljeplattformar eller kraftverk. I dessa miljöer
är hög systempålitlighet och tillförlitlighet fundamentalt. Traditionellt är re-
dundans, tex. duplicering av kritisk hårdvara, tillsammans med högkvalita-
tiv mjukvara ett sätt att tillhandahålla hög tillförlitlighet. Den gemensamma
nämnaren för de utmaningar som tas upp i denna avhandling är systemtillförl-
itlighet. Utmaningarna sträcker sig från lokalisering av parallellexekveringsre-
laterade mjukvarufel med statisk kodanalys till containerhanteringssystem.

I avhandlingen utvärderar vi möjligheten att lokalisera parallellexekver-
ingsrelaterade mjukvarufel med hjälp av statisk kodanalys. Vidare presenterar
vi en kombinerad mekanism för feldetektering och redundansrollsval för re-
dundanta controllers i en nätverkscentrisk kontext. Slutligen använder vi con-
tainerhanteringssystemet Kubernetes för att orkestrera ett kluster av virtualis-
erade controllrar och utvärdera containerhanteringssystemets feldetektering i
kombination med vår mekanism för redundansrollsval och feldetektering.
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Chapter 1

Introduction

Automation and control technology is integral to our everyday lives - inte-
grated into dishwashers, washing machines, and other household aid in our
homes. It is also a fundamental part of the critical infrastructure that provides
our society with utility services such as power and water. These automation
technology solutions are growing in intelligence and utilizing internet connec-
tivity to a higher degree to provide better services. For example, an intelligent
refrigerator keeps track of the content’s status and gives the owner remote ac-
cess to that information. Compared to a 1990s refrigerator that only kept cool,
the intelligent refrigerator exemplifies the increased interconnectivity and in-
telligence trend in consumer devices, often referred to as the Internet of Things
(IoT) [1]. IoT devices, with various intelligence, connect to other devices,
users, and central data servers (the cloud). The IoT trend is enabled by the
decreased cost of electronics, offering more computational power per dollar,
and the Internet’s cost-effective interconnectivity.

The industrial IoT analogy is Industrial Internet or Industrial IoT (IIoT) [2].
IIoT technology lays the ground for what the German government coined as
the fourth industrial revolution, Industry 4.0. A revolution signified by in-
creased device intelligence and interconnectivity [3]. Examples of envisioned
benefits to reap from Industry 4.0 are lower maintenance costs due to predictive
maintenance and highly customizable production chains, to mention a few.

The somewhat conservative process automation industry is also transcend-
ing into the era of Industry 4.0, impacting even the core of automation, namely
the control system.

Controllers and control systems are systems that control other systems or
devices. A Distributed Control System (DCS) is a large-scale control system.
A typical DCS consists of multiple interconnected controllers that communi-
cate with each other. A DCS is typically the core of large-scale automation

3



4 1.1. Dependability

solutions, for example, the automation solution of a whole plant or factory.
DCSs are the automation foundation in various domains, from offshore oil

rigs, harbor crane automation, and paper mills to power generation and water
distribution plants. Places where downtime or unplanned events can be costly,
have an environmental impact, lead to injuries, or even the loss of human lives.
In other words, dependability is fundamental for DCS.

And that is the overall goal of the thesis, addressing and utilizing
dependability-related challenges and possibilities imposed by the paradigm
shift, further elaborated in the following sections.

1.1 Dependability

Dependability is a comprehensive subject that, a bit simplified, can be said to
address a system’s trustworthiness—the more critical the domain, the higher
the confidence requirements on the system. The term dependability is broad
and consists of five more concrete attributes: availability, reliability, integrity,
maintainability, and safety [4].

Availability is the proportion of time that the system is available and per-
forming the designated task. As an example, the availability of 99.9% trans-
lates to roughly nine hours of downtime per year. Reliability is the proba-
bility that the provided service will function in a bounded time interval [0, t].
I.e., the likelihood of continuous interrupted service, quantified with a Mean
Time Between Failure (MTBF). Integrity is about minimizing the probability
of fault-induced improper states in the system. Such as reducing the risk of
incorrect system states due to soft errors induced by a bit-flip in a memory
cell or on a communication link. Errors can be unintentional, such as cosmic
radiation causing a bit-flip, or deliberately created by a malicious intruder’s
data tampering. Maintainability is the ability to maintain the system, typically
including the possibility of replacing hardware and updating software. Safety
is the avoidance of severe consequences in case of failure.

1.2 Redundancy

Even though the hardware and software might be of outstanding quality, the
probability of failure is never zero - neither for hardware nor software. Re-
dundancy is a common failure measure, dividable into three categories, (i)
information redundancy, (ii) temporal redundancy, and (iii) hardware (physi-
cal) redundancy [5]. As the name implies, information redundancy is adding
redundant information to be able to detect and even correct faults, such as a



Chapter 1. Introduction 5

checksum to a transferred message. Temporal redundancy typically means rep-
etition, for example, transmitting the same message multiple times to compen-
sate for transient faults in the transmission medium [6]. Hardware duplication
is the duplication of hardware, and it can counteract both permanent compo-
nent failures and temporary disturbance by, for example, duplicating the com-
munication paths [7]. Hardware redundancy is a common failure mitigation
strategy and comes in many different flavors—for example, triple redundancy
in the aerospace industry [8].

In an industrial automation control system context, hardware redundancy
usually comes in two different flavors, one mainly for availability and one pri-
marily for high integrity. Hardware duplication with identical software is the
redundancy flavor for increased availability, where a backup controller can re-
sume operation in case of failure of the primary. The primary is controlling
the process, and the backup is on standby. The standby level of the backup
varies depending on the need; cold, hot, or warm, and relates to the level of
backup readiness. Cold means that the backup is not executing at all; a cold
standby example is a spare controller that, after manual replacement, resumes
the operation of the replaced unit. A backup in hot standby can seamlessly
resume operation from the controlled process perspective, while a backup in
warm standby can resume operation almost seamlessly. Typically, output sig-
nals hold their last value for a known, upper-bound takeover time until the
backup has resumed operation. The redundancy pattern described, with one
backup ready to take over for one primary, is the one-out-of-two (1oo2) pat-
tern. The 1oo2 pattern is an M-out-of-N (MooN) specialization, meaning that
M controllers are active out of a total of N. We call the set N, consisting of the
controllers forming the set of redundant controllers, the redundant set.

Parallel execution is another alternative, where all the controllers in the re-
dundant set are active and producing output, and it has the potential to elevate
both availability and integrity. If all the controllers in the redundant set pro-
duce output, output values are available as long as controllers run. Voting is
the process of selecting which controllers’ output to use. Parallel execution can
also serve as a pure integrity-elevating redundancy pattern with diverse hard-
ware and software. A somewhat simplistic view is to see this as two separate
channels based on diverse hardware and software, where one channel produces
the data and the other a data checksum, independent of each other. The data
consumer typically follows the same two-channel pattern, i.e., two channels
computing and comparing the checksum with the received.
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1.3 Cloud, fog, and edge

In the wake of Industry 4.0 and Industrial Internet follows more extensive
cloud computing use, i.e., the utilization of computational power typically
hosted in a data center. Cloud computing is a familiar concept used at a large
scale for consumer applications and services, such as social media, web host-
ing, and streaming. However, cloud computing is not commercialized to any
significant extent for the automation industry, especially not for control exe-
cution, due to the need for deterministic communication with a known upper
bound end-to-end communication time. In addition, some applications require
very short communication cycles, which lay in the few millisecond range. The
cloud is not the solution for those applications needing quick and precise end-
to-end communication times since geographic distance and light speed impose
hard limits on the end-to-end communication time.

Along with cloud computing comes fog and edge computing, where fog
computing utilizes computational power geographically located between the
cloud and the edge of the site network. Edge computing uses computational
power on devices at the network’s edge, such as cloud connectivity devices.
Edge device(s) can also serve as a private cloud, i.e., an exclusive cloud not
shared amongst different organizations. The cloud utilizer typically hosts pri-
vate clouds on on-site local servers such as edge devices. The opposite of
private clouds is the data center-hosted public clouds available for all paying
cloud customers. Fog and edge computing address the remote cloud commu-
nication problem by bringing some of the cloud’s computational power and
elasticity geographically closer to the controlled process [9, 10, 11].

1.4 Cloud technology and software quality

Clouds in the sky appear when water vaporizes and rises, a twenty-four-seven
process without human involvement. Cloud-provided services intend to give a
similar carefree existence to their users, i.e., the cloud services are just there
and working, much like other utility services, such as power and water. How-
ever, behind the service are hordes of hardware managed and utilized with
advanced software. Software that provides the cloud with the desired elastic-
ity properties. Behind the software are companies and open-source commu-
nities with their employees and contributors. The Cloud-Native Computing
Foundation (CNCF) 1 provides an overview of the vast product flora of cloud-
related software. Virtualization, especially the more performant container-

1
https://www.cncf.io/

https://www.cncf.io/
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based lightweight virtualization, combined with an orchestration system such
as Kubernetes2 is the cornerstone in providing the elasticity offered by cloud
providers. Elasticity is defined as the capability of scaling the computational
power of services to meet the current need [12].

During the early days of computerization, all computer applications ran
bare metal on the hardware; then came the operating system, such as DOS
and Unix, providing more base services and flexibility, with the flip side of
increased software volume and complexity. Today, virtualization and orches-
tration add additional layers and more software. Software that often executes
on multi-core hardware platforms. In other words, the amount of software in
society is increasing. The Industry 4.0 revolution with increased intelligence
and virtualization is just one example.

1.5 Thesis contribution

As described in the earlier sections, the general trend in society is toward in-
creased use of software-provided services. One example of this is the added
"intelligence" and connectivity to traditional functions, like the fridge’s cool-
ing function and the washing machine’s washing function. Today, they can
offer users more services, such as notifications when groceries are missing
from the fridge and the laundry is done, or optimize washing powder dosage
depending on water properties. In the industry context, the trend of increased
interconnectivity and intelligence often goes under the flag of Industry 4.0.
This thesis addresses dependability challenges and possibilities brought to the
DCS domain by the Industry 4.0 transformation. A transformation that brings
more intelligence and flexibility, intelligence and flexibility enabled by soft-
ware. Hence, we start with a software-related challenge.

A well-defined development process with code reviews and testing is com-
mon practice in quality software development. However, bugs with low man-
ifestation probability can slip under the test radar. Concurrency defects are a
certain kind of software defects that show low manifestation characteristics.
With virtualization, legacy controller software can run in new execution en-
vironments – a runtime environment with different traits than the traditional
hardware hosting the controller software. A new runtime environment can po-
tentially increase the probability of the manifestation of dormant concurrency
defects. Hence, the first contribution of this thesis is to evaluate the possibility
of using static code analysis tools to locate concurrency bugs in the source code
of embedded real-time systems that provide the core functionality of control

2
https://kubernetes.io/

https://kubernetes.io/
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systems.
Redundancy is another cornerstone when it comes to increasing depend-

ability. The gaining interest in virtualization and network-centric topologies
motivated us to research and propose a deployment agnostic failure detection
and redundancy role selection solution suitable for time-sensitive control sys-
tems.

Finally, we show how orchestrator failure recovery can impact controller
availability. We do that in two steps: firstly, by describing the software com-
ponents needed and the alternatives available to set up a Kubernetes cluster
for a containerized controller, and secondly, by measuring failure recovery
times. Kubernetes is one of the more well-known container orchestrating sys-
tems. Combining the containerized controllers’ redundancy mechanism with
the orchestrator failure recovery results in a pseudo 1ooN controller redun-
dancy. Where the redundant and virtualized controller utilizes the, in this the-
sis, presented, failure detection and role selection algorithm. We measure the
interupdate time of signals published from the containerized controllers while
injecting errors to the container hosting nodes. Measurements provide a basis
for understanding the failure recovery of a controller in an orchestrated envi-
ronment.



Chapter 2

Background and Related Work

Technology constantly evolves, and now and then, evolution takes a more sig-
nificant step on the evolutionary ladder; a potential paradigm-shifting stride.
Some argue that with the growth of technology, paradigm shifts will occur
more frequently [13]. Historical examples of technology-induced paradigm
shifts are the industrial revolutions. The first industrial revolution introduced
machine-aided production and impacted society in the late 18th century. In the
19th century, electrification led to the second industrial revolution, followed by
the digitalization enabled third industrial revolution in the 20th century. Today,
at the beginning of the 21st century, we are part of another paradigm shift that
the German government, in 2014, denoted as the fourth industrial revolution or
Industry 4.0. Since then, and even before, the impact of Industry 4.0 and the In-
dustrial Internet has been researched [14, 15, 16]. The work presented in this
thesis is motivated by the continuous technology transformation and further
highlighted by Industry 4.0 transformations imposed on DCS. It ranges from
concurrency defects localization in control system software to redundancy and
container orchestrations.

2.1 Software and concurrency defects

As touched upon in earlier sections, controller dependability is essential. The
source code of a modern controller firmware can consist of millions of lines
of code. Therefore, rigorous development processes with extensive testing are
fundamental to controller firmware development. However, defects with low
manifestation probability might not result in a detectable failure during the test
period, which means the fault can lay dormant and undetected. An example of
such a category of defects is concurrency defects.

9



10 2.1. Software and concurrency defects

2.1.1 Concurrency defects

Simplified, one can say that concurrency defects manifest as errors when spe-
cific execution interleaving patterns between execution entities occur in an
unintended way, resulting in an erroneous application state. However, when
scratching further on the surface of concurrency defects, one notices several
types of concurrency defects with different characteristics. Therefore, Asadol-
lah et al. [17] propose a classification of concurrency defects based on observ-
able properties.

The inherent interdependence between multiple execution entities can
make the manifestation of concurrency defects random. In other words,
the manifestation probability can be low and appear non-deterministic.
Low manifestation probability makes concurrency defects time-consuming
to locate; it can take months [18]. In addition, the push for more
intelligent devices, virtualization, elasticity, and interconnectivity driven
by Industry 4.0, increase the amount of software used in the automation
domain [19, 20, 21, 22]. On top of that, virtualization can potentially change
the probability of manifestation of dormant concurrency defects due to
changed timing when changing the execution context. For example, when
moved to a virtualized environment, legacy software running flawlessly in
its original execution context might fail due to the manifestation of dormant
concurrency defects exposed only in the new environment.

Concurrency defects mitigation measure can be applied in all phases of
development, from modeling [23], code analysis [24] to runtime [25, 26, 27].
In this thesis we focus only on code analysis as concurrency defect mitigation
method, further elaborated and motivated in the following section.

2.1.2 Static code analysis

Static Code Analysis (SCA) is the process of checking the source code against
a set of predefined rules, rules that often come from a guideline or standard,
such as MISRA1. Typically, a tool performs the check. SCA tools of today are
capable of advanced analysis, including localization of concurrency defects.
Examples of such tools are CodeSonar2 and PolySpace BugFinder3. Even
though, as mentioned, other methods exist for detecting and thereby mitigat-
ing concurrency defects, we choose to focus on SCA. The selection of SCA
is motivated by its potential to detect and locate concurrency defects both in

1
https://www.misra.org.uk

2
https://www.grammatech.com/codesonar-cc

3
https://www.mathworks.com/products/polyspace-bug-finder.html

https://www.misra.org.uk
https://www.grammatech.com/codesonar-cc
https://www.mathworks.com/products/polyspace-bug-finder.html
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legacy code as well as the latest and greatest developed product feature code,
just about to be integrated into a build.

Earlier work has evaluated the SCA tool’s capability to detect concurrency
defects. Manzoor et al. [28] and Mamun et al. [29] evaluate concurrency defect
detection in Java code. When it comes to C and C++, Shiraishi et al. [30] use
a C-based test suite, and the Juliet suite [31] is another prominent test suite.
However, both have limited C++ code, and C++ and object-oriented design
are often used to build the embedded software for DCS, thus motivating a
more targeted evaluation. An evaluation using real embedded software and
a C++-implemented testbed with common object-oriented patterns. In Paper
A we perform such an evaluation using real defects and a C++-based testbed
we developed.

2.2 Redundancy and control systems

The controller deployment options increase with the technology evolution and
the transition of control systems into the Industry 4.0 era. The deployment
alternatives of today are typically limited to controller execution on purpose-
built and dedicated hardware. Tomorrow, the options will increase to include
controller deployment on shared resources in a virtualized context [21, 32].
Consequently, to not be deployment limiting, functions need to be adapted and
made deployment agnostic. One such function is controller redundancy. As
mentioned in earlier sections, redundancy is a common way to increase de-
pendability by increasing availability, reliability, and integrity. A redundancy
solution based on highly customized hardware is an example of a deploy-
ment limiting redundancy realization. The dependency on specialized hard-
ware would make it more challenging to deploy such a solution on generic
hardware that does not have customized hardware.

Redundancy as a function is dividable into sub-functions, and the sub-
functions required to provide the redundancy function depend on the redun-
dancy pattern. MooN standby redundancy requires synchronizing the state of
the primary to the backups. State synchronization allows a backup to resume
as the primary without returning to historical value output. I.e., state transfer is
needed. A second essential function in a standby redundancy solution is fail-
ure detection. A backup must detect that the primary has failed to resume the
primary operation. A third key function is role selection, that in a 1oo2 setup
is implicit since the failure of the primary means that the only backup should
resume the primary role. A MooN setup, where we might have multiple back-
ups, requires role selection to ensure that only one of the existing backups
resume in the primary role. Failure detection, role selection, and state transfer
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are redundancy functions that no longer should rely on customized hardware
realization.

The role selection problem is the leader election problem from the dis-
tributed systems domain, applied to a different context and use case - the con-
trol system context and the selection of redundancy role use case. As the name
implies, the leader election is leader selection amongst a plurality of candi-
dates. Having a leader can be one way to ensure consistency by making the
leader responsible for handling shared resources. Similarly, a primary con-
troller is accountable for acting on input values and producing output values.
The producers and consumers of input and output values are the control system
analogy to the shared resources. The difference lay in the real-time aspects; in
case of failure, a new primary must be designated and resume operation within
an upper-bound takeover time in the range of 500 milliseconds [21]. The need
depends on the application and control system vendors want to keep the guar-
anteed time low to support the requirements of a broad range of domains.

One of the more well-known leader election algorithms is the
Bully algorithm presented by Garcia-Molina [33] in the early 1980s.
Since then, there have been many proposals of different leader election
algorithms [34], [35], [36], [37], [38] and improvements of the Bully
algorithm, for example, the Fast Bully Algorithm (FBA) [39].

Failure detection of a remote process is a well-known problem in the dis-
tributed system context. Existing work range from different algorithms, such
as [40] and [41], to work that proposes quality of service metrics [42].

Compared to generic distributed systems, redundant control systems
have deterministic communication patterns on redundant links, minimizing
the probability of communication package loss. Nonetheless, the time
sensitiveness in the automation domain dictates that a backup needs to resume
the role of a failed primary quickly and with an upper-bound time. Hence, this
implies a quick failure detection and role selection. Therefore, a combined
failure detection with redundancy role selection targeting a network-centric
controller is what we present in Paper B.

2.3 Cloud, fog, and edge

Cloud computing is a growing field and argued to be the long-envisioned com-
putation as a utility service [43, 44, 45]. Capable of providing computational
resources on-demand, similar to how other utility services such as water and
power are provided and utilized in society today. The reduced local hardware
footprint, on-demand scalability, and "pay as you go" are some of the attrac-
tive properties cloud computing offers. These properties are desirable from
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an automation perspective and have motivated research toward cloud-hosted
automation solutions [21]. Research has shown that cloud-hosted automation
solutions are possible for soft real-time systems where failure to meet a dead-
line results in functionality degradation instead of system failure [21, 32].

The control logic applications that the controllers run in an automation
solution are often real-time and domain-specific applications with different re-
quirements and tolerance. For example, a building automation solution will
likely be a soft real-time solution that tolerates longer and less determinis-
tic end-to-end communication with the I/O, sensors, and actuators interfac-
ing with the real world. Compared to an emergency shutdown function that
protects expansive equipment, or even human lives, if a dangerous situation
emerges. It is evident that utilizing the cloud, specifically cloud services hosted
in a geographically distant location, has challenges. The geographical distance
between the controlled process and the cloud impacts communication time and
determinism.

Fog computing has emerged as a mitigation to the hard end-to-end com-
munication cycle times imposed by the speed of light and the geographical
distance to the data center constituting the cloud [46, 47]. In other words,
fog computing is the computational elasticity of cloud computing moved geo-
graphically closer to the data consumers/producers to address the problem with
indeterministic and possible long communication paths [46, 48]. In [9] Steiner
et al. propose that the fog can be the cloud for applications that require fast
communication cycles, and the enabler for industrial fog is deterministic com-
munication and virtualization. Pop et al. [10] argue that the Time Sensitive
Network (TSN) standard enables reliable and deterministic communication,
i.e., that TSN is one industrial fog enabler.

An alternative to fog computing is edge computing, i.e., computation on an
edge device. An edge device is typically a somewhat computational powerful
device at the edge of the network [11]. The typical use case for edge devices is
to process data gathered from devices within the sensor network before sending
the data to the cloud. The processing before sending fills two purposes, avoid
sending unnecessary data to the cloud and process the data faster, allowing a
faster/shorter time to provide a reply back to the process. A cluster of edge
nodes can form a computational powerful local and private cloud.

The Open Process AutomationTM Standard4 (O-PAS) defines the
Advanced Computing Platform (ACP). ACP is a platform that may host
multiple virtual controller functions. A platform that provides scalable
physical computing resources, such as CPU cores and memory, to the

4
https://publications.opengroup.org/p190

https://publications.opengroup.org/p190
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virtualized controllers. O-PAS envisions ACP as a private edge-cloud, located
on-premises. Therefore, the ACP is suitable for handling computational
heavy applications or applications that cannot be adequately distributed onto
dedicated controllers.

O-PAS prescribes OPC-UA5 as the realization of the O-PAS Connectiv-
ity Framework (OCF). The virtualized controller in the ACP communicates
with the process using OPC-UA. Deterministic and upper-bounded end-to-end
communication time is realizable using OPC-UA PubSub combined with TSN.
Depending on the requirement, TSN might be optional. OPC-UA and TSN are
considered the future of automation communication [19].

2.3.1 Virtualization and elasticity

Virtualization is a cornerstone in the elasticity provided by the cloud.
Lightweight OS virtualization, in the form of containers, is a performant
alternative to virtual machines [49]. However, virtualization alone is not
enough to give elasticity. Here is where the container management system
comes into the picture. A container management system matches the available
physical resources with the virtualized application requirements. It schedules
and deploys containers upon the available resources. In other words, it
orchestrates the containers; hence container management systems are often
referred to as orchestrators. Rodriguez et al. [50] propose a taxonomy that
they use to classify the leading container orchestrators.

The elasticity provided by containers and container management systems
bring desirable properties to the DCS context, and earlier research has pro-
posed flexible control architectures based on containers [22, 51]. Another
dependability-positive property that container management systems such as
Kubernetes6 provide is failure recovery. If detected, regardless of the reason,
software or hardware, a failed container can be redeployed by the container
management system, assuming that sufficient resources are available. Vayghan
et al. [52] provide a Kubernetes operator that reduces the downtime in case of
failure to the range of seconds.

Quick recovery of failed containers could complement or even replace a
redundancy solution. To be considered a redundancy replacement, recovery
times lower than 500 milliseconds are needed [21]. Container management
system failure-recovery can complement a 1oo2 controller redundancy be-
tween virtualized controllers and provide a pseudo 1ooN redundancy. Which
is what we describe and evaluate in Paper C.

5
https://opcfoundation.org/

6
https://kubernetes.io/

https://opcfoundation.org/
https://kubernetes.io/


Chapter 3

Research Goals

The earlier sections have introduced the transformation of DCS. A shift to-
wards virtualization usage in the DCS domain with the network as the infor-
mation backbone. Within this change, challenges and possibilities related to
dependability arise.

Software quality is fundamental for dependability, where the deployment
of existing firmware in virtualized runtimes on new platforms actualizes con-
currency defect mitigation interest. The changed execution environment can
change dormant concurrency defects manifestation probabilities. Furthermore,
the network-oriented and virtualized environment means redundancy solutions
that must function in a virtualized context and on dedicated hardware. At the
same time, orchestrations provide possibilities for failure recovery with the re-
deployment of virtualized applications. In other words, the transformation of
DCS provides dependability challenges and opportunities. That is the overall
goal of the thesis, namely to address the challenge and utilize possibilities re-
lated to dependability, spawning from the transformation of DCS. The above
and earlier sections provide the introduction and motivation for the concrete
goals below.

RG 1: To quantify the SCA tool’s capability of concurrency defect localiza-
tion in complex embedded system software. SCA tools of today have
expressed concurrency defect support; however, software constructions
and complexity vary greatly. Therefore, quantification based on different
constructs and complexity levels is needed to understand the feasibility
of using SCA for concurrency defect detection.

RG 2: To find a deployment agnostic approach suitable for electing a primary
from a set of multiple backups in a control system context. A typical re-
dundancy deployment in a controller-centric architecture is a 1oo2 setup
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with potential specialized point-to-point connections for failure detec-
tion, role selection, and state transfer. However, dependency on spe-
cialized point-to-point connections limit deployment alternatives; hence
more flexible solutions are desirable. A deployment-agnostic solution
does not limit the deployment alternatives to specific hardware, and it
allows for deployment in a virtualized context.

RG 3: To use container orchestrator properties to increase controller availabil-
ity. Container orchestrators, such as Kubernetes, have a failure recovery
mechanism that could complement traditional redundancy solutions and
increase availability.



Chapter 4

Research Process and Methods

The work presented is a result of tight collaboration with industry. Given the
author’s history in the industry, the research work performed and presented
in this thesis is applied research. The aim is to be able to contribute to the
landscape intersecting the scientific academia and the engineering industry.
We bring industry challenges and experience to the scientific context, striving
to produce artifacts that gain both.

The overall method we use in the thesis, summarized in Figure 4.1, is
our variant of the hypothetico-deductive method [53]. As mentioned above, it
starts with the industrial partner identifying a problem or question that we then
form a research challenge around, using the below sequence of questions.

a What is the state-of-the-art in the area of the problem?

b What is the state-of-practice in the area of the problem?

c When a and b is answered, do we have a research challenge? If not, start
over.

We address the challenge with a literature search and review. Based on the
knowledge gained from the literature found, we form a potential solution or an
experiment that addresses the challenge. Lastly, we implement the solution or
perform the experiment and evaluate the outcome. If the outcome concludes
that we need to revisit an earlier step, we do that. On the other hand, if the
knowledge we gained from the literature review answers the challenge, we
present the knowledge to our industry partner and start over. The need for re-
visiting an earlier step can arise in all steps but is not illustrated in Figure 4.1for
simplicity reasons.
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Identify a problem

Form a research challenge

Perform a literature review

Propose a solution or
 experiment

Implement the solution or
 perform the experiment

Evaluation of the outcome

Are we
 done?

Yes No - revisit appropriate phase

Figure 4.1: The larger research method cycle.



Chapter 5

Thesis Contributions

This chapter presents the thesis contribution and how the contribution connects
and relates to the papers included in the thesis. We start with a summary of the
contributions and a mapping of the goals. In the final sections, we provide a
more elaborated contribution description.

5.1 Contributions

The contributions of the thesis are summarized below. Table 5.1 shows the
mapping between the contribution and goals.

• C1: An evaluation and quantification of SCA tools’ detection capabili-
ties of concurrency defects in embedded control system software.

• C2: An algorithm for failure detection and redundancy role selection
within a redundant controller set. A redundant controller set that can
consist of a plurality of backups running on dedicated hardware or vir-
tualized on a shared execution platform.

• C3: A concrete bare-metal Kubernetes cluster architecture for hosting
containerized high-availability controllers on embedded devices. In-
cluding an overview of the additional software components needed and
the configuration alternatives needed for failure recovery.

• C4: Failure recovery time measurements of a single and redundant con-
tainerized controller hosted in the Kubernetes cluster. The measures
provide the basis for understanding potential orchestrator-induced avail-
ability improvements. The orchestrator failure recovery combined with
a 1oo2 controller redundancy results in a pseudo-1ooN redundancy.
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Table 5.1: Contribution to goal mapping.

RG1 RG2 RG3
C1 X
C2 X
C3 X
C4 X

5.1.1 C1: An evaluation and quantification of SCA tools’ detec-
tion capabilities of concurrency defects in embedded control
system software.

The first contribution of this thesis comes from the work presented in Pa-
per A and is a quantification of SCA tools’ capability to detect concurrency
defects. Modern controller software can consist of millions of lines of code.
The controller is the central part of a DCS system but far from the only one.
Communication interfaces providing fieldbus connectivity, I/O modules, ac-
tuators, and sensors are examples of other products. Products that also are
embedded real-time-system. In other words, the amount of software in a dis-
tributed control system is extensive. Typically control system vendors provide
and develop these products, which means that the vendor has a large codebase
to maintain. The Industry 4.0 transition will likely increase the amount of soft-
ware even further. Hence, effective software defect detection and mitigation
measures are highly relevant. The contribution is the result of the strive to-
wards RG 1. RG 1 originated as a question from our industry partner, whether
or not SCA tools are helpful for concurrency defect detection. Since tool-aided
SCA is already a part of the development process, the step to add concurrency
detection could be small.

Concurrency defects vary in complexity and observable properties [17].
We developed a testbed for the quantification - a testbed that consists of var-
ious types of concurrency defects with varying complexity. An example of
complexity variation is the function call depth from a thread entry function
to a concurrency-wise improperly handled shared resource. Additional to the
quantification result, the developed testbed is a sub-contribution. Even though
a testbed with deliberately implemented defects can be valuable, it is also ad-
vantageous to use actual defects that result from genuine mistakes [54]. Which
we also do.

We use the testbed and the real defects to quantify the SCA tool’s capability
of concurrency defect detection. The result of that work is our first contribu-
tion, contribution C1, published and further described in Paper A.
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5.1.2 C2: An algorithm for failure detection and redundancy role
selection within a redundant controller set. A redundant
controller set that can consist of a plurality of backups run-
ning on dedicated hardware or virtualized on a shared exe-
cution platform.

The result from the quest toward research goal two, RG 2, is the second contri-
bution of this thesis. As stated in RG 2, dependency on specialized hardware
reduce deployment alternatives. RG 2 addresses deployment agnostic failure
detection and role selection, targeting control system standby redundancy.

As mentioned in earlier sections, redundancy role selection is a variant of
the leader election problem. Over the years, the distributed system commu-
nity has presented many leader election algorithms; one of the more famous
is the Bully algorithm [33]. In addition to redundancy role selection, failure
detection is essential in a standby redundancy solution. Using a heartbeat is a
classic failure detection method; a heartbeat is a cyclic message sent from the
supervised to the supervising, a so-called push-based failure detection [55].
Other techniques exist, for example, a pull-based, where the supervisor sends
a message to the supervisee and expects a reply.

The second contribution of the thesis consists of an algorithm that com-
bines role selection with heartbeat-based failure detection. An algorithm that
we call heartbeat bully. Similar to the original Bully algorithm, the backup
with the highest priority wins. The analogy is that it bullies its way to winning
by announcing its presence. Heartbeat bully detects failures and elects the
replacer within an upper bound selection time. The previous sentence summa-
rizes the essential parts, where the upper bound selection time is crucial for
redundant controllers in a control system.

The algorithm is validated using the model checking tool UPPAAL 1 as
well as verified in a real system. As a side note, it is worth mentioning that
the use of UPPAAL in a real industry use case was also valuable. To show
that model checkers, such as UPPAAL, can aid algorithm development in the
pre-implementation phase. Furthermore, model checkers are potentially time-
savers since the algorithm can be verified before implementation and modified
if it does not meet the needs when testing against validation queries.

Contribution two is published and presented in Paper B.

1
https://uppaal.org/

https://uppaal.org/
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5.1.3 C3: A concrete bare-metal Kubernetes cluster architecture
for hosting containerized high-availability controllers on
embedded devices. Including an overview of the additional
software components needed and the configuration
alternatives needed for failure recovery.

Container orchestrators have failure recovery functions, and failure recovery
has the potential to increase availability. The third contribution of this the-
sis comes from addressing research goal three, RG 3. RG3 is about utilizing
container orchestrator failure-recovery mechanisms, such as container rede-
ployment of containers hosted on failed compute nodes, in a control system
context. We use the O-PAS term Distributed Control Node (DCN) to denote
the controller and the term Virtualized DCN (VDCN) for the containerized,
virtual controller.

An orchestrator setup is needed to quantify the failure recovery times of
virtualized controllers in orchestrated context. Hence we needed to select a
container orchestrator. The selection fell on Kubernetes. Kubernetes is one
of the most well-known container orchestrator systems. With Kubernetes as
a base, we describe the architecture of a Kubernetes-orchestrated cluster of
VDCNs.

O-PAS prescribes OPC-UA as the communication foundation.
Therefore, the VDCN uses OPC-UA as the communication means.
OPC-UA Client-Server for acyclic, request-based communication such as a
configuration download from a configuration client and OPC-UA PubSub
to exchange cyclic process values to and from, for example, sensors and
actuators connected to the physical world. OPC-UA PubSub supports
both a broker-based and broker-less mode. Broker-less OPC-UA PubSub
utilizes UDP multicast and network infrastructure to decouple publisher
and subscriber. The VDCN utilizes broker-less OPC UA PubSub; hence
the cluster needs to support UDP multicast. Another consideration for the
control domain is that the controllers are typically stateful applications. For
example, a VDCN requires its configuration and its internal state. Therefore,
the configuration and state must be accessible from all the compute nodes
that can host the VDCN. Based on the above-exemplified prerequisites, we
describe the architecture and identify suitable components to provide the
needed functionality. The results are described and published in paper C and
constitute our third contribution.
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Table 5.2: Contribution to publication mapping.

C1 C2 C3 C4
Paper A X
Paper B X
Paper C X X

5.1.4 C4: Failure recovery time measurements of a single
and redundant containerized controller hosted in the
Kubernetes cluster. The measures provide the basis for
understanding potential orchestrator-induced availability
improvements. The orchestrator failure recovery combined
with a 1oo2 controller redundancy results in a pseudo-1ooN
redundancy.

The fourth contribution, like the third, comes from the work towards the third
research goal, RG 3. In addition, the second contribution, heartbeat bully, is
used as the VDCN redundancy role and failure detection mechanism of the re-
dundant VDCN deployed in the cluster. To understand the usability of Kuber-
netes failure detection, both as redundancy replacement and as a redundancy
complement, we measure the downtime while injecting failure to the compute
nodes hosting the single VDCN and the primary VDCN of a redundant VDCN
pair. The single configured, i.e., a non-redundant VDCN, is used to measure
the recovery times when relying solely on Kubernetes failure detection and re-
covery. The purpose of the single VDCN is to understand how feasible, based
on the quantification, it is to use Kubernetes failure recovery as a redundancy
substitute.

The redundant configured VDCN consists of two VDCNs, i.e., two con-
tainerized controllers running on two different compute nodes. One is the ac-
tive primary, the other is the passive backup, a 1oo2 warm standby redundancy,
and heartbeat bully provides failure detection and role selection. The VDCN
redundancy and Kubernetes failure detection constitute a pseudo 1ooN redun-
dancy. The above summarizes the fourth contribution described and published
in paper C.

5.2 Included papers

In this section, the papers included in the thesis are outlined. The papers are
mapped to the contributions in Table 5.2.
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5.2.1 Paper A

Title: Concurrency defect localization in embedded systems using static code
analysis: an evaluation.
Authors: Bjarne Johansson, Alessandro V. Papadopoulos, and Thomas Nolte.
Status: Published at ISSRE 2019.
Abstract: Defects with low manifestation probability, such as concurrency
defects, are difficult to find during testing. When such a defect manifests into
an error, the low likelihood can make it time-consuming to reproduce the error
and find the root cause. Static Code Analysis (SCA) tools have been used in
the industry for decades, mostly for compliance checking towards guidelines
such as MISRA. Today, these tools are capable of sophisticated data and execu-
tion flow analysis. Our work, presented in this paper, evaluates the feasibility
of using SCA tools for concurrency defect detection and localization. Earlier
research has categorized concurrency defects. We use this categorization and
develop an object-oriented C++-based test suite containing defects from each
category. Secondly, we use known and real defects in existing products’ source
code. With these two approaches, we perform the evaluation, using tools from
some of the largest commercial actors in the field. Based on our results, we
provide a discussion about how to use static code analysis tools for concur-
rency defect detection in complex embedded real-time systems.
My role: I was the main driver and author of this work, collaborating with my
supervisors and industry mentor, who provided valuable input and feedback.

5.2.2 Paper B

Title: Heartbeat bully: Failure detection and redundancy role selection for
network-centric controller.
Authors: Bjarne Johansson, Mats Rågberger, Alessandro V. Papadopoulos,
and Thomas Nolte.
Status: Published at IECON 2020.
Abstract: High availability and reliability are fundamental for distributed con-
trol systems in the automation industry. Redundancy solutions, with duplicated
hardware, are the common way to increase availability. With the advent of
Industry 4.0, the automation industry is undergoing a paradigm shift; a peer-
to-peer mesh-oriented architecture is replacing the traditional hierarchical au-
tomation pyramid. With generic computational power provided anywhere in
the cloud-device continuum, conventional control-centric solutions are becom-
ing obsolete. The paradigm shift imposes new challenges and possibilities on
the redundancy solutions used. We present and evaluate a hardware-agnostic
algorithm suitable for failure detection and redundancy role selection in the
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new automation paradigm. The algorithm is modeled, evaluated, and validated
with the model-checking tool UPPAAL.
My role: I was the main driver and author of this work, collaborating with my
supervisors and industry mentor, who provided valuable input and feedback.

5.2.3 Paper C

Title: Kubernetes orchestration of high availability distributed control
systems.
Authors: Bjarne Johansson, Mats Rågberger, Alessandro V. Papadopoulos,
and Thomas Nolte.
Status: Published at ICIT 2022.
Abstract: Distributed control systems transform with the Industry 4.0
paradigm shift. A mesh-like, network-centric topology replaces the traditional
controller-centered architecture, enforcing the interest of cloud-, fog-, and
edge-computing, where lightweight container-based virtualization is a
cornerstone. Kubernetes is a well-known container management system
for container orchestration in cloud computing. It is gaining traction
in edge- and fog-computing due to its elasticity and failure recovery
properties. Orchestrator failure recovery can complement the manual
replacement of a failed controller and, combined with controller redundancy,
provide a pseudo-one-out-of-many redundancy. This paper investigates the
failure recovery performance obtained from an out-of-the-box Kubernetes
installation in a distributed control system scenario. We describe a Kubernetes
based virtualized controller architecture and the software needed to set
up a bare-metal cluster for control systems. Further, we deploy single
and redundant configured containerized controllers based on an OPC UA
compatible industry middleware software on the bare-metal cluster. The
controllers expose variables with OPC UA PubSub. A script-based daemon
introduces node failures, and a verification controller measures the downtime
when using Kubernetes with an industry redundancy solution.
My role: I was the main driver and author of this work, collaborating with my
supervisors and industry mentor, who provided valuable input and feedback.

5.3 Other publications

Publications listed here are not included in the licentiate thesis:

• Bjarne Johansson, Björn Leander, Aida Causevic, Alessandro
Papadopoulos, and Thomas Nolte: Work-In-Progress: Classification of
PROFINET I/O configurations utilizing neural networks, ETFA 2019.
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• Bjarne Johansson, Mats Rågberger, Alessandro V. Papadopoulos, and
Thomas Nolte. Priority based Ethernet handling in real-time end system
with Ethernet controller filtering, IECON 2022.



Chapter 6

Conclusions and Future Work

6.1 Summary of contribution

Overall, we have researched three different goals in this thesis - three goals
sprung from a common denominator, the strive towards defying system fail-
ure. In other words, we have researched dependability-related topics. The first
goal addresses code quality and, more specifically, concurrency defect local-
ization in object-oriented embedded control system source code using SCA.
We performed and presented a quantification of the SCA tool’s concurrency
defect detection capabilities based on actual defects and a developed testbed.

Secondly, we addressed two core functions of a standby redundancy solu-
tion: failure detection of the primary and backup selection amongst a possible
plurality of candidates. We addressed those core functions in response to the
transition of control systems into a more network-oriented era. The result is
a failure-detection and redundancy role selection algorithm that we call heart-
beat bully.

Lastly, we addressed the utilization of cloud technology, specifically con-
tainer orchestrators, in a control system context for failure recovery purposes.
We used the container orchestrator’s failure recovery mechanisms with the
redundancy solution of virtualized controllers to provide a pseudo 1ooN re-
dundancy. Additionally, we compared that to the failure recovery of a non-
redundant virtualized controller, a non-redundant virtualized controller relying
only on the failure recovery provided by the orchestrator.

At first glance, concurrency defects detection using SCA and utilizing con-
tainer orchestrators, such as Kubernetes, failure recovery might seem like a
vastly different field. And undoubtedly, they are. However, they also target
the same overall goal. To deliver uninterrupted, properly functioning services
to the end-user twenty-four seven. Which, when it all boils down, is what this
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thesis is all about.

6.2 Future work

Future work will also address dependability in some form. Even though there
are many relevant challenges and potential future work related to concurrency-
related problems, our future work will not focus on that. Instead, the focus will
lay on network-related challenges motivated by increased network utilization.
With the increased utilization of the network comes network functionality con-
vergence. In other words, different functions with different criticality co-exist
and share the same underlying network infrastructure.

In shared computing platforms, like the O-PAS proposed ACP, multiple
virtualized controllers can co-exist and share the physical resource, includ-
ing the network resources, where virtual networks can provide an abstraction
of the physical network. Virtualized networks and regular network handling
require processing. Hence networking requires network resources and com-
putational resources. Nothing new per se; however, the real-time and depend-
ability requirements from the control domain dictate that the systems should
be predictable. Hence, the utilization of network resources and network traffic
processing must be deterministic when the converged network propagates into
the shared and virtualized world. Proper prioritization of network-related pro-
cessing is relevant for all devices connected to converged networks, such as a
network-centric controller.

On top of that, the increased dependency on Ethernet-based networks mo-
tivates the investigation of network statistics and information utilization for
failure mitigation. For example, even though the network’s path between con-
trollers in a redundant set is likely to be duplicated, the risk for islanding/parti-
tioning is never zero. Reducing the probability of undesired behavior with the
help of information available from the network is a concrete problem example.
Islanding is a well-studied problem in the distributed system community that
might need revisiting from a redundant control system context.

The above examples show many challenges related to dependability when
control systems and automation find themselves in a new world. Therefore, the
future direction of our research will remain under the dependability umbrella
but towards the challenges exemplified above.
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