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Sammanfattning

Multi-agent-system (MAS) har använts i olika omgivningar och ramverk och
har på så sätt framgångsrikt tillämpats i en mängd applikationer för att uppnå
olika mål. Det har visat sig att MAS är mer kostnadseffektiva jämfört med att
bygga en enda agent med alla de funktioner som ett uppdrag kan kräva. Dessu-
tom är kostnaden inte den enda drivande faktorn för att använda MAS, t.ex. är
säkerhet en annan viktig aspekt: Genom att använda en grupp agenter i en tuff
eller extrem miljö istället för ett mänskligt team så minskar säkerhetsriskerna.
Dessutom erbjuder MAS en högre grad flexibilitet och robusthet jämfört med
en lösning med en enda agent. Flexibiliteten uppnås genom att dela upp resurser
i separata grupper, medan robusthet erhålls då ett kritiskt fel hos en agent inte
nödvändigtvis äventyrar ett uppdrags framgång. Det är värt att notera att ett
uppdrag kan ha många olika begränsningar och aspekter, men det mest triviala
fallet har en enda agent och en enda uppgift.

Denna typ av uppdrag kan planeras av en mänsklig operatör som övervakar
uppdraget utan behov av en automatiserad planerare. å andra sidan är mer kom-
plexa uppdrag, som använder ett stort antal heterogena agenter och uppgifter
och som dessutom kan ha olika begränsningar (prioritet, synkronisering etc.),
inte så triviala att planera för en mänsklig operatör. Dessa komplexa prob-
lem utgör en stor utmaning för att få till en genomförbar plan, för att inte
tala om den bästa möjliga planen. Dessutom har den ökade datorkraften
hos tillgängliga plattformar i robotsystem gjort det möjligt att använda par-
allella uppgiftsutföranden. Mer specifikt innebär det möjlighet för parallellitet
i avkänning-, beräkning-, rörelse-, och manipulationsuppgifter. Detta har i sin
tur fördelen att det kan skapas mer komplexa robotuppdrag. Det har dock kom-
mit till priset av ökad komplexitet för optimering av uppgiftsallokeringsprob-
lemet.

För att kringgå dessa problem är en automatiserad planerare nödvändig.
Dessa typer av problem är notoriskt svåra att lösa, särskilt om kravet är att hitta
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den bästa möjliga lösningen. Därför är det viktigt att hitta en balans mellan
optimalitet och den beräkningstid som behövs för att ta fram en plan.

Denna avhandling behandlar den formella definitionen av två särskilda
MRTA-problemkonfigurationer (Multi-Robot Task Allocation) som används
för att representera problem med uppdragsplanering med flera agenter. Mer
specifikt kan bidraget från denna avhandling delas upp i tre kategorier.

För det första föreslås i detta arbete en modell för att representera olika
problemkonfigurationer, även kallade uppdrag, på ett strukturerat sätt. Denna
modell kallas TAMER, och det möjliggör också tillägg av nya dimensioner
på ett mer systematiskt sätt, vilket utökar antalet problem som kan beskrivas
jämfört med tidigare föreslagna MRTA-taxonomier.

För det andra definierar och tillhandahåller denna avhandling två olika
problemformuleringar, i form av formuleringen Mix-Integer Linear Prob-
lem, av det utökade och färgade resande försäljningsproblemet (ECTSP).
Dessa modeller implementeras och verifieras i CPLEX-optimeringsverktyget
för de valda probleminstanserna. Dessutom utformas ett suboptimalt
tillvägagångssätt för att lösa dessa komplexa problem. Föreslagna lösningar
baseras på metoden Genetisk Algoritmer (GA), och de jämförs med de
lösningar som erhålls av toppmoderna problemlösare. Fördelen med att
använda GA för planering jämfört med klassiska metoder är att det har bättre
skalbarhet vilket gör det möjligt att hitta lösningar på storskaliga problem. även
om dessa lösningar i de flesta fall är suboptimala erhålls de mycket snabbare än
med andra exakta metoder. En annan fördel representeras i en form av ”när som
helst stopp”-alternativ; i tidskritiska operationer är det viktigt att ha möjlighet
att stoppa planeringsprocessen och använda den suboptimala lösningen när det
behövs.

Slutligen tar detta arbete upp den enda dimensionen av MRTA-problemet
som inte har fått mycket uppmärksamhet i tidigare forskning. I synnerhet har
problemkonfigurationer inklusive MT-robotar (Multi-Task) försummats och
för att komma till rätta med det har det, för det första, definierats de fall där
uppgiftsparallellitet kan uppnås. Dessutom har införts åtskillnad mellan fy-
siska och virtuella uppgifter och deras ömsesidiga relation när det gäller par-
allellutförande av uppgifter. Två modeller har föreslagits och jämförts, den
första uttrycks som ILP och implementeras i CPLEX-optimeringsverktyget och
den andra definieras som en CP-modell (Constraint Programming) och imple-
menteras i CP-optimeringsverktyg. Båda dessa problemlösare har utvärderats
på en rad probleminstanser.



Abstract

Multi-Agent Systems (MASs) have been utilized in various settings and frame-
works, and have thus been successfully applied in many applications to achieve
different goals. It has been shown that MASs are more cost-effective as com-
pared to building a single agent with all the capabilities a mission may require.
Moreover, the cost is not the only driving factor for the adoption of MASs,
e.g., safety is another important aspect: Deploying a group of agents, in a
harsh or extreme environment, instead of a human team decreases the safety
risks. Furthermore, MASs offer more flexibility and robustness when com-
pared to a single-agent solution. The flexibility comes from dividing resources
into separate groups, while robustness comes from the fact that a critical error
in one agent does not necessarily endanger the success of a mission. Note that
a mission may have many different constraints and aspects, however, the most
trivial case has a single agent and a single task.

These kinds of missions can be planned by a human operator, overseeing a
mission, without the need for an automated planner. On the other hand, more
complex missions, that are utilizing a large number of heterogeneous agents
and tasks, as well as constraints (precedence, synchronization, etc.) are not
that trivial to plan for a human operator. These complex problems pose a great
challenge to making a feasible plan, let alone the best possible one. Moreover,
the increase in the power of available computing platforms in robotic systems
has allowed the utilization of parallel task execution. More specifically, it al-
lowed for possible parallelism in sensing, computation, motion, and manipula-
tion tasks. This in turn had the benefit of allowing the creation of more complex
robotic missions. However, it came at the cost of increased complexity for the
optimization of the task allocation problem. To circumvent these issues, an au-
tomated planner is necessary. These types of problems are notoriously difficult
to solve, and it may take too long for an optimal plan to be found. Therefore,
a balance between optimality and computation time taken to produce a plan
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become very important.
This thesis deals with the formal definition of two particular Multi-Robot

Task Allocation (MRTA) problem configurations used to represent multi-agent
mission planning problems. More specifically, the contribution of this thesis
can be grouped into three categories.

Firstly, this work proposes a model to represent different problem configu-
rations, also referred to as missions, in a structured way. This model is called
TAMER, and it also allows the addition of new dimensions in a more system-
atic way, expanding the number of problems that can be described compared
to previously proposed MRTA taxonomies.

Secondly, this thesis defines and provides two different problem formu-
lations, in a form of Mixed-Integer Linear Problem formulation, of the Ex-
tended Colored Travelling Salesman Problem (ECTSP). These models are im-
plemented and verified in the CPLEX optimization tool on the selected problem
instances. In addition, a sub-optimal approach to solving these complex prob-
lems is devised. Proposed solutions are based on the Genetic Algorithm (GA)
approach, and they are compared to the solutions obtained by state-of-the-art
(and state-of-practice) solvers, i.e., CPLEX. The advantage of using GA for
planning over classical approaches is that it has better scalability that enables it
to find solutions for large-scale problems. Although those solutions are, in the
majority of cases, sub-optimal they are obtained much faster than with other
exact methods. Another advantage is represented in a form of “anytime stop”
option. In time-critical operations, it is important to have the option to stop the
planning process and use the sub-optimal solution when it is required.

Lastly, this work addresses the one dimension of the MRTA problem that
has not caught much of the research attention in the past. In particular, prob-
lem configurations including Multi-Task (MT) robots have been neglected. To
overcome the aforementioned problem, first, the cases in which task paral-
lelism may be achieved have been defined. In addition, the distinction between
physical and virtual tasks and their mutual relationship in terms of parallel task
execution has been introduced. Two models have been proposed and compared.
The first one is expressed as ILP and implemented in the CPLEX optimization
tool. The other one is defined as a Constraint Programming (CP) model and
implemented in CP optimization tools. Both solvers have been evaluated on a
series of problem instances.
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Chapter 1

Introduction

In recent years, Multi-Agent Systems (MASs) have gained popularity due to
technological advancements in several fields, from sensors [1], wireless com-
munication [2], to robotics [3], and Artificial Intelligence (AI) [4]. The imme-
diate consequences of these advancements are improvements with respect to
the price-performance ratio, which in turn has led to wider availability and us-
age of robotic agents as well as complete multi-agent systems [5]. In parallel,
increased interest in multi-agent systems has created many new research areas
directly related to real-world problems [6]. Deploying a group of agents instead
of a human team has many advantages such as improving the cost efficiency
of a mission, and more importantly, the safety of the workers. In addition, the
ability to deploy a group of agents may also be advantageous over the use of
a single unit in many missions [7]. More specifically, by introducing a certain
level of redundancy in the system, the effects of unexpected events and failures
can be mitigated. This in turn leads to the increase of the robustness of the sys-
tem, thus minimizing the chances of mission failure. On the other hand, with
the increased number of agents and tasks in missions, the problem of allocation
of tasks to agents arose, and it is one of the most fundamental classes of prob-
lems in robotics, formally known as the Multi-Robot Task Allocation (MRTA)
problem. MRTA encapsulates numerous problem dimensions, and it aims at
providing formulations and solutions to various problem configurations, i.e.,
complex multi-robot1 missions.

A mission can be defined as a specific set of tasks that a single, or a group
of robots, is in charge of performing. Missions may include a diverse group

1Terms robot and agent are used interchangeably throughout this thesis.

3



4 Chapter 1. Introduction

of robots (e.g., underwater, ground, airborne, etc.) of heterogeneous structure
(e.g., sensor modalities) that should achieve a variety of sub-goals (perform al-
located tasks) and/or global goals (mission objectives) while being constrained
by the environment they are being deployed in. Constraints might not come
solely from the environment, but from the interrelatedness of tasks, mission
objective, or user preferences. These are some of the key high-level aspects of
a mission. A list of more detailed aspects may include – but are not limited to
– the communication infrastructure, the type of control algorithms, the task de-
composition, etc. While this detailed list of deployment aspects may vary from
scenario to scenario, the high-level mission model can remain unaffected.

Motivation. A mission can consist of numerous agents, tasks, and con-
straints, making it very hard and impractical for a human operator to plan.
Mission planning implies the allocation of a set of tasks to a set of agents
such that the mission makespan is minimized and given constraints are satis-
fied. Although humans are skilled in solving some type of planning problems,
e.g., simpler instances of the Traveling Salesmen Problem (TSP) [8], a multi-
agent mission planning problem may have more constraints than a TSP that
may not be very intuitive to address. Having human operators solving these
kinds of problems may lead to a long planning time or a poor performance,
or even both. Additionally, in order to have an operator involved in the plan-
ning process, certain training and experience are required in making plans for
multi-agent missions. Nevertheless, very small missions are still possible to be
planned manually.

On the other hand, some users might want to use planning as a service. For
example, a farmer wants to use a set of drones to monitor the crops’ health
or plan a harvest with autonomous tractors. A user of such a service is not
interested in what is happening in the background or how these missions are
modeled and solved. For this reason, it is necessary to have an automated
planner capable of planning a mission for a large number of agents and tasks
and to be able, in the case of unexpected events, to re-plan the mission with
the new set of information. More often than not, in the re-planning operations,
time is of the essence as the limited autonomy of the agents may affect the time
the mission can be in a halt mode.

The increase in the power of available computing platforms in robotic sys-
tems has allowed the utilization of concurrent task execution. Moreover, it
allowed for possible parallelism in sensing, computation, motion, and manip-
ulation tasks. This in turn had the benefit of allowing the creation of more
complex robotic missions. However, it came at the cost of increased complex-
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ity for the optimization of the task allocation problem. Although many problem
configurations have been addressed previously, the one covering the aforemen-
tioned problem has not caught much of the research attention in the past. In
particular, problem configurations including agents able to perform multiple
tasks concurrently have been neglected.

Goals. By analyzing the aforementioned requirements, it was assumed that it
was necessary to provide a framework for different mission configurations, i.e.,
a taxonomy that will give a structured overview of the existing problem config-
urations while allowing for the easy incorporation of the possible new require-
ments. The next step is to derive a specific model that will encapsulate the main
attributes of multi-agent missions at hand, on a high level of abstraction such
that a given problem formulation can be regarded as domain-independent. In
the broad sense, this model should be able to utilize a group of heterogeneous
robots to perform a variety of different tasks that require a certain capability,
on the robot side, in order to be performed. In addition, tasks may be inter-
related, e.g., a certain order among some tasks may need to be maintained or
tasks may be executed in parallel. Part of the problem also includes choosing a
set of agents to perform the mission, judging the agents’ location, capabilities,
and the whereabouts of the final destination. This concludes the requirements
in the problem domain. Finally, requirements in the solution domain determine
the reasoning behind the selection of the planner, i.e., planning algorithm. In
the general case, it is assumed that the time for the creation of the initial mis-
sion plan is not particularly limited, while the re-planning process should be
done as fast as possible, even at the possible expense of the solution quality.

Based on the described motivation, in the following text, we provide the
list of contributions aimed at addressing identified requirements in multi-agent
mission planning.

Contributions. Based on the different constraint types and their mutual re-
latedness, different missions or problem configurations can be identified (Sec-
tion 3). During the last two decades, various taxonomies have been proposed
in order to try to systematically describe these different problem configurations
by combining different problem dimensions. Generally, newly proposed tax-
onomies try to add new dimensions to the MRTA taxonomy defined by Gerkey
and Matarić [9] that set the basis by proposing three semi-decoupled dimen-
sions. However, adding new dimensions is not a straightforward process, and
it may lead to the introduction of coupled dimensions, or a redefinition of ex-



6 Chapter 1. Introduction

isting ones. While some of the less complicated problems are covered by ex-
isting taxonomies to a certain extent, more complex ones either cannot be de-
scribed fully or some ambiguities may arise depending on the used taxonomy.
A part of this thesis is dedicated to the survey and identification of previously
proposed taxonomies and categorizing those problem configurations that these
taxonomies can describe. This work lead to the proposal of TAMER, an Entity-
Relationship formalism, that allows representation of problem dimensions in a
more structured manner. In addition, during this process, new problem dimen-
sions are identified that can describe even more complex multi-agent missions
than previously proposed taxonomies.

After laying the groundwork with the proposed taxonomy and identifying
relevant dimensions for a generic multi-agent mission planning problem, the
next goal of this thesis is to provide a formal problem formulation of a gen-
eral case of a real-world mission planning problem that includes the identified
attributes and requirements. Some of the attributes necessary for a generic
multi-agent mission description, on a high-level, include task requirements,
agent capabilities, temporal constraints, task dependencies, etc. First, the fo-
cus is set on the multi-agent mission planning problem without concurrent
tasks (Section 3.1). For this particular problem configuration, we proposed
two different Mixed Integer Linear Programming (MILP) formulations, which
are based on the famous TSP and extended to utilize additional constraints
and requirements. In particular, the problem is formalized as a generaliza-
tion of the Colored TSP [10]. The generalization includes: (i) Precedence
Constraints (PCs), which are modeled in two ways, specifically, by extending
the Reformulated Miller-Tucker-Zemlin (RMTZ) [11] and Two-Commodity
Flow Network (2CFN) [12] formulation; (ii) The possibility of having multi-
ple source and destination depots for agents; (iii) The presence of a duration
associated with the execution of the task; and (iv) A new objective function for
the minimization of the total mission duration in presence of multiple robots.
This problem mainly falls under the category of routing problems.

With the models being formalized, the next step was to provide a reasonable
solution. It is not only necessary to provide a feasible solution, but the problem
needs to be solved efficiently. In some missions, there can be a requirement
that the solution to the problem needs to be provided quickly at the expanse
of optimality, especially in the case of re-planning. One of the proposed solu-
tions is an optimal state-of-the-art commercial MILP solver called CPLEX2.
The other proposed solution is based on the Evolutionary Algorithm (EA)

2https://www.ibm.com/products/ilog-cplex-optimization-studio
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paradigm, more specifically the Genetic Algorithm (GA), which is a sub-class
of EA. Both solvers are capable of solving the same problem, they differ in the
way they search for the best solution. A comprehensive analysis is conducted
on the results of the benchmark3 performed on the set of 10 problem instances
with gradually increasing complexity. Both approaches, GA and CPLEX, have
been compared and analyzed from the perspective of planning and re-planning.

Finally, the multi-agent mission planning with concurrent tasks is ad-
dressed. In order to provide a formal definition of the problem, it is first nec-
essary to define in what cases task parallelism may be achieved. To be able to
describe this problem configuration, a distinction between physical and virtual
tasks has been proposed that encapsulates their mutual relationships in terms
of parallel task execution. In addition, the formal mathematical formulation of
the problem is given that is built on top of previously defined multi-agent mis-
sion planning problem without concurrent tasks. By introducing concurrency,
this problem becomes a mixture of routing and scheduling problems. Hence,
in addition to the Integer Linear Programming (ILP) formulation that is imple-
mented and verified in CPLEX, a Constraint Programming (CP) formulation
has also been provided, since CP has had a noticeable amount of success in
solving scheduling problems. The models are validated in CPLEX and CP Op-
timizer4 tools on the set of benchmarks with the goal of exploiting the potential
task parallelism of the agents involved while minimizing the makespan of the
mission. Finally, a comprehensive performance analysis of both solvers has
been provided, which explores their scalability and solution quality on a given
multi-agent mission planning problem with concurrent tasks.

3Library with 10 instances is available for download at https://github.com/mdh-
planner/ECTSP

4https://www.ibm.com/analytics/cplex-cp-optimizer





Chapter 2

Background and
Preliminaries

In the AI domain, planning can be defined as a search for a set of possible ac-
tions, also referred to as tasks, which leads from an initial state to the desired
state. That set of actions is called a plan. Actions affect problem state space.
A problem state space can be defined as a set of all configurations that a given
problem and its environment could achieve. The simplest planning problem,
also known as the Classical Planning Problem [13], has a unique known ini-
tial state, actions are always instantaneous, deterministic, and sequential, i.e.,
actions have no duration, the effect of one action on the state space is always
the same, and only one action can be done at a time. Finally, the entire world,
including the environment, is considered to be fully observable with a finite
number of states.

In more complex problems, which are closely related to the open real-world
problems, actions are rarely considered to be instantaneous and a notion of
time, i.e., task duration, arises in the planning problem. In these cases, a de-
scription of the world state has to contain information about absolute time and
the current execution time, thus allowing concurrent actions. This type of plan-
ning is called temporal planning problem, and it is closely related to schedul-
ing [14]. Although the terms planning and scheduling are quite often used
interchangeably, they are not semantically equivalent. Planning answers ques-
tions of “what task” and “how” a certain task should be done, while schedul-
ing defines “when” and “who” should perform a certain task. Scheduling is
the problem of assigning a set of actions to a set of resources bound by a set of

9
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constraints. To perform an action, different kinds of resources may be required
to be used (e.g., tools, space) or consumed (e.g., energy). Time is a resource re-
quired by every non-instantaneous action, although it differs from other types
of resources. It flows independently from the actions being executed, and it
can be shared by independent agents indefinitely, as long as their actions do
not interfere with each other.

In this context, agents are considered as a type of resource and if more than
one agent is available the classical planning problem becomes multi-agent
planning problem, i.e., the plan does not need to be sequential anymore. In
the general case, agents do not need to be homogeneous, thus they can have
different capabilities, sensors, and performances. In other words, not every
agent can perform each action, or at least not equally good. Since resources
are usually not infinite they represent constraints in the planning process. This
type of planning is called resource-constrained planning. Constraints can be
either soft or hard. Soft constraints can be violated with a certain penalty, while
the violation of hard constraints is not permitted.

In addition, missions can be conducted in a harsh and challenging envi-
ronment where several different unforeseen events may arise and compromise
planned task execution. In these cases, usually, the time available for the cre-
ation of a new plan is fairly limited, thus an option of performing a fast re-
planning is very important. It is important to emphasize that in this context
re-planning refers to repeating the planning process with updated initial condi-
tions. Re-planning may also refer to the process of plan reparation, i.e., local
modification of the current plan to overcome the problem, e.g., failed task, or
malfunctioning agent, however, this is out of the scope of this work.

The terminology referring to mission planning is vast and varies, depend-
ing on the problem at hand, on the scientific community, and on the techniques
used for providing a solution. This is due to the complexity of the problem,
and to the fact that several researchers have proposed different techniques to
provide solutions in diverse contexts. The literature review is mostly done
in the Combinatorial Optimization area and areas it intersects with: MRTA,
Operations Research (OR), and EA (see Figure 2.1). Combinatorial optimiza-
tion can be defined as a process of searching for an optimum of an objective
function whose domain is a discrete, but large configuration space [15]. It
is important to emphasize that these three sub-areas include problems that are
well outside the combinatorial optimization area, however in the context of this
thesis, whenever these areas are mentioned, they are mentioned in the context
of discrete combinatorial optimization.

In addition, an overview of the related work, covering selected relevant ar-
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MRTA

OREA This
Thesis

Combinatorial Optimization

Figure 2.1: A literature review is mostly done on the intersection of these four areas.

eas, is provided. Taxonomy related to MRTA is presented in Section 2.1. After
presenting relevant taxonomies and their dimensions of research, concepts of
missions, planning, and re-planning are introduced in Section 2.2. Resource-
Constrained Planning has been addressed in Section 2.3. Section 2.4 surveys
problems from OR that can be applied to mission planning problems. Finally,
Section 2.5 presents an overview of commonly used approaches and algorithms
for solving mission planning problems presented in the previous sections.

2.1 Multi-Robot Task Allocation Taxonomy
In order to be able to describe a problem and see how it relates to other sim-
ilar problems, a framework was necessary that would group similar problems
into respective categories while providing a clear description of each problem
group. Gerkey and Matarić [9] did a formal study of an MRTA that resulted in
a domain-independent taxonomy describing MRTA problems. This taxonomy
consists of three dimensions task concurrency, task type, and assignment type.

The task concurrency axis consists of Single-Task (ST) robots and Multi-
Task (MT) robots. ST robots are capable of doing at most one task at a time,
while MT robots can perform numerous tasks simultaneously.

The task-robot type is divided into Single-Robot (SR) tasks and Multi-
Robot (MR) tasks. SR tasks require only one robot, while MR tasks require
more than one.

The assignment type can be Instantaneous Assignment (IA) or Time-
Extended Assignment (TA). In IA, the available information regarding robots,
tasks, and the environment permits only instantaneous allocation regardless of
future allocations. TA, on the other hand, has information about all the tasks
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that need to be allocated. In this case, the number of tasks can be greater than
the number of robots, even in the SR-ST case.

The three-dimensional MRTA taxonomy has been extended by Landén et
al. [16], by adding four more dimensions: task utility, task constraints, alloca-
tion view, and dynamism of the environment.

Korsah et al. [17] merged task utility and task constraints dimensions into
the degree of interrelatedness. This dimension describes the degree of interre-
latedness between tasks within one agent and among other agents. Hence, it
can be distinguished between four types of dependencies, i.e., (i) No Depen-
dencies (ND); (ii) Intra-schedule Dependencies (ID); (iii) Cross-schedule De-
pendencies (XD); and (iv) Complex Dependencies (CD). The first class refers
to the simple case (as assumed by Gerkey and Matarić [9]) in which the tasks
are independent of one another. The second class covers those cases where two
tasks have mutual dependencies and are executed by the same agent. The third
class covers those cases in which a task mat not only depend on other tasks
allocated to the same agent, but also on other schedules that belong to other
agents. The fourth class covers the cases assumed in the other classes, with an
additional factor that includes the way a task is decomposed. This assumes that
there are multiple ways in which a task could be decomposed.

In addition to the previously mentioned assignment type dimension, Nunes
et al. [18] distinguish between temporal and ordering constraints, by adding
Time Windows (TW) and Synchronization and Precedence (SP) constraints
under TA. Furthermore, TW and SP can be divided into hard and soft con-
straints as well as deterministic or stochastic models.

2.2 Multi-Agent Mission Planning and Replan-
ning

In this work, the mission planning problem concerns temporal resource-
constrained multi-agent planning and scheduling problems. Aside from a very
small set of trivial problems, mission planning problems are very hard to solve,
even sub-optimally [19]. These types of problems are usually NP-hard, mean-
ing that even with a given solution to the problem it cannot be confirmed that
the solution is optimal in polynomial time [20], thus making these types of
problems computationally expensive, and challenging to solve. One way of
overcoming this issue, i.e., to try and solve NP-hard problems, is to use a meta-
heuristic approach, since they are computationally less expensive for larger
problem instances and provide “any time stop” option, which can be a valuable
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asset in real-world scenarios. The downside of this approach is that the quality
of the solution cannot be guaranteed, moreover, it is usually sub-optimal.

Plans that are to be executed in a distributed fashion can nonetheless be pro-
duced by a centralized planner. A planner breaks a mission plan into smaller
pieces that are sent to the appropriate agents for execution. In one of the pos-
sible approaches, a partial order planner generates plans where the need for a
strict ordering between some of the actions can be omitted, and in fact where
those actions can be executed concurrently. Boutilier and Brafman [21] define
concurrency on actions, specifying which actions can be performed simulta-
neously. Kvarnström’s [22] work focuses on a centralized planning for multi-
agent domains and on a loose commitment to the precedence between actions
belonging to distinct agents, leading to execution schedules that are flexible
where it matters the most.

The opposite approach was taken by Crosby and Patrick [23] where the
authors have investigated how centralized, cooperative, multi-agent planning
problems with concurrent action constraints, and heterogeneous agents can be
encoded to the Planning Domain Definition Language (PDDL). They encode
concurrency constraints on objects and determine conditions under which a
certain object can be used concurrently. In both aforementioned approaches, it
is assumed that there cannot be concurrent actions on a single agent.

A research framework on mission planning for swarms of Unamnned
Aerial Vehicle (UAV) has been proposed by Zhou et al. [24]. In general, most
of the approaches used for UAV mission planning can be used in different
scenarios, such as swarms of Autonomous Underwater Vehicle (AUV) in the
underwater application or for swarms of terrestrial vehicles. The problem of
mission planning for a swarm of UAV can be solved using the evolutionary
approach as it is presented by Ramirez-Atencia et al. [25, 26]. The problem is
modeled as a constraint satisfaction problem and solved using multi-objective
GA. This work has been further extended in Ramirez-Atencia et al. [27] to
utilize re-planning and analysis of operator training in the control center. For
a similar problem of mission planning for cooperative UAV teams, a solution
was proposed by Bello-Orgaz et al. [28] that uses GA with a weighted linear
combination of mission’s makespan and fuel consumption as an optimization
criterion. A simple GA with several enhancements and PDDL modeling lan-
guage was implemented by Brie et al. [29]. The proposed genetic planner
utilized the approach of a variable chromosome length. This approach bene-
fits when the length of a plan is not known a priori. On the other hand, the
proposed approach lacks extension for multi-agent planning and planning con-
current actions. A different approach to a similar group of problems is taken by
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Karaman Sertac et al. [30] where process algebra is used to model the problem
that is later solved with the GA.

Mission planning does not necessarily consist of optimizing only one pa-
rameter. Multi-Objective UAV mission planning using an evolutionary ap-
proach is presented by Pohl and Lamont [31]. This approach is based on GA.
The problem of multi-objective optimization with the evolutionary algorithm
is tackled by Khoaudija et al. [32], where a way of benchmarking obtained
solutions is also addressed. They have developed an evolutionary planner
called Divide-and-Evolve that embeds a classical planner and feeds it with a
sequence of sub-problems of the problem at hand. Landa-Torres et al. [33]
compare three multi-objective evolutionary algorithms (Multi-Objective Har-
mony Search (MOHS), Non-Dominated Sorting Genetic Algorithm (NSGA)
II, and Pareto Archived Evolution Strategy (PAES)) on an underwater mission
planning problem for a swarm of AUV. Planning constraints include multiple
heterogeneous agents and heterogeneous task requirements, while precedence
constraints between tasks are not covered. Experiments show that MOHS
outperforms the other two algorithms in the majority of scenarios presented.
Finally, Torreño et al. [34] provide a comprehensive survey of different ap-
proaches to cooperative multi-agent planning.

2.3 Resource-Constrained Planning
The need to economize limited resources, such as fuel or money, is a ubiq-
uitous feature of planning problems. Resource Constrained Planning (RCP)
can be seen as a special case of mission planning where resources are limited.
However, two cases can be distinguished here: (i) it is possible to replenish
resources (e.g., recharge batteries); and (ii) resource replenishment is not an
option (e.g., a limited amount of building material). Nakhost et al. [35] have
generalized the notion of constraindness and improved the Monte Carlo Ran-
dom Walk method to solve different instances of RCP.

Another popular way of solving RCP is by using GA, where chromosome
representation is based on random keys. Gonçalves et al. [36] have proposed
solving project scheduling problems by constructing a schedule using a heuris-
tic priority rule in which the priorities and delay times of the activities are
defined by the GA. Note, however, that joint or concurrent actions are not pos-
sible. Debels and Vanhoucke [37] proposed a Decomposition Based GA for
RCP. This method divides an RCP problem into smaller problems and ob-
tains the solution for the global problem by combining the solution of each
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such sub-problem. They showed that the decomposition-based approach finds
satisfactory near-optimal solutions.

A closely related problem to RCP is Resource-Constrained Project
Scheduling Problem (RCPSP). In a broad sense, this problem assumes schedul-
ing of project activities subject to precedence and resource constraints in order
to fulfill a given objective or objectives. An extensive overview of the existing
variations of RCPSP is given by Habibi et al. [38].

2.4 Operations Research
Many different problems from the area of Operations Research are used for
modeling multi-agent missions. The accent here is on the TSPs and Vehicle
Routing Problems (VRPs). TSP expressed as an ILP was introduced by
Dantzig et al. [39]. This definition is later extended to the multiple Traveling
Salesmen Problem (mTSP) by Kara and Bektas [40]. Kalmar-Nagy et al. [41]
proposed an approach using sub-tours to solve mTSP. The idea is to divide a
graph into sub-graphs, which are solved using GA. Each sub-graph represents a
tour for one of the salespersons. Rather than distance, time is being optimized,
therefore, the objective is to minimize the longest makespan of a sub-tour over
all sub-tours, i.e., a min-max optimization. Another TSP variant including PC
called Traveling Salesmen Problem with Precedence Constraints (TSPPC) has
been presented by Kubo et al. [42]. The above-mentioned TSP variants have
been combined into an multiple Traveling Salesmen Problem with Precedence
Constraints (mTSPPC) by Zhong [43], although a formal problem formulation
was not given in the paper.

A branch-and-cut algorithm is used to solve Asymmetric Traveling Sales-
men Problem (ATSP) with a precedence constraint of size of up to 200
nodes [44]. The real-world application of air transport is modeled using a
time-dependent ATSP with time windows and PC. Problems in this applica-
tion domain are solved by a modified nearest neighbor heuristic with a lo-
cal search [45]. Roberti and Toth [46] provided an experimental compari-
son of models and algorithms for ATSP. Generalized ATSP with precedence
constraint is applied in the coordinated-measuring machine inspection pro-
cess [47]. In this work, two possible solutions are compared, CPLEX and
Ant-Colony Optimization. While the former provides solutions for small to
mid-sized problems only, the latter performs well also on larger instances.
This problem formulation was later extended to use multiple salespersons [48].
These results correspond to our findings after comparing CPLEX and GA in
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Paper C [49].
A mixed-integer nonlinear problem formulation is given by Fügenschuh et

al. [50] and used to model mission planning for UAVs. This formulation is
then approximated by MILP and solved by GUROBI1. Problem instances of
2 AUVs and 15 waypoints are routinely solved to optimality, while for larger
problem instances only sub-optimal solutions were provided. A problem for-
mulation of the real-world routing problems was provided and solved with dif-
ferent greedy algorithm variations by Yuan et al. [51]. A Mixed Integer Pro-
gramming (MIP) formulation of a multi-robot mission planning problem was
given by Flushing et al. [52]. In this work a two-layer solution was proposed:
(i) the selection of sequences of tasks with GA and (ii) the service scheduling
with iterative local search. We adopted a similar paradigm in Paper C.

Recently, serial [53], radial [10], and a more complete version of a Colored
Traveling Salesmen Problem (CTSP) [54] to solve multiple bridge machine
planning problems in the industry have been proposed. Algorithms used to
tackle these problems are Population-based incremental learning, GA with lo-
cal search (Hill climbing and Simulated Annealing), and Variable Chromo-
some search, respectively. These CTSP models were used as the basis for our
model, described in the C2 of Section 6. Recently, in addition to our proposed
extension of the CTSP, there has been proposed a General CTSP (GCTSP) [55]
that uses a hypergraph to represent the problem. This formulation has been ex-
tended to include Precedence Constraints, called PCTSP [56].

A survey on the use of VRP instances for military multi-UAV mission plan-
ning problems is presented by Adbelhafiz et al. [57]. The authors show that
each military multi-UAV mission has its corresponding VRP variant. Another
instance of VRP with metric temporal logic is used for modeling and solving
multi-UAV missions by Karaman and Frazzoli [58]. A MILP based algorithm
is used to solve the given problem optimally, however, the problem size is
quite small—two UAVs and 5 tasks. A survey of the problem variants and pro-
posed solutions of the heterogeneous VRP is given by Koç et al. [59]. Quttineh
et al. [60] provide a MILP formulation of the generalized VRP problem with
cross-schedule synchronization and precedence constraints for military aircraft
mission planning. The results of this approach are tested on problems of the
size of at most 6 aircraft and 8 targets. A hybrid EA [61] is successfully used
to solve heterogeneous VRPs with TWs. The proposed algorithm combines
several metaheuristics and is able to solve different variants of the VRP.

1https://www.gurobi.com/products/gurobi-optimizer/

https://www.gurobi.com/products/gurobi-optimizer/
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2.5 Planning Algorithms
A large number of conventional planning algorithms handle planning by map-
ping the search space into a graph or a tree, searching through the nodes using
heuristic functions, cutting infeasible branches, or backtracking from dead-
ends (e.g., CPLEX using branch-and-cut). One of the main advantages of this
approach is the guarantees that the algorithm can provide. It can guarantee
the optimal solution is found, or it can guarantee what is the maximum gap
between the found feasible (sub-optimal) solution and the best bound. Exact
methods are effective on small problem instances, while larger problems are
usually tackled with the use of meta-heuristics. EAs are among the most popu-
lar meta-heuristic optimization algorithms. EAs approach problem solving by
mimicking mechanisms found in nature. The fundamental idea behind all EA
techniques is that the environmental pressure causes natural selection (survival
of the fittest) in the population of individuals, which leads to the improvement
of population fitness over numerous generations.

Among the most popular EAs approaches, GAs have been widely used
in different contexts ranging from airlines revenue management [62], vehicle
routing problems [63], multiple criteria production scheduling [64], to multi-
agent mission planning [65], and power electronics design [66]. GA fully in-
herits the previously described properties of EA. It works by starting with an
initial generation of chromosomes (population), where each chromosome rep-
resents a candidate solution. Reseeding of the population is done according to
the probabilistic selection, crossover, and mutation operations. The crossover
operator combines the genetic information of two or more parents to create
offspring. Mutation tries to preserve diversity in the population by randomly
altering one or more gene values in a chromosome. Probabilistic distribution
guides the chromosomes through the search space, performing an uninformed
search. The fitness of the individuals plays the main role in the selection pro-
cess, where fittest individuals have a higher chance of reproducing and creating
offspring.

It is important to mention that the optimization problem can be either single
or Multi-Objective (MO). In a non-trivial case of MO optimization, objectives
are conflicting, i.e., one objective cannot be improved without degrading an-
other one(s), thus trade-off solutions must be sought. A common approach to
handle multiple objectives is to create a weighted (biased) linear combination
of them.

The objective function used throughout this thesis will have a single opti-
mization criterion and that criterion is time.





Chapter 3

Problem Formulation

Based on a specific application scenario, the general mission planning problem
can have different realizations, which can be classified according to three main
dimensions. These dimensions are the Task Type, the Concurrency, and Task
Dependency, as shown in Figure 3.1. Task Type describes how many agents
are necessary for the successful completion of a certain task (SR tasks vs. MR
tasks). Concurrency is related to the ability of an agent to perform multiple
tasks concurrently (ST robots vs. MT robots). Finally, Task Dependency de-
fines if a task has a relation to any other task, either within the same agent’s

Concurrency axis

Task Type axis
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[ID]:SR-ST

[XD]:SR-ST [XD]:SR-MT

[ID]:SR-MT
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Figure 3.1: An illustration of three dimensions and 6 different problem configurations.
Darker shades indicate more complex problem configurations.
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schedule or across different agents’ schedules (ID dependency vs. XD depen-
dency). Task Dependencies can be synchronous [67] or precedence constraints
(ordering). A more detailed description of these dimensions is given in Sec-
tion 2.1.

By exploring these dimensions, 6 different problem configurations can be
identified. These problem configurations are marked in Figure 3.1 with blue
shaded circles. Darker shades represent more complex problems. The two
missing vertices are problem configurations [ID]:MR-ST and [ID]:MR-MT, as
MR tasks always impose certain dependencies over multiple robot schedules.
Hence, we cannot have a problem configuration with ID and MR as they con-
tradict each other. In addition to the presented dimensions, there is another
dimension related to the Allocation Type, and it consists of IA and TA. In
this thesis, only TA is considered, since mission planning consists of planning
and scheduling, and scheduling of more than one task implies Time-Extended
allocation of tasks.

A few examples of relevant problem configurations as real-world applica-
tion scenarios are the following. Scheduling jobs for a factory production line
can be seen as a [ID:SR-ST] problem. If tasks within a job are done on different
machines, and completion of one task depends on the successful completion of
the other task on another machine, the problem is defined as [XD:SR-ST]. In a
case where some of the tasks of a job require more than one agent (machine) for
its completion (e.g., one robot arm holds two metal parts, while another robot
arm welds them), the problem is extended to [XD:MR-ST]. Furthermore, if one
of the machines can do two tasks concurrently, the problem becomes [XD:MR-
MT].

This thesis focuses on two problem configurations. The first one is [ID:SR-
ST-TA] in papers B and C. The second one is [XD:SR-MT-TA] that is in the
focus of paper D. All problem configurations in this work have the additional
assumption that agents are heterogeneous.

3.1 [ID]:SR-ST-TA Problem Configuration
In a general sense, missions belonging to this problem category assume of
a set of m heterogeneous agents A = {a1, . . . ,am} and a set of n tasks T =
{t1, . . . , tn}. Tasks are assumed to be atomic and non-preemptive at the mission
planning level. Due to the heterogeneity among agents, regarding different
physical capabilities, not all agents in A can perform all tasks in T. In addition,
the environment can prevent some agents from fulfilling certain tasks. For



3.1 [ID]:SR-ST-TA Problem Configuration 21

example, a surface vehicle cannot perform a task below the surface of the water,
or an underwater vehicle cannot send data to the control center while being
underwater. A set of tasks that an agent i ∈ A can perform can be denoted as
Ti ⊆T. Analogously, a set of agents that can perform task j ∈T can be defined
as A j ⊆ A. In this work, it is assumed that all agents that can perform a task
i ∈ T have equally good performance. Formally, the utility function U for a
task i performed by an agent j ∈ A is defined as

Ui j =

{
1, if ti ∈ T j,

0, otherwise.

However, in general case, agents may have different velocities and/or may con-
sume a different amount of energy. For example, in the case of spatially dis-
tributed tasks, the overall performance estimate of two different agents over
the same set of tasks might be different, since some agents can perform the
same task set more efficiently – in terms of time or energy consumption – than
others.

The mathematical formulation of [ID]:SR-ST-TA problem configuration
can be found in Papers B and C [49, 68], and it is called Extended Colored
Traveling Salesperson Problem (ECTSP). The formulation is given as an ex-
tension of the TSP, more specifically, CTSP, with the addition of PC, and mul-
tiple source and destination depots. Given that the problem is a variant of TSP,
it is clear that the problem is, in its essence, a routing problem. Nevertheless,
the mapping between ECTSP and MRTA is quite straightforward.

In MRTA, salespersons map to agents, while cities correspond to tasks.
Every salesperson has a color set that maps into its equipment, e.g., camera,
gripper, different sensor modalities. In the same manner, the color that is as-
signed to the city indicates the equipment the agent needs to have to be able to
perform that task. Opposite to the TSP, city visits are not instantaneous, i.e.,
tasks have a predefined duration. The PCs are also part of the problem, how-
ever, the mapping is not necessary as they have the same name and meaning
both in ECTSP and MRTA. It is important to stress out that the task inter-
relatedness is defined in the context of a single agent’s schedule, i.e., there
cannot be any task interrelatedness between tasks allocated to different agents.
Following Korsah’s definition [17], it can be concluded that ECTSP has only
intra-schedule dependencies.

A graphical example of a mission is given in Fig. 3.2. Tasks are represented
with colors blue, red, and green, with each color type having a special shape.
To simplify, there is only one agent per source depot, so X marks both the
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Figure 3.2: An illustration of an ECTSP plan.

starting location of an agent and a source depot. Agents have specific colors
that map to given tasks. Agent two has two colors, red and blue, which means
it is capable of doing two different types of tasks. Finally, PC are shown with
a dashed line, 4 ≺ 12 and 2 ≺ 1. In this example the routes of the agents are
A1 = {13,6,9,D2}, A2 = {3,2,4,1,12,7,D2}, A3 = {11,8,5,10,D1}. This
example serves the purpose of providing intuition on the problem and solution
of [ID]:SR-ST-TA problem configuration, since the problem in the Sect. 3.2 is
built on top of the one described in this section.

3.2 [XD]:SR-MT-TA Problem Configuration
In order to address this problem configuration, it is necessary to have MT
agents, i.e., agents that can perform multiple tasks in parallel. In recent years,
robotic systems have become more powerful thanks to the adoption of novel
computing platforms, enabling an increased level of parallelism, in terms of
sensing, actuation, and computation. As a result, more complex missions can
be achieved, at the cost of increased complexity for the optimization of the
mission planning.

To utilize the full power of the MT approach, the distinction between virtual
and physical tasks has been introduced. We can reason about physical tasks
as tasks that are bound to a certain spatial location, e.g., moving an object,
surveillance of an area, etc. In contrast, virtual tasks have no such constraints,
i.e., they can be executed at any time of the mission, even in parallel with
some other tasks, as long as other constraints are satisfied, e.g., precedence
constraints. Having two different task types lead to multiple possible relations
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of these tasks, in particular, (i) relation between two or more physical tasks;
(ii) relation between physical and virtual tasks; and (iii) relation between two
or more virtual tasks.

In case (i), to be able to execute two or more physical tasks at the same time
means that those tasks are at the same physical location. An example of this
can be a dual-arm robot manipulating two objects at the same time. Although
this case is certainly interesting, at the level of abstraction that is assumed in
this thesis, concurrent physical tasks are seen as one monolithic physical task.
The reasoning is that this monolithic task can be decomposed into necessary
actions, in the lower level of abstraction, as actions are performed at the same
location. On the other hand, cases (ii) and (iii) are more interesting from the
perspective of multi-agent mission planning. In the case of mixed parallelism,
only one of the tasks may have a spatial constraint (constraint related to a cer-
tain location), whereas the other tasks are not bound to the physical location
of the agent. An example of this is the task of scanning an area and concur-
rently sending the data to the command center. The sending data task has no
constraints on the location from where it has to be performed. A physical task
may be executed in parallel with more than one virtual task. The number of
virtual tasks that can run in parallel is limited with functional dependencies
among the tasks, the contention of the required resources, or simply because
the level of parallelism provided by the computing platform is not enough to
support the amount of concurrent virtual tasks. Nevertheless, when parallelism
can be achieved, it can lead to mission makespan reduction. In addition, it is
also assumed that a virtual task can be performed during the transition between
two physical locations.

We formulate the [XD]:SR-MT-TA problem configuration on top of the
ECTSP formulation with three main distinctions. Firstly, there is a distinction
between task types, i.e., we introduce virtual tasks (tasks without a physical
location in the environment). Secondly, task parallelism is allowed between a
physical task and virtual tasks, or only between virtual tasks. Lastly, instead
of allowing only intra-schedule dependencies, both physical and virtual tasks
can have cross-schedule dependencies. It can be reasoned about the described
problem as a mixture of routing and scheduling problems. Where the amount
of physical or virtual tasks in a mission determine if the problem is closer to
a routing or scheduling problem. For example, a mission with more physical
tasks is closer to a routing problem, while a mission with more virtual tasks
can be seen as closer to a scheduling problem. Both routing and scheduling
problems, except for a few trivial cases, are NP-hard. Consequently, [XD]:SR-
MT-TA is also at least NP-hard. This means that the algorithm’s performance
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exponentially decreases with the increase in the problem size. Moreover, the
ratio between the two task types may affect the performance of the selected
algorithm. As this is the mixture of routing and scheduling, the selected solvers
are the ones commonly used for respective types of problems. The problem
is tackled with both CPLEX and CP Optimizer. In addition, both ILP and CP
formulation of the problem is given. CPLEX is commonly used to solve routing
problems [69,70], while CP Optimizer, and constraint programming in general,
are preferred choices when it comes to solving scheduling problems [71, 72].

An example of parallel task execution, within a single agent’s schedule, is
given in Figure 3.3. In this case, Tasks 1, 2, and 4 are virtual tasks, while Task
3 is a physical task. Task 0 represents the necessary time (transit) to reach a
physical task from the previous location. Tasks 1 and 2 can be executed in
parallel with Task 3, however, Task 1 cannot be run in parallel with Task 2,
nor can any other combination of tasks. Task 4 has precedence constraint with
Task 3, i.e., T3 ≺ T4. Since Tasks 2 and 4 cannot be executed in parallel, nor
can Tasks 3 and 4, Task 4 has to be scheduled to start when Task 2 ends. This
in turn postpones the start of the second instance of Task 3, hence, instead of
at time step τ5 Task 3 starts at τ6, even though the robot reached the second
instance of Task 3 at time step τ5. The purpose of this example is to show
some of the possible relations between virtual and physical tasks in a single
agent’s schedule.

Task 2

Task 1

Task 0

time

Virtual

Virtual

Task 3 Physical

Transit Transit

Physical

Task 4 Virtual Virtual

Transit

Figure 3.3: An example of a schedule of an agent with virtual and physical tasks and
task parallelism.
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3.3 Objective Function
The goal is not just to satisfy mission constraints, but to optimize an objective
function as well. In this thesis, the optimization criterion is time. Time is incor-
porated in the objective function through the mission duration, i.e., a makespan
of the mission that is being minimized. Mission duration (makespan) is defined
as the time passed from when the first agent leaves a source depot until the last
agent reaches a destination depot. In this sense, a minMax objective function
is commonly used, as it minimizes the maximum makespan over all the agents.
However, this objective function is not suitable for problems where tasks do
not have the same duration, more specifically in scenarios where one task may
dominate other tasks. This means that one task can take longer to finish than
all other tasks combined, thus, in that case, other agents’ plans will not get op-
timized at all. On the other hand, if the objective is to minimize the sum of all
agents’ plans, this can lead to one agent doing all the tasks, while the rest are
unused. To circumvent this issue, we proposed a different objective function,
which is a linear combination of the weighted sum of all tasks added to the
weighted minimum of the longest makespan over all the agents. More details
can be found in Paper B [68].

3.4 General Assumptions
Tasks are executed by physical agents (robots) within an environment E . Spe-
cific characteristics of the environment E are not taken into consideration dur-
ing the mission planning process. It is assumed that there are no obstacles in
environment E , i.e., all the tasks are accessible by straight path from any other
task. Communication limitations are out of the scope of this work, and we as-
sume that robots have infinite range, and that communication is instantaneous,
which means that in the same moment a possible event happens, the planner
gets that information. All the states are fully observable, which means there are
no uncertainties about task execution or a location of a robot during the mis-
sion execution. The physical properties of the robots are ignored, except for
its velocity. This means that every robot is modeled as a mathematical point
moving freely in the environment and limited only by its velocity, which is
constant. No partial task execution is possible, robots either finish the task suc-
cessfully or in case they fail (robot breakdown) the task is repeated by another
robot from the beginning. Tasks properties are known a priori, and they are
not changeable during the execution of a mission. These properties include (i)
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task duration; (ii) task location; (iii) required equipment; and (iv) precedence
relatedness to other tasks. Additionally, tasks can only start at (i) time zero, (ii)
the beginning of some other task, or (iii) the end of some other task. In this
context, transiting between two tasks is also considered as a task, i.e., a task
can start at the end of transit tasks, as well.

Finally, to sum up, the environment E is fully observable and accessible,
only agents can make changes in the environment, and the communication
among robots/planner is perfect. Robots have constant velocity and no other
physical property. Task properties are known before the mission, and they do
not change during the mission execution.

The aforementioned assumptions and constraints lay down the basis for the
work done in this thesis, which focuses on extending this basic problem formu-
lation to encompass other constraints found in real-world application scenarios.
Although the presented work can be seen as domain-independent, the predomi-
nant part of this thesis deals with robotic systems. Moreover, this thesis tackles
High-Level planning of different robotic missions, however, some parts of the
planning problem (path planning, motion planning, communication, obstacle
avoidance, etc.) are out of the scope of this work. In order to shed more
light on the position of this work in the robotics context and the position of
the addressed problem in the abstraction hierarchy, a diagram of different lev-
els of abstractions in robotic missions is provided in Fig. 3.4. As it is shown,
the mission planning is a part of the High-Level planning, which receives the
mission as an input and outputs sets of tasks allocated to robots. This is the

High-Level Planning

Mid-Level Planning

Low-Level Planning

Mission Planning;
Routing and Scheduling. 

Path planning; Task Planning.

Motion Planning, Actuator Control.

Mission

Ordered set of Tasks

Ordered set of Actions
and Commands

Executed
Plan

Figure 3.4: Different levels of abstraction of planning in robotic missions.
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input for the Mid-Level planning, which handles the path planning including
the environmental constraints, and task planning and decomposition into sim-
ple actions and commands that the robot can understand and execute. Finally,
Low-Level planning is performed, which is usually done on the robot itself.
The robot takes action by action from the Mid-Level planning and executes
them. When they are all executed, the mission is complete.

This chapter offered an insight into the basis of problems this thesis aims
to address. On top of the basic mission planning definition and MRTA taxon-
omy, additional problem dimensions are added in order to allow more complex
problems to be expressed. These dimensions include concurrency, dependency,
and task type. In this thesis, such dimensions and problem configurations are
explored and addressed separately, in the attempt of identifying commonali-
ties that can be exploited to provide a general approach to tackle the mission
planning problem. Another aim of this thesis is directed towards the systemati-
zation of the MRTA taxonomy by providing a solution for stating the mission’s
constraints and requirements in a more structured manner. A detailed and ex-
haustive survey of the MRTA taxonomy was performed to identify and classify
the aforementioned problem configurations. In addition, it also leads to the
identification of two new research dimensions, i.e., environment and mission,
which will allow more complex missions to be expressed. Furthermore, two
problem configurations are formally addressed with mathematical problem for-
mulation and their models implemented in various solver solutions. Obtained
results were compared in order to understand the usability of proposed solution
approaches.





Chapter 4

Research Goals

In this chapter, the overall research problem, with specific research goals, will
be defined based on the state-of-the-art. The overall research goal will be de-
composed into three smaller research goals, and they will be mapped to the
papers addressing them.

Multi-agent mission planning can be interpreted very broadly, i.e., many
different problems may be regarded as missions. Therefore, a taxonomy that
can represent different problem dimensions in a structured and systematic man-
ner is desired. Based on the different constraint types and their mutual depen-
dencies, different problem configurations can be identified. These problem
configurations have different key aspects and complexity levels, thus it is not
possible to provide a unified solution to all of the identified problems. One part
of this thesis aims at identifying constraints and requirements that are relevant
to describe real-world mission planning problems on a high level of abstraction
such that they can be applied to different domains. This does not mean that the
aim is defining a single model to unify all possible problem configurations, but
rather to recognize key aspects that multi-agent missions have in common. The
types of the missions covered by the model are driven by real-world applica-
tions, involving very different technologies, such as different communication
constraints, autonomy levels, and capabilities of the involved agents, just to
mention a few. The second part of this thesis research problem is to design
an efficient way of solving complex missions while addressing the issues of
scalability and efficiency.

Figure 4.1 is provided in order to better show where these problem configu-
rations fit in the overall picture of MRTA. Problem configurations are depicted
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Figure 4.1: An illustration of selected MRTA problem configurations with five different
dimensions.

as blue-shaded circles. The mapping of the papers A – D, included in this the-
sis, to problem configurations is depicted as well. The figure shows some of
the other problem configurations, not covered in this thesis, and their relation
to the research goals presented in this section.

In order to group the aforementioned problems, the overall Research Goal
(RG) of this thesis can be summarized as follows:

Overall RG: To formulate models that capture key aspects of
multi-agent missions and develop effective solutions for the iden-
tified high-level mission planning problems.

Moreover, this overall RG can be further decomposed into three more specific
research goals that will now be explained in more detail.

RG1: Provide a taxonomy model for multi-agent mission problems that
allows systematic and structured addition of new dimensions.

RG1 aims to provide a formal taxonomy model that incorporates all
of the previously defined dimensions in a non-ambiguous way. This has
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the advantage of preventing the reintroduction of already existing concepts.
Moreover, extending such taxonomy with additional dimensions, requires a
global vision of the MRTA problems, to avoid the introduction of redundant
dimensions that can be reduced to already existing ones. In addition, the goal is
to be able to add new research axes, not covered in MRTA and MRTA-related
taxonomies, thus allowing for more complex problem configuration (missions)
to be expressed using the proposed taxonomy.

RG2: Give a formal problem definition and solution of a [ID:SR-ST-TA]
with the addition of precedence constraints for a heterogeneous fleet of agents.

The outcome of addressing RG2 should be a formal problem formulation
of multi-agent mission planning problems expressed as MILP problems.
Having a well-defined problem formulation helps to focus on the solution
of the problem. Hence, the second part of this research goal is solving the
aforementioned problem and comprehensive analysis of the gathered results.

RG3: Provide a problem formulation and solution of a [XD:SR-MT-TA]
with the addition of precedence constraints for a heterogeneous fleet of agents.

RG3 targets providing formal formulation to task parallelism in multi-
agent mission planning problems. As the problem addressed is a mixture
of routing and scheduling problems, the goal is to provide both the ILP
and CP formulation. In addition, both formulations will be implemented in
commercially available software and their efficiency and solution quality will
be compared.

The mapping of the aforementioned research goals into published and sub-
mitted publications, that are included in the thesis, is shown in Table 4.1. Paper
A addresses the RG1 with the additional goal of providing a background for

Table 4.1: The mapping of the research goals to the included publications.

Paper A Paper B Paper C Paper D
RG1 X
RG2 X X
RG3 X
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the problem formulation in RG2 and RG3. Papers B and C are mutually con-
nected, and one is the continuation of the other. In both papers, the problem
from RG2 is addressed but in different ways. Paper B is more focused on pro-
viding the original formulation and a possible solution, while Paper C is about
the comparison between the meta-heuristic solver and MILP solver. Paper D
addresses problem formulation defined in RG3 and focuses on the task paral-
lelism in multi-agent mission planning.



Chapter 5

Research Process and
Methodology

This chapter will present an overview of the research process and methods
used to achieve the research goals. The research methodology helps to solve
research problems systematically by using an assortment of widely accepted
scientific methods and rules [73]. The main part of the research methodology
is the research process. The research process used in this thesis is depicted in
Figure 5.1.

The critical analysis of both state-of-the-art in theory and practice was con-
ducted to formulate research goals and objectives. In particular, the literature

Literature
Review

Problem
Formulation

ImplementationSolution
Proposal

No

Yes

Expected
Results? Evaluation

Start

Figure 5.1: The main steps of the research process.
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review helped with the understanding of how and if the desired topic has been
addressed by other researchers, how it compares to similar notions, and where
there are gaps that allow for scientific contribution. The rest of the research
process is done repetitively, starting from the problem formulation. It was
not only enough to formulate the research problem to cover the gap found in
the literature review. The problem had to be relevant from the standpoint of
the state of practice. This was ensured through collaboration with industrial
partners in ECSEL JU 1, 2 projects. In addition, through this collaboration,
the evaluation of the proposed solution in a real-world environment is done.
Therefore, the proposed theoretical solution to the identified problem has to
be implemented in order to be evaluated in practice. After the evaluation step,
it is decided whether the repetitive approach should stop (evaluation showed
desired results) or continue if the proposed solution did not satisfy set research
goals. The research process is described in more detail in the next section.

5.1 Research Process
The main objective of the proposed research is to define and evaluate new
methods, techniques, and theoretical foundations in the context of multi-agent
mission planning, considering the research goals in Section 4. A constructive
research [74, 75] is a type of research that combines the design and develop-
ment of the solutions, rather than discovery. A constructive research process
consists of the following steps.

After the initial literature review, the first step is problem formulation. The
problem formulation describes the problem that is being solved and its rele-
vance from both an academic and practical point of view. In addition, in this
step, the current state-of-the-art with regard to the given problem needs to be
addressed. In this thesis, the problem that is being addressed arose from the
practical perspective in the first place, i.e., there was a need for a multi-agent
mission planning solution in a multi-agent underwater scenario to reduce cost
and safety risks, and increase efficiency. However, the solution to this problem
is majorly shaped by the state-of-the-art, and that is the next step.

Now that a problem has been formulated, and its significance established,
it is important to identify what existing knowledge can be utilized to solve the
problem. If the problem is novel, it means that there is a void in the knowledge
that needs to be filled with a theoretical solution. In our case, we first formulate

1http://www.swarms.eu
2https://www.ecsel.eu/projects/afarcloud

http://www.swarms.eu
https://www.ecsel.eu/projects/afarcloud
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and model the problem at hand based on the found related problems. Secondly,
possible solutions to the problem are identified, which need to be implemented
and evaluated for their effectiveness. This process can reveal new voids in
knowledge, as was the case in this thesis, where the lack of systematic multi-
agent taxonomy was identified and addressed.

Both of these steps play a major role in the identification of research prob-
lems and the definition of research goals. Nevertheless, these goals may be
changed and revised based on the results of the next two steps.

The next step is the implementation of the proposed solution, i.e., the con-
struction of a practical solution out of theoretical knowledge. In this thesis,
this step mainly refers to the development of a solver for computing a solu-
tion to the problem. More specifically, the problem is first formalized as an
optimization problem, as MILP or CP models of identified configurations, and
then solvers are implemented. Finally, the solvers are integrated into the plan-
ner of a mission management tool. As the identified problems, in their general
formulation, are typically NP-hard, the implementation of solvers is done in
C++ programming language, favoring the performance of the implemented so-
lutions with respect to other programming languages, such as Java or Python.
CPLEX and CP optimizer have been chosen as the solvers for MILP and CP
models, respectively, as they are commonly used for verification and bench-
marking of different models, and they implement state-of-the-art algorithms
for the solution of such kinds of optimization problems. Other solvers are also
available (e.g., Gurobi3, SCIP4 Xpress5), however a general comparison of
different MILP/CP solvers is beyond the scope of this work. Moreover, this
thesis develops different GAs to compute solutions to some of the formalized
problems, as an alternative to the (exact) solutions provided by the state-of-
the-art solvers. Such GAs explore the possibility of computing sub-optimal,
yet feasible, solutions in shorter time, opening the opportunity to be used for
re-planning purposes.

In the fourth and final step, the evaluation of the implemented solution is
conducted. In the evaluation process, it is first checked if the solver can provide
a solution to the given problem. Secondly, the proposed solution is compared
over a benchmark to other solutions from the literature, if such solutions exist,
and among implemented solutions. The focus of the evaluation is twofold (i)
verify that the proposed model is correct; and (ii) comprehensive analysis of
the performance, in terms of the solution quality and scalability, of the imple-

3http://www.gurobi.com/
4https://www.scipopt.org/
5https://www.fico.com/fico-xpress-optimization/docs/latest/overview.html

http://www.gurobi.com/
https://www.scipopt.org/
https://www.fico.com/fico-xpress-optimization/docs/latest/overview.html
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mented solutions. If the problem solution solves the problem within the set
research goals, the work is done, otherwise, the research process cycle contin-
ues until such condition is met.

It is worth mentioning that the benchmarks over which the solvers are eval-
uated are inspired by, or come from, real-world scenarios. However, the quality
of the generated plans is not assessed in terms of the actuation of the plan by
the multi-robot system, as this thesis focuses only on high-level planning. The
high-level plans are generated under the assumptions described in Section 3.4,
but the executed plan will generally deviate from the original plan due to ex-
isting non-idealities, e.g., the kinematic constraints of the robots, the presence
of obstacles, potential external disturbances, etc. Such aspects are typically
taken care of by the path planners (mid-level planning) and the motion con-
trollers of the robot (low-level planning), and therefore are not considered in
the evaluation of the proposed algorithms.



Chapter 6

Thesis Contributions

In this chapter, a compact overview of the contributions that address the re-
search goals in Section 4 is given. This thesis consists of three contributions:

Contribution 1 (C1): This contribution is directed towards the systematiza-
tion of the MRTA taxonomy by providing a solution for stating a given mis-
sion’s constraints and requirements in a more structured manner. For this con-
tribution, first, a survey of the existing taxonomies had been performed, which
has led to the identification of the important dimensions of MRTA problem
configurations, isolating ambiguities, and understanding differences and simi-
larities.

The final result is the Task Allocation in Multi-Robot System Entity-
Relationship (TAMER) model that aims at covering the relevant aspects of the
multi-agent mission planning problems, by adopting Entity Relationship (ER)
paradigm [76] of representing knowledge and modeling relations between at-
tributes and entities. As the name suggests, the relevant dimensions of MRTA
problems are modeled through entities, and the relationships between them, ac-
cording to the ER model. Four main entities have been proposed: Robot, Task,
Environment, Mission and appropriate relationships that connect these entities.
More details in Paper A [77].

The goal of TAMER is to provide a unified view of the existing taxonomies.
The very structure of the ER model helps to avoid unnecessary overlapping
of dimensions and provides a deeper understanding of how newly proposed
dimensions fit within the big picture. Newly proposed aspects may not only
overlap, but they may be coupled with existing ones. TAMER helps simplify
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the process of adding new dimensions, by providing a more formal approach
to tame the complexity of the MRTA taxonomy problem.

It is not only that TAMER unifies dimensions of previous taxonomies, but
it also brings two additional research dimensions to light: Multi-Mission prob-
lems and Multi-Environment problems. These aspects have not been in the fo-
cus of previous taxonomies and in general have not been extensively explored.
Nevertheless, they might be of crucial importance in representing missions
with a shared environment, robots, tasks, or resources. The Multi-Mission
aspect provides an interesting perspective when several missions share some
of the robots or some of the tasks, and the MRTA problem needs to take into
account this additional constraint. On the other hand, the Multi-Environment
aspect allows more complex problem configurations to be expressed with the
TAMER model.

Contribution 2 (C2): This contribution can be decomposed into two sub
contributions.

C2.1 The first goal is to encapsulate the main attributes of multi-agent mis-
sions on a high level of abstraction such that the given problem formulation
can be regarded as domain-independent. The proposed model can utilize a
group of heterogeneous agents being allocated to perform a variety of differ-
ent tasks that require certain capabilities, on the agent side, to be performed.
Moreover, there might be interrelatedness between tasks, i.e., a certain order
among some tasks may need to be maintained. Thus, besides allocating tasks
to agents, a good solution should include an optimal choice of a set of agents
to perform the mission, judging on the agents’ source depots, capabilities, and
the whereabouts of destination depots. This problem can be categorized, by
using previous taxonomies (Section 2.1), as [ID]:ST-SR-TA with PC, where
agents have different capabilities and tasks have different capability require-
ments. In addition, agents may start and end their tours in different depots.
The proposed model is expressed as a novel variation of a classical TSP that
we named ECTSP, and it was cast as a MILP problem. We derived two MILP
formulations, one based on the 2CFN model and the other one based on the
RMTZ model. The main difference between these two formulations is in the
way precedence constraints are expressed and modeled. The two models are
both implemented in the state-of-the-art MILP solver CPLEX and results are
published in Papers B and C. In addition, a comparison with the meta-heuristic
approach, defined in C2.2, is given.

Regarding the hardness of the problem, in this case, we start from the rout-
ing problem, i.e., TSP, which is proved to be NP-hard. Since TSP is a special
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case of ECTSP, i.e., the latter can be reduced to the former. We can thus con-
clude that ECTSP is at least NP-hard. The scalability poses one of the main
issues when dealing with this kind of problem. We tried to circumvent this
issue by using a GA-based solver described in paragraph C2.2.

C2.2 This contribution focuses on solving the problem formulated in RG2.
Since we have established that the problem described in RG1 is NP-hard, a
meta-heuristic approach, specifically, GA is used to try and solve this problem
more efficiently. The solver is called Genetic Mission Planner (GMP) and it
follows the well-established model of the GA, with specifically tailored varia-
tion operators and a newly introduced Precedence Constraint Reparation (PCR)
algorithm. Chromosomes consist of two arrays of integer identifiers. They are
used to represent different types of genes, namely task, agent, parameter, and
dummy genes.

The variation operators that are used, are adapted to the problem at hand.
The Edge Recombination Crossover (ERX) has shown the best results among
other tested crossover operators. The underlying mechanism of preserving
edges between nodes, i.e., tasks, from parents and passing them to the off-
spring is responsible for a good performance of ERX. The crossover operator
works in combination with mutation operators. The mutation is the foundation
of variability, as it leads to genetic diversity in the population. Four different
mutation operators are developed, out of which two operate on task genes and
the other two on agent genes. Task gene mutation consists of swapping genes
and inserting genes mutation operations. Agent genes mutate in two differ-
ent ways, by adding agent genes to the chromosome (growth mutation) or by
removing agent genes from the chromosome (shrink mutation).

Precedence constraints violations are repaired once after the creation of the
initial population, and every time after the crossover and mutation are done
since PCs are not taken into account during these processes. The PCR al-
gorithm works by identifying the conflicts in the chromosomes and repairing
them based on the type of detected conflict.

The local refinement is done by a Greedy Search (GS) algorithm. GS was
applied after every generation. While the GA performs allocation of cities to
salespersons, the GS reorders cities within the salesperson’s plan based on the
nearest neighbor heuristic. In this approach, if the newly produced candidate
solution is better than the original one, it is inserted into the population, other-
wise, it is discarded.

The final part of this contribution is the objective function that is specifi-
cally tailored for multi-agent mission planning scenarios where tasks have dif-
ferent durations. The objective function is formulated as the sum of two parts.
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The first part is the maximum makespan of an agent over all the agents. The
second part is a weighted sum of all makespans. The advantage of having an
objective function formulated in this way is discussed in detail in Paper B [68].

Contribution 3 (C3): In this contribution, we address the multi-agent mis-
sion planning with parallel task execution. The first part of the contribution is
the distinction between virtual and physical tasks. Physical tasks are defined
as a task that has spatial constraints, i.e., that have to be executed at a specific
location in the environment. Virtual tasks have no such constraints. Their exe-
cution is only limited by task dependencies and the computational power of the
system. Virtual tasks can be executed in parallel with other tasks, both physi-
cal and virtual. They also can be executed solo or while transiting between two
physical locations. Allowing for parallel task execution may reduce the total
makespan of a mission. The upside is that with this distinction more complex
missions can be described, the downside is that having parallel tasks increases
the optimization complexity. These days, with the increase in the power of
computing platforms, it is quite possible and realistic to utilize parallel task
execution. Nevertheless, in the robotics domain, this particular problem con-
figuration remains neglected, as there is very little work done that addresses
this type of problem. We believe that the first step, in introducing this problem
to the scientific community, is to provide a formal problem formulation. And
that is the second part of this contribution.

By defining the distinction between physical and virtual tasks, we set the
basis for a formal problem definition of multi-agent mission planning with par-
allel task execution. The formulation is built on top of the previously defined
problem in RG2 that has no parallel task execution. By introducing parallelism,
this problem becomes a mixture of routing and scheduling problems. Hence, in
addition to the ILP formulation that is implemented and verified in CPLEX, a
CP formulation has also been provided, since CP has had a noticeable amount
of success in solving scheduling problems. The models are validated on the
set of benchmarks with 10 test instances and different mission settings with the
goal of exploiting the potential task parallelism of the agents involved while
minimizing the makespan of the mission.

The last part of this contribution is a comprehensive performance analysis
of both CPLEX and CP solvers, which explores their scalability and solution
quality on a given multi-agent mission planning problem with parallel task
execution, both in terms of initial plan creation and re-planning.

The mapping of the aforementioned thesis contribution to published and
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Table 6.1: Mapping of the thesis contributions to the different included publications.

Paper A Paper B Paper C Paper D
C1 X
C2 X X
C3 X

submitted publications, that are included in the thesis, is shown in Table 6.1.
Paper A is focused on the first contribution of this thesis (C1). Papers B and
C address the same type of problem; however, contributions from the papers
are different. Both papers present a MILP formulation of the same problem
(ECTSP). However, MILP formulations are different, and they are being eval-
uated in paper C in different contexts. Paper B gives a detailed overview of
the GA-based solver that is further extended in paper C. Also, in paper B it is
discussed and explained why the proposed objective function is used. Paper
C makes a comparison between the improved GA solver, updated with local
search, and CPLEX implementation of ECTSP. Paper C can be seen as the
continuation of paper B. Finally, C3 maps to Paper D.





Chapter 7

Overview of the Included
Papers

Included papers are not presented in the chronological order, but rather contex-
tual. Four papers are included in the thesis, referred to as paper A–D.

Paper A: TAMER: Task Allocation in Multi-robot
Systems Through an Entity-Relationship Model
Abstract. Multi-robot task allocation (MRTA) problems have been studied
extensively in the past decades. As a result, several classifications have been
proposed in the literature targeting different aspects of MRTA, with often a few
commonalities between them. The goal of this paper is twofold. First, a com-
prehensive overview of early work on existing MRTA taxonomies is provided,
focusing on their differences and similarities. Second, the MRTA problem is
modeled using an Entity-Relationship (ER) conceptual formalism to provide a
structured representation of the most relevant aspects, including the ones pro-
posed within previous taxonomies. Such representation has the advantage of (i)
representing MRTA problems in a systematic way, (ii) providing a formalism
that can be easily transformed into a software infrastructure, and (iii) setting the
baseline for the definition of knowledge bases, that can be used for automated
reasoning in MRTA problems.
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Authors. Branko Miloradović, Mirgita Frasheri, Baran Çürüklü, Mikael
Ekström, and Alessandro V. Papadopoulos.

Status. Published at the 22nd International Conference on Principles and
Practice of Multi-Agent Systems (PRIMA’19).

Contributions. The work done on this paper is equally split between Mir-
gita Frasheri and I. My contribution to the paper is related to topics regarding
task allocation and high-level view of MRTA problems, while Mirgita Frasheri
contributed to agent’s architecture and low-level side of MRTA problems. The
other co-authors contributed by discussions and reviewing the paper.

Paper B: A Genetic Algorithm Approach to Multi-
Agent Mission Planning Problems†

Abstract. Multi-Agent Systems (MASs) have received great attention from
scholars and engineers in different domains, including computer science and
robotics. MASs try to solve complex and challenging problems (e.g., a mis-
sion) by dividing them into smaller problem instances (e.g., tasks) that are al-
located to the individual autonomous entities (e.g., agents). By fulfilling their
individual goals, they lead to the solution to the overall mission. A mission
typically involves a large number of agents and tasks, as well as additional
constraints, e.g., coming from the required equipment for completing a given
task. Addressing such a problem can be extremely complicated for the human
operator, and several automated approaches fall short of scalability.

This paper proposes a genetic algorithm for the automation of multi-agent
mission planning. In particular, the contributions of this paper are threefold.
First, the mission planning problem is cast into an Extended Colored Traveling
Salesperson Problem (ECTSP), formulated as a mixed-integer linear program-
ming problem. Second, a precedence constraint reparation algorithm to allow
the usage of common variation operators for ECTSP is developed. Finally, a
new objective function minimizing the mission makespan for multi-agent mis-
sion planning problems is proposed.

†This article is an extended version of the following conference paper: Extended Col-
ored Traveling Salesperson for Modeling Multi-Agent Mission Planning Problems, Branko Milo-
radović, Baran Cürüklü, Mikael Ekström, and Alessandro Vittorio Papadopoulos. In Proceedings
of the 8th International Conference on Operations Research and Enterprise Systems (Vol. 1, pp.
237-244).
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Authors. Branko Miloradović, Baran Çürüklü, Mikael Ekström, and
Alessandro V. Papadopoulos.

Status. Published in: Parlier G., Liberatore F., Demange M. (eds) Opera-
tions Research and Enterprise Systems. ICORES 2019. Communications in
Computer and Information Science, vol 1162. Springer, Cham.

Contributions. I was the main driver of the work. I did the implementation
and wrote the paper. Baran Cürüklü was involved in the design of the Generic
Algorithm and use case scenarios. The ECTSP problem formalization was
carried out in close collaboration with Alessandro V. Papadopoulos. All co-
authors contributed by discussions, feedback, and reviewing the paper.

Paper C: GMP: A Genetic Mission Planner for Het-
erogeneous Multi-Robot System Applications
Abstract. The use of Multi-Agent Systems (MASs) in real-world applica-
tions keeps increasing, and diffuses into new domains thanks to technologi-
cal advances, increased acceptance, and demanding productivity requirements.
Being able to automate the generation of mission plans for MASs is critical
for managing complex missions in realistic settings. In addition, finding the
right level of abstraction to represent any generic MAS mission is important
for being able to provide general solution to the automated planning problem.
In this paper, we show how a mission for heterogeneous MASs can be cast
as an extension of the Travel Salesperson Problem (TSP), and we propose a
Mixed-Integer Linear Programming formulation. In order to solve this prob-
lem, a Genetic Mission Planner (GMP), with a local plan refinement algorithm,
is proposed. Additionally, comparative evaluation of CPLEX and GMP is pre-
sented in terms of timing and optimality of the obtained solutions. The algo-
rithms are benchmarked on a proposed set of different problem instances. The
results show that, in presence of timing constraints, GMP outperforms CPLEX
in the majority of test instances.

Authors. Branko Miloradović, Baran Çürüklü, Mikael Ekström, and
Alessandro V. Papadopoulos.
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Status. Published in IEEE Transactions on Cybernetics, May 2021. doi:
10.1109/TCYB.2021.3070913.

Contributions. I was the main driver of the work. I did the implementa-
tion and wrote the paper. The problem formalization was carried out in close
collaboration with Alessandro V. Papadopoulos. Baran Cürüklü contributed to
the GA design. All co-authors contributed by discussions, feedback, and by
reviewing the paper.

Paper D: Optimizing Parallel Task Execution for
Multi-Agent Mission Planning†

Abstract. Multi-Agent Systems have received a tremendous amount of at-
tention in many areas of research and industry, especially in robotics and com-
puter science. With the increased number of agents in missions, the problem
of allocation of tasks to agents arose, and it is one of the most fundamental
classes of problems in robotics, formally known as the Multi-Robot Task Allo-
cation (MRTA) problem. MRTA encapsulates numerous problem dimensions,
and it aims at providing formulations and solutions to various problem config-
urations, i.e., complex multi-robot missions.

One dimension of the MRTA problem has not caught much of the research
attention. In particular, problem configurations including Multi-Task (MT)
robots have been neglected. However, the increase in computational power,
in robotic systems, has allowed the utilization of parallel task execution. This
in turn had the benefit of allowing the creation of more complex robotic mis-
sions; however, it came at the cost of increased problem complexity.

To overcome the aforementioned problem, we introduce the distinction be-
tween physical and virtual tasks and their mutual relationship in terms of par-
allel task execution. To fill in the gap in the literature related to MT robot
problem configurations, we provide a formalization of the mission planning
problem, using MT robots, in the form of Integer Linear Programming and
Constraint Programming (CP), to minimize the mission makespan. The models
are validated in CPLEX and CP Optimizer on the set of benchmarks. Moreover,

†This article is an extended version of the following conference paper: Exploiting Parallelism
in Multi-Task Robot Allocation Problems. Branko Miloradović, Baran Cürüklü, Mikael Ekström,
and Alessandro Vittorio Papadopoulos. IEEE International Conference on Autonomous Robot
Systems and Competitions (ICARSC 2021)
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we provide a comprehensive performance analysis of both solvers, exploring
their scalability and solution quality.

Authors. Branko Miloradović, Baran Çürüklü, Mikael Ekström, and
Alessandro V. Papadopoulos.

Status. Submitted to the Journal of Intelligent & Robotic Systems on 29th of
September 2021. Revised version submitted in December 2021.

Contributions. I was the main driver of the work. I did the implementation
and wrote the paper. All co-authors contributed by discussions, feedback, and
by reviewing the paper.

Other Papers, related to Ph.D. Thesis
The publications are listed in reverse chronological order.

1. Exploiting Parallelism in Multi-Task Robot Allocation Problems.
Branko Miloradović, Baran Cürüklü, Mikael Ekström, and Alessandro
Vittorio Papadopoulos. IEEE International Conference on Autonomous
Robot Systems and Competitions (ICARSC 2021).

2. Planning and supervising autonomous underwater vehicles through
the mission management tool. Afshin Ameri, Baran Cürüklü,
Branko Miloradović, Mikael Ekström. IEEE Global Oceans 2020: Sin-
gapore – U.S. Gulf Coast (2020).

3. Extended Colored Traveling Salesperson for Modeling Multi-Agent Mis-
sion Planning Problems, Branko Miloradović, Baran Cürüklü, Mikael
Ekström, and Alessandro V. Papadopoulos. In Proceedings of the 8th
ICORES (Vol. 1, pp. 237-244), 2019.

4. A Genetic Mission Planner for Solving Temporal Multi-Agent Problems
with Concurrent Tasks, Branko Miloradović, Baran Cürüklü, Mikael Ek-
ström, 8th International Conference on Swarm Intelligence (ICSI), 2017.

5. A Genetic Planner for Mission Planning of Cooperative Agents in an
Underwater Environment, Branko Miloradović, Baran Cürüklü, Mikael
Ekström. 9th IEEE Symposium Series on Computational Intelligence
(SSCI), 2016.





Chapter 8

Conclusion

The ambition of this thesis is to provide formal models that capture key aspects
of generic multi-agent missions and develop effective solutions for identified
high-level mission planning problems.

The first step consisted of surveying and classifying existing problem con-
figurations, and providing a way for extending the initial classification. In other
words, the first contribution provides a unified view of existing taxonomies and
a way for a structured representation of different problem characteristics and
constraints, thus allowing representation of more complex problem configura-
tions to be expressed in a systematic manner. The main result of this contri-
bution is the proposed TAMER model, which offers a general model that (i)
includes existing dimensions from previous taxonomies presented by others,
(ii) provides a unified approach to the MRTA taxonomies, and (iii) allows for
the addition of new dimensions in a non-redundant manner. Similar to other
taxonomies, TAMER does not aim at completeness, however, it utilizes the
Entity-Relationship model, which requires a clear understanding of how newly
proposed aspects relate to each other.

In the second step, we used the outcome of the first contribution to identify
the most important aspects of real-world applications of multi-agent systems.
This approach is driven by the European (ECSEL JU) project demands. Three
main research axis have been isolated: Task Type, Concurrency, and Depen-
dency axis. Two problem configurations are addressed in this thesis. The first
multi-agent mission planning problem consists of allocating a set of tasks to a
set of heterogeneous agents. Every task has its parameters, which are defined
as (i) required capabilities from an agent, (ii) the physical location of the task,
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and (iii) possible relation with other tasks (precedence ordering constraints).
Every agent starts from a source depot and ends its mission in a destination
depot. Multiple agents can start from a single depot and finish at the same
depot. This problem has been formally described, by introducing a novel TSP
variation called ECTSP. Two different ECTSP MILP formulations are pro-
vided. In addition, we proposed a solution that had to fulfill several criteria to
(i) provide a solution reasonably fast, (ii) have “any stop” option, (iii) satisfy
imposed constraints, and (iv) optimize (in this case minimize) the given objec-
tive function. The need for obtaining a solution fast is not evident during the
initial planning, however, in the re-planning phase it might be crucial for the
success of the mission. Two approaches were tested, for a problem described
in Section 3.1, meta-heuristic (GA) and exact (CPLEX) solver. Results show
that in time-limited situations, for other than small problems, GA outperforms
CPLEX. GA also has the option to be stopped anytime, and use the best solu-
tion found thus far.

Finally, we addressed the dimension of the MRTA problem that has been
rather neglected by the scientific community. In particular, it is the problem
formulation that includes MT robots. In order to formalize this problem, first,
we had to define a distinction between virtual and physical tasks, and their mu-
tual relationship in terms of parallel execution. In addition, the ILP and CP
formulation have been provided and verified in the state-of-the-art commercial
software, CPLEX and CP Optimizer, respectively. A comprehensive evalua-
tion has been conducted in order to evaluate the efficiency and scalability of
the used solvers. The benchmark has been done on a set of test instances with
gradually increasing complexity. It can be concluded that except in the case
of small problem instances, CP formulation used in CP Optimizer outperforms
ILP formulation implemented in CPLEX. Both in terms of the time taken to
find a feasible solution and the gap between the lower bound and found solu-
tion. This also makes CP more suitable for missions that may require mission
re-planning.

Future Work. This thesis sets up the basis for further research on multi-agent
mission planning, especially, with parallel task execution. However, we just
scratched the surface with this work, and there are many paths that can be fol-
lowed. The first one is the extension of [XD]:SR-MT-TA to [XD]:MR:MT:TA,
i.e., to problem configuration that includes MR tasks in its definition. The sec-
ond possible direction to follow is to dive deeper into the meta-heuristic for
ECTSP, by trying different approaches and using a more sophisticated local
search. Another possible direction is to try and provide a heuristic for solving
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larger problem instances for [XD]:SR-MT-TA problem configuration that can
compete with solutions provided by CP Optimizer.
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[68] Branko Miloradović, Baran Çürüklü, Mikael Ekström, and Alessandro V
Papadopoulos. A genetic algorithm approach to multi-agent mission plan-
ning problems. In International Conference on Operations Research and
Enterprise Systems, pages 109–134. Springer, 2019.

[69] Xiaorong Zuo, Chuan Zhu, Changhao Huang, and Yiyong Xiao. Using
ampl/cplex to model and solve the electric vehicle routing problem (evrp)
with heterogeneous mixed fleet. In 2017 29th Chinese Control And De-
cision Conference (CCDC), pages 4666–4670, 2017.

[70] Vitoria Pureza, Reinaldo Morabito, and Henrique P Luna. Modeling and
solving the traveling salesman problem with priority prizes. Pesquisa
Operacional, 38:499–522, 2018.

[71] Yunfang Peng, Dandan Lu, and Yarong Chen. A constraint program-
ming method for advanced planning and scheduling system with multi-
level structured products. Discrete Dynamics in Nature and Society, 2014,
2014.

[72] Willem Jan van Hoeve, Carla P Gomes, Bart Selman, and Michele Lom-
bardi. Optimal multi-agent scheduling with constraint programming. In
AAAI, pages 1813–1818, 2007.

[73] Gordana Dodig-Crnkovic. Scientific methods in computer science. In
Proceedings of the Conference for the Promotion of Research in IT at
New Universities and at University Colleges in Sweden, Skövde, Suecia,
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