
Mälardalen University Press Licentiate Theses
No. 338

ENHANCING TSN ADOPTION BY INDUSTRY:

TOOLS TO SUPPORT MIGRATING ETHERNET-BASED LEGACY NETWORKS INTO TSN

Daniel Bujosa Mateu

2023

School of Innovation, Design and Engineering

Copyright © Daniel Bujosa Mateu, 2023
ISBN 978-91-7485-586-9
ISSN 1651-9256
Printed by E-Print AB, Stockholm, Sweden

iii

“The improvement of understanding is for two ends:
first, our own increase of knowledge;
secondly, to enable us to deliver that knowledge to others."
John Locke

Acknowledgements

I am deeply grateful to my supervisors Mohammad, Julián, Alessandro, and
Thomas for providing me with the opportunity to grow and develop as a re-
searcher. Their guidance, support, and encouragement throughout the Licen-
tiate have been invaluable, and I appreciate the effort they invested in making
the journey enjoyable and productive.

I also want to express my heartfelt thanks to my family and friends, partic-
ularly my parents and brother, for their constant support and love, despite the
distance between us. Their unwavering belief in me has been a driving force
throughout my academic journey.

Last, but no least, I am deeply thankful to my fiancée for her invaluable
support and understanding. She has been a constant source of motivation and
has made this journey an unforgettable experience.

This research is supported by the Swedish Knowledge Foundation (KKS)
under the FIESTA project and the Swedish Governmental Agency for Innova-
tion Systems (VINNOVA) under the DESTINE and PROVIDENT projects.
Julián Proenza was supported by Grant pid2021-124348ob-i00, funded by
MCIN/AEI/ 10.13039/501100011033 / ERDF, EU.

Daniel Bujosa Mateu
April 2023

Västerås, Sweden

v

Abstract

New technologies present opportunities and challenges for industries. One
major challenge is the ease, or even feasibility, of its adoption. The Time-
Sensitive Networking (TSN) standards offer a range of features relevant to
various applications and are key for the transition to Industry 4.0. These fea-
tures include deterministic zero-jitter, low-latency data transmission, transmis-
sion of traffic with various levels of time-criticality on the same network, fault
tolerance mechanisms, and advanced network management allowing dynamic
reconfiguration.

This thesis aims to develop tools and mechanisms that enable the industry
to adopt TSN easily and efficiently. Specifically, we facilitate the migration of
legacy networks to TSN, enabling the preservation of most of the legacy net-
works and solutions while reducing costs and adoption time. Firstly, we intro-
duce LETRA (Legacy Ethernet-based Traffic Mapping Tool), a tool for map-
ping Ethernet-based legacy traffic to the new TSN traffic classes. Secondly,
we develop HERMES (Heuristic Multi-queue Scheduler), a heuristic Time-
Triggered (TT) traffic scheduler that can meet the characteristics of legacy
networks and provide quick results suitable for reconfiguration. Thirdly, we
develop TALESS (TSN with Legacy End-Stations Synchronization), a mecha-
nism to avoid adverse consequences caused by the lack of synchronization be-
tween legacy networks and TSN. Finally, we improve the Stream Reservation
Protocol (SRP) to enhance Audio-Video Bridging (AVB) traffic configuration
in terms of termination and consistency.

vii

Sammanfattning

Uppfinningen av ångmaskinen i slutet av 1700-talet markerade början på en
kontinuerlig och snabb process av automatisering och förbättring inom indus-
trin, som tog ytterligare fart i och med införandet av datorstyrda maskiner
och robotik i mitten av 1900-talet. Moderna fabriker och deras produkter är
beroende av hundratals specialiserade processorer, inklusive sensorer, ställ-
don och styrenheter, som samarbetar för att utföra uppgifter och tillhandahålla
tjänster. Dessa processorer är beroende av kommunikations-subsystem för att
samordna och dela resurser. Dessa system, som vanligtvis kallas distribuerade
system, omger oss och används av de flesta människor hela tiden. Exempel
på distribuerade system finns i en mängd olika exempel, från moderna bilar
till fabriker som producerar olika varor. I en bil finns det till exempel många
olika sensorer och ställdon som hastighetsmätare, positionssensorer, bränslein-
sprutare och tändspolar, som alla arbetar tillsammans för att se till att bilen
fungerar säkert och effektivt, medan det i fabriker används robotarmar, trans-
portband och andra anordningar för att automatisera produktionsprocessen och
öka effektiviteten.

Den snabba utvecklingen av tekniken kan dock göra det svårt för företag att
hålla jämna steg med de senaste verktygen och systemen, eftersom kostnaden
för att införa tekniken kanske inte är kostnadseffektiv, inte bara på grund av
att tekniken måste förvärvas, utan också på grund av de förändringar som in-
förandet kräver i andra system som samarbetar. Till exempel skulle införandet
av ett nytt kommunikations-subsystem kräva att alla enheter som använder det
anpassas. Dessutom kräver uppgraderingen till nyare teknik ofta betydande
resurser, inte bara ekonomiska utan även naturresurser. Detta kan leda till ökat
avfall och ökade koldioxidutsläpp, vilket utgör en risk för miljön. Dessutom
kan följderna av teknikuppgraderingar, till exempel bortskaffande av föråldrad
utrustning och produktion av e-avfall, ha ytterligare miljöpåverkan.

I den här avhandlingen fokuserar vi på Time Sensitive Networking (TSN),
en ny kommunikationsstandard med betydande fördelar för den framväxande
tekniken. Även om TSN-tekniken ger många fördelar, bland annat högre kom-

ix

x

munikationshastighet och lägre latenstider, saknar många nuvarande indus-
trisystem mjuk- och hårdvarukraven för att stödja denna teknik. Målet med
vår forskning är därför tvåfaldigt: för det första att förbättra TSN’s mekanis-
mer för att göra den mer attraktiv för industrin och för det andra att utveckla
verktyg som möjliggör en sömlös migration och integration av äldre system
till TSN, så att slutstationerna kan utnyttja fördelarna med TSN utan att be-
höva byta ut eller uppgradera större delen av systemet. Detta tillvägagångssätt
sparar värdefull tid och resurser och minskar det avfall som uppstår under pro-
cessen.

List of Publications

Papers included in this thesis1

Paper A: Daniel Bujosa, Mohammad Ashjaei, Alessandro V. Papadopoulos,
Julián Proenza, Thomas Nolte. “LETRA: Mapping Legacy Ethernet-Based
Traffic into TSN Traffic Classes.” In the 26th IEEE International Conference
on Emerging Technologies and Factory Automation (ETFA 2021).

Paper B: Daniel Bujosa, Mohammad Ashjaei, Alessandro V. Papadopoulos,
Julián Proenza, Thomas Nolte. “HERMES: Heuristic Multi-queue Scheduler
for TSN Time-Triggered Traffic with Zero Reception Jitter Capabilities.” In
Proceedings of the 30th International Conference on Real-Time Networks and
Systems (RTNS 2022).

Paper C: Daniel Bujosa, Daniel Hallmans, Mohammad Ashjaei, Alessandro
V. Papadopoulos, Julián Proenza, Thomas Nolte. “Clock Synchronization in
Integrated TSN-EtherCAT Networks.” In the 25th IEEE International Confer-
ence on Emerging Technologies and Factory Automation (ETFA 2020).

Paper D: Daniel Bujosa, Mohammad Ashjaei, Alessandro V. Papadopoulos,
Julián Proenza, Thomas Nolte. “Improved Clock Synchronization in TSN
Networks with Legacy End-Stations.” Technical report at Mälardalen
University, Sweden, pending for submission to a journal.

Paper E: Daniel Bujosa, Inés Álvarez, Julián Proenza. “CSRP: An Enhanced
Protocol for Consistent Reservation of Resources in AVB/TSN.” In the IEEE
Transactions on Industrial Informatics 17 (TII 2020).

1The included papers have been reformatted to comply with the thesis layout.

xi

xii

Other Relevant publications2

Paper F: Inés Álvarez, Luis Moutinho, Paulo Pedreiras, Daniel Bujosa, Julián
Proenza, Luis Almeida. “Comparing admission control architectures for real-
time Ethernet.” In the IEEE Access, 2020, vol. 8.

Paper G: Daniel Bujosa, Mohammad Ashjaei, Alessandro V. Papadopoulos,
Julián Proenza, Thomas Nolte. “Work-in-Progress: The Effects of Clock Syn-
chronization in TSN Networks with Legacy End-Stations.” In the 27th IEEE
International Conference on Emerging Technologies and Factory Automation
(ETFA 2022).

2Not included in this thesis.

Contents

I Thesis 1

1 Introduction 3

2 Background 7
2.1 TSN traffic classes . 7

2.1.1 Time-Triggered Traffic 8
2.1.2 Audio-Video Bridging Traffic 9
2.1.3 Best-Effort traffic . 10

2.2 TSN Clock Synchronization 11
2.2.1 BMCA . 11
2.2.2 PDM . 13
2.2.3 TTI . 13

2.3 Stream Reservation Protocol 14

3 Problem Formulation 17
3.1 Legacy Ethernet-based Traffic Mapping 18
3.2 TT Scheduling . 18
3.3 Legacy Networks Synchronization 19
3.4 Distributed SRP . 19

4 State of the Art Review 21
4.1 Mapping . 22
4.2 Scheduling . 22
4.3 Synchronization . 23
4.4 AVB SRP . 23

5 Research Methodology 25

6 Thesis Goals and Contributions 29
6.1 Research Gaps and Industry Needs 29

xiii

xiv Contents

6.2 Research Goals . 30
6.3 Research Contributions . 31
6.4 Included Papers . 33

6.4.1 Paper A . 33
6.4.2 Paper B . 34
6.4.3 Paper C . 35
6.4.4 Paper D . 36
6.4.5 Paper E . 37
6.4.6 Mapping the Included Papers with the Research Con-

tributions . 37

7 Summary and Future Work 39
7.1 Summary . 39
7.2 Future Work . 39

Contents xv

II Included Papers 48

8 Paper A
LETRA: Mapping Legacy Ethernet-Based Traffic into TSN Traffic
Classes. 51
8.1 Introduction . 53
8.2 Related work . 55
8.3 Legacy Ethernet-based traffic model 55
8.4 TSN traffic characteristics 56

8.4.1 ST traffic class . 57
8.4.2 AVB traffic class . 58
8.4.3 BE traffic class . 58

8.5 Proposed traffic mapping methodology 58
8.5.1 Mapping to the ST traffic class 59
8.5.2 Mapping to the AVB traffic class 59
8.5.3 Mapping to the BE traffic class 60
8.5.4 Resulting truth table 60
8.5.5 Evaluation tool . 60

8.6 Experiments and results . 62
8.6.1 Experimental setup 62
8.6.2 Results of the single-switch network 64
8.6.3 Results of the three-switch network 67

8.7 Conclusions and Future Work 69

9 Paper B
HERMES: Heuristic Multi-queue Scheduler for TSN
Time-Triggered Traffic with Zero Reception Jitter Capabilities. 75
9.1 Introduction . 77
9.2 Related Work . 78
9.3 Background . 80

9.3.1 Time-Triggered Traffic 80
9.3.2 AVB and BE Traffic 83

9.4 Proposed scheduling algorithm 84
9.4.1 System Model . 85
9.4.2 HERMES . 86

9.5 Evaluation of HERMES . 92
9.5.1 Experimental setup 92
9.5.2 Results of the scheduling time 95
9.5.3 Results of the schedulability 98

9.6 Conclusion and Future Work 101

xvi Contents

10 Paper C
Clock Synchronization in Integrated TSN-EtherCAT Networks. 105
10.1 Introduction . 107
10.2 Basics of Clock Synchronization Protocols 108

10.2.1 EtherCAT Clock Synchronization 108
10.2.2 TSN Clock Synchronization 110

10.3 Related Work . 113
10.4 Problem Description . 114
10.5 Proposed Solution . 117

10.5.1 Design . 117
10.5.2 Implementation . 118

10.6 Evaluation . 119
10.6.1 UPPAAL concepts 119
10.6.2 UPPAAL models . 120
10.6.3 UPPAAL queries . 122
10.6.4 Results . 122

10.7 Conclusions . 124

11 Paper D
Improved Clock Synchronization in TSN Networks with Legacy
End-Stations. 127
11.1 Introduction . 129
11.2 Related Work . 131
11.3 Background . 132

11.3.1 Time Aware Shaper 132
11.3.2 Generalized Precision Time Protocol 134
11.3.3 Centralized Network Configuration element 134

11.4 Problem statement . 135
11.5 TALESS: TSN with Legacy End-Stations Synchronization . . 137
11.6 TALESS Validation Setup 140

11.6.1 Simulation Model 140
11.6.2 Experimental Setup 141

11.7 Simulation and experimental results 142
11.7.1 Simulation Model Results 143
11.7.2 Real Network Implementation Results 144
11.7.3 Comparison Results 146

11.8 Conclusions and Future work 146

Contents xvii

12 Paper E
CSRP: An Enhanced Protocol for Consistent Reservation of Re-
sources in AVB/TSN. 151
12.1 Introduction . 153
12.2 Related Work . 155
12.3 SRP Overview . 156
12.4 SRP Uppaal Model . 159
12.5 Evaluation of the Termination of SRP 162

12.5.1 Termination at the Application Level 163
12.5.2 Termination at the Infrastructure Level 164

12.6 Evaluation of the Consistency of SRP 165
12.6.1 Consistency at the Application Level 166
12.6.2 Consistency at the Infrastructure Level 167

12.7 CSRP Description . 168
12.8 CSRP Uppaal Model . 171
12.9 Evaluation of the Termination of CSRP 172

12.9.1 Termination at the Application Level 172
12.9.2 Termination at the Infrastructure Level 172

12.10Evaluation of the Consistency of CSRP 173
12.10.1 Consistency at the Application Level 173
12.10.2 Consistency at the Infrastructure Level 174

12.11Conclusions . 174

I

Thesis

1

Chapter 1

Introduction

The emergence of novel technologies presents potential solutions and enhance-
ments to industries that can confer a competitive edge by minimizing costs,
improving products, or promoting environmental sustainability. By leverag-
ing such technologies, businesses can increase performance, optimize resource
utilization, and reduce harmful emissions. Nevertheless, embracing these op-
portunities is not without obstacles. The challenges often stem from the prac-
ticality and feasibility of integrating the new technologies into the industry.

Time-Sensitive Networking (TSN) is a new technology that has the poten-
tial to reshape industrial communications and facilitate the transition to Indus-
try 4.0. The development of TSN can be traced back to the creation of the IEEE
Audio-Video Bridging (AVB) Task Group (TG) in 2005. This group focused
on adding real-time capabilities to Ethernet for audio and video streaming. The
AVB TG developed three projects: IEEE Std 802.1AS [5] for clock synchro-
nization, IEEE Std 802.1Qav [1] for Credit-Based Shaping (CBS), and IEEE
Std 802.1Qat [2] for the Stream Reservation Protocol (SRP). To ensure mini-
mum Quality of Service (QoS) when using the aforementioned standards, the
AVB TG also created a set of rules called IEEE Std 802.1BA-2011: Audio
Video Bridging Systems [3]. Together, these standards are known as the AVB
standards.

As interest in AVB technology grew beyond audio and video streaming, the
AVB TG was renamed to TSN TG in 20121. The TSN standards are an expan-
sion of the AVB standards to meet the needs of additional applications, such
as automotive[49], automation[59], and energy distribution[48]. TSN offers
a variety of compelling features, including support for mixed hard and soft
real-time communications, flexibility of traffic requirements, and fault toler-
ance mechanisms. These features enable TSN to provide new solutions within

1https://1.ieee802.org/tsn/

3

https://1.ieee802.org/tsn/

4

modern industrial systems, such as increased bandwidth, improved real-time
behavior, improved fault tolerance, and even the integration of multiple legacy
networks into a single TSN network.

However, most Ethernet-based communication networks nowadays utilize
a variety of devices and protocols that cannot be seamlessly integrated with
TSN. Additionally, due to hardware limitations, several of these networks
would not be able to support TSN integration. Therefore, the adoption of TSN
by the industry requires significant investments in both software and hardware
upgrades. Such modifications often result in time and resource costs that may
not be cost-effective. Furthermore, the upgrade process leads to the generation
of a substantial amount of technology waste, consisting of relatively good-
condition equipment that could have been reused.

In this work, our objective is to develop tools and mechanisms to facilitate
the migration and integration of legacy networks with TSN. This integration
can be done in different ways, such as through the use of gateways. How-
ever, this would not allow the legacy networks to take advantage of other TSN
features such as higher bandwidth or low jitter. Thus, we propose to directly
replace the communication subsystem of the legacy network, i.e., all devices
exclusively responsible for communication (excluding the end-stations), with
TSN. This integration technique ensures that legacy end-stations can keep their
communication behavior and protocols, agnostic of the change, leading to im-
proved integration of various legacy networks and enabling them to leverage
the advantages of TSN potential features.

In order to achieve the desired migration and integration of legacy net-
works with TSN, several challenges should be tackled. Firstly, legacy traf-
fic needs to be identified and defined accurately. Secondly, the legacy traffic
should be mapped into the different TSN traffic types, based on its specific re-
quirements. Finally, the traffic mapped as TSN TT traffic should be scheduled
accordingly. Furthermore, if scheduling is required, it is necessary to have a
global view of time, and thus proper synchronization between the legacy net-
work and TSN must be ensured.

In this thesis we address the above challenges by proposing novel and ef-
ficient solutions. Firstly, we identify Ethernet-based trafic parameters relevant
for mapping legacy traffic into TSN. Secondly, we propose a mapping algo-
rithm that can efficiently map Ethernet-based traffic into TSN trafic classes
by taking into account their timing requirements. Finally, we develop a TT
traffic scheduling algorithm that conforms to the requirements of legacy net-
works and a synchronization mechanism that enables the communication of
legacy scheduled traffic even when the legacy end-stations and TSN are not
synchronized.

Chapter 1. Introduction 5

Outline. The Licentiate thesis is organized as follows. Chapter 2 pro-
vides the necessary background for the understanding of this work. Chapter 3
presents the problems identified and addressed in the thesis. Chapter 4 presents
the related work. Chapter 5 describes the research method used in the work.
Chapter 6 lists the challenges and contributions covered in this thesis and, fi-
nally, Chapter 7 concludes the paper and presents future directions.

Chapter 2

Background

This chapter summarizes the main mechanisms involved in the work and the
background necessary to facilitate its understanding.

2.1 TSN traffic classes

TSN end-stations communicate by transmitting Ethernet frames through
routes consisting of links and TSN switches. TSN end-stations and switches
are nodes that support clock synchronization and traffic shaping. TSN devices
feature output ports that support up to eight First-In-First-Out (FIFO) queues,
each associated with a specific priority level. TSN supports three traffic
classes: Time-Triggered (TT) traffic, Audio-Video Bridging (AVB) traffic,
and Best-Effort (BE) traffic. Each priority level is assigned to one of these
traffic classes depending on the shaping mechanisms it applies. However, it
is common that TT traffic has the highest priority, while BE traffic has the
lowest priority. It is important to note that multiple queues can cover the same
traffic class. For example, AVB traffic can consist of classes A, B, and C, each
associated with a distinct priority level.

Figure 2.1 shows an example of a TSN device output port with four queues
configured as TT traffic with the highest priority, AVB classes A and B traffic
with the second and third highest priority, and a BE traffic class as the lowest
priority. This is determined by the mechanisms applied to each queue, in-
cluding Time-Aware Shaper (TAS) and CBS, which will be described in depth
below.

7

8 2.1. TSN traffic classes

Port

St
ri

ct
 P

ri
o

ri
ty

C
B

S
C

B
S TA

S(
G

C
L,

t)

TT queue

AVB Class A queue

AVB Class B queue

BE queue

Figure 2.1: A TSN output port with four FIFO queues: one TT queue, two AVB
queues, and one BE queue.

2.1.1 Time-Triggered Traffic

TT traffic is transmitted in accordance with a fixed offline schedule that spec-
ifies the exact time slot each TT frame is transmitted. To prevent interference
between frames, TT traffic uses the TAS mechanism shown in Figure 2.1 as
defined in IEEE 802.1Qbv [30]. The TAS mechanism associates each queue
with a gate that can be opened or closed. Frames in a queue can be transmitted
only when the gate is open; otherwise, they are blocked. The Gate Control List
(GCL) is responsible for managing the gates, specifying precisely when they
should open and close. The GCL is a cyclic list that repeats the schedule, with
each entry in the list specifying the precise time at the nanosecond level when
the gate should be open or closed. The term transmission window refers to the
time interval during which a gate is open.

Figure 2.2 depicts an example of how the TAS operates for two TT queues
with different priorities (6 and 7). The example assumes the transmission of
three TT frames with a period of 4 time units through a switch port. One of
the frames is set to the highest priority 7 (blue), while the other two frames
are set to priority 6 (red and green). The figure shows the gates for the two
queues and their states at different time slots based on the GCL, which specifies
when the gates should be open or closed. During the first time slot (T0 to
T1), the gate for the priority 6 queue is open (1 in GCL), while the gate for
priority 7 is closed (0 in GCL), allowing the transmission of the red frame.
In the second time slot (T1 to T2), the gate for priority 7 is open, allowing
the transmission of the blue frame. Both gates are closed in the third time
slot (T2 to T3), preventing any transmission. Finally, in the last time slot, the

Chapter 2. Background 9

1 0
0 0
0 1
1 0

Strict Priority

TT queue
Priority 6

TT queue
Priority 7

GCL

GCL Cycle 1

T0

T1

T2

T3

T0 T1 T2 T3 T0 T1 T2 T3 T0

GCL Cycle 2

Figure 2.2: TSN TAS gate mechanism.

gate for the priority 6 queue is open, allowing the transmission of the green
frame. The figure also shows two cycles of frame transmission at the bottom,
demonstrating how the GCL repeats the schedule.

2.1.2 Audio-Video Bridging Traffic

The AVB TG [1] presented the CBS that applies credits to AVB queues. Cred-
its are consumed when a frame in that queue is transmitted, and are replen-
ished when there is a pending frame in the queue or if the credit is negative,
even if no frame is waiting in the queue. These consumption and replenish-
ment ratios, which are configured in the CBS, are constant and determine the
bandwidth reserved for each AVB queue. To transmit data, AVB queues need
to have a positive or zero credit, and their gate must be open based on the
TAS and GCL. CBS usually separates classes into A and B, and allows lower-
priority traffic transmission even if higher-priority traffic is waiting, based on
the credits. This leads to improved QoS for lower-priority traffic and reduced
buffering. Despite the unknown activation time of AVB traffic due to poten-
tial blocking from other AVB classes or ST queues, there are techniques to
estimate its worst-case response time [11].

10 2.1. TSN traffic classes

AVB Class A

AVB Class B

BE

Link

TT

T0 T1 T2 T3 T4 T5 T6 T7

Figure 2.3: TSN CBS mechanism.

The operations of CBS for two AVB queues (Classes A and B) interact-
ing with one higher priority TT queue and one lower priority BE queue are
illustrated in Figure 2.3. The downward arrows in the figure indicate when a
frame arrives at its respective queue of an output port, the vertical dashed lines
indicate the TT traffic window, and the slopes indicate the credit evolution.
The figure demonstrates that at T0, two frames of each AVB class and one BE
frame are ready to be transmitted. As the credit of both AVB queues is zero,
class A begins transmitting the first frame because it has higher priority. This
consumes its credit while increasing the credit of AVB class B. By T1, the
credit of AVB queue class A becomes negative, causing class B to begin trans-
mitting, even though a higher priority frame is waiting. At T2 a frame arrives
at the TT queue as scheduled, hence GCL closes all gates but the correspond-
ing to the TT queue to ensure its transmission without interruptions. Note that,
during the transmission of TT traffic, the credits are frozen, i.e. not changing.
After transmitting the TT frame at T3, the AVB traffic credit remains nega-
tive, allowing the BE frame to be transmitted even though two higher priority
frames are waiting. Finally, the credits are replenished during the transmission
of the BE frame. Therefore, at T4 and T5, AVB frames of classes A and B are
transmitted as in T0 and T1.

2.1.3 Best-Effort traffic

The lowest priority traffic type, BE, does not offer any real-time guarantees.
A queue that carries BE traffic is not shaped by CBS and can only transmit
frames if its gate is open, and all other AVB queues have negative credit or if
there is no AVB traffic available for transmission. This behavior is illustrated
in Figure 2.3 at time T3 to T4 where the credits for both classes A and B are
negative.

Chapter 2. Background 11

Slave
TSN Device

Slave
TSN Device

Slave
TSN Device

Slave
TSN Device

Grandmaster
TSN Device

P

PM

M

M

M

D

P P D

M

M

S

S S

S

Figure 2.4: Example of TSN time-synchronization spanning tree.

2.2 TSN Clock Synchronization

The IEEE 802.1AS standard [5] describes the gPTP mechanism that provides
TSN clock synchronization, which is composed of three key parts: the Best
Master Clock Algorithm (BMCA), the Propagation Delay Measurement
(PDM) mechanism, and the Transport of Time-synchronization Information
(TTI). The BMCA determines the grandmaster clock, which acts as the
reference clock in the TSN network, and establishes the hierarchy between
TSN devices (TSN end-stations and switches). After establishing the
hierarchy, the PDM mechanism is used to measure the propagation delay
between TSN devices. Finally, the TTI mechanism is used to disseminate
the grandmaster time to synchronize the other TSN devices. The following
subsections provide a detailed description of each of the three mechanisms.

2.2.1 BMCA

The BMCA algorithm constructs a spanning tree for time synchronization,
with the grandmaster TSN device as the root. An example of this, is
illustrated in Figure 2.4. In this tree, each TSN device can act as either a
grandmaster or a slave, and each port can be categorized as a Master port
(M), Slave port (S), Passive port (P), or Disabled port (D). To determine
these behaviors, each system periodically broadcasts a special message called
announce message. This message contains various parameters, but we
focus on two parameters, the systemIdentity and the stepsRemoved.
The systemIdentity parameter indicates the accuracy of the sender’s

12 2.2. TSN Clock Synchronization

Not yet defined
TSN Device

Grandmaster
TSN Device

Slave
TSN Device

Announce message
from better master

No Announce message
from better master

No Announce message
from better master

Announce message
from better master

Figure 2.5: Time-aware system BMCA evolution.

clock, while stepsRemoved parameter denotes the distance between
the transmitter and the receiver. Specifically, the stepsRemoved value
is incremented each time the announce message is forwarded. For
instance, consider a line topology consisting of three TSN devices, where the
first device sends its announce message. The second device receives
this message with the stepsRemoved parameter value of 0, but before
forwarding it to the next device, it increments the stepsRemoved value.
Thus, the last TSN device receives the announce message sent by the
first device with a stepsRemoved parameter value of 1.

The diagram in Figure 2.5 illustrates how a TSN device can either act as a
slave or grandmaster clock if it does not have an assigned role. A TSN device
becomes a slave if it receives an announce message from a better clock,
i.e., a message with a greater systemIdentity parameter. Conversely, if
the TSN device does not receive any announce message from a better
clock within a defined period (defined by the periodicity of the announce
message transmission), it becomes the grandmaster clock. Similarly, a
grandmaster or a slave TSN device can switch roles based on the reception
of an announce message from a better clock or lack of it. On the other
hand, the proximity to the grandmaster determines the roles of ports in a TSN
device, which can be determined using the stepsRemoved parameter. The
port closest to the grandmaster becomes the slave port, and only one port in
the TSN device can have this role. The port closest to the grandmaster clock
in a link becomes the master port. Disabled ports are those that are explicitly
disabled, while ports that are neither master, slave, nor disabled are passive
ports.

Chapter 2. Background 13

Figure 2.6: PDM diagram.

2.2.2 PDM

Once the spanning tree has been created with the grandmaster as the root,
PDM is used by the slaves to calculate the propagation delays between its
slave port and the master port of the TSN device connected to it. The process is
illustrated in Figure 2.6. The PDM process begins with one slave transmitting a
delay request message Pdelay_Req via its slave port to another TSN device,
which may be the grandmaster or another slave. The initiating slave records
the time at which the message is sent (T1). The receiving TSN device receives
the message through its master port, records the time at which the message is
received (T2), and transmits T2 back to the initiating slave while recording
the transmission time (T3). The initiating slave receives T2 and records the
time at which it is received (T4). Finally, the receiving TSN device transmits
T3 to the initiating slave, allowing the latter to calculate the delay as Delay =
(T4−T1)−(T3−T2)

2 .

2.2.3 TTI

After the creation of the spanning tree with the grandmaster as the root and the
measurement of the delays by the slave TSN devices, TTI is initiated. TTI in-
volves the TSN devices transmitting their local time via their respective master
ports to the slave TSN devices connected to them. The TSN devices, which
receive the message via their slave ports, add the previously measured delay
and update their local time accordingly.

14 2.3. Stream Reservation Protocol

2.3 Stream Reservation Protocol

The TSN TG relies on SRP in many of its projects, as it plays a crucial role
in verifying resource availability within the network and reserving these re-
sources, which enables a bounded end-to-end delay and prevents packet loss
caused by the buffer overflow. Furthermore, the flexibility of SRP allows for
dynamic traffic requirement modifications during run-time. While there exist
three different SRP architectures, this work will focus solely on the distributed
version. For additional information regarding the other architectures, please
refer to [4].

SRP follows the publisher-subscriber paradigm to enable real-time data
communications through streams. In this paradigm, the publisher, known as
a talker, transmits data to subscribers, known as listeners. Each stream in
SRP is a logical communication channel that carries traffic defined by a set of
parameters such as the frame size and period. For example, if a temperature
sensor acts as a talker and wishes to transmit its measurements with a 10 ms
period and a 1-byte payload to other end-station (the listeners), the network
must first verify that sufficient resources are available. If that is the case, the
network will then create a stream with the specified period and payload to
transmit the sensor data.

It should be emphasized that decisions regarding the reservation of re-
sources are solely made based on local information. However, there is cru-
cial information related to the reservations that need to be distributed through-
out the network. For instance, this information may include the amount of
resources required for a stream or whether a particular switch has sufficient
resources available. Such information is transmitted via specialized messages
referred to as talker and listener attributes.

An example of the SRP mechanism in a linear network topology is de-
scribed in Figure 2.7. The network comprises a talker (T), a listener (L), and
two switches (S1 and S2). Before transmitting frames, the talker must create
a stream by broadcasting a Talker Advertise (TA) message. This message in-
cludes stream identification and resource requirements which are used in the
Admission Control (AC) by the rest of the devices of the network to check
whether there are enough resources for the stream to be created. Switches re-
ceiving the message check output ports for resource availability. If an output
port has insufficient resources, it sends a Talker Failed (TF) message with the
reason for failure. If the output port has enough resources, it forwards the TA
message to the next device.

End-stations that are not interested in the stream do not take any further
action on receiving the TA or TF messages. However, if a end-station wants

Chapter 2. Background 15

T S1 S2 L

AC exec

AC exec

TA

TA/F

AC exec &
config resources

TA/F

LAF/R
AC exec &

config resources

AC exec &
config resources

Stream Data

LAF/R

LAF/R

Figure 2.7: Time diagram of the resource reservation mechanism in a network with a
linear topology.

to become a listener, it checks its resources and sends a Listener Ready (LR)
message to the switch if it has enough resources. If it does not have enough
resources, it sends a Listener Asking Failed (LAF) message. The switch re-
ceiving the LR or LAF messages checks its resources again and forwards a
combined response to the talker: (i) if all ports receive LR messages, the switch
transmits an LR message to the talker; (ii) if all ports receive LAF messages,
it transmits another LAF message to the talker; and (iii) if there is a mix of LR
and LAF messages, it transmits a Listener Ready Failed (LRF) message to the
talker.

Finally, the talker waits for an LR or LRF message before starting data
transmission. Additionally, it can delete the stream at any time using the un-
advertise stream mechanism, which is broadcast to all devices.

Chapter 3

Problem Formulation

In this work, we aim to facilitate the adoption of TSN by the industry via devel-
oping tools and mechanisms to enable the migration and integration of legacy
networks with TSN. While there are several approaches to adopt TSN, includ-
ing complete replacement of the existing network with TSN software and hard-
ware or using TSN as a backbone while connecting all legacy networks through
gateways, these options have limitations. The former is a resource-intensive
process, whereas the latter does not allow the legacy networks to benefit from
TSN features. Therefore, we propose replacing the communication subsystems
of legacy networks, i.e., the set of devices exclusively responsible for commu-
nication excluding the end-stations, with a single TSN network, while ensuring
that the legacy end-stations, applications, communication protocols, and traffic
with different timing requirements continue to operate as effectively as before,
if not better. This approach allows the legacy end-stations to take advantage of
the benefits offered by TSN, such as high bandwidth, support for mixed hard
and soft real-time communications, flexibility of traffic requirements, and fault
tolerance mechanisms. Our proposed method enables the migration and inte-
gration of legacy networks with TSN, thereby facilitating a smooth transition
to this technology.

To enable the industry to adopt TSN solutions, and achieve the desired in-
tegration, a proper migration and integration methodology of the legacy traffic
to TSN must be designed. This poses several challenges, which are addressed
in this work. Regarding the traffic migration, the legacy traffic must be clas-
sified into the three previously mentioned TSN traffic classes. Such mapping
must meet the timing requirements of the legacy traffic. On the other hand,
regarding the legacy networks integration, the traffic classified as TT due to its
high time requirements must be scheduled, considering its legacy characteris-
tics. In addition, traffic scheduling must be scalable to allow for the migration

17

18 3.1. Legacy Ethernet-based Traffic Mapping

of large networks and must be fast in case new or legacy reconfiguration mech-
anisms need to be supported. Finally, the TSN schedule must be aligned with
the transmission of the frames in the legacy network even when synchroniza-
tion between the legacy end-stations and the TSN network is not possible.

Finally, a previous work [15] showed that SRP lacks termination and con-
sistency, which can result in the inefficient utilization of bandwidth. This
can limit the network’s ability to integrate with and support legacy networks,
thereby hindering its overall scalability. We will next take a closer look at each
of the problems to be solved.

3.1 Legacy Ethernet-based Traffic Mapping

The mapping consists of clustering the legacy traffic based on its characteris-
tics into the three types of TSN traffic, including TT, AVB, and BE traffic. In
this thesis, we will focus on Ethernet-based legacy traffic. One of the main
features of TSN, and the reason behind the growing interest in adopting it by
the industry, is its traffic flexibility, i.e., its ability to combine several types of
traffic on the same network. Thanks to this feature, TSN seems to be key to
advancing the industry to the incipient Industry 4.0 paradigm but also makes it
possible for TSN to integrate different legacy networks in the same TSN net-
work. However, each legacy network has particular characteristics that are not
directly linked to the different types of TSN traffic; hence a proper mapping
methodology is key to the proper migration and integration of legacy networks
into TSN. To achieve this, we must identify the characteristics of the legacy
traffic that are relevant to defining its behavior in the TSN network and, based
on these characteristics, split the traffic among the different types of TSN traf-
fic classes.

3.2 TT Scheduling

As mentioned before, in TSN, a GCL is defined for each queue in each TSN
device output port, in such a way that the GCL identifies the moments in which
the gate of each queue will be open. The scheduling of TT traffic, and its syn-
thesis in GCLs, is known to be an NP-complete problem [44]. Several solu-
tions are proposed in the literature to schedule TT traffic in TSN networks that
are mainly based on Integer Linear Programming (ILP) and Constrained Pro-
gramming (CP) [10]. These solutions are known to have high time complexity,
i.e., they require a long time to schedule large networks, thus they are not gen-
erally scalable. In addition, these solutions are not suitable for networks that

Chapter 3. Problem Formulation 19

require dynamic reconfigurations as the new configuration should be created
relatively fast. A few heuristic schedulers are also proposed, e.g., [40], whose
performance is not properly compared with the ILP and CP solutions. In this
work, we seek to develop a heuristic scheduler capable of synthesizing the
GCLs of the legacy traffic mapped as TT traffic with acceptable performance
and low scheduling times enabling the migration of large legacy networks.

3.3 Legacy Networks Synchronization

TSN TT traffic requires the network to be fully synchronized. Otherwise, dif-
ferent devices could exhibit clock drift, which would cause the transmission
and reception of frames to not properly match the TSN schedule. For exam-
ple, Figure 3.1 shows the effects of transmitting TT traffic between two legacy
end-stations that are synchronized via a legacy clock synchronization, through
a TSN network that is not synchronized with them. As we can see, the sender
transmits frames faster than the TSN network forwards them in its transmis-
sion windows. This causes frames to arrive at the receiver increasingly later
than their legacy scheduled time (dashed envelopes). Furthermore, since the
transmission of frames by the TSN network to the listener is slower than the
transmission by the talker to the TSN network, the frames stack up in the
buffers. However, the buffers are not infinite, hence frames that arrive once the
buffer is full are discarded. Similar phenomenon occurs when the TSN clock is
faster than the legacy network one. A more detailed description of the causes
and consequences of the effects of the lack of synchronization between legacy
end-stations and TSN can be found in paper [16].

Despite the importance of synchronization, in many cases, legacy networks
may not be able to implement TSN’s synchronization protocols. Therefore,
it is necessary to analyze the effects of the lack of synchronization between
legacy networks and TSN in heterogeneous networks, i.e. networks combin-
ing TSN and legacy end-stations, and to develop mechanisms to avoid such
adverse effects.

3.4 Distributed SRP

As mentioned before, paper [15] demonstrated the lack of termination and con-
sistency of the distributed SRP at both the application and infrastructure levels.
On the one hand, termination issues are mainly due to the fact that SRP listen-
ers do not inform the bridges nor the talkers when they are not interested in
binding to a stream. On the other hand, consistency issues are mainly due to

20 3.4. Distributed SRP

Talker

TSN

Listener

Figure 3.1: Example of positive drift synchronization issue.

the fact that information related to the reservations is propagated in a single di-
rection. That is, the talker attribute transmitted by a talker is forwarded always
towards the listeners; while, when listeners and switches reply to a stream dec-
laration, the information is only forwarded towards the talker. Thus, not all the
devices involved in the reservation of a stream receive the same information.

This does not directly affect the migration and integration of legacy traffic,
but may lead to a waste of bandwidth and resources that limit both the addi-
tion of new traffic and the adoption of legacy traffic. In this regard, we need to
improve the distributed SRP in order to provide network devices with a consis-
tent view of the reservation of resources so that they can make rather complex
decisions within a bounded time avoiding waste of resources..

Chapter 4

State of the Art Review

The TSN TG’s work since 2012 has been highly relevant, resulting in the com-
munity dedicating a significant amount of research to the study, application,
and improvement of TSN. For instance, the work in [6] studied the effects of
the TAS, the work in [31] analyzed the fault tolerance issues, while the work
in [7] proposed time redundancy to tolerate temporary faults. In addition, the
work in [58] studied the scheduling policies, the works [61] and [35] analyzed
schedulability of traffic with different TSN features and the load balancing was
studied in [8]. Moreover, the work in [10] provided an up-to-date comprehen-
sive survey of the TSN-related research.

There are also a few works on reconfiguration and integration in dynamic
system networks. For example, on the one hand, work in [47] analyzes the abil-
ity of SDN to accelerate the Time-to-Integrate process in evolving topologies
from a synchronization point of view. On the other hand, the works in [27] and
[28] aim to provide auto-configuration to TSN by introducing a Configuration
Agent into the network, an entity that continuously monitors the network for
changes and automatically updates the configuration to adapt to those changes
while maintaining the desired quality of service.

Other works on integrating legacy networks into TSN networks are the
works in [38] and [51]. The former integrated a few of the TSN standards into
Sercos III, which is a closed system that allows standard Ethernet devices to
be plugged in, to improve its performance; while the later proposed an integra-
tion methodology of wireless TSN (802.11). However, as [18] shows in their
experimental setup, there are still many challenges to enable a proper integra-
tion between TSN and Non-TSN devices. Therefore, in this work we focus on
analyzing the works that address the problems mentioned above.

21

22 4.1. Mapping

4.1 Mapping

Regarding traffic mapping, a meta-heuristic method is proposed in [23] that
maps mixed-criticality applications into the TSN traffic classes. Although the
aim is similar to ours, the proposed method does not cover all cases that are
studied and exist in industrial applications. The method, thus, becomes suit-
able for cases where only very few mixed-criticality levels are assumed in the
network with no extensive timing information. Other papers such as [21] only
map a specific type of traffic while papers such as [19] analyze the characteris-
tics of different types of TSN traffic and provide guidance on how to perform
the mapping. However, to the best of our knowledge, there are no automated
tools for mapping legacy traffic based on its characteristics into TSN.

4.2 Scheduling

Within the context of TT traffic scheduling in TSN networks, the works in [50]
and [39] present a joint routing and scheduling algorithm formalized as an
ILP and as a meta-heuristic scheduling approach based on a Genetic Algo-
rithm (GA) approach, respectively. The work in [20] presents an SMT-based
scheduler capable of scheduling networks with several TT queues. The work
in [24] proposes a GCL synthesis approach based on Greedy Randomized
Adaptive Search Procedure (GRASP) meta-heuristic [45], which takes AVB
traffic into consideration, whereas the work in [25] proposes a joint routing
and scheduling approach for TT and AVB traffic by means of an integrated
heuristic and meta-heuristic strategy. In the latter work, the K-Shortest Path
(KSP) method [60] is utilized for routing, and GRASP is used to schedule
both TT and AVB at the same time. Moreover, the work in [12] synthesizes a
network topology that supports seamless redundant transmission for TT traf-
fic by proposing a greedy heuristic algorithm for joint topology, routing, and
scheduling synthesis. Finally, paper [56] provides a comprehensive survey of
scheduling techniques and algorithms used in TSN to support time critical ap-
plications.

The above-mentioned solutions are mostly based on ILP or constraint pro-
gramming, while some of them exploit the use of meta-heuristics, e.g., GA.
However, these solutions normally are highly time-complex, which makes
them not scalable. Few works target heuristic solutions with lower time com-
plexity. For instance, the work in [40] proposes a heuristic routing and schedul-
ing algorithm called Heuristic List Scheduler (HLS) that is limited to a single
TT queue, while the work in [57] compares 4 heuristic algorithms combining
routing and scheduling (Modified Most Loaded Heuristic (MML), Bottleneck

Chapter 4. State of the Art Review 23

Heuristic (BN), Coefficient of Variation Heuristic (CV) [9][33], and Modified
Dot Product Heuristic (MDP) [41]), all with scheduling times greater than 100
ms and unable to handle multiple queues.

Despite the large amount of work done on scheduling in TSN, most works
are not a priori compatible with the specific characteristics of the legacy traffic,
such as offsets, drifts, or specific reception jitters. Moreover, solutions are
normally time-complex or very limited in terms of schedulability.

4.3 Synchronization

One of the key features of TSN is clock synchronization. Most of the works in
the literature are focused on integrating TSN with wireless or 5G networks. For
example, in work [29] authors implement a low-overhead beacon-based time
synchronization mechanism to provide highly accurate synchronization to the
wireless networks, thus they can be used in the context of high determinism
TSN networks. Moreover, works [13] and [46] extend IEEE 802.1AS and
IEEE 802.11 respectively with the intention of integrating TSN with wireless
networks while [52] discusses the integration challenges of Wired TSN and
Wireless Local Area Network (WLAN) technologies and proposes a Hybrid
TSN device architecture. On the other hand, [26] introduces the integration
of TSN time synchronization (IEEE 802.1AS) conform with 5G while [17]
proposes a cross domain clock synchronization method based on data packet
relay to solve the end-to-end cross domain clock synchronization problems
caused by the different 5G-TSN integrated network clock domains. Finally,
other works such as [54], [53] and [55] has evaluated the performance of 5G-
TSN networks.

According to our state of the art review, and to the best of our knowledge,
there is no work addressing the challenges of synchronizing legacy devices
onto a TSN network.

4.4 AVB SRP

There are many works related to the study of AVB’s efficiency. For example,
in [43] the authors apply network calculus to evaluate the real-time perfor-
mance of Ethernet AVB in automotive networks and in [37] the authors pro-
vide insights into the performance of AVB and TSN in automotive Ethernet
networks, concluding that both protocols can provide reliable and determin-
istic communication but their performance depends on network configuration
and traffic characteristics. Moreover, paper [36] proposes an extension to the

24 4.4. AVB SRP

IEEE 802.1 AVB protocol to allow for the coexistence of synchronous and
asynchronous traffic and paper [34] addresses the challenges of designing an
IP/Ethernet-based in-car network for real-time applications, suggesting solu-
tions such as network segmentation and quality of service mechanisms for
which AVB may be relevant. On the other hand, in the work presented in [42]
the authors detect a drawback in the resource reservation de-registration speci-
fication, which leads to the waste of the network resources, and proposed some
solutions. Moreover, some works present solutions to provide fault tolerance
against permanent faults using SRP [32].

Nevertheless, in a previous work [15] we detected the lack of termination
and consistency properties in the SRP and how this could cause bandwidth
losses or loss of new requests due to overbuffering. Although we proposed
some solutions, these were not implemented or evaluated in any way before.

Chapter 5

Research Methodology

The objective of this thesis is the development of methodologies capable of
overcoming the challenges presented in this work and their corresponding im-
plementation in tools and mechanisms, either independent or integrated, that
facilitate the adoption of TSN by the industry. For this purpose, we followed
the hypothetico-deductive [22] research method. Figure 5.1 shows the process
of the research.

• Start: This project aims to facilitate the industry to adopt TSN both
by providing tools and mechanisms for the migration and integration of
legacy networks with TSN as well as by eliminating defects in existing
mechanisms that could limit such migration and integration.

• Literature Review: Once the objective is defined, we perform an ex-
tensive state-of-the-art review on Ethernet traffic mapping, TT traffic
scheduling and synchronization, and AVB traffic configuration. This re-
view includes papers and standards with the intention of understanding
the technology in depth and looking for possible points of conflict for
the integration of legacy networks, as well as deficiencies in the existing
protocols and mechanisms.

• Identification of Limitations: With the knowledge gained through the
literature review, we identify the limitations of TSN in terms of migra-
tion and integration of legacy networks as well as the performance of its
mechanisms. In cases where the review is not sufficient to fully identify
the limitations, we raise hypotheses that we verify by running experi-
ments and/or simulations with models.

25

26

Start

Literature
Review

Identification of
Limitations

Problem
Formulation

Solution
Proposal

Implementation
and Experimental

Evaluation

Discussion and
Validation

Results

Identifying
the Source
of Problem

Solution

Problem

Inadequate

Adequate

Figure 5.1: Research Methodology

• Problem Formulation: In this stage, we identify the problems to be
solved and the objectives to address them based on the results obtained
during the literature review and the identification of limitations.

Chapter 5. Research Methodology 27

• Solution Proposal: Once the problems to be solved have been identified
and defined, novel solutions which address such problems are discussed
and proposed.

• Implementation and Validation: The solutions from the previous stage
are implemented as as prototypes, tools or models and are evaluated.
The effectiveness of the solution is inspected by a feedback loop. If
the evaluation output is judged inadequate, we trace back to identify the
source of the problem. If the inadequate output is due to the problem
formulation, the process is returned and performed from the beginning.
Otherwise, the proposed solution is reassessed by refining the current
solution or defining a new one. Finally, if the results of the evaluation
are deemed adequate, i.e. the limitation identified through the litera-
ture review or models and/or experiments in the “identification of lim-
itations” phase has been successfully resolved with a sufficient degree
of certainty, the process ends with the publication of the proposed solu-
tion. Regarding validation, we conduct experiments for the evaluation
of the tools and implemented solutions and formal verification for the
validation of the models.

Chapter 6

Thesis Goals and Contributions

The overall goal of this thesis is to enable and facilitate TSN adoption by the
industry. To this end, it is essential to develop tools and mechanisms that
enable the migration and integration of legacy networks to TSN; otherwise, it
would be necessary to replace almost the entire network, which would involve
high costs and time.

6.1 Research Gaps and Industry Needs

There has been a growing interest in TSN by the industry in the last few years.
This is due to its characteristics which include high bandwidth combined with
real-time capabilities, traffic flexibility, and fault tolerance mechanisms, to
name a few. These features are key for the integration and interoperability
of different levels of operation at the industrial level which seems key for the
evolution to an Industry 4.0 paradigm as well as for new products and increas-
ingly large and complex solutions. However, implementing TSN in factories
that are already established and in operation or in products may not be cost-
effective as it would require changing all their existing devices, networks, and
solutions. Therefore, in this work we analyze the limitations of TSN to manage
the migration and integration of legacy networks and propose solutions. Look-
ing at the current state of the art we have identified a set of key research gaps
given the industry needs towards achieving the overall goal. The limitations
identified through the literature review and the experiments and models during
the “identification of limitations” phase were synthesized into the following
research gaps:

29

30 6.2. Research Goals

• RGap1: In TSN the traffic is divided into 3 types of traffic (TT, AVB,
and BE) which in turn can have different priority levels (up to a maxi-
mum of 8 priority levels in total). Each of the traffic types has unique
characteristics that do not need to have a direct correspondence with the
legacy traffic to be migrated or integrated into the new TSN network. In-
adequate traffic mapping in the new network may result in not meeting
the requirements of the legacy networks.

• RGap2: The scheduling of TT traffic, and its synthesis in GCLs, is
known to be an NP-complete problem [44]. This leads to either un-
scalable or low-performance schedulers that, in most cases, do not take
into account the specific requirements of legacy traffic.

• RGap3: The lack of synchronization is also a problem since drift be-
tween clocks causes variations between reserved and required band-
width. This is especially problematic in the case of TT traffic where
such drift can lead to loss of frames or additional delays of up to an
entire period.

• RGap4: Finally, during the literature review and the search for limita-
tions, we detected termination and consistency issues in the distributed
version of the SRP which may lead to a waste of resources that can limit
the migration and integration of legacy traffic.

6.2 Research Goals

Given the set of research gaps, we have identified 4 specific research goals of
this thesis, i.e., the research goals required to solve the aforementioned prob-
lems are:

• RG1: Develop a mapping methodology to categorize Ethernet-based
traffic into the three types of TSN traffic, including TT, AVB, and BE
traffic, with the goal of maximizing its schedulability.

• RG2: Develop a scalable heuristic TSN TT traffic scheduler that can
handle large volumes of traffic within a reasonable time while maintain-
ing high schedulability using multiple TT queues.

• RG3: Develop a synchronization mechanism that eliminates the drift
between the TSN network and the legacy network schedule caused by
the lack of synchronization. The mechanism should adapt the non-TT
transmission windows to adjust transmission and reception ratios, thus

Chapter 6. Thesis Goals and Contributions 31

preventing the adverse effects caused by the drift and ensuring seamless
integration in terms of synchronization.

• RG4: Improve the distributed SRP configuration protocol to provide it
with termination and consistency to ensure proper configuration of the
TSN AVB traffic avoiding waste of resources.

6.3 Research Contributions

The research contributions in the thesis to address the research goals are as
follows:

• RC1: We develop a Legacy Ethernet-based Traffic model that can char-
acterize traffic of any Ethernet-based communication protocol. The traf-
fic model will help us to defines the behavior of the legacy traffic by
means of a set of parameters that will later be used to map it. This
model will partially address RG1.

• RC2: We develop a mapping methodology that can map the legacy
Ethernet-based frames characterized by the model proposed in RC1 into
different TSN traffic classes. We implement the mapping method as a
tool, named Legacy Ethernet-based Traffic Mapping Tool or LETRA.
We integrated LETRA with TSN traffic scheduling to perform evalua-
tions on different synthetic networks. The results show that the proposed
mapping method obtains up to 90% improvement in the schedulability
ratio of the traffic compared to an intuitive mapping method on a multi-
switch network architecture. Through this contribution we obtain RG1.

• RC3: We propose a heuristic scheduler for TT traffic in TSN networks,
called Heuristic Multi-queue Scheduler (HERMES), that takes advan-
tage of multiple queues for TT traffic to provide high schedulability with
very low scheduling times. Frames in HERMES can be configured to be
scheduled in two modes of zero or relaxed reception jitter, which pro-
vides better control for users. Through a set of experiments, we show
that HERMES can perform better than CP-based solutions, i.e., it results
in more schedulable networks, by allowing it to use multiple queues, and
at the same time, it provides the results within 17 to 800 times faster.
Through this contribution we obtain our goal defined in RG2.

• RC4: We formulate the problem of having inconsistent clock synchro-
nization mechanisms in an integrated EtherCAT-TSN network and we

32 6.3. Research Contributions

describe the effects of this inconsistency in the network behavior. Then,
we propose a solution to integrate the clock synchronization mecha-
nisms described by the two network technologies, i.e., EtherCAT and
TSN, to obtain a precise synchronization. Finally, we model our pro-
posed clock synchronization solution to verify its correctness. Through
this contribution we obtain a partial solution to our goal defined in RG3.
However, through obtaining this contribution we also realize that clock
integration requires specific solutions for each protocol to be integrated.
This hinders adoption due to the time needed to design and implement
each solution, and makes compatibility between solutions difficult. For
example, if there are two legacy networks with two different synchro-
nization protocols (P1 and P2) and we want to integrate them with TSN,
we would need a specific solution for the integration of P1 with TSN
and another one for P2 with TSN that might not even be compatible
with each other. For this reason, we determine that it would be more ef-
ficient to palliate the problems generated by the lack of synchronization
in a general way from the TSN network without involving the legacy
networks.

• RC5: We develop a mechanism called TALESS (TSN with Legacy
End-Stations Synchronization) to address the adverse effects caused
by the lack of synchronization identified through experiments on a
network prototype. This solution is general and transparent for any
legacy Ethernet-based network communicating through TSN. TALESS
is modeled and validated through simulations with realistic network
values. On the other hand, the mechanism is implemented in a network
prototype to experimentally demonstrate its effectiveness. Finally, we
compare the results of the experiment with the simulation model to
verify both implementations. Through this contribution we obtain a
complete solution to our goal defined in RG3.

• RC6: We use the UPPAAL model checker [14] to build a model of the
SRP protocol. The model allow us to verify that SRP does not provide
termination nor consistency, and to identify the scenarios in which these
problems occur. We discuss the consequences derived from the absence
of termination and consistency, and propose several modifications to the
protocol to address these issues. Finally, we select the best one and
develop a new protocol called CSRP (Consistent Stream Reservation
Protocol). To ensure the correctness of our design, we create a UPPAAL
model for CSRP and validate it through verification testing. Through
this contribution we obtain our goal defined in RG4.

Chapter 6. Thesis Goals and Contributions 33

6.4 Included Papers

The research contributions are proposed in the form of published papers in
conferences and journals. The order of the papers is in accordance with the
contributions. Five papers are included in the licentiate thesis: Paper A, B, C
and E have already been published while paper D is pending for submission.

6.4.1 Paper A

Title:
LETRA: Mapping Legacy Ethernet-Based Traffic into TSN Traffic Classes

Authors:
Daniel Bujosa, Mohammad Ashjaei, Alessandro V Papadopoulos, Julian

Proenza, Thomas Nolte.
Status:

Published in the 26th IEEE International Conference on Emerging Tech-
nologies and Factory Automation (ETFA), 2021.
Abstract:

This paper proposes a method to efficiently map the legacy Ethernet-based
traffic into Time Sensitive Networking (TSN) traffic classes considering differ-
ent traffic characteristics. Traffic mapping is one of the essential steps for in-
dustries to gradually move towards TSN, which in turn significantly mitigates
the management complexity of industrial communication systems. In this pa-
per, we first identify the legacy Ethernet traffic characteristics and properties.
Based on the legacy traffic characteristics we presented a mapping methodol-
ogy to map them into different TSN traffic classes. We implemented the map-
ping method as a tool, named Legacy Ethernet-based Traffic Mapping Tool or
LETRA, together with a TSN traffic scheduling and performed a set of eval-
uations on different synthetic networks. The results show that the proposed
mapping method obtains up to 90% improvement in the schedulability ratio of
the traffic compared to an intuitive mapping method on a multi-switch network
architecture.
Authors’ Contributions:

I was the main driver of the work under the supervision of the co-authors.
The plan for the paper was formed in joint discussions with the co-authors. I
performed the tool implementation and evaluations and wrote the draft of the
paper. The co-authors have reviewed the paper, after which I have improved it.

34 6.4. Included Papers

6.4.2 Paper B

Title:
HERMES: Heuristic Multi-queue Scheduler for TSN Time-Triggered

Traffic with Zero Reception Jitter Capabilities
Authors:

Daniel Bujosa, Mohammad Ashjaei, Alessandro V Papadopoulos, Julian
Proenza, Thomas Nolte.
Status:

Published in the 30th International Conference on Real-Time Networks
and Systems (RTNS), 2022.
Abstract:

The Time-Sensitive Networking (TSN) standards provide a toolbox of fea-
tures to be utilized in various application domains.The core TSN features in-
clude deterministic zero-jitter and low-latency data transmission and transmit-
ting traffic with various levels of time-criticality on the same network. To
achieve a deterministic transmission, the TSN standards define a time-aware
shaper that coordinates transmission of Time-Triggered (TT) traffic. In this
paper, we tackle the challenge of scheduling the TT traffic and we propose a
heuristic algorithm, called HERMES. Unlike the existing scheduling solutions,
HERMES results in a significantly faster algorithm run-time and a high num-
ber of schedulable networks. HERMES can be configured in two modes of
zero or relaxed reception jitter while using multiple TT queues to improve the
schedulability. We compare HERMES with a constraint programming (CP)-
based solution and we show that HERMES performs better than the CP-based
solution if multiple TT queues are used, both with respect to algorithm run-
time and schedulability of the networks.
Authors’ Contributions:

I was the main driver of the work under the supervision of the co-authors.
The plan for the paper was formed in joint discussions with the co-authors. I
performed the tool implementation and evaluations and wrote the draft of the
paper. The co-authors have reviewed the paper, after which I have improved it.

Chapter 6. Thesis Goals and Contributions 35

6.4.3 Paper C

Title:
Clock Synchronization in Integrated TSN-EtherCAT Networks

Authors:
Daniel Bujosa, Daniel Hallmans, Mohammad Ashjaei, Alessandro V Pa-

padopoulos, Julian Proenza, Thomas Nolte.
Status:

Published in the 25th IEEE International Conference on Emerging Tech-
nologies and Factory Automation (ETFA), 2020.
Abstract:

Moving towards new technologies, such as Time Sensitive Networking
(TSN), in industries should be gradual with a proper integration process in-
stead of replacing the existing ones to make it beneficial in terms of cost and
performance. Within this context, this paper identifies the challenges of in-
tegrating a legacy EtherCAT network, as a commonly used technology in the
automation domain, into a TSN network. We show that clock synchronization
plays an essential role when it comes to EtherCAT-TSN network integration
with important requirements. We propose a clock synchronization mechanism
based on the TSN standards to obtain a precise synchronization among Ether-
CAT nodes, resulting to an efficient data transmission. Based on a formal veri-
fication framework using UPPAAL tool we show that the integrated EtherCAT-
TSN network with the proposed clock synchronization mechanism achieves at
least 3 times higher synchronization precision compared to not using any syn-
chronization.
Authors’ Contributions:

I and Daniel Hallmans were the main drivers of the work under the super-
vision of the co-authors. The plan for the paper was formed in joint discussions
with the co-authors. I performed the tool implementation and evaluations, and
I wrote the draft of the paper in collaboration with Daniel Hallmans. The co-
authors reviewed the paper, after which I improved it.

36 6.4. Included Papers

6.4.4 Paper D

Title:
TALESS: TSN with Legacy End-Stations Synchronization

Authors:
Daniel Bujosa, Mohammad Ashjaei, Alessandro V Papadopoulos, Julian

Proenza, Thomas Nolte.
Status:

Pending for submission to the IEEE Transactions on Industrial Informatics.
Abstract:

Time Sensitive Networks (TSN) have become one of the most important
communications standards in many industrial sectors. However, TSN requires
specific hardware and software. This makes it difficult for established com-
panies to adopt TSN, as it would imply changing most legacy hardware and
software which may not be cost-effective in most cases. In order to enable the
adoption of TSN by the industry and be more environmentally sustainable, it is
necessary to develop tools to integrate legacy systems with TSN. In this paper,
we propose a solution for the coexistence of different time domains from dif-
ferent legacy subsystems with their corresponding synchronization protocols
in a single TSN network. To this end, we experimentally identified the effects
of replacing the communications subsystem of a legacy Ethernet-based net-
work with TSN in terms of synchronization. Based on the results, we propose
a solution called TSN with Legacy End-Stations Synchronization (TALESS).
TALESS is able to identify the drift between the TSN communications sub-
system and the legacy devices and modify the TSN schedule to adapt to the
time domains of the integrated legacy systems in order to avoid the effects of
the lack of synchronization between them. We validate TALESS through both
simulations and experiments on a prototype. Thereby we demonstrate that,
thanks to TALESS, legacy systems are able to synchronize through TSN and
even improve features such as their reception jitter or their integrability with
other legacy systems.
Authors’ Contributions:

I was the main driver of the work under the supervision of the co-authors.
The plan for the paper was formed in joint discussions with the co-authors. I
performed the tool implementation and evaluations and wrote the draft of the
paper. The co-authors have reviewed the paper, after which I have improved it.

Chapter 6. Thesis Goals and Contributions 37

6.4.5 Paper E

Title:
CSRP: An Enhanced Protocol for Consistent Reservation of Resources in

AVB/TSN
Authors:

Daniel Bujosa, Ines Álvarez, Julian Proenza.
Status:

Published in IEEE Transactions on Industrial Informatics, 2020.
Abstract:

The IEEE Audio Video Bridging (AVB) Task Group (TG) was created to
provide Ethernet with soft real-time guarantees. Later on, the TG was renamed
to Time-Sensitive Networking (TSN) and its scope broadened to support hard
real-time and critical applications. The Stream Reservation Protocol (SRP) is a
key work of the TGs as it allows reserving resources in the network, guarantee-
ing the required quality of service (QoS). AVB’s SRP is based on a distributed
architecture, while TSN’s is based on centralized ones. The distributed ver-
sion of SRP is supported and used in TSN. Nevertheless, it was not designed
to provide properties that are important for critical applications. In this work
we model SRP using UPPAAL and we study the termination and consistency.
We verify that SRP does not provide such properties. Furthermore, we propose
an improved protocol called Consistent Stream Reservation Protocol (CSRP)
and we formally verify its correctness using UPPAAL.
Authors’ Contributions:

I was the main driver of the work under the supervision of the co-authors.
The plan for the paper was formed in joint discussions with the co-authors. I
performed the tool implementation and evaluations and wrote the draft of the
paper. The co-authors have reviewed the paper, after which I have improved it.

6.4.6 Mapping the Included Papers with the Research Contribu-
tions

The mapping of the aforementioned thesis contribution into published and
planned publications, that are included in the thesis, is shown in Table 6.1.

Given the overall set of contributions towards the research goals of this
thesis we believe that in summary the thesis make a significant step towards
achieving the overall goal of the thesis.

38 6.4. Included Papers

Table 6.1: The mapping of the research goals to the papers included in the thesis.

Paper A Paper B Paper C Paper D Paper E
RC1 ✓
RC2 ✓
RC3 ✓
RC4 ✓
RC5 ✓
RC6 ✓

Chapter 7

Summary and Future Work

7.1 Summary

In this thesis we have developed tools and mechanisms for the migration and
integration of legacy networks into TSN as well as improved some of its mech-
anisms. In this way, we seek to facilitate the adoption of TSN avoiding the
time, effort, and resources that would be required to replace a functional net-
work with a new TSN network. Furthermore, thanks to the proposed solutions,
legacy networks can not only communicate through TSN normally, which im-
proves their integration with other legacy networks and reduces the overall
complexity thanks to the use of a single communication protocol, but they are
also able to benefit from the TSN enhancements providing a better service.

We have improved TSN’s SRP to avoid wasting resources (RC4) and we
have created three tools aimed at migrating and integrating legacy networks
with TSN. These tools include: firstly, LETRA, a tool for mapping legacy traf-
fic into the different types of TSN traffic (RC1); secondly, HERMES, which is
a heuristic scheduling algorithm implemented as a fast and scalable tool capa-
ble of scheduling the traffic mapped by LETRA (RC2); and finally, TALESS,
a synchronization tool capable of eliminating the adverse effects caused by the
lack of synchronization between legacy networks and TSN (RC3).

7.2 Future Work

As future work, we seek to develop a methodology for traffic identification in
legacy networks. This will be able to, by sampling traffic from an existing
network or by analyzing the network specification, parameterize the legacy
traffic in terms of relevant parameters for the migration of such traffic to TSN.

39

40 7.2. Future Work

In addition, we will develop a TSN frame forging mechanisms for Ethernet
frames. It will be able to modify the Ethernet frame fields of legacy traffic
dynamically to conform to the TSN format, e.g., by assigning TSN priorities.
This will enable the transmission of legacy traffic as a specific TSN traffic type
transparently to the legacy end-stations.

Finally, these tools will be integrated with those already presented in this
work. This will provide a set of tools capable of identifying traffic, mapping it,
scheduling it, and synchronizing it all in one. Such set of tools would consid-
erably reduce migration and integration times and allow adoption of TSN with
minimal costs.

Bibliography 41

Bibliography

[1] IEEE Standard for Local and Metropolitan Area Networks - Virtual
Bridged Local Area Networks Amendment 12: Forwarding and Queu-
ing Enhancements for Time-Sensitive Streams. IEEE Std 802.1Qav-2009
(Amendment to IEEE Std 802.1Q-2005), pages C1–72, 2010.

[2] IEEE Standard for Local and Metropolitan Area Networks—Virtual
Bridged Local Area Networks Amendment 14: Stream Reservation Pro-
tocol (SRP). IEEE Std 802.1Qat-2010 (Revision of IEEE Std 802.1Q-
2005), 2010.

[3] IEEE Standard for Local and Metropolitan Area Networks–Audio Video
Bridging (AVB) Systems. IEEE Std 802.1BA-2011, pages 1–45, 2011.

[4] IEEE Standard for Local and Metropolitan Area Networks–Bridges and
Bridged Networks – Amendment 31: Stream Reservation Protocol (SRP)
Enhancements and Performance Improvements. IEEE Std 802.1Qcc-
2018 (Amendment to IEEE Std 802.1Q-2018 as amended by IEEE Std
802.1Qcp-2018), pages 1–208, Oct 2018.

[5] IEEE Standard for Local and Metropolitan Area Networks–Timing and
Synchronization for Time-Sensitive Applications. IEEE Std 802.1AS-
2020 (Revision of IEEE Std 802.1AS-2011), pages 1–421, 2020.

[6] G. Alderisi, G. Patti, and L. Lo Bello. Introducing support for Scheduled
traffic over IEEE Audio Video Bridging networks. In Conf. Emerging
Technologies Factory Automation, 2013.

[7] Inés Álvarez, Ignasi Furió, Julián Proenza, and Manuel Barranco. Design
and Experimental Evaluation of the Proactive Transmission of Repli-
cated Frames Mechanism over Time-Sensitive Networking. Sensors,
21(3):756, 2021.

[8] F. A. R. Arif and T. S. Atia. Load balancing routing in Time-Sensitive
Networks. In Int. Scientific-Practical Conference Problems of Infocom-
munications Science and Technology, 2016.

[9] Emmanuel Arzuaga and David R Kaeli. Quantifying load imbalance
on virtualized enterprise servers. In Proceedings of the first joint
WOSP/SIPEW international conference on Performance engineering,
pages 235–242, 2010.

42 Bibliography

[10] Mohammad Ashjaei, Lucia Lo Bello, Masoud Daneshtalab, Gaetano
Patti, Sergio Saponara, and Saad Mubeen. Time-Sensitive Networking
in Automotive Embedded Systems: State of the Art and Research Op-
portunities. Journal of Systems Architecture, 110:1–47, September 2021.

[11] Mohammad Ashjaei, Gaetano Patti, Moris Behnam, Thomas Nolte, Giu-
liana Alderisi, and Lucia Lo Bello. Schedulability analysis of Ethernet
Audio Video Bridging networks with scheduled traffic support. Real-
Time Systems, 53(4):526–577, 2017.

[12] Ayman A Atallah, Ghaith Bany Hamad, and Otmane Ait Mohamed.
Fault-resilient topology planning and traffic configuration for IEEE 802.1
Qbv TSN networks. In 2018 IEEE 24th International Symposium on On-
Line Testing And Robust System Design (IOLTS), pages 151–156. IEEE,
2018.

[13] Haytham Baniabdelghany, Roman Obermaisser, et al. Extended synchro-
nization protocol based on IEEE802. 1AS for improved precision in dy-
namic and asymmetric TSN hybrid networks. In 2020 9th Mediterranean
Conference on Embedded Computing (MECO), pages 1–8. IEEE, 2020.

[14] Gerd Behrmann, Alexandre David, and Kim G. Larsen. A Tutorial on
Uppaal. Springer Berlin Heidelberg, Berlin, Heidelberg, 2004.

[15] D. Bujosa, I. Alvarez, D. Čavka, and J. Proenza. Analysing Termination
and Consistency in the AVB’s Stream Reservation Protocol. In Proceed-
ings of the IEEE 24th International Conference on Emerging Technolo-
gies and Factory Automation (ETFA 2019), October 2019.

[16] Daniel Bujosa, Andreas Johansson, Mohammad Ashjaei, Alessandro V
Papadopoulos, Julian Proenza, and Thomas Nolte. The Effects of Clock
Synchronization in TSN Networks with Legacy End-Stations. In 2022
IEEE 27th International Conference on Emerging Technologies and Fac-
tory Automation (ETFA), pages 1–4. IEEE, 2022.

[17] Zichao Chai, Wei Liu, Mao Li, and Jing Lei. Cross Domain Clock Syn-
chronization Based on Data Packet Relay in 5G-TSN Integrated Network.
In 2021 IEEE 4th International Conference on Electronics and Commu-
nication Engineering (ICECE), pages 141–145. IEEE, 2021.

[18] Sameer Chouksey, Hariram Selvamurugan Satheesh, and Johan Åker-
berg. An experimental study of TSN-nonTSN coexistence. In 2021 IEEE
11th Annual Computing and Communication Workshop and Conference
(CCWC), pages 1577–1584. IEEE, 2021.

Bibliography 43

[19] Industrial Internet Consortium et al. Time sensitive networks for flexible
manufacturing testbed characterization and mapping of converged traffic
types, 2019.

[20] Silviu S Craciunas, Ramon Serna Oliver, Martin Chmelík, and Wilfried
Steiner. Scheduling Real-Time Communication in IEEE 802.1 Qbv Time
Sensitive Networks. In Proceedings of the 24th International Conference
on Real-Time Networks and Systems, pages 183–192, 2016.

[21] Théo Docquier, Ye-Qiong Song, Vincent Chevrier, Ludovic Pontnau, and
Abdelaziz Ahmed-Nacer. Iec 61850 over tsn: Traffic mapping and delay
analysis of goose traffic. In 2020 25th IEEE International Conference
on Emerging Technologies and Factory Automation (ETFA), volume 1,
pages 246–253. IEEE, 2020.

[22] Gordana Dodig-Crnkovic. Scientific Methods in Computer Science. In
Proceedings of the Conference for the Promotion of Research in IT at
New Universities and at University Colleges, 2002.

[23] Voica Gavriluţ and Paul Pop. Traffic-Type Assignment for TSN-Based
Mixed-Criticality Cyber-Physical Systems. ACM Trans. Cyber-Phys.
Syst., 4(2), 2020.

[24] Voica Gavriluţ and Paul Pop. Scheduling in Time Sensitive Networks
(TSN) for mixed-criticality industrial applications. In 2018 14th IEEE
International Workshop on Factory Communication Systems (WFCS),
pages 1–4, 2018.

[25] Voica Gavriluţ, Luxi Zhao, Michael L Raagaard, and Paul Pop. AVB-
aware Routing and Scheduling of Time-Triggered traffic for TSN. IEEE
Access, 6:75229–75243, 2018.

[26] Michael Gundall, Christopher Huber, Peter Rost, Rüdiger Halfmann, and
Hans D Schotten. Integration of 5G with TSN as prerequisite for a
highly flexible future industrial automation: Time synchronization based
on IEEE 802.1 AS. In IECON 2020 The 46th Annual Conference of the
IEEE Industrial Electronics Society, pages 3823–3830. IEEE, 2020.

[27] Marina Gutiérrez, Astrit Ademaj, Wilfried Steiner, Radu Dobrin, and
Sasikumar Punnekkat. Self-configuration of IEEE 802.1 TSN networks.
In 2017 22nd IEEE International Conference on Emerging Technologies
and Factory Automation (ETFA), pages 1–8. IEEE, 2017.

44 Bibliography

[28] Marina Gutiérrez, Wilfried Steiner, Radu Dobrin, and Sasikumar Pun-
nekkat. A Configuration Agent based on the Time-Triggered paradigm
for Real-Time Networks. In 2015 IEEE World Conference on Factory
Communication Systems (WFCS), pages 1–4. IEEE, 2015.

[29] Jetmir Haxhibeqiri, Xianjun Jiao, Muhammad Aslam, Ingrid Moerman,
and Jeroen Hoebeke. Enabling TSN over IEEE 802.11: Low-overhead
time synchronization for wi-fi clients. In 2021 22nd IEEE international
conference on industrial technology (ICIT), volume 1, pages 1068–1073.
IEEE, 2021.

[30] IEEE. Ieee standard for local and metropolitan area networks–bridges
and bridged networks, 2018. Includes TSN Time-Aware Shaper (TAS)
definition, among other TSN-related features and protocols.

[31] S. Kehrer, O. Kleineberg, and D. Heffernan. A comparison of fault-
tolerance concepts for IEEE 802.1 Time Sensitive Networks (TSN). In
IEEE Emerging Technology and Factory Automation, 2014.

[32] O. Kleineberg, P. Fröhlich, and D. Heffernan. Fault-Tolerant Ethernet
Networks with Audio and Video Bridging. In ETFA2011, pages 1–8,
Sept 2011.

[33] Leonard Kleinrock. Queueing systems, volume i: Theory, vol. I, 1975.

[34] H. Lim, L. Völker, and D. Herrscher. Challenges in a Future IP/Ethernet-
based in-car Network for Real-Time Applications. In 2011 48th
ACM/EDAC/IEEE Design Automation Conference (DAC), pages 7–12,
June 2011.

[35] Lucia Lo Bello, Mohammad Ashjaei, Gaetano Patti, and Moris Behnam.
Schedulability analysis of Time-Sensitive Networks with scheduled traf-
fic and preemption support. Journal of Parallel and Distributed Comput-
ing,, 144„ 2020.

[36] P. Meyer, T. Steinbach, F. Korf, and T. C. Schmidt. Extending IEEE
802.1 AVB with Time-Triggered Scheduling: A Simulation Study of the
Coexistence of Synchronous and Asynchronous Traffic. In 2013 IEEE
Vehicular Networking Conference, pages 47–54, Dec 2013.

[37] Jörn Migge, Josetxo Villanueva, Nicolas Navet, and Marc Boyer. Insights
on the Performance and Configuration of AVB and TSN in Automotive
Ethernet Networks. In 9th European Congress on Embedded Real Time
Software and Systems (ERTS 2018), Toulouse, France, January 2018.

Bibliography 45

[38] Seifeddine Nsaibi, Ludwig Leurs, and Hans D Schotten. Formal and
simulation-based timing analysis of Industrial-Ethernet sercos III over
TSN. In 2017 IEEE/ACM 21st International Symposium on Distributed
Simulation and Real Time Applications (DS-RT), pages 1–8, 2017.

[39] Maryam Pahlevan and Roman Obermaisser. Genetic Algorithm for
scheduling Time-Triggered traffic in Time-Sensitive Networks. In 2018
IEEE 23rd international conference on emerging technologies and fac-
tory automation (ETFA), volume 1, pages 337–344. IEEE, 2018.

[40] Maryam Pahlevan, Nadra Tabassam, and Roman Obermaisser. Heuris-
tic list scheduler for Time Triggered traffic in Time Sensitive Networks.
ACM Sigbed Review, 16(1):15–20, 2019.

[41] Rina Panigrahy, Kunal Talwar, Lincoln Uyeda, and Udi Wieder. Heuris-
tics for vector bin packing. research.microsoft.com, 2011.

[42] D. Park, J. Lee, C. Park, and S. Park. New Automatic De-Registration
Method Utilizing a Timer in the IEEE802.1 TSN. In 2016 First IEEE
International Conference on Computer Communication and the Internet
(ICCCI), pages 47–51, Oct 2016.

[43] R. Queck. Analysis of Ethernet AVB for Automotive Networks using
Network Calculus. In 2012 IEEE International Conference on Vehicular
Electronics and Safety (ICVES 2012), pages 61–67, July 2012.

[44] Michael Lander Raagaard and Paul Pop. Optimization algorithms for
the scheduling of IEEE 802.1 Time-Sensitive Networking (TSN). Tech.
Univ. Denmark, Lyngby, Denmark, Tech. Rep, 2017.

[45] Mauricio GC Resende and Celso C Ribeiro. GRASP: Greedy Random-
ized Adaptive Search Procedures. In Search methodologies, pages 287–
312. Springer, 2014.

[46] Alexey M Romanov, Francesco Gringoli, and Axel Sikora. A precise
synchronization method for future wireless TSN networks. IEEE Trans-
actions on Industrial Informatics, 17(5):3682–3692, 2020.

[47] Siwar Ben Hadj Said, Quang Huy Truong, and Michael Boc. SDN-based
configuration solution for IEEE 802.1 Time Sensitive Networking (TSN).
ACM SIGBED Review, 16(1):27–32, 2019.

[48] R. Salazar, T. Godfrey, L. Winkel, N. Finn, C. Powell, B. Rolfe, and
M. Seewald. Utility Applications of Time Sensitive Networking White
Paper (D3). Technical report, IEEE, 2018.

46 Bibliography

[49] S. Samii and H. Zinner. Level 5 by Layer 2: Time-Sensitive Networking
for Autonomous Vehicles. IEEE Communications Standards Magazine,
2(2):62–68, 2018.

[50] Eike Schweissguth, Dirk Timmermann, Helge Parzyjegla, Peter Danielis,
and Gero Mühl. ILP-based routing and scheduling of multicast realtime
traffic in Time-Sensitive Networks. In 2020 IEEE 26th International
Conference on Embedded and Real-Time Computing Systems and Ap-
plications (RTCSA), pages 1–11. IEEE, 2020.

[51] Oscar Seijo, Zaloa Fernández, Iñaki Val, and Jesús A López-Fernández.
SHARP: towards the integration of Time-Sensitive communications in
legacy LAN/WLAN. In 2018 IEEE Globecom Workshops (GC Wkshps),
pages 1–7, 2018.

[52] Oscar Seijo, Xabier Iturbe, and Inaki Val. Tackling the Challenges of
the Integration of Wired and Wireless TSN with a Technology Proof-of-
Concept. IEEE Transactions on Industrial Informatics, 2021.

[53] Haochuan Shi, Adnan Aijaz, and Nan Jiang. Evaluating the Performance
of Over-the-Air Time Synchronization for 5G and TSN Integration. In
2021 IEEE International Black Sea Conference on Communications and
Networking (BlackSeaCom), pages 1–6. IEEE, 2021.

[54] Jiajia Song, Makoto Kubomi, Jeffrey Zhao, and Daisuke Takita. Time
synchronization performance analysis considering the frequency offset
inside 5G-TSN network. In 2021 17th International Symposium on Wire-
less Communication Systems (ISWCS), pages 1–6. IEEE, 2021.

[55] Tobias Striffler and Hans D Schotten. The 5G Transparent Clock: Syn-
chronization Errors in Integrated 5G-TSN Industrial Networks. In 2021
IEEE 19th International Conference on Industrial Informatics (INDIN),
pages 1–6. IEEE, 2021.

[56] Thomas Stüber, Lukas Osswald, Steffen Lindner, and Michael Menth.
A Survey of Scheduling in Time-Sensitive Networking (TSN). arXiv
preprint arXiv:2211.10954, 2022.

[57] Ammad Ali Syed, Serkan Ayaz, Tim Leinmüller, and Madhu Chandra.
Dynamic Scheduling and Routing for TSN based in-vehicle networks.
In 2021 IEEE International Conference on Communications Workshops
(ICC Workshops), pages 1–6. IEEE, 2021.

Bibliography 47

[58] K. S. Umadevi and R. K. Sridharan. Multilevel ingress scheduling pol-
icy for Time Sensitive Networks. In Int. Conf. Microelectronic Devices,
Circuits and Systems, 2017.

[59] M. Wollschlaeger, T. Sauter, and J. Jasperneite. The Future of Indus-
trial Communication: Automation Networks in the Era of the Inter-
net of Things and Industry 4.0. IEEE Industrial Electronics Magazine,
11(1):17–27, 2017.

[60] Jin Y Yen. Finding the k shortest loopless paths in a network. Manage-
ment Science, 17(11):712–716, 1971.

[61] Luxi Zhao, Paul Pop, Zhong Zheng, and Qiao Li. Timing analysis of
AVB traffic in TSN networks using network calculus. In IEEE Real-Time
and Embedded Technology and Applications Symposium (RTAS), pages
25–36, 2018.

II

Included Papers

49

Chapter 8

Paper A
LETRA: Mapping Legacy
Ethernet-Based Traffic into
TSN Traffic Classes.

Daniel Bujosa, Mohammad Ashjaei, Alessandro V. Papadopoulos, Julián
Proenza, Thomas Nolte.
In the 26th IEEE International Conference on Emerging Technologies and
Factory Automation (ETFA 2021).

51

Abstract

This paper proposes a method to efficiently map the legacy Ethernet-based
traffic into Time Sensitive Networking (TSN) traffic classes considering differ-
ent traffic characteristics. Traffic mapping is one of the essential steps for in-
dustries to gradually move towards TSN, which in turn significantly mitigates
the management complexity of industrial communication systems. In this pa-
per, we first identify the legacy Ethernet traffic characteristics and properties.
Based on the legacy traffic characteristics we presented a mapping methodol-
ogy to map them into different TSN traffic classes. We implemented the map-
ping method as a tool, named Legacy Ethernet-based Traffic Mapping Tool or
LETRA, together with a TSN traffic scheduling and performed a set of eval-
uations on different synthetic networks. The results show that the proposed
mapping method obtains up to 90% improvement in the schedulability ratio of
the traffic compared to an intuitive mapping method on a multi-switch network
architecture.

Paper A 53

8.1 Introduction

New technologies often offer new solutions or improvements for companies
that can lead to an advantage over the competitors; reducing costs or offering
a better product, or lead to an environmental improvement; improving perfor-
mance, optimization of resources, and/or emission reduction. However, new
opportunities imply new challenges. These challenges are often related to their
integration with existing legacy solutions and their implementation. For many
industrial applications, it may not be cost-effective to adopt the new technolo-
gies, as it may require redeveloping all previous solutions and systems.

One of the new technologies, which can change the current paradigm of
industrial communications and seems to be a key to the transition to Industry
4.0, is Time-Sensitive Networking (TSN). Everything started when, in 2005,
the IEEE Audio-Video Bridging (AVB) Task Group (TG) was created. The
purpose was to provide Ethernet with soft real-time capabilities oriented to au-
dio/video streaming. The AVB TG developed three projects: (i) the IEEE Std
802.1AS [5], dedicated to clock synchronization, (ii) the IEEE Std 802.1Qav,
which standardized the Credit-Based Shaper (CBS) [1]; and, finally, the IEEE
Std 802.1Qat, which standardized the Stream Reservation Protocol (SRP) [2].
Additionally, another profile with series of rules, called IEEE Std 802.1BA-
2011: Audio Video Bridging Systems [3], was created to ensure a minimum
QoS when using the aforementioned standards. These standards together are
commonly referred to as AVB standards. Over time, areas of applications,
such as automotive [18], automation [21] and energy distribution [17], were
interested in the work done by the TG so in 2012 the group was renamed to
TSN TG and its objective was expanded to meet the needs of these new appli-
cations. The set of standards developed by the TG is usually referred to as TSN
standards and it presents several interesting features. Specifically, TSN seems
to provide Ethernet with proper support for mixed hard and soft real-time com-
munications, flexibility of the traffic requirements and fault tolerance mecha-
nisms. For these characteristics, TSN seems promising to enable new solu-
tions within the context of modern industrial systems and solutions enabling,
among other things, the integration of multiple legacy networks onto one TSN
network. However, current TSN networks do not support all Ethernet-based
legacy system message implementation characteristics, such as jitter in some
legacy network devices, while currently used legacy technologies do not meet
all TSN requirements. Moreover, it is cost-effective and beneficial for com-
panies if they gradually move towards new technologies instead of completely
replacing existing ones. Therefore, solutions to integrate a legacy system into
a TSN network are essential so that services are not disturbed. An example of

54 8.1. Introduction

that is when a network consists of 4 nodes connected via different protocols,
would be able to replace the end-to-end links with a TSN switch connected to
all 4 nodes. This would allow the communications between networks while
letting previous communications benefit from TSN features hence improving
their real-time behavior, synchronization, and fault tolerance, to name a few.

Contributions: To allow industry to adopt TSN solutions, and the desire
integration, a proper migration methodology of the legacy Ethernet-based traf-
fic to TSN traffic classes should be designed. In this work we propose three
steps to achieve this goal, as follows:

1. We develop a Legacy Ethernet-based Traffic model that can describe
messages of any Ethernet-based communication protocols. Moreover,
apart from the model, we require a methodology to identify the parame-
ters of the messages inherited from the legacy system. The identification
methodology is out of the scope of this paper. However, some works like
[12] have already addressed this issue.

2. We develop a mapping methodology, and its corresponding implemen-
tation as a mapping tool, named Legacy Ethernet-based Traffic Mapping
Tool or LETRA, that can map the legacy Ethernet-based messages char-
acterized by the proposed model into different TSN traffic classes. To
the best of our knowledge, this is the first attempt to map the Ethernet-
based legacy traffic into TSN traffic classes considering a full spectrum
of message characteristics. To evaluate the mapping methodology we
implemented it as a mapping tool and compared its performance with an
intuitive mapping methodology on different networks.

3. We integrated a pre-existing TSN scheduling method and a TSN schedu-
lability analysis method into LETRA, which can map the messages,
schedule the TSN traffic and evaluate their real-time behavior.

Paper outline: The paper is organized as follows. Section 8.2 presents
the related work. Section 8.3 presents the legacy Ethernet-based traffic model.
Section 8.4 describes the background of TSN and TSN traffic classes. Then,
Section 8.5 proposes the traffic mapping methodology and development of LE-
TRA, while Section 8.6 presents the experiments and evaluations. Finally,
Section 8.7 concludes the paper and gives future directions.

Paper A 55

8.2 Related work

Due to the great relevance of the work done by the TSN TG since 2012, the
community has carried out a significant amount of work related to their study,
application, and improvement. For example, the work in [6] studied the effects
of the time-aware shaper, the work in [13] analyzed the fault tolerance issues,
while the work in [7] proposed time redundancy to tolerate temporary faults,
the work in [20] studied the scheduling policies and the load balancing was
studied in [8]. Moreover, the work in [9] provided an up-to-date comprehen-
sive survey of the TSN-related research.

Within the context of TSN traffic mapping, the work in [12] presented a
network monitoring method to obtain the traffic properties based on measure-
ments. A meta-heuristic method is proposed in [11] that maps mixed-criticality
applications into the TSN traffic classes. Although the aim is similar to this
paper, the proposed method does not cover all cases that are studied and exist
in industrial applications. The method, thus, becomes suitable for cases where
only very few mixed-criticality levels are assumed in the legacy system with no
extensive timing information, whereas in this paper we consider different traf-
fic characteristics including many timing characteristics and constraints when
we map them into the TSN traffic classes.

There are also few works on integrating legacy networks into TSN net-
works. For example, the work in [15] integrated a few of the TSN standards
into Sercos III, which is a closed system that allows standard Ethernet devices
to be plugged, to improve its performance. Moreover, an integration method-
ology of wireless TSN (802.11) was proposed in [19]. Finally, an integration
that focuses on the clock synchronization for EtherCAT and TSN was proposed
in [14].

Nevertheless, to be the best of our knowledge, the proposed mapping
methodology and the tool LETRA in this paper is the first attempt to map
messages from any Ethernet-based legacy network into TSN traffic classes
considering a full spectrum of message characteristics.

8.3 Legacy Ethernet-based traffic model

This section introduces a message model to describe the legacy Ethernet-based
messages. To handle legacy messages from different Ethernet-based protocols,
we identified a set of characteristics with which we can model the Ethernet-
based messages. The model is used by the mapping tool to map the messages
into different TSN traffic classes. Note that the extraction of values in the
model is out of the scope of this paper, which can be done by measurements in

56 8.4. TSN traffic characteristics

the legacy networks as described in [12].
The parameters used to characterize the Ethernet messages are divided into

three categories, including: common parameters, periodic message parame-
ters and non-periodic message parameters. Note that not all messages need to
have all parameters to map them. Following is the description of the parame-
ters.

8.3.0.1 Common parameters

The common parameters are those that are independent of the behavior of the
messages that are presented by {S,D,ML,DL,LRT ,FLR, P rec}. In the
above set, S and D represent the source and destination(s) of the message. The
length of the message in bytes is denoted by ML which can be a range of sizes
to consider variable message sizes. The message deadline is shown by DL.
Moreover, LRT shows if the message is soft or hard real-time, i.e., missing
deadlines lead to a degradation of functionality or a complete system failure,
respectively. FLR denotes the message lost percentage, and Prec denotes the
precedence constraints between two or more messages which identifies if some
messages should be transmitted or received in a specific sequential order.

8.3.0.2 Periodic message parameters

The periodic message parameters are those dependent on the periodicity of
the messages, that is presented by {P,O, JI , JO}. P are the message period,
while O is the offset, i.e., time shift of the message release time. JI represents
the maximum jitter on the message release, while JO is the maximum jitter in
the message reception. Note that jitter is the variation of delays that can be on
transmission and/or reception of the message.

8.3.0.3 Non-periodic message parameters

The main parameter for non-periodic messages is the minimum inter-arrival
time, identified by MIT , which is the minimum time between two consecutive
releases of a message in non-periodic messages.

Figure 8.1 illustrates a graphical representation of some of the presented
parameters in the model.

8.4 TSN traffic characteristics

This section gives a brief background about the TSN standards and TSN traffic
classes. Communication in a TSN network is done among end-stations through

Paper A 57

D

Time line

Network

P

ML JO

P*n P*(n+1) P*(n+2)

O

JI

S

end-to-end response

Figure 8.1: Graphical representation of the presented model.

Port
St

ri
ct

 P
ri

o
ri

ty

C
B

S
C

B
S

TA
G

(G
C

L,
t(

cl
o

ck
 s

yn
c.

))
ST queue

AVB Class A queue

AVB Class B queue

BE queue

Figure 8.2: A TSN egress port.

routes of links and switches through Ethernet messages. A port in a TSN
switch supports eight FIFO queues. A typical port with four TSN traffic classes
(queues) is shown in Fig. 8.2. The TSN standards define three traffic classes
including Scheduled Traffic (ST), Audio-Video Bridging (AVB) traffic, and
Best Effort (BE) traffic. The AVB traffic is named by classes A and B, where
class A has higher priority than class B. Following, we describe the details of
TSN traffic classes.

8.4.1 ST traffic class

The ST traffic is scheduled offline, which makes them fully deterministic with
zero jitter in the message delivery. The TSN standard [4] defines a Time-
Aware Gates (TAG) that is controlled by a Gate Control List (GCL). The GCL
specifies at which specific time of the network-wide reference time gates are

58 8.5. Proposed traffic mapping methodology

open, and thus, the link is available for a queue to send messages. Note that
the reference clock is achieved thanks to the synchronization protocol defined
in [5] which allows clock synchronization between end-stations and switches.

8.4.2 AVB traffic class

The AVB TG [1] introduced the CBS that defines credits to AVB queues. The
credit is consumed when a message in that queue is sent, otherwise, it is re-
plenished when there is a pending message in the queue (or the credit is still
negative). The AVB queues can only transmit when their credit is positive
or zero and their gate is open according to the GCL. CBS defines priority
classes (classes A and B) but allowing transmission of low-priority traffic even
if high-priority traffic is waiting according to their credits. This reduces buffer-
ing and improves lower-priority traffic QoS. Even though the activation time
of AVB traffic is unknown due to possible blocking from other AVB classes or
ST queues, there are analysis methods to calculate their worst-case response
time. For example, the analysis used in the experiments of this paper is the one
presented in [10].

8.4.3 BE traffic class

BE has no real-time guarantees and is the lowest priority. This queue is not
shaped by CBS and can only be sent if its gate is open and all other AVB
queues have negative credit or there is no AVB traffic ready for transmission.

8.5 Proposed traffic mapping methodology

To map the legacy Ethernet-based traffic characterized by the parameters mod-
eled in Section 8.3 into the TSN traffic classes, we developed three logic-based
equations explained in the following sub-sections. As the equations are logic-
based, in this section all parameters are treated as logical Boolean variables.
In this sense, a parameter is True if the frame is affected by the parameter,
otherwise False. For example, if one frame is non-periodic and has deadline
of 100ms, as P = NULL, P = 0 in the equation. On the other hand, as
DL = 100ms , DL = 1 in the equation.

Paper A 59

8.5.1 Mapping to the ST traffic class

The mapping first checks whether the legacy Ethernet traffic should be mapped
into the ST traffic, according to the following expression:

ST = P & (JO ∥ (!JI & DL)) (8.1)

where & is the logical “and” operator, ∥ is the logical “or” operator, and ! is
the logical “not” operator. First of all, Eq. (8.1) checks whether the message is
periodic (P). This is mandatory as, otherwise, it would be impossible to im-
plement a proper GCL. That is because, as described in Section 8.4, GCL is a
list of open/close instructions executed repeatedly at certain times. Therefore,
even if it is possible to schedule the message instances offline it would imply
generating a long GCL table that makes the schedule impractical. Secondly,
Eq. (8.1) checks if the message has JO constraints, and it is periodic, it must
be transmitted as ST traffic as it is the only way to ensure meeting the JO
requirement. That is because, as mentioned in Section 8.4, ST traffic is the
only fully deterministic TSN traffic with zero JO . However, if the message
has no JO requirements but it has DL and no JI then it can be also sent as an
ST message. The reason for having D is to benefit from the ST characteristics
while the JI conditions are to prevent waste of resources. JI implies con-
sidering larger open gates for the ST traffic to ensure the message instance to
be transmitted within that time. This intuitively means allocating more band-
width, which can be a waste of network bandwidth resources. Note that this
happens only with JI and not with JO as once the message reaches the first
TSN switch the messages will be sent just when the window starts.

8.5.2 Mapping to the AVB traffic class

Eq. (8.2) indicates whether the message can be sent as an AVB message. First,
the message should have DL constraints to benefit from being sent as an AVB
message. Moreover, the message must not have JO constraints unless it is not
a hard real-time message. If the message has JO constraints but it is not hard
real-time, another type of analysis, such as utilization-based analysis [11] may
be needed. Note that Eq. (8.2) only specifies if the message can be transmitted
as AVB traffic but it says nothing about the AVB possible priority classes. In
this work, we consider only one AVB class queue for mapping as currently LE-
TRA only identifies the messages as suitable or not for each traffic class. Later,
it will be integrated or improved through constraint programming and/or meta-
heuristics to reach the desired specification level. In Eq. (8.2), HRT indicates
the hard real-time requirement for the message.

60 8.5. Proposed traffic mapping methodology

AVB = DL & (!JO ∥ !HRT) = DL & !(JO & HRT) (8.2)

8.5.3 Mapping to the BE traffic class

Eq. (8.3) indicates whether the message can be sent as a BE class message. It
checks whether the message has real-time requirements or not, which is the
only requirement to be in the BE class.

BE = !JO & !DL =!(JO ∥ DL) (8.3)

8.5.4 Resulting truth table

As a result of the presented mapping methodology, we summarized the equa-
tions with a truth table shown in Table 8.1. As it can be seen, we just use P , JI ,
JO , DL, and LRT to map legacy Ethernet messages. The other parameters in
the model do not affect the mapping but on the scheduling and analysis of the
traffic after the mapping is performed to verify the timing properties.

To show the performance of the proposed mapping methodology we also
define an intuitive mapping methodology. The intuitive mapping methodology
classifies all periodic messages as ST traffic class and all non-periodic mes-
sages as AVB traffic class to still have a level of timing guarantee for them.

Note that the presented mapping methodology cannot be compared with
the mapping presented in [11], which is only based on the criticality level of
messages. The reason is that we consider more specific variables to map the
messages, which means that [11] cannot map 90% of the messages considered
in this work. However, [11] maps messages between ST class and AVB class
which, according to our tool, are suitable for both classes. In this sense, the
combination of both tools would expand the number of mappable messages,
while resolving some ambiguities in LETRA.

8.5.5 Evaluation tool

To have a complete evaluation tool, we implemented LETRA, a TSN traf-
fic scheduling, and a schedulability analysis to be able to evaluate the solu-
tion. Moreover, we developed a network generator and an intuitive mapping
tool which implements the intuitive mapping methodology described in Sec-
tion 8.5. The tools that are used for this evaluation from previous works in-
clude the ST scheduling tool in [16] and the AVB traffic schedulability analysis
in [10].

Paper A 61

P JI JO DL HRT ST AVB BE
0 X X 0 0 0 0 1
0 X X 0 1 0 0 1
0 X X 1 0 0 1 0
0 X X 1 1 0 1 0
1 0 0 0 0 0 0 1
1 0 0 0 1 0 0 1
1 0 0 1 0 1 1 0
1 0 0 1 1 1 1 0
1 0 1 0 0 1 0 0
1 0 1 0 1 1 0 0
1 0 1 1 0 1 1 0
1 0 1 1 1 1 0 0
1 1 0 0 0 0 0 1
1 1 0 0 1 0 0 1
1 1 0 1 0 0 1 0
1 1 0 1 1 0 1 0
1 1 1 0 0 1 0 0
1 1 1 0 1 1 0 0
1 1 1 1 0 1 1 0
1 1 1 1 1 1 0 0

Table 8.1: Truth table of the mapping methodology.

The integration of the mentioned tools is shown in Fig. 8.3. First, the
Network Generator generates the network messages according to the network
configuration specified in the presented model. The generated messages are
used as inputs for LETRA and the intuitive mapping tool, thus, obtaining two
different classifications for the messages. The ST messages of both mapping
tools are scheduled through the ST traffic scheduler [16] and, finally, the AVB
traffic is checked through the AVB analyzer [10], which checks whether the
AVB traffic are schedulable considering the transmission algorithms based on
a response time analysis. The results of the scheduler and the AVB analysis
are used to compare the mapping performance.

The Network Generator tool uses the parameters in the model explained in
Section 8.3 as inputs to generate the messages randomly. Besides the parame-
ters in the model, the network topology is an input.

62 8.6. Experiments and results

Network
Generator

ST traffic
Scheduler

AVB Analyzer

Compare and
Graph results

ST traffic ST traffic

AVB and BE
traffic

AVB and BE
traffic

Network
Configuration

Intuitive
Mapping toolLETRA

Figure 8.3: Integration of the tools for evaluation.

8.6 Experiments and results

This section presents the experiments that we conducted to evaluate the pro-
posed mapping methodology using the developed integrated tools (Fig. 8.3).
We first present the experimental setup and then we illustrate and discuss the
results.

8.6.1 Experimental setup

For the evaluation in this paper, we considered two network architectures, in-
cluding a single-switch and a three-switch network. The topology is a line-star
topology with the switches connected in a line and nodes connected to the
switches in the form of stars, as shown in Fig. 8.4. The line topology, apart
from being widely used in the industry in many layers of the automation pyra-
mid, is simpler and share many similarities with a tree topology. This allows
us to extend the results of these experiments to a greater number of communi-
cation networks that could be developed in the future.

The network generator is designed such that we can select the input prob-

Paper A 63

-1

1

3

2

(a) A single-switch network.

-1

1

3

2 -2 -3

4

6

7

9

8

5

(b) A three-switches network.

Figure 8.4: Experimental network architectures.

abilities to uniformly distribute the probability among all possible messages,
which is listed in Table 8.1. To achieve that we set the probability of all pa-
rameters to 50% except for periodicity. This means, as an example, that the
messages have a 50% chance to have deadline constraints. With this setup, we
ensure that all possible combinations with the same probability will be gener-
ated.

The parameters to generate the messages are set as follows. The network
bandwidth is set to 10Mbps to prevent generating too many messages in case
of generating a high load. The maximum link utilization is varied within the
range [10%,90%] with the interval of 5%. Note that the messages will be
generated such that the utilization in all links will be the one selected as an
input, i.e., when we select 10% utilization the message generator selects the
message sizes and routes to obtain 10% on all links. The maximum number
of generated messages is set to 100, however, depending on the selected link
utilization the message number can be different. The message length is se-
lected within the range [64,1530] Bytes. The maximum allowed period and
minimum inter-arrival time for messages are set to 1000µs. We also allowed
arbitrary deadlines, which can be selected within the range [500,1000]µs. The
input and output jitter values are also selected within the range [1,100]µs. We
generated 100 networks for each link utilization, e.g., 100 networks with the
load of 10% on links, hence 1700 networks are generated for each network
architecture shown in Fig. 8.4.

The next sub-sections present the results of the experiments. We compare
the results of mapping the generated messages with LETRA and an intuitive
mapping tool based on three different variables, including the link utilization,
the number of messages, and the time it takes to schedule the ST messages.

64 8.6. Experiments and results

10 20 30 40 50 60 70 80 90

Utilization [%]

0

10

20

30

40

50

60

70

80

90

100

S
ch

ed
ul

ab
le

 n
et

w
or

ks
 [%

]

Percentage of schedulable networks vs utilization

LETRA
Intuitive MT
LETRA LRL
IMT LRL

Figure 8.5: Percentage of schedulable networks with respect to the bandwidth utiliza-
tion for the single-switch network where the schedulability percentage is represented
by a circle with error bars and the dashed curve corresponds to its logistical regression
tendency line (LRL).

Mean IMP [%] Min IMP [%] Max IMP [%]
86.65 37.52 149.47

Table 8.2: Performance improvements with respect to the percentage of bandwidth
utilization for the single-switch network.

8.6.2 Results of the single-switch network

Fig. 8.5 shows the percentage of schedulable networks with respect to the uti-
lization. The horizontal axis shows the utilization of the generated networks,
while the vertical axis shows the percentage of networks that are schedula-
ble with two different traffic mapping tools. The circles in the figure are the
schedulable percentage of generated networks with specific network utiliza-
tion and the error bars are calculated through the binomial analysis with 95%
certainty. In addition, the dashed lines show the trend of the data as logistic
regression. As it can be seen, LETRA results in more schedulable networks
in all generated utilization compared to the intuitive mapping tool. For in-
stance, when we generated traffic with 90% utilization on all links, which is a
very high network utilization, LETRA gives just below 30% of the networks
schedulable, whereas the intuitive mapping results in very few schedulable

Paper A 65

0 5 10 15 20 25 30 35 40 45 50

Number of messages

0

10

20

30

40

50

60

70

80

90

100

S
ch

ed
ul

ab
le

 n
et

w
or

ks
 [%

]

Percentage of schedulable networks vs number of messages

LETRA
Intuitive MT
LETRA LRL
IMT LRL

Figure 8.6: Percentage of schedulable networks with respect to the number of mes-
sages for the single-switch network where the schedulability percentage is represented
by a circle with error bars and the dashed curve corresponds to its logistical regression
tendency line (LRL).

networks. Table 8.2 shows the mean improvement by using LETRA compared
to the intuitive mapping tool while Min IMP and Max IMP are the maximum
and minimum possible improvements due to the result errors. LETRA results
in 86.65% more schedulable networks compared to the intuitive mapping on
average for the single-switch network architecture.

Fig. 8.6 shows the percentage of schedulable networks by varying the num-
ber of messages. Similar to the previous results, the vertical axis is the percent-
age of schedulable networks, and the horizontal axis is the number of generated
messages. The figure also shows the error bars calculated through the binomial
analysis with 95 % certainty and the tendency line calculated through logistic
regression. Again, LETRA shows a significant improvement in the schedula-
bility of networks compared to the intuitive mapping tool. For example, the
intuitive mapping tool cannot schedule the networks when the number of mes-
sages is more than 35, however, LETRA can schedule a few of the generated
networks up to 45 messages in the single-switch network. Table 8.3 shows
the mean improvement between the two mapping tools, where it shows that on
average 77.75% improvement by using LETRA.

Fig. 8.7 illustrates the time that it takes to schedule the ST messages in
a generated message after mapping. In the figure, times are shown in ms and

66 8.6. Experiments and results

Mean IMP [%] Min IMP [%] Max IMP [%]
77.57 35.93 120.85

Table 8.3: Performance improvements with respect to number of messages for the
single-switch network.

10 20 30 40 50 60 70 80 90

Utilization [%]

0

0.5

1

1.5

2

2.5

3

3.5

4

S
ch

ed
ul

in
g

tim
e

[m
s]

104 Scheduling time vs utilization

LETRA
Intuitive MT
LETRA Poly1
IMT Poly1

Figure 8.7: Scheduling time with respect to bandwidth utilization for the single-
switch network where the scheduling time is represented by a circle with error bars
and the dashed line corresponds to a linear regression (Poly1).

the error bars are calculated through the gamma distribution analysis with 95%
certainty. We also used a linear trend line to show the overall trend of data. In
this figure, the values present high variability and they do not follow any basic
tendency curve due to the number of parameters that can affect the schedul-
ing time, such as memory or CPU utilization, which could not be monitored
during the execution of the experiments due to hardware limitations. How-
ever, it can show, in general, apart from having better performance, LETRA is
also delivering the ST schedules faster compared to the intuitive mapping tool.
The reason is that the intuitive mapping tool selects more messages to be ST
messages, while LETRA decides based on many timing requirements which
in general leads to less number of ST messages. This means that the legacy
messages are not unnecessarily mapped into the ST class.

Paper A 67

10 20 30 40 50 60 70 80 90

Utilization [%]

0

10

20

30

40

50

60

70

80

90

100

S
ch

ed
ul

ab
le

 n
et

w
or

ks
 [%

]

Percentage of schedulable networks vs utilization

LETRA
Intuitive MT
LETRA LRL
IMT LRL

Figure 8.8: Percentage of schedulable networks with respect to the bandwidth utiliza-
tion for the three-switch network where the schedulability percentage is represented
by a circle with error bars and the dashed curve corresponds to its logistical regression
tendency line (LRL).

Mean IMP [%] Min IMP [%] Max IMP [%]
90.74 32.30 165.28

Table 8.4: Performance improvements with respect to the percentage of bandwidth
utilization for the three-switch network.

8.6.3 Results of the three-switch network

Fig. 8.8 shows the percentage of schedulable networks with respect to the
bandwidth utilization for the three-switch network. Again, LETRA exhibits
better performance compared to the intuitive mapping tool for all ranges of
network utilization in larger networks. Table 8.4 shows mean improvement,
which is 90.74% better performance with LETRA on average compared to the
intuitive mapping tool. Although the performance of both mapping tools de-
creases with the size of the network, according to the results, we can conclude
with 95% certainty that the percentage of improvement remains constant with
the size of the network.

Fig. 8.9 shows the percentage of schedulable networks with respect to the
number of messages. LETRA exhibits better performance compared to the
intuitive mapping tool for the entire range of the number of messages ana-

68 8.6. Experiments and results

0 10 20 30 40 50 60 70 80 90 100

Number of messages

0

10

20

30

40

50

60

70

80

90

100

S
ch

ed
ul

ab
le

 n
et

w
or

ks
 [%

]

Percentage of schedulable networks vs number of messages

LETRA
Intuitive MT
LETRA LRL
IMT LRL

Figure 8.9: Percentage of schedulable networks with respect to the number of mes-
sages for the three-switch network where the schedulability percentage is represented
by a circle with error bars and the dashed curve corresponds to its logistical regression
tendency line (LRL).

Mean IMP [%] Min IMP [%] Max IMP [%]
83.41 27.19 157.84

Table 8.5: Performance improvements with respect to the number of messages for the
three-switch network.

lyzed. Table 8.5 shows that the amount of improvement in the larger network
is 83.41% on average when using LETRA to map the traffic.

Finally, Fig. 8.10 presents the time that it takes to schedule the ST mes-
sages after the mapping. Again, the results show that, besides LETRA having
better performance, it is also faster in scheduling the ST messages compared
to the intuitive mapping tool. Another interesting observation is that in the big-
ger network with high utilization, the ST messages can be scheduled within a
reasonable time, while it is not the case if we map the traffic with the intuitive
mapping tool where after 50% network utilization the ST messages cannot be
scheduled. We believe that the reason is mainly due to the high amount of
messages and utilization of the network.

Paper A 69

10 20 30 40 50 60 70 80

Utilization [%]

0

0.5

1

1.5

2

2.5

3

S
ch

ed
ul

in
g

tim
e

[m
s]

105 Scheduling time vs utilization

LETRA
Intuitive MT
LETRA Poly2
IMT Poly2

Figure 8.10: Scheduling time with respect to the bandwidth utilization for the three-
switch network where the scheduling time is represented by a circle with error bars
and the dashed curve corresponds to a quadratic regression (Poly2).

8.7 Conclusions and Future Work

We argued that one of the essential steps towards migrating from legacy
Ethernet-based networks to TSN-based networks in industries is efficiently
mapping the traffic into TSN traffic classes. Therefore, in this paper, we took
a three-step strategy to achieve such a missing step. The steps include: (i)
identifying the properties of legacy Ethernet-based messages by modeling
them, (ii) map the Ethernet messages into different TSN classes, including ST,
AVB, and BE classes, according to several timing properties, and (iii) develop
a set of tools to evaluate the proposed mapping methodology, including the
mapping tool, called LETRA, an ST scheduling tool and a schedulability
analysis for the AVB messages. We also developed an intuitive mapping tool
to show the performance of LETRA compared with that. We performed a
set of experiments using two network architectures, being single-switch and
three-switch architectures. We generated a set of messages randomly with a
specific network utilization to show which mapping tool can result in more
schedulable networks. The results show that in both network sizes LETRA
performs much better, in concrete, 86.65% better performance in the smaller
network and 90.74% in the larger network in average.

All these results were obtained for a specific network topology and traf-

70 8.7. Conclusions and Future Work

fic configuration. In future work, we plan to run similar evaluations for other
kinds of networks and schedulers to better define the mapping criteria and their
performance. Moreover, we want to integrate it with the scheduler so the mes-
sages that can be placed in different traffic classes according to the mapping
criteria can be specified while running the scheduler. On the other hand, we
also plan to continue working on the other steps of the legacy integration. In
this sense, we plan to develop a formal standard legacy Ethernet-based traffic
model and adapt the schedulers to those message characteristics.

Bibliography 71

Bibliography

[1] IEEE Standard for Local and Metropolitan Area Networks - Virtual
Bridged Local Area Networks Amendment 12: Forwarding and Queu-
ing Enhancements for Time-Sensitive Streams. IEEE Std 802.1Qav-2009
(Amendment to IEEE Std 802.1Q-2005), pages C1–72, 2010.

[2] IEEE Standard for Local and Metropolitan Area Networks—Virtual
Bridged Local Area Networks Amendment 14: Stream Reservation Pro-
tocol (SRP). IEEE Std 802.1Qat-2010 (Revision of IEEE Std 802.1Q-
2005), 2010.

[3] IEEE Standard for Local and Metropolitan Area Networks–Audio Video
Bridging (AVB) Systems. IEEE Std 802.1BA-2011, pages 1–45, 2011.

[4] IEEE Standard for Local and metropolitan area networks – Bridges and
Bridged Networks - Amendment 25: Enhancements for Scheduled Traf-
fic. IEEE Std 802.1Qbv-2015 (Amendment to IEEE Std 802.1Q-2014 as
amended by IEEE Std 802.1Qca-2015, IEEE Std 802.1Qcd-2015, and
IEEE Std 802.1Q-2014/Cor 1-2015), pages 1–57, 2016.

[5] IEEE Standard for Local and Metropolitan Area Networks–Timing and
Synchronization for Time-Sensitive Applications. IEEE Std 802.1AS-
2020 (Revision of IEEE Std 802.1AS-2011), pages 1–421, 2020.

[6] G. Alderisi, G. Patti, and L. Lo Bello. Introducing support for sched-
uled traffic over IEEE audio video bridging networks. In Conf. Emerging
Technologies Factory Automation, 2013.

[7] Inés Álvarez, Ignasi Furió, Julián Proenza, and Manuel Barranco. Design
and experimental evaluation of the proactive transmission of replicated
frames mechanism over time-sensitive networking. Sensors, 21(3):756,
2021.

[8] F. A. R. Arif and T. S. Atia. Load balancing routing in time-sensitive
networks. In Int. Scientific-Practical Conference Problems of Infocom-
munications Science and Technology, 2016.

[9] Mohammad Ashjaei, Lucia Lo Bello, Masoud Daneshtalab, Gaetano
Patti, Sergio Saponara, and Saad Mubeen. Time-sensitive networking
in automotive embedded systems: State of the art and research opportu-
nities. Journal of Systems Architecture, 110:1–47, September 2021.

72 Bibliography

[10] Mohammad Ashjaei, Gaetano Patti, Moris Behnam, Thomas Nolte, Giu-
liana Alderisi, and Lucia Lo Bello. Schedulability analysis of ethernet
audio video bridging networks with scheduled traffic support. Real-Time
Systems, 53(4):526–577, 2017.

[11] Voica Gavriluţ and Paul Pop. Traffic-type assignment for tsn-based
mixed-criticality cyber-physical systems. ACM Trans. Cyber-Phys. Syst.,
4(2), 2020.

[12] Marina Gutiérrez, Wilfried Steiner, Radu Dobrin, and Sasikumar Pun-
nekkat. Learning the parameters of periodic traffic based on network
measurements. In 2015 IEEE International Workshop on Measurements
& Networking (M&N), pages 1–6. IEEE, 2015.

[13] S. Kehrer, O. Kleineberg, and D. Heffernan. A comparison of fault-
tolerance concepts for IEEE 802.1 Time Sensitive Networks (TSN). In
IEEE Emerging Technology and Factory Automation, 2014.

[14] Daniel Bujosa Mateu, Daniel Hallmans, Mohammad Ashjaei, Alessan-
dro V Papadopoulos, Julian Proenza, and Thomas Nolte. Clock synchro-
nization in integrated tsn-ethercat networks. In 2020 25th IEEE Inter-
national Conference on Emerging Technologies and Factory Automation
(ETFA), volume 1, pages 214–221, 2020.

[15] Seifeddine Nsaibi, Ludwig Leurs, and Hans D Schotten. Formal and
simulation-based timing analysis of industrial-ethernet sercos iii over tsn.
In 2017 IEEE/ACM 21st International Symposium on Distributed Simu-
lation and Real Time Applications (DS-RT), pages 1–8, 2017.

[16] Niklas Reusch, Luxi Zhao, Silviu S Craciunas, and Paul Pop. Window-
based schedule synthesis for industrial ieee 802.1 qbv tsn networks. In
2020 16th IEEE International Conference on Factory Communication
Systems (WFCS), pages 1–4. IEEE, 2020.

[17] R. Salazar, T. Godfrey, L. Winkel, N. Finn, C. Powell, B. Rolfe, and
M. Seewald. Utility Applications of Time Sensitive Networking White
Paper (D3). Technical report, IEEE, 2018.

[18] S. Samii and H. Zinner. Level 5 by Layer 2: Time-Sensitive Networking
for Autonomous Vehicles. IEEE Communications Standards Magazine,
2(2):62–68, 2018.

[19] Oscar Seijo, Zaloa Fernández, Iñaki Val, and Jesús A López-Fernández.
SHARP: towards the integration of time-sensitive communications in

legacy LAN/WLAN. In 2018 IEEE Globecom Workshops (GC Wkshps),
pages 1–7, 2018.

[20] K. S. Umadevi and R. K. Sridharan. Multilevel ingress scheduling pol-
icy for time sensitive networks. In Int. Conf. Microelectronic Devices,
Circuits and Systems, 2017.

[21] M. Wollschlaeger, T. Sauter, and J. Jasperneite. The Future of Indus-
trial Communication: Automation Networks in the Era of the Inter-
net of Things and Industry 4.0. IEEE Industrial Electronics Magazine,
11(1):17–27, 2017.

Chapter 9

Paper B
HERMES: Heuristic
Multi-queue Scheduler for TSN
Time-Triggered Traffic with
Zero Reception Jitter
Capabilities.

Daniel Bujosa, Mohammad Ashjaei, Alessandro V. Papadopoulos, Julián
Proenza, Thomas Nolte.
In Proceedings of the 30th International Conference on Real-Time Networks
and Systems (RTNS 2022).

75

Abstract

The Time-Sensitive Networking (TSN) standards provide a toolbox of fea-
tures to be utilized in various application domains.The core TSN features in-
clude deterministic zero-jitter and low-latency data transmission and transmit-
ting traffic with various levels of time-criticality on the same network. To
achieve a deterministic transmission, the TSN standards define a time-aware
shaper that coordinates transmission of Time-Triggered (TT) traffic. In this
paper, we tackle the challenge of scheduling the TT traffic and we propose a
heuristic algorithm, called HERMES. Unlike the existing scheduling solutions,
HERMES results in a significantly faster algorithm run-time and a high num-
ber of schedulable networks. HERMES can be configured in two modes of
zero or relaxed reception jitter while using multiple TT queues to improve the
schedulability. We compare HERMES with a constraint programming (CP)-
based solution and we show that HERMES performs better than the CP-based
solution if multiple TT queues are used, both with respect to algorithm run-
time and schedulability of the networks.

Paper B 77

9.1 Introduction

Data communication in industrial systems has dealt with many challenges dur-
ing recent years, such as scalability in data transmission, high volume of data
exchange, the coexistence of diverse applications with different time-criticality
requirements, and guaranteeing deterministic transmission for hard real-time
traffic. These challenges are mainly due to recent demands for increasing
functionalities in industrial systems that impose further pressure on the data
communication design of such systems. For instance, in several application
domains, e.g., autonomous vehicles and smart automation, many sophisticated
smart sensors and cameras are utilized to perform newly added functionali-
ties that require a high amount of communication bandwidth and at the same
time meet their timing requirements. Besides the timing requirements, the
rise of adaptive industrial systems imposes another criterion for designing data
communication systems in which the network should be reconfigured due to
changes in the environment. Therefore, in such systems, the configuration of
the network is not seen as a one-time configuration in the initialization phase,
but as a dynamic reconfiguration during the run-time (and operational) phase.

IEEE Audio-Video Bridging (AVB) Task Group (TG) was established
in 2005 to provide Ethernet with soft real-time capabilities oriented to
audio/video streaming. The three main projects developed by this TG are:
(i) the IEEE Std 802.1AS [3] for clock synchronization, (ii) the IEEE Std
802.1Qav, which standardized the Credit-Based Shaper (CBS) [1]; and finally
(iii) the IEEE Std 802.1Qat, which standardized the Stream Reservation
Protocol (SRP) [2]. The latter standard is particularly interesting in the
context of dynamic networks as it allows adding and removing streams
at run-time. As the features that were developed by the AVB TG became
relevant to other application areas, such as automotive [23], automation [27],
and energy distribution [22], new requirements emerged. Therefore, in 2012,
the TG broadened its objectives to meet the demands and was renamed to
Time-Sensitive Networking (TSN) TG. Specifically, TSN TG’s work was
developed as a set of standards to provide transmission of hard and soft
real-time traffic on the same network, deterministic zero-jitter and low-latency
transmission, precise clock synchronization, fault tolerance mechanisms, and
advanced network management allowing dynamic reconfiguration.

Motivation: One of the main features developed within TSN TG is the
zero-jitter traffic transmission, known as the Time-Aware Shaper (TAS), which
is particularly utilized in applications that require low-latency and low-jitter
data transmission, e.g., in embedded control systems. The TAS allows trans-
mission of Time-Triggered (TT) traffic while preventing any interference from

78 9.2. Related Work

other traffic via a gate mechanism on the ports of the switches. Therefore, TAS
requires the synthesis of the Gate Control Lists (GCL) that are specifying at
which point in time each frame should be transmitted. A GCL is defined for
each switch port which contains 8 queues, in such a way that the GCL identi-
fies the moments in which the gate of each queue will be open. The schedul-
ing of TT traffic, and its synthesis in GCLs, is known to be an NP-complete
problem [19]. Several solutions are proposed in the literature to schedule TT
traffic in TSN networks that are mainly based on Integer Linear Programming
(ILP) and Constrained Programming (CP) [7]. These solutions are known to
have high time complexity, i.e., they require a long time to schedule large net-
works, thus they are not generally scalable. In addition, these solutions are
not suitable for systems that require dynamic reconfigurations as the new con-
figuration should be created relatively fast. Few heuristic schedulers are also
proposed, e.g., [17], whose performance is not properly compared with the ILP
and CP solutions.

Paper contributions: In this paper, we propose a heuristic scheduler for
TT traffic in TSN networks, called Heuristic Multi-queue Scheduler (HER-
MES), that takes advantage of multiple queues for TT traffic to provide high
schedulability with very low scheduling times. Frames in HERMES can be
configured to be scheduled in two modes of zero or relaxed reception jitter,
which provides better control for users. Through a set of experiments, we
show that HERMES can perform better than CP-based solutions, i.e., it results
in more schedulable networks, by allowing it to use multiple queues, and at
the same time, it provides the results within 17 to 800 times faster. In our
experiments with two sizes of networks, we obtained schedules in less than
1ms, which shows that HERMES is suitable for dynamic reconfiguration of
networks.

Paper outline: The paper is organized as follows. Section 9.2 presents
the related work. Section 9.3 presents the background. Section 9.4 presents
the proposed algorithm, i.e., HERMES. Sections 9.5 analyzes the HERMES
performance. Finally, Section 9.6 concludes the paper and indicates future
directions.

9.2 Related Work

There have been many works on various TSN topics, including investigation of
time-aware shaper mechanisms [4], proposing fault tolerance techniques [12],
techniques to tolerate temporary faults in TSN networks with the use of re-
transmissions [5], and schedulability analysis of traffic with different TSN fea-
tures [29], [14]. A recent comprehensive survey [7] presents the status of re-

Paper B 79

search within TSN, including schedulability and scheduling problems, safety
and security issues, and evaluation models and tools.

Within the context of TT traffic scheduling in TSN networks, the work
in [26] present a scheduling algorithm formalized as an ILP while the works
in [24] and [16] present a joint routing and scheduling algorithm formalized
as an ILP and as a meta-heuristic scheduling approach based on a Genetic
Algorithm (GA) approach, respectively. The work in [9] presents an SMT-
based scheduler capable of scheduling networks with several TT queues. The
work in [10] proposes a GCL synthesis approach based on Greedy Random-
ized Adaptive Search Procedure (GRASP) meta-heuristic [20], which takes
AVB traffic into account, whereas the work in [11] proposes a joint routing
and scheduling approach for TT and AVB traffic by means of an integrated
heuristic and meta-heuristic strategy. In the latter work, the K-Shortest Path
(KSP) method [28] is utilized for routing, and GRASP is used to schedule
both TT and AVB at the same time. Moreover, the work in [8] synthesizes a
network topology that supports seamless redundant transmission for TT traf-
fic by proposing a greedy heuristic algorithm for joint topology, routing, and
scheduling synthesis.

Protocol Routing Multi-queuing Schedule ZRJ
HLS Yes No per frame No
MML Yes No per frame No

BN Yes No per frame No
CV Yes No per frame No

MDP Yes No per frame No
HERMES No Yes per link Yes

Table 9.1: Comparison between heuristic schedulers.

The above-mentioned solutions are mostly based on ILP or constraint pro-
gramming, while some of them exploit the use of meta-heuristics, e.g., GA.
However, these solutions normally are highly time-complex, which makes
them not scalable. Few works target heuristic solutions with lower time com-
plexity. For instance, the work in [17] proposes a heuristic routing and schedul-
ing algorithm called Heuristic List Scheduler (HLS) that is limited to a single
TT queue, while the work in [25] compares 4 heuristic algorithms combining
routing and scheduling (Modified Most Loaded Heuristic (MML), Bottleneck
Heuristic (BN), Coefficient of Variation Heuristic (CV) [6][13], and Modified
Dot Product Heuristic (MDP) [18]), all with scheduling times greater than 100
ms and unable to handle multiple queues. In this work, we propose a heuristic

80 9.3. Background

algorithm, called HERMES, with scheduling times lower than 10 ms that uses
multiple TT queues to improve schedulability. Moreover, the proposed algo-
rithm provides two modes, one with zero reception jitter and relaxed reception
jitter in the receiver end-station, see Section 9.3 for detailed description of
zero and relaxed reception jitter. The zero reception jitter mode is configurable
which is helpful for the applications in which the feature is not essential. Ta-
ble 9.1 shows the main differences between the heuristic schedulers mentioned
above, including HERMES. The features that are analyzed in this comparison
include routing, multi-queuing for TT traffic, scheduling process, and support
for zero reception jitter (ZRJ).

9.3 Background

TSN end-stations communicate by transmitting Ethernet frames through routes
consisting of links and time-sensitive switches. In TSN, Ethernet frames be-
long to one of the eight possible priorities. The traffic is classified as one of
the three available traffic classes, including TT traffic, AVB traffic, and BE
traffic, where TT traffic has higher priority than other traffic classes and BE
has the lowest priority. Note that several priorities may cover one traffic class,
e.g., AVB can consist of classes A, B, and C, each associated with one priority
level. A port of a TSN switch supports up to eight FIFO queues each of them
associated with one priority level. Figure 9.1 shows an example of a time-
sensitive device output port with four queues configured as TT traffic with the
highest priority, AVB classes A and B traffic with the medium priority, and a
BE traffic class as the lowest priority.

9.3.1 Time-Triggered Traffic

TT traffic is scheduled offline, which allows to know exactly in which time
slot each TT frame is transmitted. This requires that interference between
frames must be prevented. This is achieved through the TAS mechanism (see
Figure 9.1). According to this mechanism, each queue has an associated gate
that can be open or closed. The frames in a queue can be transmitted when the
gate is open, otherwise, the frames are blocked for transmission.The gates are
controlled by the GCL, which specifies at which point in time gates should be
open, and it is a cyclic list that repeats the schedule. The time that gates are
open or closed can be specified at the nanosecond level for each entry of the
GCL and we refer to the opening time of a gate as window.

Figure 9.2 shows an example of TAS operation for two TT queues with
two different priorities, i.e., priority 6 and 7. In this example, we assume that

Paper B 81

Port

St
ri

ct
 P

ri
o

ri
ty

C
B

S
C

B
S TA

S(
G

C
L,

t)

TT queue

AVB Class A queue

AVB Class B queue

BE queue

Figure 9.1: A TSN egress port with four FIFO queues: one TT queue, two AVB
queues, and one BE queue.

three TT frames with a period of 4 time units are transmitted through a switch
port where one of the TT frames is set to the highest priority 7 (blue frame),
while the other two frames (red and green) are set to priority 6. As the periods
of the frames are equal, the hyper-period (the least common multiple) of them
is 4 time units. Therefore, the GCL cycle is defined as 4 time units allowing
gates operation in each time slot and repeating every 4 time units. According
to the schedule in this example, which is set in the GCL, at time T0 till T1
the gate for priority 6 queue is open (shown as 1 in GCL), whereas the gate
for priority 7 is closed (shown as 0 in GCL) allowing transmission of the red
frame. Further, in the time slot between T1 and T2, the blue frame can be
transmitted as the gate for priority 7 is open. Between T2 and T3 both gates
are closed, thus no transmission can occur, and finally, the gate of priority 6
queue is open in the last time slot that allows the transmission of the last frame,
i.e., the green frame. Two cycles of frame transmissions are represented at the
bottom of Figure 9.2.

On the other hand, TSN supports multi-hop communication which imposes
other restrictions when scheduling. For a frame to be transmitted on a link, it
must have been previously transmitted through the preceding links in the route
of the frame. Furthermore, the order of frames in transmission is also impor-
tant. Considering that the queues in the switches are FIFO, if a frame arrives to
a switch before another one, it will also be transmitted first. Figure 9.3 shows
an example of a multi-hop schedule. The figure shows three switches (S1, S2,
and S3) and three links, two of them connecting S1 and S2 with S3 and one
in the S3 output. Two frames are exchanged between these 3 switches, one
blue frame is sent by S1 and one red frame is sent by S2 and both frames are

82 9.3. Background

1 0
0 0
0 1
1 0

Strict Priority

TT queue
Priority 6

TT queue
Priority 7

GCL

GCL Cycle 1

T0

T1

T2

T3

T0 T1 T2 T3 T0 T1 T2 T3 T0

GCL Cycle 2

Figure 9.2: TSN TAS gate mechanism.

S1

S2

S3

fi.t

fj.t

HP(fi.t,fj.t)

Figure 9.3: Multi-hop behavior of TSN and GCLs.

forwarded by S3 through the output link. As we can see, both are sent after
they are received by S3. However, according to the schedule that is decided for
this case (for whatever the reason), the red frame arrives before the blue frame
to S3 but the blue frame is sent by S3 before the red frame, thus this sched-
ule would not be possible with a single queue. In this case, the red and blue

Paper B 83

GCL Cycle

T0 T1 T2 T3 T0

(a) Schedule of two frames with and with-
out reception jitter.

GCL Cycle

T0 T1 T2 T3 T0

(b) Schedule of two frames, both with zero
reception jitter.

Figure 9.4: Difference between reception jitter and zero reception jitter.

frames must have been assigned to different queues and hence have different
priorities.

Finally, interference-free transmission of frames ensures their zero jitter
transmission. This means that the variations in the transmission and recep-
tion of each frame with respect to the schedule will be zero, assuming that
the clock drift is zero. However, in this work, not only the jitter but also the
reception jitter has been considered. The reception jitter is defined as the vari-
ability of the instant of reception by the receiver end-station of a frame with
respect to its period. For example, Figure 9.4 shows the schedule over the
GCL cycle of a TSN output port connected to the input port of the receiving
end-station. In this schedule two frames are shown, a blue frame with a period
of 4 time units and a red frame with a period of 2 time units. According to
the schedule example in Figure 9.4a, the blue frame has zero reception jitter
since it is always transmitted at time unit 0, whereas the red frame has recep-
tion jitter since it is transmitted at time unit 1 in its first instance (T1) of the
hyper-period and at time 0 in its second instance (T2). Zero reception jitter is
particularly interesting in heterogeneous systems combining TSN components
and legacy components that cannot adopt TSN synchronization mechanisms.
In these cases, a frame with zero reception jitter helps the synchronization of
the applications even if the devices are not properly synchronized. Throughout
the paper, we denote zero reception jitter by ZRJ and reception jitter by RJ.
Note that in this case, as shown in Figure 9.4b, it would be enough to delay the
transmission of the second instance of the red frame by one time unit for both
frames to have ZRJ.

9.3.2 AVB and BE Traffic

AVB frames are not scheduled offline, i.e., they are scheduled via CBS once
they arrive at the switch port. The gates are normally open for them unless
TT traffic is to be transmitted. The CBS aims at improving the Quality-of-
Service (QoS) of lower priority traffic while ensuring a minimum of bandwidth

84 9.4. Proposed scheduling algorithm

utilization. Finally, BE frames have no real-time guarantees, thus they will be
transmitted when their gate is open and the CBS is negative for all higher
priority traffic.

9.4 Proposed scheduling algorithm

We developed what we call Heuristic multi-queue Scheduler (HERMES)
which generates the global schedule for the transmission of TT traffic. Our
goal is to reduce the scheduling time while achieving high schedulability
through the use of different numbers of TT queues and providing zero jitter.
Moreover, HERMES can provide zero reception jitter.

HERMES calculates the GCL of each egress port of the end-stations and
TSN switches. To do this, unlike other heuristic algorithms that schedule frame
by frame, our algorithm decides the schedule link by link (and then for each
link deciding the schedule of each frame to be transmitted in that link) starting
with the destination links and ending with the source links scheduling each
frame as late as possible according to their timing constraints. The reason why
we design HERMES to calculate the schedule link by link instead of frame by
frame is that in this way the conflicts between frames are detected before the
entire frame has been scheduled. On the contrary, when the network is sched-
uled frame by frame, the schedule of one frame may hinder the scheduling
of the other frames and the algorithm will have to schedule that frame again
throughout all its links. On the other hand, links are scheduled from destina-
tion to source because the destination link is the most restrictive link especially
if the frame has more restrictive reception time constraints such as frames that
must be received with zero reception jitter. In addition, in each links, each
frame is scheduled as late as possible so that the preceding links have enough
time margin between the frame’s period start and the offset of the same frame
in the last scheduled link. However, this does not imply that the frames will
have the highest possible latencies because an improvement as simple as look-
ing for the minimum offset of all frames and moving all frames earlier by that
amount can be applied.

The use of multiple queues for TT traffic to improve the schedulability is
thoroughly explained in Section 9.4.2. However, it is worth to mention that
HERMES does not consider relative priorities between TT queues, i.e., all
queues have the same priority. The isolation of frames by only opening the
gate of a single queue at a time eliminates the arbitration among TT frames
which is performed by the Strict Priority module (see Figure 9.1) if more than
one queue has its gate open. The queues are only used to help the scheduler
meeting the order condition explained in Section 9.3.

Paper B 85

Although HERMES uses only unicast frames, the algorithm would work
equally well with multicast frames. As we will see in the algorithm descrip-
tion, HERMES only schedules those links whose frames have already been
scheduled in the subsequent links. In this way, in the case of multicast frames,
when scheduling the link before the fork, the following links will already be
scheduled and therefore the algorithm can continue to function normally only
taking into account the offset and restrictions of several following links instead
of a single following one.

9.4.1 System Model

In this work the communication network model consists of two main sets, one
for the links L and one for the TT-frames FTT. Each link l ∈ L is unidirec-
tional, is defined by its identifier, and has a parameter l.ϕ indicating in which
phase of the execution of HERMES the link will be scheduled. Indeed, the
execution of the scheduling algorithm presented in this paper is divided into
phases, with a total of Φ phases. In the case of full-duplex links, two links with
opposite directions are instantiated. On the other hand, each frame f ∈ FTT is
characterized by seven parameters f = ⟨t, w, d, q, u, n,S⟩, i.e.,

1. the period f.t,

2. the length of the frame or the size of the window needed to transmit the
frame f.w,

3. the deadline f.d,

4. the queue of the frame in all egress ports of the whole route f.q,

5. a parameter to decide in which order the frames in the links are sched-
uled, which in this case is the frame utilization f.u (see Algorithm 2 in
Section 9.4.2),

6. the number of links in the route f.n, and

7. a set f.S containing the route and the schedule of each link in the route.

Each element s ∈ f.S includes three parameters s = ⟨ζ, ι,O⟩:

1. the link s.ζ of the route assigned in reverse order, i.e. s1.ζ being the
destination link and sf.n.ζ the source link,

2. the number of instances s.ι of the frame in the link, and

3. a set s.O indicating the offset of each instance according to the period
start of the instance.

86 9.4. Proposed scheduling algorithm

9.4.2 HERMES

The input to the scheduler consists of a list of TT frames characterized by their
period, frame length, deadline, and routing expressed as a vector of unidirec-
tional link identifiers. With this list, HERMES executes the following steps to
obtain the schedule.

Algorithm 1: HERMES - DivPhases
Data: L,FTT
Result: ∀l ∈ L return l.ϕ

1 procedure DivPhases
2 for ∀l ∈ L do l.ϕ← NULL end
3 Φ← 1
4 while ∃l ∈ L : l.ϕ = NULL do
5 for fi.sj , fk.sx ∈ FTT, f.S : fi.sj−1! = NULL ∧ fk.sx−1 =

NULL do
6 if ∃!fi.sj .ζ = fk.sx.ζ then
7 fi.sj .ζ.ϕ← Φ
8 end
9 end

10 Φ← Φ+ 1

11 end

Algorithm 2: HERMES - AssignFrameUtilization
Data: FTT
Result: ∀f ∈ FTT return f.u

1 procedure AssignFrameUtilization
2 for ∀f ∈ FTT do
3 f.u← f.w

f.d · f.n
4 end

Algorithm 1, DivPhases: First of all, as mentioned before, links are di-
vided into phases where all frames in all links assigned to that phase are sched-
uled togther. The only condition for a link li to be assigned to a phase li.ϕ is
that all frames transmitted through that link f ∈ FTT : f.sj .ζ = li must
have all previous links (links closer to destination) assigned to previous phases
∀f.sk.ζ : k < j|f.sk.ζ.ϕ < f.sj .ζ.ϕ. To do that, if there are links not as-
signed to any phase, the algorithm adds a new phase and checks if links not

Paper B 87

1

-1

-2 -3

-4 -5

2 3

4 5

Figure 9.5: TSN Network example.

assigned are ready to be assigned in the new phase according to previous con-
ditions. Note that, as mentioned before, links in the route are ordered from
destination to source, i.e., routes are scheduled backwards and in each phase
all links which, fulfilling the above conditions, are independent can be sched-
uled. Figure 9.5 presents a network example where the squares with positive
numbers represent end-stations and the circles with negative numbers repre-
sent switches. For this example, Table 9.2 shows a list of frames and their
corresponding routes expressed as a list of pairs of end-station/switch iden-
tifiers indicating the link and its direction. Moreover, Table 9.3 shows how
links in reverse order (from destination to source) are assigned to phases and
how these links are delayed (represented by arrows) in the scheduling process
until the preceding links are assigned to a previous phase. Finally, for this ex-
ample, Table 9.4 shows the resulting distribution of the links in phases. The
reason for scheduling the links in reverse order is that, due to the need for de-
terminism in the reception link, this link becomes the most restrictive. This is
particularly important to obtain a zero reception jitter schedule as mentioned
in Section 9.4. On the other hand, note that, although this scheduler can be
used in feed-forward networks, the routes cannot present triple dependencies
in a loop. For example, the routes of the frames in Table 9.5 cannot be dis-
tributed in phases. The reason is that, as it can be seen in Table 9.6, the triple
dependency in the loop causes a deadlock in the DivPhases algorithm as some
links in the route will be indefinitely delayed.

88 9.4. Proposed scheduling algorithm

Algorithm 3: HERMES – Schedule
Data: L,FTT
Result: ∀f ∈ FTT return f.S

1 procedure Schedule
2 for ∀f ∈ FTT do f.q ← 1 end
3 for p = 1..Φ do
4 for ∀l ∈ L : l.ϕ = p do
5 HP ← LCM({f.t : f.s.ζ = l})
6 for ∀f.s ∈ f.S : f.s.ζ = l do f.s.ι← HP

f.t end
7 for ∀f ∈ FTT, f.sx ∈ f.S : f.sx.ζ = l from highest to

lowest f.u do
8 for i = f.sx.ι..1 do
9 f.sx.oi ← min(f.sx−1.O, f.d)− f.w

10 while Collision(f.sx.oi) ∨Order1(f.sx.oi) ∨
Order2(f.sx.oi) do

11 if Collision(f.sx.oi) then
12 f.sx.oi ← f.sx.oi − 1
13 else
14 if Order1(f.sx.oi) then
15 f.q ← f.q + 1
16 if f.q > Q then
17 f.sx.oi ← f.sx.oi − 1
18 end
19 end
20 if Order2(f.sx.oi) then
21 f.q ← f.q + 1
22 if f.q > Q then
23 return Unschedulable
24 end
25 end
26 end
27 if f.sx.oi < 0 then
28 return Unschedulable
29 end
30 end
31 end
32 end
33 end
34 end

Paper B 89

Frame Route
f1 1 -1 ; -1 -2 ; -2 2
f2 2 -2 ; -2 -1 ; -1 -3 ; -3 3
f3 2 -2 ; -2 -4 ; -4 4
f4 3 -3 ; -3 -5 ; -5 5
f5 3 -3 ; -3 -1 ; -1 1
f6 3 -3 ; -3 -4 ; -4 -2 ; -2 2
f7 4 -4 ; -4 -2 ; -2 -1 ; -1 1
f8 5 -5 ; -5 -2 ; -2 -1 ; -1 1
f9 5 -5 ; -5 -3 ; -3 3

Table 9.2: Example of frame routes for Figure 9.5

Frame ϕ 1 ϕ 2 ϕ 3 ϕ 4 ϕ 5 ϕ 6
f1 -2 2 -1 -2 1 -1
f2 -3 3 -1 -3 -2 -1 2 -2
f3 -4 4 -2 -4 → 2 -2
f4 -5 5 -3 -5 → → → 3 -3
f5 -1 1 -3 -1 → → → 3 -3
f6 -2 2 → → -4 -2 -3 -4 3 -3
f7 -1 1 → -2 -1 -4 -2 4 -4
f8 -1 1 → -2 -1 -5 -2 5 -5
f9 -3 3 -5 -3 → → 5 -5

Table 9.3: DivPhases procedure

Phase 1 Phase 2 Phase 3 Phase 4 Phase 5 Phase 6
-1 1 -1 -2 1 -1 2 -2 -3 -4 3 -3
-2 2 -1 -3 -2 -1 -4 -2 4 -4
-3 3 -2 -4 -5 -2 5 -5
-4 4 -3 -1
-5 5 -3 -5

-5 -3

Table 9.4: Resulting link distribution in phases

Algorithm 2, AssignFrameUtilization: To decide which frames in the
link will be scheduled first, the utilization of the frame along its route is cal-
culated according to the formula f.u = f.w

f.d · f.n. This formula can change

90 9.4. Proposed scheduling algorithm

Frame Route
f1 1 -1 ; -1 -3 ; -3 -4 ; -4 4
f2 3 -3 ; -3 -4 ; -4 -2 ; -2 -1 ; -1 1
f3 4 -4 ; -4 -2 ; -2 -1 ; -1 -3 ; -3 3

Table 9.5: Example of frame routes with feed-forward dependencies for Figure 9.5

Frame ϕ 1 ϕ 2 ϕ 3 ϕ 4
f1 -4 4 → → ...
f2 -1 1 → → ...
f3 -3 3 → → ...

Table 9.6: Infinite DivPhases procedure

depending on the needs. However, in this case, we sought to prioritize the
frames that required the most bandwidth at specific time periods (between the
period start and deadline) as this causes the free space for scheduling to be
consumed very quickly, so it is important to prioritize them to provide them
with the space they need.

Algorithm 3, Schedule (l.2-8): Firstly, we initialize the queues by assign-
ing queue 1 to all frames. Then, HERMES goes through all the phases and,
within each phase, all the links, and calculates the hyper-period (HP) by cal-
culating the Least Common Multiple (LCM) of all frames of each link and the
number of instances of each frame in the link by dividing the HP by the frame
period f.t. In this way, HERMES schedules phase by phase, where in each
phase the links can be scheduled in parallel because they are independent. Fi-
nally, in each link, the schedule of the frames is done in order of descending
f.u, instance by instance from last (f.sx.ι) to the first instance in the HP. This
is to prevent, in case of having frames with deadlines bigger than periods, later
instances to be scheduled before previous instances.

Algorithm 3, Schedule (l.9-10): Secondly, we initialize the offset of each
instance of the frame in the link to the minimum between the deadline of the
frame and the release of the frame in the previous link (the following link if we
consider order from source to destination) if any. Then we check if the offset
assigned to the instance of the frame makes it collide with another previously
scheduled instance and if the order of reception and transmission in the switch
between this link and the previous one is adequate. Algorithm 3, Schedule

Paper B 91

(l.11-34): Finally, if there is a collision, defined as

Collision(fi.sj .ok) = ∃fm.sj .on :

[fm.sj .on + fm.t · (n− 1) ≤ fi.sj .ok + fi.w + fi.t · (k − 1)]∧
[fm.sj .on + fm.w + fm.t · (n− 1) ≥ fi.sj .ok + fi.t · (k − 1)] ,

(9.1)

the frame moves backward until it encounters an empty space. Once an empty
space is found, the reception and transmission order in the switch is checked.
If the frame arrives at the switch later than another frame with which shares
the transmission link and which is also transmitted later than the frame under
scheduling in the shared transmission link, i.e.,

Order1(fi.sj .ok) = ∃fm.sj .on :

[fm.sj−1.ζ = fi.sj−1.ζ]∧
[fm.sj .on + fm.t · (n− 1) < fi.sj .ok + fi.t · (k − 1)]∧[
fm.sj−1.on′ + fm.t · (n′ − 1) > fi.sj−1.ok′ + fi.t · (k′ − 1)

] (9.2)

the switch must change the queue or move backward in the schedule so that
it arrives earlier than the frame instance in order conflict. On the other hand,
if the frame arrives at the switch earlier than another frame that shares the
transmission link and is transmitted earlier than the frame under scheduling in
the shared transmission link, i.e.,

Order2(fi.sj .ok) = ∃fm.sj .on :

[fm.sj−1.ζ = fi.sj−1.ζ]∧
[fm.sj .on + fm.t · (n− 1) > fi.sj .ok + fi.t · (k − 1)]∧[
fm.sj−1.on′ + fm.t · (n′ − 1) < fi.sj−1.ok′ + fi.t · (k′ − 1)

] (9.3)

the only option is to change the queue or the network configuration will be un-
schedulable for the ordering approach used. Moreover, if the offset becomes
negative due to the frame advance, the configuration will also be unschedula-
ble. Note that changing the queue is not enough, it is also necessary to check
that such a change does not affect the order conditions of the previously sched-
uled links but for the sake of simplicity, this has not been included in the algo-
rithm.

On the other hand, in HERMES frames can be configured as RJ or ZRJ.
For the sake of simplicity, this is not reflected in the algorithm but it consists
of forcing all offsets to be equal on the reception link of the frames configured
as ZRJ. If a frame is configured as RJ, it can be received by the receiver at
different points in time even if reception is deterministic. For example, if one

92 9.5. Evaluation of HERMES

frame is scheduled as RJ and has a period of 4s, HERMES may schedule it in
a loop of 3 instances where the first instance has an offset of 1s, the second
instance has an offset of 3s, and the third instance has an offset of 2s. In
this way, the instances of this frame will be received at seconds 1, 7, 10, 13,
19, and so on. However, if a frame is configured as ZRJ, it will be received
by the receiver at a constant rate equal to the period. For example, if one
frame is scheduled as ZRJ and has a period of 4s, HERMES schedules it in
a way that the offsets of all instances are the same. In this way, if the frame
has an offset of 2s the frame will be received at seconds 2, 6, 10, 14, 18,
and so on. As mentioned before, this behavior is especially interesting for
legacy devices that cannot implement TSN synchronization protocols but want
to execute applications in a TT fashion, or want to exchange their own legacy
synchronization frame with other legacy devices through TSN.

9.5 Evaluation of HERMES

9.5.1 Experimental setup

For the evaluation of HERMES, in this paper, we used the LETRA evaluation
toolset (ETS) developed in [15]. LETRA ETS provides a set of integrated
tools capable of performing automated experiments regarding the scheduling
and schedulability analysis of TSN networks. In this section, we will explain
LETRA ETS and the modifications that have been done for this paper. The
reader is referred to [15] for more information about LETRA ETS.

The toolchain of the LETRA ETS used in this work is depicted in Fig-
ure 9.6. The main input to the ETS is the network configuration, including the
network topology and traffic characteristics. For this paper, we use two net-
work topologies both following a line-star topology. The network topologies
are depicted in Figure 9.7 and they are a small single-switch network consist-
ing of 3 nodes (S1) and a larger three-switch network consisting of 9 nodes
(S3).

For the traffic characteristics, we set the traffic to be only TT as we exclude
the effect of HERMES on lower priority traffic in this stage. The network band-
width is set to 10Mbps to prevent generating too many frames when reaching
loads around 90% utilization to avoid taking more than a week to conduct
each round of experiments due to the CP scheduler and the network genera-
tor which are the two most time-consuming tools. The maximum number of
generated frames is set to 100, however, depending on the selected utilization,
the frame number can be different. The frame length is selected within the
range [500,1000] Bytes. The minimum and maximum allowed periods are set

Paper B 93

Network
Configuration

Network
Generator

LETRA

HERMES CP TT traffic
Scheduler

Compare and
Graph results

Figure 9.6: LETRA evaluation tool set modification.

to 200µs and 1000µs respectively, while deadlines were assigned the same
values as the corresponding periods. Note that the frames will be generated
such that the utilization of all links will be the one selected as an input, e.g.,
when we select 10% utilization the traffic generator selects the frame sizes and
routes to obtain 10% on all links if possible.

The first step of LETRA ETS is generating random traffic. We used the
network configuration as input of the network generator to generate 1700 sets
of TT traffic randomly for each network topology (100 TT traffic configura-
tions for each of the values of the utilization, which are taken [from 10% to
90% in steps of 5% of utilization]).

The next step is LETRA, as it can be seen in Figure 9.6, which is a mapping
tool to map the generated traffic into TSN traffic classes, i.e., TT, AVB and
BE. In this paper, we are only interested in TT traffic, thus, we skip the traffic
mapping. However, ETS is integrated in a way that the output of each tool is
the input of the next. For this reason, we used LETRA only as a translator
between the output of the network generator and the input of the schedulers.

Finally, each generated network processed by LETRA is used as input to

94 9.5. Evaluation of HERMES

-1

1

3

2

(a) Single-switch network (S1).

-1

1

3

2 -2 -3

4

6

7

9

8

5

(b) Three-switches network (S3).

Figure 9.7: Experimental network topologies.

both HERMES and a CP scheduler [21]. The CP scheduler runs in the only
available mode which is with one queue and RJ while HERMES, depending
on the experiment, is configured with up to 4 TT queues and with the frames
configured in either mode RJ or ZRJ.

Once the scheduling of all the generated networks is done, we compare the
two schedulers, i.e., HERMES and CP, with respect to the time that it takes
for each of them to give a solution and the number of networks for which each
of the schedulers is able to find a schedule (number of networks considered as
schedulable by each scheduler). The experiments are done for different values
of the network utilization, which is the same on all network links, e.g., 10%
utilization is considered in all links of the network. We show the results for
different network utilization in several graphs in the following sections. In
the graphs that show the number of schedulable networks, the circles indicate
the percentage of networks generated that could be scheduled while error bars
represent the error in the percentage obtained through the binomial analysis
with 95% certainty. Additionally, these graphs include dashed trend lines ob-
tained through logistic regression adjustment to present the trend of changes.
Moreover, Table 9.7 compares the schedulability between HERMES in modes
RJ and ZRJ and the CP scheduler on networks S1 and S3. In the table, we
analyze schedulability S(u), as a function of the utilization u, for the range of
utilizations under analysis (u ∈ [10%, 90%]). Since the schedulability S(u) is
sampled, we approximate it by a logistic regression, that we indicate with the
notation Ŝ(u). Then we define the accumulated schedulability for a network x
as:

ASx =

∫ 0.9

0.1
Ŝx(u)du (9.4)

which we use to compare schedulers using the accumulated scheduling ratio
defined as:

ASRx,y[%] =
ASx

ASy
· 100 (9.5)

to measure the percentage of schedulable networks of x compared to y. On

Paper B 95

the other hand, in the graphs that show the time taken by each scheduler to
give a solution, the circles show the average time needed to get the schedule
in milliseconds for each utilization level, while error bars are calculated using
the gamma distribution with 95% certainty. Moreover, the graphs include a
dashed trend line obtained by fitting the data to an exponential function or a
polynomial function of order 1 or 2.

9.5.2 Results of the scheduling time

We start with the evaluation by analyzing the time it takes to give a schedule
for both network topologies. In Figs. 9.8 and 9.9 scheduling times for all HER-
MES modes and the number of queues as well as the scheduling time of the
CP scheduler for networks S1 and S3 respectively are shown. In both graphs,
we can see how the scheduling time of the CP scheduler is exponentially in-
creasing with the percentage of utilization and the number of frames while
HERMES remains with scheduling times below 10ms. This implies that HER-
MES exhibits scheduling times from tens of times lower than the CP scheduler
to thousands of times lower for high utilization values. Furthermore, we can
see how for 50% utilization the scheduling time in the S1 network for the CP
scheduler is 3000ms while for the S3 network it is 8000ms, which also shows
a large increase in scheduling time with the size of the network.

On the other hand, Figs. 9.10 and 9.11 show a detail of the scheduling
times specifically for HERMES in RJ mode for networks S1 and S3 respec-
tively. Both graphs show an increase in scheduling time proportional to the
square of the utilization, which is related to the number of frames. On the
other hand, the scheduling time is proportional to the longest path between
two end-stations. In this case, as shown in Figure 9.7, the ratio between the
longest routes is 4/2. For a utilization of 60%, we observe that in the S1 net-
work HERMES with 2 and 3 queues takes 1 and 2 ms respectively while in
the S3 network for the same number of queues the scheduling time is 2 and 4
ms, which corresponds to the ratio calculated above. Finally, it is also possible
to identify that scheduling time doubles with every extra queue, for example,
for a 60% utilization in the S3 network, HERMES takes 2, 4, and 8 ms to
get a schedule with 2, 3, and 4 queues respectively. Although the complexity
doubles with each extra queue used, the fact that the queues are limited to 8
reduces its impact and allows HERMES to remain scalable.

96 9.5. Evaluation of HERMES

10 20 30 40 50 60 70 80

Utilization [%]

0

1000

2000

3000

4000

5000

6000

7000

8000
S

ch
ed

ul
in

g
tim

e
[m

s]

Scheduling time vs utilization
on the S1 network with RJ, ZRJ and CP

TimeHSRJ1
TimeHSRJ2
TimeHSRJ3
TimeHSZRJ1
TimeHSZRJ2
TimeHSZRJ3
TimeCP

Figure 9.8: Scheduling time for different levels of network utilization on network S1
of a CP scheduler and HERMES with and without zero reception jitter with 1, 2 and
3 queues.

10 15 20 25 30 35 40 45 50

Utilization [%]

0

1000

2000

3000

4000

5000

6000

7000

8000

S
ch

ed
ul

in
g

tim
e

[m
s]

Scheduling time vs utilization
on the S3 network with RJ, ZRJ and CP

TimeHSRJ1
TimeHSRJ2
TimeHSRJ3
TimeHSRJ4
TimeHSZRJ1
TimeHSZRJ2
TimeHSZRJ3
TimeHSZRJ4
TimeCP

Figure 9.9: Scheduling time for different levels of network utilization on network S3
of a CP scheduler and HERMES with and without zero reception jitter with 1, 2, 3
and 4 queues.

Paper B 97

10 20 30 40 50 60 70 80

Utilization [%]

0

0.5

1

1.5

2

2.5

3

3.5

4

S
ch

ed
ul

in
g

tim
e

[m
s]

Scheduling time vs utilization
on the S1 network with RJ

TimeHSRJ1S1
TimeHSRJ2S1
TimeHSRJ3S1

Figure 9.10: Scheduling time for different levels of network utilization on network
S1 of HERMES with reception jitter with 1, 2 and 3 queues.

10 15 20 25 30 35 40 45 50 55 60

Utilization [%]

0

2

4

6

8

10

S
ch

ed
ul

in
g

tim
e

[m
s]

Scheduling time vs utilization
on the S3 network with RJ

TimeHSRJ2S3
TimeHSRJ3S3
TimeHSRJ4S3

Figure 9.11: Scheduling time for different levels of network utilization on network
S3 of HERMES with reception jitter with 2, 3 and 4 queues.

98 9.5. Evaluation of HERMES

9.5.3 Results of the schedulability

Figure 9.12 shows in black the schedulability of the CP scheduler for a single-
switch network (S1) with the set of generated networks. On the other hand,
in blue, green, and red we can see the HERMES schedulability with 1, 2, and
3 TT queues respectively in mode RJ (with jitter in the reception). The first
observation is that it would be enough to increase the number of queues to
2 to obtain the same schedulability as the CP scheduler with 1 queue but, in
addition, with three queues it is even possible to exceed by more than 32% the
schedulability achieved by the CP scheduler, as shown in the first column of
Table 9.7. These results, together with those shown in the previous subsection,
show the usefulness of HERMES in contexts where the number of queues is
not a constraint but the schedulability time is, e.g., run-time configurations.

Figure 9.13 shows the HERMES schedulability in zero reception jitter
(ZRJ) mode for the S1 network. This graph shows that in this case, from 2
queues onwards, the schedulability stagnates due to the tough constraint that
the ZRJ mode imposes. However, in the second column of Table 9.7 it can
be seen how the schedulability is lower than in RJ mode, except for the case
of one queue where the ZRJ mode restriction facilitates the scheduling of cer-
tain cases. Since, in general, the schedulability in ZRJ mode is lower than the
schedulability in RJ mode, it is recommended to limit this mode to frames that
really require it.

Figure 9.14 shows in black the schedulability of the CP scheduler for a
three-switches network (S3) with the set of generated networks. On the other
hand, in blue, green, red, and orange we can see the HERMES schedulability
with 1, 2, 3, and 4 TT queues respectively in mode RJ. In this graph, we can
see how HERMES scales worse the longer the route of the frame, being neces-
sary up to 4 queues to surpass the schedulability levels that are attainable with
the CP scheduler, as shown in the third column of Table 9.7. However, it can
also be noticed that with 3 queues 81% schedulability is achieved so the im-

Network S1 Network S3
N◦ Q ASRRJ,CP ASRZRJ,RJ ASRZRJ,CP ASRZRJ,RJ

1 51.04 101.58 17.37 102.59
2 98.50 80.54 55.09 104.62
3 131.99 62.73 81.59 96.33
4 – – 101.35 81.98

Table 9.7: Schedulability comparison between HERMES with different number of
queues (Q) in mode RJ and ZRJ and the CP scheduler on networks S1 and S3.

Paper B 99

10 20 30 40 50 60 70 80 90

Utilization [%]

0

10

20

30

40

50

60

70

80

90

100
S

ch
ed

ul
ab

le
 n

et
w

or
ks

 [%
]

Percentage of schedulable networks vs utilization
on the S1 network with RJ

HSRJ1
HSRJ2
HSRJ3
CP
HSRJ1 LRL
HSRJ2 LRL
HSRJ3 LRL
CP LRL

Figure 9.12: Schedulability for different levels of network utilization on network S1
of a CP scheduler and HERMES allowing reception jitter with 1, 2 and 3 queues.

provement in scheduling time can still be worthwhile. For example, different
approaches can be tried to order the frames, apart from frame utilization, so
that, although each has a lower schedulability, together can cover all the cases
covered by the CP scheduler even in less time since different frame scheduling
orders in the links will provide different schedules.

Figure 9.15 shows the HERMES schedulability in ZRJ mode for the S3
network. Similar to what happened in the S1 network, in this case, the schedu-
lability in ZRJ mode also stagnates. However, the stall occurs after the third
queue. On the other hand, as we can see in the fourth column of Table 9.7,
with fewer queues the ZRJ constrain may slightly improve schedulability but
for more queues, the difference is greater and increasing so, since more queues
are needed to achieve high values of schedulability for this kind of traffic,
again, this mode should be left for very specific frames if high schedulability
wants to be achieved.

100 9.5. Evaluation of HERMES

10 20 30 40 50 60 70 80 90

Utilization [%]

0

10

20

30

40

50

60

70

80

90

100
S

ch
ed

ul
ab

le
 n

et
w

or
ks

 [%
]

Percentage of schedulable networks vs utilization
on the S1 network with ZRJ

HSZRJ1
HSZRJ2
HSZRJ3
HSZRJ1 LRL
HSZRJ2 LRL
HSZRJ3 LRL

Figure 9.13: Schedulability for different levels of network utilization on network S1
of HERMES in zero reception jitter mode with 1, 2 and 3 queues.

10 20 30 40 50 60 70 80 90

Utilization [%]

0

10

20

30

40

50

60

70

80

90

100

S
ch

ed
ul

ab
le

 n
et

w
or

ks
 [%

]

Percentage of schedulable networks vs utilization
on the S3 network with RJ

HSRJ1
HSRJ2
HSRJ3
HSRJ4
CP
HSRJ1 LRL
HSRJ2 LRL
HSRJ3 LRL
HSRJ4 LRL
CP LRL

Figure 9.14: Schedulability for different levels of network utilization on network S3
of a CP scheduler and HERMES allowing reception jitter with 1, 2, 3 and 4 queues.

Paper B 101

10 20 30 40 50 60 70 80 90

Utilization [%]

0

10

20

30

40

50

60

70

80

90

100
S

ch
ed

ul
ab

le
 n

et
w

or
ks

 [%
]

Percentage of schedulable networks vs utilization
on the S3 network with ZRJ

HSZRJ1
HSZRJ2
HSZRJ3
HSZRJ4
HSZRJ1 LRL
HSZRJ2 LRL
HSZRJ3 LRL
HSZRJ4 LRL

Figure 9.15: Schedulability for different levels of network utilization on network S3
of HERMES in zero reception jitter mode with 1, 2, 3 and 4 queues.

9.6 Conclusion and Future Work

We argued that developing fast scheduling algorithms are crucial specially for
adaptive and evolutionary systems. Therefore, in this work, we have developed
a fast heuristic scheduler for TT traffic in TSN networks called HERMES that
can match the level of schedulability of reference schedulers by using several
TT queues. We also use the LETRA ETS to evaluate HERMES performance
showing that by using several queues HERMES can outperform the schedu-
lability of CP schedulers with a single queue but with HERMES exhibiting
scheduling times of less than 10 ms, which implies that HERMES is hundreds
or thousands of times faster. In addition, HERMES supports the integrative
capability of TSN by providing a more restrictive ZRJ mode that facilitates the
integration into TSN networks of legacy devices that cannot implement TSN’s
own synchronization mechanisms.

In this work, we focus on TT traffic scheduling. However, in previous
works, we have developed a TSN mapping tool and an AVB analyzer. There-
fore, the next step is to integrate all these tools to create a toolset capable of
mapping and scheduling traffic taking into account the real-time requirements
of all kinds of traffic.

102 Bibliography

Bibliography

[1] IEEE Standard for Local and Metropolitan Area Networks - Virtual
Bridged Local Area Networks Amendment 12: Forwarding and Queu-
ing Enhancements for Time-Sensitive Streams. IEEE Std 802.1Qav-2009
(Amendment to IEEE Std 802.1Q-2005), pages C1–72, 2010.

[2] IEEE Standard for Local and Metropolitan Area Networks—Virtual
Bridged Local Area Networks Amendment 14: Stream Reservation Pro-
tocol (SRP). IEEE Std 802.1Qat-2010 (Revision of IEEE Std 802.1Q-
2005), 2010.

[3] IEEE Standard for Local and Metropolitan Area Networks–Timing and
Synchronization for Time-Sensitive Applications. IEEE Std 802.1AS-
2020 (Revision of IEEE Std 802.1AS-2011), pages 1–421, 2020.

[4] G. Alderisi, G. Patti, and L. Lo Bello. Introducing support for sched-
uled traffic over IEEE audio video bridging networks. In Conf. Emerging
Technologies Factory Automation, 2013.

[5] Inés Álvarez, Ignasi Furió, Julián Proenza, and Manuel Barranco. Design
and experimental evaluation of the proactive transmission of replicated
frames mechanism over time-sensitive networking. Sensors, 21(3):756,
2021.

[6] Emmanuel Arzuaga and David R Kaeli. Quantifying load imbalance
on virtualized enterprise servers. In Proceedings of the first joint
WOSP/SIPEW international conference on Performance engineering,
pages 235–242, 2010.

[7] Mohammad Ashjaei, Lucia Lo Bello, Masoud Daneshtalab, Gaetano
Patti, Sergio Saponara, and Saad Mubeen. Time-sensitive networking
in automotive embedded systems: State of the art and research opportu-
nities. Journal of Systems Architecture, 110:1–47, September 2021.

[8] Ayman A Atallah, Ghaith Bany Hamad, and Otmane Ait Mohamed.
Fault-resilient topology planning and traffic configuration for ieee 802.1
qbv tsn networks. In 2018 IEEE 24th International Symposium on On-
Line Testing And Robust System Design (IOLTS), pages 151–156. IEEE,
2018.

[9] Silviu S Craciunas, Ramon Serna Oliver, Martin Chmelík, and Wilfried
Steiner. Scheduling real-time communication in ieee 802.1 qbv time sen-

Bibliography 103

sitive networks. In Proceedings of the 24th International Conference on
Real-Time Networks and Systems, pages 183–192, 2016.

[10] Voica Gavriluţ and Paul Pop. Scheduling in time sensitive networks
(tsn) for mixed-criticality industrial applications. In 14th IEEE Inter-
national Workshop on Factory Communication Systems (WFCS), pages
1–4. IEEE, 2018.

[11] Voica Gavriluţ, Luxi Zhao, Michael L Raagaard, and Paul Pop. Avb-
aware routing and scheduling of time-triggered traffic for tsn. IEEE Ac-
cess, 6:75229–75243, 2018.

[12] S. Kehrer, O. Kleineberg, and D. Heffernan. A comparison of fault-
tolerance concepts for IEEE 802.1 Time Sensitive Networks (TSN). In
IEEE Emerging Technology and Factory Automation, 2014.

[13] Leonard Kleinrock. Queueing systems, volume i: Theory, vol. i, 1975.

[14] Lucia Lo Bello, Mohammad Ashjaei, Gaetano Patti, and Moris Behnam.
Schedulability analysis of time-sensitive networks with scheduled traffic
and preemption support. Journal of Parallel and Distributed Computing,,
144„ 2020.

[15] Daniel Bujosa Mateu, Mohammad Ashjaei, Alessandro V Papadopoulos,
Julian Proenza, and Thomas Nolte. Letra: Mapping legacy ethernet-
based traffic into tsn traffic classes. In 2021 26th IEEE International
Conference on Emerging Technologies and Factory Automation (ETFA),
pages 1–8. IEEE, 2021.

[16] Maryam Pahlevan and Roman Obermaisser. Genetic algorithm for
scheduling time-triggered traffic in time-sensitive networks. In 2018
IEEE 23rd international conference on emerging technologies and fac-
tory automation (ETFA), volume 1, pages 337–344. IEEE, 2018.

[17] Maryam Pahlevan, Nadra Tabassam, and Roman Obermaisser. Heuristic
list scheduler for time triggered traffic in time sensitive networks. ACM
Sigbed Review, 16(1):15–20, 2019.

[18] Rina Panigrahy, Kunal Talwar, Lincoln Uyeda, and Udi Wieder. Heuris-
tics for vector bin packing. research. microsoft. com, 2011.

[19] Michael Lander Raagaard and Paul Pop. Optimization algorithms for
the scheduling of ieee 802.1 time-sensitive networking (tsn). Tech. Univ.
Denmark, Lyngby, Denmark, Tech. Rep, 2017.

[20] Mauricio GC Resende and Celso C Ribeiro. Grasp: Greedy randomized
adaptive search procedures. In Search methodologies, pages 287–312.
Springer, 2014.

[21] Niklas Reusch, Silviu S Craciunas, and Paul Pop. Dependability-aware
routing and scheduling for time-sensitive networking. arXiv preprint
arXiv:2109.05883, 2021.

[22] R. Salazar, T. Godfrey, L. Winkel, N. Finn, C. Powell, B. Rolfe, and
M. Seewald. Utility Applications of Time Sensitive Networking White
Paper (D3). Technical report, IEEE, 2018.

[23] S. Samii and H. Zinner. Level 5 by Layer 2: Time-Sensitive Networking
for Autonomous Vehicles. IEEE Communications Standards Magazine,
2(2):62–68, 2018.

[24] Eike Schweissguth, Dirk Timmermann, Helge Parzyjegla, Peter Danielis,
and Gero Mühl. Ilp-based routing and scheduling of multicast realtime
traffic in time-sensitive networks. In 2020 IEEE 26th International Con-
ference on Embedded and Real-Time Computing Systems and Applica-
tions (RTCSA), pages 1–11. IEEE, 2020.

[25] Ammad Ali Syed, Serkan Ayaz, Tim Leinmüller, and Madhu Chan-
dra. Dynamic scheduling and routing for tsn based in-vehicle networks.
In 2021 IEEE International Conference on Communications Workshops
(ICC Workshops), pages 1–6. IEEE, 2021.

[26] Marek Vlk, Kateřina Brejchová, Zdeněk Hanzálek, and Siyu Tang.
Large-scale periodic scheduling in time-sensitive networks. Computers
& Operations Research, 137:105512, 2022.

[27] M. Wollschlaeger, T. Sauter, and J. Jasperneite. The Future of Indus-
trial Communication: Automation Networks in the Era of the Inter-
net of Things and Industry 4.0. IEEE Industrial Electronics Magazine,
11(1):17–27, 2017.

[28] Jin Y Yen. Finding the k shortest loopless paths in a network. manage-
ment Science, 17(11):712–716, 1971.

[29] Luxi Zhao, Paul Pop, Zhong Zheng, and Qiao Li. Timing analysis of
avb traffic in tsn networks using network calculus. In IEEE Real-Time
and Embedded Technology and Applications Symposium (RTAS), pages
25–36, 2018.

Chapter 10

Paper C
Clock Synchronization in
Integrated TSN-EtherCAT
Networks.

Daniel Bujosa, Daniel Hallmans, Mohammad Ashjaei, Alessandro V.
Papadopoulos, Julián Proenza, Thomas Nolte.
In the 25th IEEE International Conference on Emerging Technologies and
Factory Automation (ETFA 2020).

105

Abstract

Moving towards new technologies, such as Time Sensitive Networking
(TSN), in industries should be gradual with a proper integration process in-
stead of replacing the existing ones to make it beneficial in terms of cost and
performance. Within this context, this paper identifies the challenges of in-
tegrating a legacy EtherCAT network, as a commonly used technology in the
automation domain, into a TSN network. We show that clock synchronization
plays an essential role when it comes to EtherCAT-TSN network integration
with important requirements. We propose a clock synchronization mechanism
based on the TSN standards to obtain a precise synchronization among Ether-
CAT nodes, resulting to an efficient data transmission. Based on a formal veri-
fication framework using UPPAAL tool we show that the integrated EtherCAT-
TSN network with the proposed clock synchronization mechanism achieves
at least 3 times higher synchronization precision compared to not using any
synchronization.

Paper C 107

10.1 Introduction

Technology is in continuous development and when new technical know-hows
become available for use, this often opens up possibilities to design a new types
of solutions. For manufacturers of systems or products, the availability of new
technical solution provides a possibility to get an advantage over competitors.
However, the opportunities of new solutions always come with the challenge
of their integration with existing legacy solutions and implementation. Such
challenges are common in large industrial systems and solutions where every-
thing is not (or cannot be) changed at once, when a new technology is going to
be utilized.

One of the new technologies, which offers a set of efficacious features
for industrial systems, is Time-Sensitive Networking (TSN). It was introduced
by the IEEE TSN task group1 in 2012, presenting several interesting features
such as offline scheduled traffic and support for frame preemption. TSN seems
promising to enable new solutions within the context of modern industrial sys-
tems and solutions. TSN allows for multiple flows of time critical traffic, sub-
ject to requirements on bounded latency, to share the same network as generic
traffic. Such capabilities are hinting towards the possibility to integrate multi-
ple legacy networks onto one TSN network. However, it is common that legacy
technology currently in use does not support all TSN requirements. Moreover,
for companies it is cost-effective and beneficial if they gradually move towards
new technologies instead of fully replacing the existing ones. Therefore, solu-
tions towards integrating a legacy systems onto a TSN network in a way that
the services are not disturbed are essential.

One of the vastly used industrial communication technologies in industrial
systems, in particular in the automation domain, is EtherCAT (Ethernet for
Control Automation Technology)2 [9]. EtherCAT was introduced in the mar-
ket in 2003, and its main advantage is the short latency that is imposed to the
message frames due to the on-the-fly read and write procedure. In short, a train
of frames, known as a telegram, is initiated by a master node and circulated in
the network. The telegram passes through all slave nodes and, while passing
through a slave node, the data can be read, written and updated with a latency
that is only posed by the hardware propagation delay. Another feature given
by the EtherCAT technology is that it provides clock synchronization among
the slave nodes and the master node. Such clock synchronization is commonly
used in the system where EtherCAT is deployed and hence must also be sup-
ported in the case of adopting a potential replacing technology such as TSN.

1https://1.ieee802.org/tsn/
2https://www.ethercat.org/en/technology.html

https://1.ieee802.org/tsn/
https://www.ethercat.org/en/technology.html

108 10.2. Basics of Clock Synchronization Protocols

Contributions. In order to allow industry to adopt TSN solutions, a proper
integration methodology should be designed. In this paper, we consider Ether-
CAT as a legacy network in an automation industry. Among different require-
ments in integrating EtherCAT devices onto a TSN network, an essential com-
ponent is the clock synchronization to maintain proper behavior of the com-
munication among the EtherCAT devices. Thus, the main target of this paper
is the clock synchronization requirements for such integration. The main con-
tributions of this paper are as follows:

• We formulate the problem of having inconsistent clock synchronization
mechanisms in an integrated EtherCAT-TSN network and we describe
the effects of this inconsistency in the network behavior.

• We propose a solution to integrate the clock synchronization mecha-
nisms described by the two network technologies, i.e., EtherCAT and
TSN, to obtain a precise synchronization.

• We model three different architectures including: (i) a solely Ether-
CAT network, (ii) an integrated EtherCAT-TSN network without clock
synchronization mechanism, and (iii) an integrated EtherCAT-TSN net-
work with our proposed clock synchronization solution. The modeling
is based on a formal verification framework, using UPPAAL3, to show
the performance of the network with respect to the clock precision.

Outline. The paper is organized as follows. Section 10.2 describes the ba-
sics of clock synchronization in both TSN and EtherCAT. Section 10.3 presents
the related work. Section 10.4 formulates the problem, while Section 10.5 pro-
poses our solution. Then, utilizing a formal modeling framework, Section 10.6
evaluates the solution. Finally, Section 10.7 concludes the paper and gives fu-
ture directions.

10.2 Basics of Clock Synchronization Protocols
This section presents the background information on clock synchronization
for both technologies highlighted in this paper, i.e., EtherCAT and TSN. The
information gives basis for the proposed solution in this paper.

10.2.1 EtherCAT Clock Synchronization
According to its specification, EtherCAT presents three different synchroniza-
tion modes: (a) free run, (b) synchronous with Synchronous Message (SM)
event, and (c) synchronous with Distributed Clock (DC) SYNC event.

3http://www.uppaal.org/

http://www.uppaal.org/

Paper C 109

10.2.1.1 Free run mode

In free run mode there is no synchronization between nodes in the network. In
this mode, all clocks in the nodes run independently, hence there are no timing-
related properties provided. The other two modes provide different levels of
synchronization, which will be described in more details below.

10.2.1.2 Synchronous with SM event mode

In this mode the slave nodes are synchronized with the master node by means
of SMs that are sent by the master node. The SM messages are used for two
different purposes. The first purpose is to exchange data among the slave nodes
and the master node, whereas the second purpose is to use the same messages
for synchronization among the slave nodes and the master node.

The main drawback of this mode is its low precision which is in the level
of a few microseconds. The low precision in this mode is the consequence of
the high level of jitter for the SM messages. The main reason is that typically
the EtherCAT master nodes are implemented in standard PCs with network
interfaces that do not support low-jitter communication.

10.2.1.3 Synchronous with DC SYNC event mode

In this mode a dedicated message is used for clock synchronization. The main
advantage of this mode is its high precision compared to the SM event mode,
which is in the level of nanoseconds whereas the SM event mode provides
a level of a few microseconds. To achieve this precision, the master node
executes the Delay Measurement (DM) mechanism, shown in Fig. 10.1.

The master node measures the delays between the reference clock (notated
by RC in the figure) and the slave clocks (notated by SC in the figure). The
reference clock is typically the clock of the first slave node in the EtherCAT
strand, while the slave clocks are the clocks in the other slave nodes of the
EtherCAT strand. This mechanism initiated by the master node sends a special
message, known as the DM Transmission (DM_T). When the slave nodes
supporting the DC SYNC receive this message, they record the time (T1 or T2i
depending on whether the slave node has the reference clock or not). Once
the message arrives to the last slave node, the message has to return to the
master node. At this moment it is renamed to DM Response (DM_R). When
DM_R message is received by a slave node, the slave node records the time in
which the message was received (T4 or T3i depending on whether the slave
node is the reference clock or not). With these values, the local delay of the
RC (LDRC) and the local delay of the SC (LDSC), the delay between the

110 10.2. Basics of Clock Synchronization Protocols

Figure 10.1: Delay Measurement Mechanism.

reference clock and the slave clocks is calculated by the EtherCAT master
node by: T4−T1−T3i+T2i−LDRC−LDSCi

2 .
The master node transmits this value to the slave nodes by means of another

dedicated message, known as DM Calculated (DM_C). At this point the
master node periodically sends a SM message. The period of this transmission
depends on the precision that is desired. This message records the local time
of the reference clock by its reception. Then, when the message arrives at the
other slave nodes, they add their delays to the local time of the reference clock
saved in the message, and they update their internal clock. Finally, note that
the EtherCAT master node can be synchronized with slave nodes by becoming
a DC slave.

10.2.2 TSN Clock Synchronization

The mechanism providing the TSN clock synchronization (gPTP) is described
in the IEEE 802.1AS standard and consists of three main parts including the
Best Master Clock Algorithm (BMCA), the Propagation Delay Measurement
(PDM) mechanism and the Transport of Time-synchronization Information
(TTI). BMCA is used to determine the grandmaster clock, which is the refer-
ence clock in the TSN network, as well as the hierarchy between the different
time-aware systems. Time-aware systems are the nodes in a TSN network that

Paper C 111

supports clock synchronization and scheduled traffic transmission. The PDM
mechanism is used once the hierarchy is established in order to measure the
propagation delay between systems. The TTI mechanism is used to forward
the grandmaster time to synchronize the others time-aware systems. All three
mechanisms are presented in more detail below.

Figure 10.2: Example of TSN time-synchronization spanning tree.

10.2.2.1 BMCA

The BMCA constructs a time-synchronization spanning tree with the grand-
master as the root. One example of this can be seen in Fig. 10.2. In the figure,
we can note two remarks. First, each system can be either grandmaster time-
aware systems or slave time-aware systems. The second observation is that
the system ports can be Master ports (M), Slave ports (S), Passive ports (P)
or Disabled ports (D). To determine all these behaviors, each system sends
a special broadcast message called announce message periodically. The
announce message contains different parameters and in this paper, for
the sake of simplicity, we focus only on two of them: systemIdentity
and stepsRemoved. systemIdentity, specifies how good the clock of
the system sender of the message is, while stepsRemoved indicates how
far the receiver is from the transmitter. Specifically, stepsRemoved is in-
creased every time the announce message is forwarded. This means that
if we have a line topology with three systems, and the first system in the line
transmits its announce message, the message arrives to the second sys-
tem with a value in the parameter stepsRemoved equal to 0. However, this
system will increase stepsRemoved before forwarding it to the next system.
Thus, the last system is going to receive the announce message, sent by
the first system, with a value in the parameter stepsRemoved equal to 1.

112 10.2. Basics of Clock Synchronization Protocols

As it can be seen in Fig. 10.3, when a system does not have an assigned
role, it can become a slave time-aware system if it receives an announce
message from a better clock, which means a better systemIdentity pa-
rameter, or it can become a grandmaster if, after a defined period of time (de-
fined by the periodicity of which the announce message is transmitted), it
does not receive any announce message from a better clock. If a system is
a grandmaster or a slave time-aware system, then something similar can hap-
pen. If a granmaster time-aware system receives an announce message
from a better clock, it becomes a slave time-aware system. In case a slave does
not receive an announce message from a better clock after a defined pe-
riod of time, it becomes a grandmaster time-aware system. On the other hand,
depending on the proximity to the grandmaster, ports in a system have differ-
ent roles and this proximity can be determined thanks to the stepsRemoved
parameter. Specifically, the port closest to the grandmaster clock becomes the
slave port, and only one port in the system can present this role. In a link, the
port closest to the grandmaster clock becomes a master port. Finally, if a port
is disabled, it becomes a disabled port and if it is none of the master, slave or
disabled ports, then it becomes a passive port.

Figure 10.3: Time-aware system BMCA evolution.

10.2.2.2 PDM

Once the spanning tree with the grandmaster as the root is created, the slave
time-aware systems can carry out PDM to measure the propagation delay. This
process is shown in Fig. 10.4. PDM starts with one system sending a delay re-
quest Pdelay_request through its slave port to another system, which can
be the grandmaster or another slave time-aware system, and records the time
when the message was transmitted (T1). The responder receives the message
through its master port, records the time when the message was received (T2),

Paper C 113

sends T2 back to the initiator and records the time when the message was trans-
mitted. The initiator receives T2 and records the time when the message was
received (T4). Finally, the responder sends T3 to the initiator, so it calculates
the delay by Delay = (T4−T1)−(T3−T2)

2 .

Figure 10.4: PDM diagram.

10.2.2.3 TTI

Once the spanning tree with the grandmaster as the root is created and the
slave time-aware systems have measured the delays, TTI is executed. TTI
consists of systems sending their local time through their corresponding master
ports to the systems connected to them. The systems that receive the message
through their slave port adds the delay measured and update their local time
accordingly.

10.3 Related Work

The TSN task group4 was formed in 2012 with the aim of extending industrial
network standards with support of time sensitive traffic, e.g. time-triggered
transmission on top of the other traffic classes, scheduled traffic, frame pre-
emption support and clock synchronization. There is a lot of research ongoing
around TSN features, e.g. studying the effects of time-aware shapers [2], fault
tolerance issues [18], scheduling policies [10] and load balancing in TSN net-
works [3]. The EtherCAT foundation has been part of TSN standardization and
working on EtherCAT TSN Communication Profile, ETG.1700 S(D) V0.9.15.
One of the main challenges is to add stream adaptation logic in the network to

4https://1.ieee802.org/tsn/
5https://www.ethercat.org

https://1.ieee802.org/tsn/
https://www.ethercat.org

114 10.4. Problem Description

be able to translate EtherCAT frames to TSN frames and vice versa. The pro-
posed solution by the EtherCAT foundation describes a segment identifier to
be added in the destination MAC addresses as the information is not changed
during the transmission of the frames. Then, in each stream adapter the TSN
VLAN tag will be added or removed. A special device is developed, e.g.,
EK1000 by Bechoff AG, to serve the stream adaptation.

One of the key features with EtherCAT is the clock synchronization be-
tween master and slave nodes or only among slave nodes. Most of the works
in the literature are focused on studying and improving the performance of the
EtherCAT networks. For example, the work in [6] evaluates the EtherCAT syn-
chronization mechanism based on experiments, while the work in [19] shows
the effects of using different synchronization schemes on the end-to-end traffic
latency. The effects of using distributed clocks are also studied in [13, 20, 5].
Several works addressed the problem of improving clock synchronization in
EtherCAT devices from different point of view. In this context, the work pre-
sented in [15] actively measures the synchronization error and compensates
the error with a proposed mechanism. Moreover, the work presented in [16]
proposed to use a central oscillator to coordinate the clocks among the nodes.
The work in [12] proposed a method to integrate the clock synchronization
with control loops to improve the precision of the synchronization. Most of
the above mentioned works evaluated their proposals based on simulation ex-
periments.

A major problem in the proposed synchronization methods and improve-
ments is the fact that in most of the cases the EterCAT master node is imple-
mented on a general-purpose hardware with a real-time operating system, e.g.,
RT-Linux, hence no precise clock can be obtained. In these cases, a jitter can
be created up to 18µs dependening on the hardware and the master node con-
figurations, according to [11, 7, 8, 17]. By improving the master node, e.g.,
by replacing it with a special-purpose hardware, the precision of 20ns can be
achieved [14].

According to our survey, and to the best of our knowledge, there is no
work addressing the challenges of integrating EtherCAT devices onto a TSN
network, in particular from the clock synchronization perspective, except the
frame adaptation identified by EtherCAT TSN Communication profile.

10.4 Problem Description

Considering the network technologies in the types of systems that we target, if
a legacy installation that is built around the EtherCAT technology is updated
with a TSN network, or if a new system is designed that combines both TSN

Paper C 115

and EtherCAT networks, two key challenges must be considered, including
stream adaption and clock synchronization. The former challenge is necessary
to be addressed, e.g. by adding EK1000 hardware6, or by providing adaption
directly in the TSN bridge port connected to the EtherCAT devices, such that
the TSN network will be able to handle the EtherCAT telegrams, as pointed
out in Section 10.3. The latter challenge concerning clock synchronization
requires solutions to handle new sources of jitters that are introduced by the
Time-Division Multiplexed (TDM) behavior of the TSN network.

Fig. 10.5 shows three scenarios of connecting a master node (M) to multi-
ple slave nodes (Ss) in an EtherCAT network. In Fig. 10.5a, the master node is
directly connected to the slave nodes, while in Figs. 10.5b and 10.5c the Ether-
CAT nodes are connected through a TSN network. The difference between the
two latter scenarios is if clock synchronization is present (Fig. 10.5c) or not
(Fig. 10.5b). Additionally, in each scenario we can see how the bandwidth
is managed and utilized in the network. In case of no TSN network inte-
grated into the EtherCAT network, the master node transmits EtherCAT frames
through the network, utilizing any available bandwidth in the network without
any interruption, consequently resulting in very low jitter for the frames. The
low amount of jitter in the EtherCAT network is because of the hardware in-
terface of the EtherCAT master node. However, when the TSN network is
integrated into the EtherCAT network the frame transmissions are coordinated
by time slots that are configured by the TSN network. Note that a TSN net-
work defines gate mechanisms resulting to time slots reservation for frame
transmission. Therefore, a generated frame by a master node within the Ether-
CAT network may experience variation of delays, known as jitters, as shown
in Fig. 10.5b.

The jitters that are added to a closed control loop can, in the worst case,
result in a control system that is unstable and thereby unable to provide the de-
signed efficiency. More details in this regard will be described in Section 10.5.
However, even if the introduced jitter caused by lack of clock synchronization
can be ultimately tolerated by the control loops in a particular application, the
control loop stability analysis (conducted at design time) must be re-assessed,
which can result in a situation where the entire system must be verified from
scratch, causing a significant investment cost. This cost is likely to be higher
in the case of large legacy systems.

Due to the above-mentioned reasons, it is essential to synchronize the
EtherCAT master node with the TSN network and the IO nodes, i.e., the Ether-
CAT slave nodes, as depicted in Fig. 10.5c. The jitter that is caused by inte-

6https://www.beckhoff.com

https://www.beckhoff.com

116 10.4. Problem Description

(a) EtherCAT network behavior without TSN network.

(b) EtherCAT network behavior with TSN network but without clock synchronization between
them.

(c) EtherCAT network behavior with TSN network and clock synchronization between them.

Figure 10.5: EtherCAT network behaviors depending on the presence of a TSN net-
work, possibly with clock synchronization.

grating the TSN network can be mitigated by applying a clock synchroniza-
tion where the frame transmission can be scheduled and aligned by its corre-
sponding time slot in the TSN network. It is beneficial to use the TSN clock
synchronization source because all the different EtherCAT IO slave nodes are
synchronized to the same time source, i.e., the TSN grandmaster clock, with-

Paper C 117

out introducing any cost of an additional hardware, e.g., cost of EL6688 time
synchronization modules7, apart from the network interface which was already
necessary to benefit from the characteristics of TSN.

Note that the network configuration in which the TSN network resides be-
tween the master node and the slave nodes of the EtherCAT network is not
the only possible architecture. In fact, our proposed solution for clock syn-
chronization allows that the TSN network be connected at any point of the
EtherCAT network. However, the configuration that is presented in this sec-
tion offers many benefits. The main motivation for this configuration is that
many different communication protocols might be used in industry and mul-
tiple EtherCAT master nodes might be used. Therefore, this configuration al-
lows us to connect the master nodes to all devices regardless of the communi-
cation protocol via a direct link to the TSN network. Thanks to this configu-
ration we can decrease the number of connectors and cables, hence reducing
complexity, weight and cost and at the same time increasing the integrability
between network components.

10.5 Proposed Solution

The objective of this solution is to integrate the clock synchronization proto-
cols described above with a minimum number of modifications in the devices
currently used. Thanks to this integration, the EtherCAT transmissions can be
synchronized with the TSN network, ensuring the correct operation of the for-
mer. This allows companies to start adopting TSN solutions while maintaining
their legacy systems, and, at the same time, providing benefits of the combined
network.

10.5.1 Design

The proposed solution is based on an EtherCAT master node as a reference
clock of the DC synchronization from the EtherCAT point of view and the
same master node as a time-aware system (grandmaster or slave time-aware
system depending on the BMCA mechanism described in Section 10.2) from
the TSN point of view. This can be achieved by using an improved network
interface in the master node, that can handle gPTP together with a hardware
clock to minimize the jitter in the transmission. Thanks to this approach, we
can synchronize the EtherCAT master node with the TSN network and the
EtherCAT slave nodes with the EtherCAT master node achieving high pre-
cision between each of the elements of the combined network. Specifically,

7https://www.beckhoff.com/english.asp?ethercat/el6688.

https://www.beckhoff.com/english.asp?ethercat/el6688.

118 10.5. Proposed Solution

Figure 10.6: Clock synchronization protocols and hierarchy in an integrated TSN-
EtherCAT network.

as both TSN and EtherCAT have similar precision, in the order of hundred
nanoseconds. This precision will be maintained throughout the whole system.
Fig. 10.6 shows the explained configuration. The text on the arrows indicates
the clock synchronization protocol, while the arrowheads indicate who is the
master and who is the slave in that synchronization protocol (the arrowhead
points to the slaves from the master). The gPTP arrow is bidirectional because
the EtherCAT master node behaves as a TSN time-aware system. The Ether-
CAT master node runs all mechanisms described in Section 10.2.2, hence it can
behave as a grandmaster or slave clock. On the other hand, the DC Sync’s
arrow is unidirectional as, from the point of view of the EtherCAT network,
the EtherCAT master node always behaves as a reference clock.

10.5.2 Implementation

To achieve a proper implementation of the integrated solution some aspects
should be taken into account. Firstly, all EtherCAT synchronization streams
should be scheduled in advance, i.e., TSN should know properties such as
period, offset, and payload of the DM_T, DM_C, DM_R and SM messages,
and should have a dedicated TT queue for them. This implies to configure
TSN queues and the Gate Control Lists (GCLs) offline [1]. The schedule and
the dedicated TT queue is a key piece to prevent the jitter of the EtherCAT
synchronization messages. However, the offline scheduling of synchronization
streams is not sufficient because even if the TSN network is aware of when
these specific messages are going to be transmitted, if the local time at the
TSN network and the EtherCAT master node is not the same then the messages
can still suffer from jitter. This can cause several erroneous behaviors in the
EtherCAT network, which the details will be discussed in Section 10.6.3.

Secondly, as anticipated above, the EtherCAT master node should be syn-
chronized with the TSN network before using the EtherCAT synchronization
mechanism to synchronize with the EtherCAT slave nodes. If this order is
not respected the EtherCAT delays can be wrongly calculated. As pointed out
in Section 10.2.1, the DM mechanism relies on the symmetric propagation of

Paper C 119

messages. If the EtherCAT master node is not synchronized with the TSN net-
work before executing the DM mechanism, DM_T can be blocked by the TSN
network (as we show in Section 10.6). However, DM_R will not be blocked
because, as the transmission through the slave nodes is deterministic, once
the DM_T goes through the TSN network, when DM_R comes back the TSN
network will not block the message because it will be expecting it, regard-
less of the potential blocking that DM_T may have suffered. If DM_T can be
blocked, and DM_R cannot, then the propagation delay is not symmetric and,
as pointed out, the delay is wrongly calculated. Thanks to this minor change
(the improved network interface in the EtherCAT master to behave both as a
TSN time-aware system and as an EtherCAT reference clock), the EtherCAT
network operates as if the TSN network was not there. From the clock syn-
chronization mechanism’s point of view, all delays can be calculated correctly
and the SM messages will not be blocked. Hence, the clock synchronization
between the EtherCAT master node and the slave nodes will be correct. Addi-
tionally, as an SM message can be used for data transmission these messages
will also be transmitted as expected. Moreover, the clock synchronization be-
tween all devices in the combined network ensures a correct transmission of
other types of messages used in EtherCAT as the TSN network can be sched-
uled to guarantee it. However, this scheduling is beyond the scope of this
paper.

10.6 Evaluation

In this section, we assess the correctness of the proposed clock synchroniza-
tion. As a consequence, we can ensure a proper SM data transmission resulting
to a correct EtherCAT data transmission given a proper TSN scheduling.

10.6.1 UPPAAL concepts

To formally verify the correctness of the proposed solution, and to compare
the behavior of a system that combines TSN and EtherCAT with and without
the solution proposed in Section 10.5, we used the UPPAAL model checker.
UPPAAL is a tool for modeling and verification of real-time systems.

Systems in UPPAAL are modeled as networks of timed automata (finite
state machines extended with a special kind of temporal variables called clocks
that progress at the same pace) [4], extended with data types like integers,
arrays, etc. The automata that conform to the system are instantiations of one
or more templates, and those are constructed by means of locations, edges,
variables, and clocks. In addition, it is possible to coordinate the operation

120 10.6. Evaluation

of different automata using channels. Channels are special variables that can
force two or more automata to take a specific edge at the same time. UPPAAL

provides a formal query language that can be used to specify the properties that
we want to check in the model. These queries have two parts: state formula
and path formula. State formulae are expressions that can be true or false
depending on the state of the system, understanding as state of the system the
active locations of the automata plus the value of all variables and clocks at
certain moment. UPPAAL does an exhaustive search of all possible states and
the path formula indicates, to the query, which has to be the distribution of the
states at which the state formula is true in the whole state space. For example,
one path formula may require the state formula to be true for the whole state
space to satisfy the query.

10.6.2 UPPAAL models

We have created 3 different UPPAAL models 8. All of them modeled an Ether-
CAT network in which the reference clock is located in the EtherCAT mas-
ter node, as described in the proposed solution in Section 10.5. In addition,
all three EtherCAT networks consist of one EtherCAT master and two slave
nodes. In the following, we present a brief overview of the models and queries
that are developed for evaluation purposes.

The first model M1 (Fig. 10.7a) consists of an EtherCAT network with one
master and two slave nodes and no TSN network. All devices (master and
slave nodes) include one oscillator (OX in the figure) and one local clock (CX
in the figure), which operates as a simple counter only. At the beginning of
the execution of the model each oscillator non-deterministically (to allow all
possible combinations of choices to be checked in the state space) decides its
period, which can vary between 9 and 10 time units. After that, each oscillator
increases the local time of its corresponding local clock in 10 units every 9 or
10 time units, depending on the previous choice. This asymmetric evolution
of local clocks emulates the drift between the local clocks. Additionally, each
device has a core, which, relying on the local time provided by the local clocks,
carries out the main actions. In this figure the core templates are MX, SX and
LSX, which carry out the actions corresponding to the EtherCAT master, slave
and last slave nodes respectively. We had to differentiate between slave and
last slave nodes because intermediate slave nodes in the network chain just
need to receive and forward the messages, the last slave node is responsible of
receiving the message and forwarding the response.

8The UPPAAL models are publicly available at https://github.com/DanielBuj
osa/ETFA2020_TSN_EtherCAT_ClockSync.git.

https://github.com/DanielBujosa/ETFA2020_TSN_EtherCAT_ClockSync.git
https://github.com/DanielBujosa/ETFA2020_TSN_EtherCAT_ClockSync.git

Paper C 121

(a) UPPAAL M1 model.

(b) UPPAAL M2 model.

(c) UPPAAL M3 model.

Figure 10.7: TSN-EtherCAT clock synchronization integration UPPAAL models.

The second model M2 (Fig. 10.7b) consists of the same EtherCAT network
as in the M1 model but adding a TSN network between the EtherCAT master
and the two slave nodes. The TSN network also presents an oscillator (O0)
and a clock (C0) but its core template, represented as N0 in the figure, carries
out the main actions corresponding to the TSN network. In this model, these
actions consist of receiving the EtherCAT messages and forwarding them at its
corresponding time slot, according to local time provided by the clock. In this
case, the clock synchronization mechanism of the TSN network (gPTP) is not
integrated with the clock synchronization protocol of the EtherCAT network.

The third model M3 (Fig. 10.7c) consists of the same EtherCAT and TSN
networks as the M2 model but including the mechanism used to synchronize
the EtherCAT master node with the TSN network, as explained in Section 10.5.
This mechanism is implemented in two new entities called MASX and NASX
in the EtherCAT master node and the TSN network respectively. These entities
provide a gPTP clock synchronization between both devices.

122 10.6. Evaluation

10.6.3 UPPAAL queries

In this paper we have analyzed 3 behaviors that are key to ensure good clock
synchronization in a network that combines EtherCAT and TSN sub-networks.

The first behavior investigated was whether the messages used in the clock
synchronization mechanisms described in Section 10.2.1 can be blocked by
the TSN network. It is very important to check this behavior for two reasons.
From the point of view of the delay measurement mechanism, it is important
for the transmission delay to be always almost the same, both for the DM_T
message and for the DM_R message. If the transmission delay changes, then
the calculation of delays in EtherCAT might be incorrect. In this way, as the
DM_R message cannot be blocked since the TSN network is scheduled to be
in the time slot corresponding to the response once the DM_T message has
been sent, as explained in Section 10.5, if the DM_T message can be blocked,
there will be a difference in the transmission delay and, therefore, the delay
measurement will not be carried out correctly. On the other hand, from the
point of view of the clock synchronization mechanism, if the SM message can
be blocked, and also the delay is wrongly measured, the clock synchronization
precision drops greatly.

The second and third behaviors we checked were the delays calculated by
means of the delay measurement mechanism, described in Section 10.2.1, and
the maximum time difference between the clocks of the different devices in
the UPPAAL model (CX) that conform the network, respectively. In both cases
we compared the results obtained by the M2 and M3 models with the ones
obtained by the M1 model. Thus, we could measure the impact of combining
a TSN and EtherCAT network with and without the solution proposed in this
paper.

10.6.4 Results

Here we present the results obtained once the above tests have been carried
out.

By checking if the messages used in the clock synchronization mechanism
described in Section 10.2.1 can be blocked, we determined that all synchro-
nization messages transmitted by the master node in the M2 model may be
blocked by the TSN network while in the M3 model none of the synchroniza-
tion messages can be blocked. These potential blocks, as explained before, can
cause problems both measuring the delays between the master node and each
of the slave nodes, and may also interfere in the correct clock synchronization
of them. To verify this, we obtained the delays measured in the M2 and M3
models and compared them with those obtained in the M1 model. Moreover,

Paper C 123

we did the same for the difference between the clocks, i.e., we measured the
maximum difference between the different clocks of the system in the M2 and
M3 models and we compared them with those obtained by the M1 model.

Table 10.1: Delay measurement comparison.

Compared models Delay S1 Delay S2

No TSN (M1) vs No Sync TSN (M2) 100% 67%

No TSN (M1) vs Sync TSN (M3) 25% 0%

Improvement M3 vs M2 x4 x67⁄0

In both Table 10.1 and Table 10.2, the first row shows the difference be-
tween values measured in the M2 model and the M1 model as a percentage,
while the second row does the same with respect to the M3 model. This value
is calculated by dividing the absolute value of the subtraction of the results
obtained in the corresponding models by the result obtained by the M1 model.
On the other hand, the third row show the improvement that the M3 model
supposes with respect to the M2 model. This value is calculated by dividing
the percentage obtained in the first row by the one obtained in the second row.

Table 10.2: Clock difference comparison.

Compared models M-S1
clock diff

M-S2
clock diff

S1-S2
clock diff

No TSN (M1) vs No Sync TSN (M2) 200% 217% 171%

No TSN (M1) vs Sync TSN (M3) 60% 33% 29%

Improvement M3 vs M2 x3.3 x6.5 x6

As it can be seen in the third row of Table 10.1, the M3 model, which
implements the proposed solution in this paper, is at least 4 times more precise
than the M2 model carrying out the delay measurement. Moreover, as it can
be seen in the third row of Table 10.2, the M3 model present a precision in the
clock synchronization between EtherCAT clocks that is at least 3 times better
than what is achieved by the M2 model.

In the second row of the tables we can see that there is a difference be-
tween the M1 model and the M3 model. The maximum difference shown
in Table 10.1 is 25%, whereas in Table 10.2 it is 60%. However, these high
values are due to the abstractions applied to the model, which are described
in Section 10.6.2. As we had to increase the variation of the clocks to 10%
and reduce the periods by several orders of magnitude, all the variations were
greatly increased.

124 10.7. Conclusions

On the other hand, as an additional aspect, we tried to measure the maxi-
mum difference between the TSN grandmaster clock and the EtherCAT refer-
ence clock. However, we could not find a maximum value for the M2 model.
That is an expected result because, as there is no integration between the Ether-
CAT and the TSN clock synchronization mechanisms, both clocks can drift
indefinitely.

10.7 Conclusions

TSN has shown potentials to be a promising technology for future industrial
communication systems thanks to its features, such as support for mixed hard
and soft real-time communications, flexibility of the traffic requirements and
fault tolerance mechanisms. For this reason, industries have shown interest to
adopt the TSN technology. However, they can encounter various obstacles, one
of those being the legacy system support. Therefore, in this paper, we analyzed
the integrability of TSN with EtherCAT, a protocol widely used in the automa-
tion domain today. We proposed a clock synchronization mechanism based on
the TSN standards to achieve a high synchronization precision among Ether-
CAT nodes. We showed that the proposed clock synchronization mechanism
is an essential component for a correct behavior of the network with respect
to data transmission. We formally verified the correctness as well as the pre-
cision of the proposed mechanism based on a formal verification framework
using UPPAAL tool. According to our verification, the integrated EtherCAT-
TSN network with the proposed clock synchronization mechanism obtains at
least 3 times higher synchronization precision among the nodes compared to
not using any mechanism. The future work aims at performing an experimen-
tal implementation of the proposed solution in order to evaluate the solution’s
performance apart from the correct operation demonstrated in this paper.

Bibliography 125

Bibliography

[1] IEEE standard for local and metropolitan area network–bridges and
bridged networks. IEEE Std 802.1Q-2018 (Revision of IEEE Std 802.1Q-
2014), pages 1–1993, 2018.

[2] G. Alderisi, G. Patti, and L. Lo Bello. Introducing support for sched-
uled traffic over IEEE audio video bridging networks. In Conf. Emerging
Technologies Factory Automation, 2013.

[3] F. A. R. Arif and T. S. Atia. Load balancing routing in time-sensitive
networks. In Int. Scientific-Practical Conference Problems of Infocom-
munications Science and Technology, 2016.

[4] Gerd Behrmann, Alexandre David, and Kim G. Larsen. A Tutorial on
UPPAAL, pages 200–236. Springer Berlin Heidelberg, Berlin, Heidel-
berg, 2004.

[5] G. Cena, I. C. Bertolotti, S. Scanzio, A. Valenzano, and C. Zunino. Evalu-
ation of EtherCAT distributed clock performance. IEEE Trans. Industrial
Informatics, 8(1):20–29, 2012.

[6] G. Cena, S. Scanzio, A. Valenzano, and C. Zunino. Performance evalu-
ation of the EtherCAT distributed clock algorithm. In IEEE Int. Sympo-
sium on Industrial Electronics, pages 3398–3403, 2010.

[7] M. Cereia, I. C. Bertolotti, and S. Scanzio. Performance of a real-
time EtherCAT master under Linux. IEEE Trans. Industrial Informatics,
7(4):679–687, 2011.

[8] R. Delgado and B. W. Choi. On the in-controller performance of an open
source EtherCAT master using open platforms. In Int. Conf. Ubiquitous
Robots and Ambient Intelligence (URAI), pages 744–748, 2017.

[9] D. Jansen and H. Buttner. Real-time ethernet the EtherCAT solution.
Computing Control Engineering Journal, 15(1):16–21, 2004.

[10] S. Kehrer, O. Kleineberg, and D. Heffernan. A comparison of fault-
tolerance concepts for IEEE 802.1 Time Sensitive Networks (TSN). In
IEEE Emerging Technology and Factory Automation, 2014.

[11] B. Li, H. Lin, S. Sun, and L. Zheng. A synchronization method for local
applications of EtherCAT master-slave in Open CNC system. In IEEE
Int. Conf. Information and Automation (ICIA), pages 527–533, 2018.

[12] J. Liu, L. Yang, D. Xu, and X. Wu. A high precision clock synchroniza-
tion algorithm for the EtherCAT. In IEEE Conf. Industrial Electronics
and Applications (ICIEA), pages 1369–1374, 2017.

[13] V. Q. Nguyen and J. W. Jeon. EtherCAT network latency analysis. In
Int. Conf. Computing, Communication and Automation (ICCCA), pages
432–436, 2016.

[14] D. Orfanus, R. Indergaard, G. Prytz, and T. Wien. EtherCAT-based
platform for distributed control in high-performance industrial applica-
tions. In IEEE Conf. Emerging Technologies Factory Automation (ETFA),
pages 1–8, 2013.

[15] S. Park, H. Kim, H. Kim, C. N. Cho, and J. Choi. Synchronization im-
provement of distributed clocks in EtherCAT networks. IEEE Communi-
cations Letters, 21(6):1277–1280, 2017.

[16] R. Reimann, W. Holzke, S. Menzel, and B. Orlik. Synchronisation of a
distributed measurement system. In Int. Exhibition and Conf. for Power
Electronics, Intelligent Motion, Renewable Energy and Energy Manage-
ment (PCIM), pages 1–8, 2019.

[17] I. Song, Y. Jeon, J. Kim, S. Seo, K. Kwon, J. Chun, and J. Jeon. Imple-
mentation and analysis of the embedded master for EtherCAT. In ICCAS
2010, pages 2418–2422, 2010.

[18] K. S. Umadevi and R. K. Sridharan. Multilevel ingress scheduling pol-
icy for time sensitive networks. In Int. Conf. Microelectronic Devices,
Circuits and Systems, 2017.

[19] Xuepei Wu and Lihua Xie. End-to-end delay evaluation of industrial
automation systems based on EtherCAT. In IEEE Conf. Local Computer
Networks (LCN), pages 70–77, 2017.

[20] H. Yi and J. Y. Choi. Performance analysis of Linux-based EtherCAT DC
synchronization. In IEEE Int. Conf. Advanced Intelligent Mechatronics
(AIM), pages 549–552, 2015.

Chapter 11

Paper D
Improved Clock
Synchronization in TSN
Networks with Legacy
End-Stations.

Daniel Bujosa, Mohammad Ashjaei, Alessandro V. Papadopoulos, Julián
Proenza, Thomas Nolte.
Technical report at Mälardalen University, Sweden, pending for submission to
a journal.

127

Abstract

In order to facilitate the adoption of Time Sensitive Networking (TSN) by the
industry, it is necessary to develop tools to integrate legacy systems with TSN.
In this paper, we propose a solution for the coexistence of different time do-
mains from different legacy systems with their corresponding synchronization
protocols in a single TSN network. To this end, we experimentally identified
the effects of replacing the communications subsystem of a legacy Ethernet-
based network with TSN in terms of synchronization. Based on the results, we
propose a solution called TALESS (TSN with Legacy End-Stations Synchro-
nization). TALESS is able to identify the drift between the TSN communica-
tions subsystem and the integrated legacy devices (end-stations) and modify
the TSN schedule to adapt to the different time domains to avoid the effects
of the lack of synchronization between them. We validate TALESS through
both simulations and experiments on a prototype. Thereby we demonstrate
that thanks to TALESS, legacy systems are able to synchronize through TSN
and even improve features such as their reception jitter or their integrability
with other legacy systems.

Paper D 129

11.1 Introduction

Since the creation of the IEEE Time Sensitive Networking (TSN) Task Group
(TG) in 2012, industry interest in TSN has not stopped growing. TSN seems to
be essential for the incipient Industry 4.0 [18] as well as of interest in various
areas such as automotive [13] and energy distribution [12]. The reason be-
hind this growing interest is that TSN establishes a set of standards to provide
deterministic zero-jitter and low-latency transmission, fault tolerance mecha-
nisms, advanced network management allowing dynamic reconfiguration, pre-
cise clock synchronization, and flexibility in traffic transmission. The latter
property is particularly relevant to the adoption of TSN in the industry. The
flexibility in the traffic transmission allows the transmission of different types
of traffic over the same physical links, which enables the migration of all kinds
of legacy traffic to TSN. This in turn facilitates the adoption of TSN by the
industry as many of the legacy devices and implemented solutions could be
kept, which would reduce adoption time and costs.

Most current networks are composed of different sub-networks each with
different communication protocols to meet their specific requirements. This
hinders communication between sub-networks and therefore their integrabil-
ity, as well as it increases the complexity of the overall network due to the
use of different technologies, cabling redundancy, etc. Thanks to the flexi-
bility of TSN traffic, it is possible to combine different types of traffic in the
same network, which facilitates the communication and integration of the sub-
networks. This integration can be done in different ways, such as through the
use of gateways. However, this would not allow sub-networks to take advan-
tage of other TSN features such as higher bandwidth or low jitter. Therefore,
we propose to directly replace the communications subsystem of the legacy
network, i.e. the set of devices exclusively responsible for communication ex-
cluding the end-stations, with TSN but in such a specific way that the legacy
end-stations can maintain their behavior and communication protocols (includ-
ing their legacy synchronization protocol) agnostic to the change. This im-
proves the integration of the different legacy systems as well as it allows them
to benefit from the enhancements of TSN. However, certain types of TSN traf-
fic, such as Time-Triggered (TT) traffic, require the path from the source to the
destination, including all switches in the network, to be synchronized since TT
traffic is transmitted according to a fixed time schedule. This requirement is
not fulfilled in many existing industrial networks where non-TSN nodes (end-
stations in TSN terminology) do not feature TSN synchronization mechanisms
and due to their hardware or software limitations may not even be able to sup-
port them. For the remainder of the paper, we will use the term legacy network

130 11.1. Introduction

for the original network, i.e. before replacing the communications subsystem
with TSN. On the other hand, the term legacy end-stations will be used in ref-
erence to the nodes of legacy networks that have been integrated by replacing
their communications subsystem with TSN; while the term legacy system will
refer to the set of end-stations that were originally part of the same legacy net-
work and are synchronized through the legacy synchronization protocol of the
legacy network, sharing a common time view.

The key piece to achieving the above-indicated integration of the legacy
end-stations with the new TSN communication subsystem is a novel mecha-
nism we propose in this paper. This mechanism is called TALESS (TSN with
Legacy End-Stations Synchronization) and it is devised to prevent the nega-
tive effects resulting from the lack of synchronization between the TSN com-
munications subsystem and the legacy systems integrated with it. TALESS
transparently improves network performance without requiring modifications
to legacy systems. Preventing any modifications in the legacy end-stations
makes TALESS a general solution that allows applying the proposed integra-
tion approach on any TSN network where several Ethernet-based legacy sys-
tems, with different communication protocols, communicate. We verify it, on
the one hand, using a model that simulates long executions (1 year) of a com-
munication network. This model simulates the behavior of the TSN network
with and without TALESS for different types of legacy end-station transmis-
sions. Finally, we implement TALESS in a network prototype by which we
experimentally verify both the solution and its simulation model. However, in
our experiments, we exaggerated certain clock parameters of the legacy sys-
tem to magnify the effects of the solution and thereby be able to demonstrate
its behavior in a reasonable run-time.

Contributions. Among different requirements in integrating legacy sys-
tems onto a TSN network, an essential component is clock synchronization to
maintain proper behavior of the communication among devices, especially if
these devices require TT traffic transmissions. Thus, the main target of this
paper is the development of a mechanism to avoid the adverse effects of care-
lessly putting together legacy systems with TSN in terms of clock synchro-
nization. The main contributions of this paper are as follows:

• We identify problems caused by the lack of synchronization through
experiments on a network prototype.

• We propose a mechanism, named TALESS, to remove the effects of lack
of synchronization when including legacy systems into a TSN network.

• We model TALESS to validate the effectiveness of the proposed solution
in a simulation environment with realistic network values.

Paper D 131

• Finally, we implement TALESS in a network prototype to experimen-
tally showcase its impact on utilizing legacy systems in a TSN network.
We also compare the results of the experiment with the simulation model
to validate both the solution and the simulation.

Outline. The paper is organized as follows. Section 11.2 presents the
related work. Section 11.3 provides the necessary background for the under-
standing of this paper. Section 11.4 presents the effects of including legacy
systems into a TSN network in terms of clock synchronization. Section 11.5
proposes TALESS. Section 11.6 presents the simulation model and experi-
mental setup used to validate TALESS, while Section 11.7 presents the results
obtained from both the simulations of the model and the experiments on the
prototype. Finally, Section 11.8 concludes the paper and presents future direc-
tions.

11.2 Related Work

One of the most crucial aspects of TSN technology is clock synchronization.
However, to the best of our knowledge, there is no work that provides a solu-
tion to the adverse effects caused by the lack of synchronization in heteroge-
neous TSN networks that combine one or more Ethernet-based legacy systems
through a TSN communications subsystem. On the contrary, most of the con-
ducted studies aim to integrate TSN with both wireless and 5G networks. For
example, a low-overhead beacon-based time synchronization method was im-
plemented to provide precise synchronization in wireless networks in the con-
text of highly deterministic TSN networks, as outlined in [10]. Other research
has focused on extending IEEE 802.1AS and IEEE 802.11 to enable TSN in-
tegration with wireless networks, as described in [4] and [11]. Additionally,
the challenges of integrating Wired TSN and WLAN technologies and a pos-
sible solution in the form of a hybrid TSN device architecture were discussed
in [14]. Moreover, the study in [9] presented TSN clock synchronization that
aligns with 5G specifications. To solve cross-domain clock synchronization is-
sues in 5G-TSN networks, a method based on data packet relay was proposed
in [7]. Finally, the performance of 5G-TSN networks was also evaluated in
terms of clock synchronization in several works such as in [16, 15], and in [17].

On the other hand, one methodology for integrating EtherCAT and TSN
in terms of clock synchronization is presented in [5]. However, this type of
integration requires customized solutions for each protocol being integrated,
which can pose a challenge to the wider adoption of TSN by the industry. This
is because designing and implementing these solutions take significant time

132 11.3. Background

and resources, and compatibility between solutions can also be demanding.
In a work presented in [6], the authors implemented a non-TSN network

with its own synchronization protocols and they replaced its communications
subsystem with TSN. The work preliminary identified the effects of lack of
synchronization between the legacy system and the TSN network due to the
lack of integration between the synchronization protocols used by the legacy
system and the TSN’s Generalized Precision Time Protocol (gPTP) [2].
Through several experiments, authors detected the causes and consequences
of the lack of synchronization in the short and long term in the network.
However, the work was a short paper that merely suggested uncertain and
indeterminate solutions that lacked implementation and proper validation.

11.3 Background

In TSN networks, communication between end-stations is achieved by the
transmission of Ethernet frames along Ethernet links and TSN switches. In
both TSN switches and end-stations, each output port has up to 8 FIFO queues,
each corresponding to one specific priority level. TSN frames are assigned to
one of the 8 priorities, or queues, which are configured as one of the 3 types
of TSN traffic including TT, Audio Video Bridging (AVB), and Best-Effort
(BE) traffic. TT traffic is commonly given the highest priority, while BE traffic
has the lowest priority. Several queues can be configured as the same type of
traffic thus giving different classes, for example, AVB class A, B, and C. An
illustration of these concepts can be seen in Fig. 11.1, which shows a TSN de-
vice (either an end-station or switch) output port with four queues configured
to convey two TT traffic classes with the highest priority, one AVB traffic class
with medium priority, and BE traffic with the lowest priority.

Next, we explain 3 key aspects of the background for this work. First, we
will introduce the Time Aware Shaper (TAS) and the gPTP, since they are the
main mechanisms responsible for TT transmission and the most affected by
the lack of synchronization. On the other hand, we will explain the Central-
ized Network Configuration element (CNC), a key component for TALESS
implementation.

11.3.1 Time Aware Shaper

To provide the determinism required by TT traffic and, therefore, to know
exactly when each TT frame is transmitted, TSN must be able to prevent
inter-frame interference. To do this, TSN uses the TAS mechanism shown
in Fig. 11.1. This mechanism assigns a gate to each queue that can be open

Paper D 133

Strict Priority

0 0
1 1
0 0
0 0

TT queue
Priority 3

TT queue
Priority 2

GCL

GCL Cycle 1

T0

T1

T2

T3

T0 T1 T2 T3 T0 T1 T2 T3 T0

GCL Cycle 2

AVB queue
Priority 1

BE queue
Priority 0

1 0
0 0
0 1
1 0

CBS

Gate Gate Gate Gate

gPTP

TAS

Figure 11.1: A TSN egress port with four FIFO queues: two TT queues, one AVB
queue, and one BE queue.

or closed. The state of the gate is determined by the Gate Control List (GCL)
which specifies at the nanosecond level how long a gate should be open or
closed in a cyclically repeating list. If the gate of a queue is open, it can trans-
mit the traffic in the queue, otherwise, the frames in that queue are blocked
from transmission. The opening period of a gate is called a transmission win-
dow or simply a window.

The operation of TAS for two TT queues is also depicted in Fig. 11.1. In
this example, three TT frames with a period of 4 time units and transmission
time of 1 time unit are transmitted through a TSN switch port, where two of the
frames are assigned the highest priority 3 (green and red) and one frame (blue)
is assigned priority 2. In order to schedule the transmissions, the hyper-period,
which is the least common multiple of the frames’ periods, is calculated. This
value is used to define the cycle of the GCL, which is responsible for control-
ling the transmission of the frames by specifying the open or closed state of the
gates associated with each priority queue. Thus, the GCL cycle in this example
is set to 4 time units, hence the list will be repeated every 4 time units. From
time T0 to T1, the gate for priority 3 queue is open, allowing the transmission
of the red frame, while the gate for the other queues remains closed. From

134 11.3. Background

T1 to T2, the blue frame, which has priority 2, can be transmitted as its gate
is open. Both gates are closed between T2 and T3, resulting in no TT trans-
mission but allowing lower priority queues to transmit even if higher priority
frames are waiting for transmission. Finally, the gate for the priority 3 queue
is open in the last transmission window, allowing the transmission of the green
frame. The bottom of Fig. 11.1 displays two cycles of frame transmissions
which shows repetition of the GCL list.

11.3.2 Generalized Precision Time Protocol

The mechanism providing the TSN clock synchronization (gPTP) is
described in the IEEE 802.1AS standard and consists of three main parts
including the Best Master Clock Algorithm (BMCA), the Propagation Delay
Measurement (PDM) mechanism, and the Transport of Time-synchronization
Information (TTI). BMCA is used to determine the grandmaster clock, which
is the reference clock in the TSN network, as well as the hierarchy between
the different TSN devices. The PDM mechanism is used once the hierarchy
is established in order to measure the propagation delay between systems.
Finally, the TTI mechanism is used to forward the grandmaster time which,
together with the measured propagation delay, is used to synchronize the other
TSN devices.

This synchronization protocol can achieve a clock accuracy of tens of
nanoseconds. However, it has stringent software and especially hardware re-
quirements that in most cases legacy devices from Ethernet-based networks
cannot support.

11.3.3 Centralized Network Configuration element

The CNC is a virtual component that can be placed in a designated node, an
end-station, or a switch. Regardless of its placement, it can exchange informa-
tion with network devices via NETCONF [8, 1]. This communication is bidi-
rectional, allowing end-stations to send user or network configuration requests
to the CNC while switches can communicate their specifications. Finally, the
CNC can distribute new configurations to the entire network.

NETCONF utilizes a client-server approach for configuring the network,
where the CNC acts as the client, responsible for collecting network informa-
tion and initiating network device configurations. Note that all TSN network
devices, e.g, TSN switches, must have a NETCONF server enabled in order to
receive configurations from the CNC.

Paper D 135

Figure 11.2: Heterogeneous TSN network with legacy end-stations topology.

11.4 Problem statement

In order to observe the problems caused by the lack of synchronization be-
tween legacy systems and the TSN communication subsystems, we set up a
small legacy network consisting of two single-board computers, i.e., Rasp-
berry Pi (RPi) 3 Model B, running RPi Operating System (OS) and connected
point-to-point. Afterward, we add a Multiport TSN kit switch from the com-
pany System-on-Chip Engineering (SoC-e)1 so that the RPIs behave as legacy
end-stations in the new network, see Fig. 11.2. The Raspberry Pi boards are
configured to synchronize their software clocks with each other via the Net-
work Time Protocol (NTP). Note that any clock synchronization protocol other
than gPTP could be used between the legacy end-stations since they were re-
producing scenarios where the TSN switch is unable to synchronize with the
end-stations.

In this experiment, we start analyzing the legacy network separately, i.e.,
without the TSN network, to see its baseline behavior. Then, a TSN network is
added to the legacy system to analyze its effects. Through these experiments,
it can be observed that thanks to the improved hardware and software capabili-
ties of the TSN switches, the jitter of the legacy network practically disappears.
However, due to the lack of synchronization, there is a drift between the clock
time of TSN and the legacy system. This causes a deviation between the com-
munication schedule of the legacy system and the TSN schedule that can be
either positive or negative depending on which clock is faster or slower. Below
we explain the findings of the experiment in detail.

Fig. 11.3 shows the behavior of a heterogeneous TSN network, in which
the legacy system experiences a positive clock drift relative to the TSN com-
munication subsystem. When the TSN clock is slower than the legacy system
clock, the legacy system schedule exhibits a positive drift relative to the TSN
schedule, causing frames to arrive at the receiver increasingly later than their

1MTSN Kit: a Comprehensive Multiport TSN Setup. [Online]. Available: https://so
c-e.com/mtsn-kit-acomprehensive-multiport-tsn-setup/

https://soc-e.com/mtsn-kit-acomprehensive-multiport-tsn-setup/
https://soc-e.com/mtsn-kit-acomprehensive-multiport-tsn-setup/

136 11.4. Problem statement

Talker

TSN

Listener

Figure 11.3: Positive legacy system clock drift behavior.

Talker

TSN

Listener

Figure 11.4: Negative legacy system clock drift behavior.

legacy scheduled time. Moreover, since the transmission of frames by the TSN
network to the legacy system receiver (listener in TSN terminology) is slower
than the transmission by the legacy system transmitter (talker in TSN termi-
nology) to the TSN network, the frames stack up in the buffers. However,
the buffers are not infinite, hence frames that arrive once the buffer is full are
discarded.

Fig. 11.4 shows the behavior of a heterogeneous TSN network, in which
the legacy system experiences a negative clock drift relative to the TSN com-
munication subsystem. When the TSN clock is faster than the legacy system
clock, the legacy system schedule exhibits a positive drift relative to the TSN
schedule, causing frames to arrive at the receiver increasingly earlier than their
legacy scheduled time. However, this effect cannot be infinitely extended over
time since it is impossible to receive a frame before it has been transmitted.
When enough drift accumulates after a while, frames miss the transmission
window in which they are scheduled, leaving a period with no frames being
transmitted.

Through these experiments, we can observe that legacy systems can con-
tinue communicating through TSN and even benefit from some of its features
such as improved reception jitter. However, due to the lack of synchroniza-
tion, a clock drift appears which not only causes a deviation in reception but

Paper D 137

Talker

TSN

Listener

Real period

Scheduled
period

Figure 11.5: TALESS operating diagram.

can lead to empty transmission windows or even loss of frames. Therefore,
the objective of this work is to develop a mechanism that eliminates the drift
between the TSN schedule and the legacy system schedule without requiring
any modification in the legacy end-stations.

11.5 TALESS: TSN with Legacy End-Stations
Synchronization

As it is described in the previous section, drift is the main cause of errors when
having a lack of synchronization. However, there are two factors to consider
when developing a solution. First, different legacy systems that are not syn-
chronized with each other may have different time domains, i.e., different drifts
with respect to the TSN network. Secondly, such a drift may not be constant
over time as environmental factors, such as temperature, may differently affect
the different clocks in the heterogeneous network. Therefore, the proposed so-
lution should eliminate the effects of the clock drift of different legacy systems
that changes over time.

One way to avoid the negative consequences of the drift caused by the lack
of synchronization consists in eliminating the drift between the TSN network
schedule and the legacy system. In order to achieve this, we propose to modify
the size of the TSN GCL transmission windows when there is drift. This way,
we can modify the TSN’s transmission pace to match the legacy system’s.
Fig. 11.5 shows an example of the operation of the proposed solution. This
figure shows how, after detecting the drift, the TSN network changes the size
of certain windows in a way that from that point onward the frames arrive to
the receiver according to the legacy system schedule. However, the TT traffic

138 11.5. TALESS: TSN with Legacy End-Stations Synchronization

transmission windows should not be modified since the size of these windows
is determined by the size of the frame and the transmission rate, where both pa-
rameters are independent of the clock drift. In this regard, if a network reaches
100% utilization and the clock of the legacy system becomes faster with re-
spect to the TSN network, it would not be possible to implement the solution
since there would not be sufficient resources in the TSN network. However,
configuring to 100% utilization on the network is impractical and industrial use
cases commonly avoid that. Therefore, in TALESS, non-TT windows (NTTW)
should be modified by a ratio equal to the drift between the legacy system and
TSN (D) plus the cumulative variation in TT windows (TTW). Therefore, the
new size of each NTTW (NTTWi.size

′) can be computed as:

NTTWi.size
′ = NTTWi.size + D ×NTTWi.size +

D × (NTTWi.start − NTTWi−1.end)
(11.1)

where, to the previous NTTW size NTTWi.size, we first add the variation of
the window by multiplying the previous size NTTWi.size by the drift per-
centage D (either positive or negative), and secondly we add the cumulative
variation of the TTW between the previous NTTW NTTWi−1 and the current
one. This last increment is due to the fact that, as TTW cannot be modified,
the increment of these windows accumulates until the next NTTW.Revisiting
the Fig. 11.5, we can observe that the implementation of the Eq. (11.1) results
in the expansion of the gray transmission windows, which correspond to the
NTTWs, allowing them to match the transmission pace of the legacy system.
Moreover, the NTTWs located after a TTW exhibit a longer extension due to
their assimilation of the expansion that corresponds to the TTW.

Eq. (11.1) would be sufficient in a heterogeneous network where the drift
between the legacy system and the TSN network is constant. In that case,
it would be enough to calculate the drift and apply the formula to the TSN
schedule only once offline. However, if the drift is variable or if several legacy
systems with different time domains coexist in the same TSN network, the pre-
vious solution will not be sufficient. Regarding variable drifts, constant moni-
toring and reconfiguration of the network is necessary. To do this, we propose
a Drift Detector (DD) that detects the drift between different clocks continu-
ously during run-time. Thus, we also propose to implement a reconfiguration
mechanism in the CNC, as shown in Fig. 11.6. The DD, which is located on
at least one reception port of a switch connected to a legacy system talker,
samples the reception and by comparing the clock with the TSN schedule de-
termines the drift between the legacy system and the TSN network. When it
exceeds an established threshold, which can be set by a user, a signal is sent to
the CNC informing about the drift value. The CNC then updates the network

Paper D 139

Measure
Drift

Update
schedule

Deploy
new

schedule

DD CNC

Figure 11.6: TALESS task flow.

TSN
Network

L1

T1

T2 L2DD

DD

CNC

Figure 11.7: TALESS architecture.

configuration according to Eq. (11.1) and deploys it on the network to elim-
inate the drift. The diagram in Fig. 11.7 depicts a network that implements
TALESS, in which end-stations T1 and T2, as well as L1 and L2, represent the
Talkers and Listeners of legacy systems 1 and 2, respectively.

Finally, to allow the solution to work in networks combining different
legacy systems, the only requirement is that TT traffic routes of different legacy
systems cannot share output ports. This is because variations between the
drifts of the legacy systems would invalidate TSN scheduling since the differ-
ent drifts could cause some transmission windows to be advanced while others
are delayed, causing them to collide. Moreover, given the small variability
of the clocks, the resulting hyper-periods would be exponentially long. For
example, if two legacy systems transmit with 1 second period but one has a
1% positive drift and the other one has 1% negative, instead of a GCL of 1
second with 3 transmission windows, the GCL would have an extension of
lcm(1.01,0.99)=99.99 seconds with more than 200 transmission windows.

140 11.6. TALESS Validation Setup

11.6 TALESS Validation Setup

In this paper, we verify the effectiveness of the solution using two methods:
a simulation model of the solution at the end-stations and an experimental
implementation.

11.6.1 Simulation Model

Our model simulates the behavior of a TSN switch implementing TALESS.
However, since TALESS solely eliminates drift, the results obtained in our
experiments can be extrapolated to larger networks with any type of schedule,
as long as the network architecture and schedule are functional in the absence
of drift.

The model is implemented in Matlab and uses a number of parameters as
inputs. These parameters include the period of the transmission to be modeled,
the cumulative drift over the modeled run-time, and the jitter of the received
transmission as the variance of a specified distribution. In addition, the mod-
eled network run-time must be specified as an input. This is one of the main
advantages of the model over the experimental implementation since, as real
drifts are very small, the effects are noticeable only in the long term. In this
sense, the model allows us to analyze long periods of time with realistic drift
values in a reasonable model execution time.

The reception of frames is modeled as a list of timestamps (ts) generated
by applying the drift variation (dv) and jitter (j) to the period (p), i.e.

tsi = tsi−1 + p ∗ dvi + normrnd(0, var) (11.2)

where normrnd(0, var) is a random value following a specific distribution, in
this case, a normal distribution, with mean 0 and the variance var correspond-
ing to the variance of the jitter used as an input. All ts values in the list are
analyzed one by one by the DD module. The DD module determines whether
the period of the reception is equal to the initially scheduled one by means of
a Student’s t-test (ttest2). Once a significant difference is detected, i.e. the
probability of the periods being equal is below a predetermined threshold, the
period is updated based on the trend measured in the frames received since the
last period update (polyfit3).

2One-sample and paired-sample t-test - MATLAB ttest [Online]. Available: https://se
.mathworks.com/help/stats/ttest.html

3Polynomial curve fitting - MATLAB polyfit - MathWorks [Online]. Available: https:
//se.mathworks.com/help/matlab/ref/polyfit.html

https://se.mathworks.com/help/stats/ttest.html
https://se.mathworks.com/help/stats/ttest.html
https://se.mathworks.com/help/matlab/ref/polyfit.html
https://se.mathworks.com/help/matlab/ref/polyfit.html

Paper D 141

S1

L1 T1 T2 L2
DD DD

CNC

S3 S4S2

Figure 11.8: Experimental network diagram showing TSN Switches (S) and legacy
systems 1 and 2 represented by Talkers (T) and Listeners (L).

Finally, the model shows three different results for both positive and nega-
tive drift. The first result is the behavior of the reception with free transmission,
i.e., without the intervention of the TSN switch, while the second result is the
behavior with a fixed schedule without applying any solution. Finally, the last
result is the effect of TALESS implementation. The results will be presented
and discussed in Section 11.7.

11.6.2 Experimental Setup

For the experimental implementation, we extended the network presented in
Section 11.4. More specifically, we use 4 Raspberry PIs and 4 TSN switches,
and a computer that will act as a CNC. The architecture of the new network
is illustrated in Fig. 11.8, where T1 and L1 represent the talker and listener of
legacy system 1, and T2 and L2 the ones of legacy system 2. In addition, S1
to S4 and the CNC represent the TSN communications subsystem.

Each pair of Raspberry PIs (Ti, Li) forms an independent legacy sys-
tem, i.e., they are not synchronized nor communicate with the end-stations
of the other legacy system. For each talker, we implemented a synthetic clock
with different drift values with respect to TSN communications subsystem that
change throughout the experiment. These drift values were larger than those
present in a normal network in order to magnify the effects in a reasonable
duration of the experiments. In addition, in one of the legacy systems, the drift
grew positively, while in the other it grew negatively. In each legacy system,
its synthetic clock is responsible for driving the transmission. In order to keep

142 11.7. Simulation and experimental results

the talker and the listener synchronized, apart from the previously mentioned
NTP, every time the synthetic clock drift changes, the talker sends a message
to the listener with the new synthetic clock frequency value so that the listener
can update its own synthetic clock.

According to the design, sketched in Section 11.5, the DD should be im-
plemented in the input port of switches to avoid modifications in the legacy
end-stations. However, since we do not have access to the implementation of
switches, we implemented the DDs in the legacy listener. Despite the change
of the DDs location, neither the calculation method nor the obtained drift value
changes. This is because the DDs are capable of monitoring the drifts on the
ports, either connected to switches or to the legacy end-stations. Once the DD
measures a significant clock difference, it sends the drift value to the CNC.

The CNC is based on the implementation proposed in [3], which was
openly available to the research community. It uses a JSON file with the con-
figuration to be deployed in the TSN network and NETCONF to deploy the
configuration. The CNC is implemented to receive drift information from the
DD, update the configuration based on Eq. (11.1), and automatically deploy
the improved configuration in the TSN network. The results are presented and
discussed in Section 11.7.

11.7 Simulation and experimental results

In this section, we will show and analyze the results obtained using the simu-
lation model and TALESS experimental implementation. In addition, we will
compare the model with the experimental implementation to validate both the
proposed solution and the simulation model.

To analyze the obtained results, we will use a metric called Synchroniza-
tion Quality Metric (SQM). This is calculated by dividing the difference be-
tween the Reception Time (RT) of two consecutive frames minus the Sched-
uled Period (SP) for those frames by the SP, i.e.,

SQMi =
(RTi+1 −RTi)− SP

SP
. (11.3)

The SQM allows us to analyze drift and jitter graphically since the mean
SQM in a given interval provides information about the drift of the receptions
in such intervals while the maximum absolute value of SQM minus the mean
SQM provides the ratio of jitter with respect to the period. Note that this metric
does not allow us to observe extreme cases such as frame loss, since the SQM
cannot be quantified due to the lack of RT.

Paper D 143

0 0.5 1 1.5 2 2.5 3 3.5

Time [s] 107

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08
S

Q
M

 [%
]

Simulation results using the TALESS model with negative drift

Free transmission
Scheduled
TALESS

Figure 11.9: Simulation results of one year of transmissions in a heterogeneous TSN
network with negative clock drift in three different scenarios: free, scheduled, and
TALESS transmission.

Finally, all the analyses will be performed by comparing the reception of
periodic frames in three different scenarios: (i) with free traffic flow through
the TSN network, i.e., without applying TAS or any other scheduling mecha-
nism, (ii) with the TSN communication subsystem scheduled without TALESS
implementation, and (iii) with TALESS implementation.

11.7.1 Simulation Model Results

We simulate two different scenarios using the simulation model. In both cases,
the model simulates a year of communications of a periodic transmission with
an initial period of 1 second, and with a variable drift that starts at 0% and
grows progressively until reaching 10% at the end of the simulation in the
first scenario and from 0 to -10% in the second one. In addition, the jitter
of the transmission is used as an input to the model and follows a normal
distribution of variance 0.01. This distribution and variance are similar to the
ones in Section 11.4. The results can be seen in Figs. 11.9 and 11.10, both
showing the SQM over the simulation time.

In both scenarios, we observe that the free reception has a jitter of 70 ms
(as defined as input) and zero drift. When scheduling the TSN subsystem with-

144 11.7. Simulation and experimental results

0 0.5 1 1.5 2 2.5 3 3.5

Time [s] 107

-0.1

-0.05

0

0.05

0.1

0.15

S
Q

M
 [%

]

Simulation results using the TALESS model with positive drift

Free transmission
Scheduled
TALESS

Figure 11.10: Simulation results of one year of transmissions in a heterogeneous
TSN network with positive clock drift in three different scenarios: free, scheduled,
and TALESS transmission.

out TALESS, the jitter almost disappears but the effects of the drift between
the TSN schedule and the legacy transmission become evident. Finally, we
observe that by applying TALESS both the jitter and the drift almost drops to
0.

11.7.2 Real Network Implementation Results

Using the real network we run an experiment similar to the model but with
certain restrictions. Instead of a year of execution, only 2000 frames are trans-
mitted per experiment and the drift, instead of increasing and decreasing pro-
gressively up to ±10%, varies by ±5% every 100 frames. Moreover, in the
positive drift scenario, the legacy system starts with a period of 1 second that
is periodically shortened, while in the negative drift scenario, it is the final pe-
riod which is equal to 1 second. All other characteristics and scenarios are the
same as in the simulation model. The results of these experiments can be seen
in Figs. 11.11 and 11.12.

As in the model, here we can see how the free transmission has high jitter
and no drift. Once the scheduling is applied without TALESS, the jitter disap-
pears but the drift takes place. In this case, the SQM (and therefore the drift)

Paper D 145

0 200 400 600 800 1000 1200 1400

Time [s]

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

SQ
M

 [%
]

Results of TALESS implementation in a heterogeneous TSN network
with negative drift

0.2

0.1

Free transmission
Scheduled
TALESS

Figure 11.11: Results of heterogeneous TSN network execution with negative drift in
three different scenarios: free, scheduled, and TALESS transmission.

0 200 400 600 800 1000 1200 1400

Time [s]

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

SQ
M

 [%
]

Results of TALESS implementation in a heterogeneous TSN network
with positive drift

1.8

Free transmission
Scheduled
TALESS

Figure 11.12: Results of heterogeneous TSN network execution with positive drift in
three different scenarios: free, scheduled, and TALESS transmission.

146 11.8. Conclusions and Future work

presents a step-wise behavior instead of a continuous one because, as previ-
ously mentioned, the drift variation is applied every 100 frames for the sake of
simplicity in the experiment.

Finally, we see how TALESS eliminates both jitter and drift yet leaves
some drift remnants (the duty cycle that is observed in the figures). These are
due to the time required by the solution to detect the change in the reception
and are larger than what is observed in the simulation model due to the large
synthetic drift applied to this experiment to allow us to visualize the effects of
TALESS on the drift in a reasonable time. Although small periodic drifts can
accumulate significant drift times between the TSN network and the legacy
system, there are ways to prevent this, e.g., by over-correcting the drift by
creating equivalent drifts but of opposite sign to ensure an overall average drift
equal to 0.

11.7.3 Comparison Results

Finally, in order to validate both the simulation model and the experimental
implementation, we modified the model to run a simulation with the same
conditions applied to the experimental implementation, i.e., execution of only
2000 frames with a variable drift of±5% every 100 frames. The result of such
simulations is shown in Figs. 11.13 and 11.14.

As we can see, the simulations of implemented scenarios match the imple-
mentation results. Although the transmission by the legacy talker is not exactly
the same since the real network does not exactly follow a normal distribution,
the effects of both schedulings (with and without TALESS) on reception are
essentially the same. This experiment provides evidence that the simulation
model follows the experimental results ensuring the validity of the simulation
model and, therefore, of TALESS.

11.8 Conclusions and Future work

In this paper, we analyzed the effects of the lack of synchronization between
the legacy systems with the TSN network. These effects are mainly due to the
drift between clocks in TSN and in the legacy systems which, in the long term,
will result in either delayed TT transmission or missing frames. Therefore, we
designed, implemented, and validated a solution, called TALESS, to remove
the identified effects. Through simulation and implementation of TALESS, we
demonstrated that TALESS efficiently enforces the reduction of jitter and re-
moves the effects of clock drifts in the legacy systems. This solution allows us

Paper D 147

0 200 400 600 800 1000 1200 1400

Time [s]

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2
SQ

M
 [%

]

Simulation of TALESS implementation in a heterogeneous TSN network
with negative drift

Free transmission
Scheduled
TALESS

Figure 11.13: Simulation results of the implemented heterogeneous TSN network
with negative drift.

0 200 400 600 800 1000 1200 1400

Time [s]

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

SQ
M

 [%
]

Simulation of TALESS implementation in a heterogeneous TSN network
with positive drift

Free transmission
Scheduled
TALESS

Figure 11.14: Simulation results of the implemented heterogeneous TSN network
with positive drift.

148 11.8. Conclusions and Future work

to integrate several legacy systems into a TSN network without any modifica-
tions in their clock synchronization.

As the future work, we aim to implement the proposed mechanism within
a TSN switch to provide a complete tool for TSN adoption without any modi-
fication within the legacy systems.

Bibliography 149

Bibliography

[1] IEEE 802.1Qcc-2018 - IEEE Standard for Local and Metropolitan Area
Networks - Bridges and Bridged Networks - Amendment 17: Stream
Reservation Protocol (SRP) Enhancements and Performance Improve-
ments, 2018. DOI: 10.1109/IEEESTD.2018.8372875.

[2] IEEE Standard for Local and Metropolitan Area Networks–Timing and
Synchronization for Time-Sensitive Applications. IEEE Std 802.1AS-
2020 (Revision of IEEE Std 802.1AS-2011), pages 1–421, 2020.

[3] Inés Alvarez, Andreu Servera, Julián Proenza, Mohammad Ashjaei, and
Saad Mubeen. Implementing a First CNC for Scheduling and Config-
uring TSN Networks. In IEEE International Conference on Emerging
Technologies and Factory Automation (ETFA), pages 1–4, 2022.

[4] Haytham Baniabdelghany, Roman Obermaisser, et al. Extended synchro-
nization protocol based on IEEE802. 1AS for improved precision in dy-
namic and asymmetric TSN hybrid networks. In IEEE Mediterranean
Conference on Embedded Computing (MECO), pages 1–8, 2020.

[5] Daniel Bujosa, Daniel Hallmans, Mohammad Ashjaei, Alessandro V Pa-
padopoulos, Julian Proenza, and Thomas Nolte. Clock synchronization
in integrated tsn-ethercat networks. In IEEE International Conference
on Emerging Technologies and Factory Automation (ETFA), volume 1,
pages 214–221, 2020.

[6] Daniel Bujosa, Andreas Johansson, Mohammad Ashjaei, Alessandro V
Papadopoulos, Julian Proenza, and Thomas Nolte. The Effects of Clock
Synchronization in TSN Networks with Legacy End-Stations. In IEEE
International Conference on Emerging Technologies and Factory Au-
tomation (ETFA), pages 1–4, 2022.

[7] Zichao Chai, Wei Liu, Mao Li, and Jing Lei. Cross Domain Clock Syn-
chronization Based on Data Packet Relay in 5G-TSN Integrated Network.
In IEEE International Conference on Electronics and Communication
Engineering (ICECE), pages 141–145, 2021.

[8] Rob Enns. RFC 4741: NETCONF Configuration Protocol, 2006.

[9] Michael Gundall, Christopher Huber, Peter Rost, Rüdiger Halfmann, and
Hans D Schotten. Integration of 5G with TSN as prerequisite for a
highly flexible future industrial automation: Time synchronization based

on IEEE 802.1 AS. In IECON Annual Conference of the IEEE Industrial
Electronics Society, pages 3823–3830. IEEE, 2020.

[10] Jetmir Haxhibeqiri, Xianjun Jiao, Muhammad Aslam, Ingrid Moerman,
and Jeroen Hoebeke. Enabling TSN over IEEE 802.11: Low-overhead
time synchronization for wi-fi clients. In IEEE international conference
on industrial technology (ICIT), volume 1, pages 1068–1073, 2021.

[11] Alexey M Romanov, Francesco Gringoli, and Axel Sikora. A precise
synchronization method for future wireless TSN networks. IEEE Trans-
actions on Industrial Informatics, 17(5):3682–3692, 2020.

[12] R. Salazar, T. Godfrey, L. Winkel, N. Finn, C. Powell, B. Rolfe, and
M. Seewald. Utility Applications of Time Sensitive Networking White
Paper (D3). Technical report, IEEE, 2018.

[13] S. Samii and H. Zinner. Level 5 by Layer 2: Time-Sensitive Networking
for Autonomous Vehicles. IEEE Communications Standards Magazine,
2(2):62–68, 2018.

[14] Oscar Seijo, Xabier Iturbe, and Inaki Val. Tackling the Challenges of
the Integration of Wired and Wireless TSN with a Technology Proof-of-
Concept. IEEE Transactions on Industrial Informatics, 2021.

[15] Haochuan Shi, Adnan Aijaz, and Nan Jiang. Evaluating the Performance
of Over-the-Air Time Synchronization for 5G and TSN Integration. In
IEEE International Black Sea Conference on Communications and Net-
working (BlackSeaCom), pages 1–6, 2021.

[16] Jiajia Song, Makoto Kubomi, Jeffrey Zhao, and Daisuke Takita. Time
synchronization performance analysis considering the frequency offset
inside 5G-TSN network. In IEEE International Symposium on Wireless
Communication Systems (ISWCS), pages 1–6, 2021.

[17] Tobias Striffler and Hans D Schotten. The 5G Transparent Clock: Syn-
chronization Errors in Integrated 5G-TSN Industrial Networks. In IEEE
International Conference on Industrial Informatics (INDIN), pages 1–6,
2021.

[18] M. Wollschlaeger, T. Sauter, and J. Jasperneite. The Future of Indus-
trial Communication: Automation Networks in the Era of the Inter-
net of Things and Industry 4.0. IEEE Industrial Electronics Magazine,
11(1):17–27, 2017.

Chapter 12

Paper E
CSRP: An Enhanced Protocol
for Consistent Reservation of
Resources in AVB/TSN.

Daniel Bujosa, Inés Álvarez, Julián Proenza.
In the IEEE Transactions on Industrial Informatics 17 (TII 2020).

151

Abstract

The IEEE Audio Video Bridging (AVB) Task Group (TG) was created to pro-
vide Ethernet with soft real-time guarantees. Later on, the TG was renamed
to Time-Sensitive Networking (TSN) and its scope broadened to support hard
real-time and critical applications. The Stream Reservation Protocol (SRP) is a
key work of the TGs as it allows reserving resources in the network, guarantee-
ing the required quality of service (QoS). AVB’s SRP is based on a distributed
architecture, while TSN’s is based on centralized ones. The distributed ver-
sion of SRP is supported and used in TSN. Nevertheless, it was not designed
to provide properties that are important for critical applications. In this work
we model SRP using UPPAAL and we study the termination and consistency.
We verify that SRP does not provide such properties. Furthermore, we propose
an improved protocol called Consistent Stream Reservation Protocol (CSRP)
and we formally verify its correctness using UPPAAL.

Paper E 153

12.1 Introduction

The IEEE Audio Video Bridging (AVB) Task Group (TG) [9] was created in
2005. Its purpose was creating a set of standards to provide Ethernet with soft
real-time capabilities oriented to applications related to audio/video stream-
ing. Specifically, the AVB TG started three projects, namely the IEEE Std
802.1AS [4], dedicated to clock synchronization; the IEEE Std 802.1Qav,
which standardized the Credit-Based Shaper [2]; and, finally, the IEEE Std
802.1Qat, which standardized the Stream Reservation Protocol (SRP) [3]. In
addition, the TG created a profile that sets a series of rules to ensure a mini-
mum Quality of Service (QoS) when using the aforementioned standards. The
profile is the IEEE Std 802.1BA-2011: Audio Video Bridging Systems [5].
This set of standards is commonly referred to as AVB standards.

Over time, the interest in the work done by the TG grew, also in areas of
application beyond audio/video streaming, such as automotive [27], automa-
tion [30] and energy distribution [26]. For this reason, in 2012 the group was
renamed to Time-Sensitive Networking (TSN) TG and its target broadened to
meet the needs of these new applications, which are usually based on Criti-
cal Distributed Embedded Systems (CDES). Specifically, the TSN TG aims at
providing Ethernet with proper support for mixed hard and soft real-time com-
munications, flexibility of the traffic requirements and fault tolerance mecha-
nisms. The set of standards developed by the TG is usually referred to as TSN
standards.

Although the number of standardization projects carried out by the TSN
TG grows at high speed, there are some projects that can be considered the
core of the TG activity. One of the key projects is SRP, which was originally
standardized by the AVB TG in [3] and subsequently reviewed by the TSN TG
in [7]. SRP allows Ethernet to reserve resources along the path that connects
a transmitter to one or more receivers. More concretely, SRP only authorizes
the transmission of messages after verifying that the network can convey such
messages with the required QoS. This prevents frame delays over the prede-
fined limits during transmission and frame losses due to overflows of buffers in
bridges. Moreover, SRP allows modifying the traffic requirements at run-time,
providing a certain degree of flexibility to the network.

Currently, there are three different SRP architectures defined by the TSN
TG in [7]. The first one is the fully distributed architecture, created in the con-
text of AVB; whereas the other two architectures are centralized and they were
defined in the context of TSN. TSN relies on YANG [12] to configure the net-
work when using centralized architectures. YANG is a data modeling language
which allows to define which data must be used to configure a network device

154 12.1. Introduction

and which is the format of said data. This allows to standardize and simplify
the integration of different processes and applications in distributed systems.

We must note that, at the moment of writing this paper, there is no avail-
able YANG model to support the online configuration of the reservations of
event-triggered traffic using the centralized architectures proposed in TSN [8].
Therefore, the distributed version of SRP is still used in TSN to manage the
network resources of event-triggered real-time traffic. For this reason, and for
the interest that certain areas such as automotive have shown on the distributed
SRP [29, 20, 21, 18, 25, 28, 15], we believe that this version of SRP is going
to continue to be used in the upcoming years.

As we have said, TSN targets critical applications, which means that all
protocols, including every version of SRP, must exhibit certain properties
which are common in CDES to ensure the proper behavior of the overall
system. In this work we focus on termination and consistency. On the one
hand, it is common for applications executed by CDES to carry certain
actions within a bounded time and, thus, termination must be guaranteed. On
the other hand, nodes in CDES usually need to have a consistent view of the
network or share data consistently to interact with each other correctly.

Nevertheless, the distributed version of SRP was not developed to be used
in CDESs. Even though we can see that the distributed SRP does not guarantee
termination nor consistency with a simple analysis, it is not effective to thor-
oughly identify the potential scenarios without using any formal tool. For this
reason, in this work we use a formal model checker to verify in an exhaustive
manner whether the distributed version of SRP provides these properties and
in which cases it does not. From now on, whenever we say SRP we refer to
the distributed version of the protocol.

Specifically, we use the UPPAAL model checker [11] to build a model
of SRP. Modeling any system or protocol requires to abstract certain details,
as analyzing all possible scenarios in an exhaustive manner requires a great
amount of memory and time. For this reason, our SRP model abstracts imple-
mentation details of the protocol. Nevertheless, the level of abstraction used
in this work is the typical when modeling communication networks. More-
over, we validate our model, understanding the term validate as the evaluation
done to ensure that the model is properly implemented and that it is a faithful
representation of the behavior of SRP.

We then use our UPPAAL model to verify that SRP does not provide termi-
nation nor consistency and to detect in which scenarios this happens. We use
the term verify to refer to the evaluation done to ensure that a system presents
a certain property, i.e., our system is the right one for our needs. Moreover, we
discuss the consequences derived from the absence of termination and consis-

Paper E 155

tency. We propose different ways to modify SRP in order to provide it with
the aforementioned properties and we select what we consider to be the best
one. Finally, we create a UPPAAL model of the modified protocol, which we
call Consistent Stream Reservation Protocol (CSRP). Again, we validate our
model and we verify the correctness of our design.

The remainder of the document is structured as follows. Section 12.2 sum-
marizes the related work, while Section 12.3 explains the parts of SRP that
are most relevant for this work. Section 12.4 provides an overview of the SRP
model we implemented in UPPAAL while Section 12.5 and Section 12.6 show
the termination and consistency issues detected and their consequences. Sec-
tion 12.7 describes the solution proposed. Section 12.8 describes the changes
applied to the SRP model to implement the proposed CSRP while Section 12.9
and Section 12.10 show the formal verification of the correctness of CSRP. Fi-
nally, Section 12.11 summarizes the work done.

12.2 Related Work

Due to the great relevance of the AVB and TSN standards, the community has
carried out a significant amount of work related to their study, application and
improvement. For example, in [16] authors describe the requirements for an
AVB network, summarize the methods described in the standards and describe
how they can be used by several higher layer protocols; while in [23] authors
provide an up-to-date comprehensive survey of the TSN standards and the re-
lated research studies.

Furthermore, there are many works related to the study of AVB’s effi-
ciency, such as [21, 25, 19, 22]. On the other hand, in the work presented
in [24] the authors detect a drawback in the resource reservation de-registration
specification, which leads to the waste of the network resources, and proposed
some solutions. Moreover, some works present solutions to provide fault tol-
erance against permanent faults using SRP [17].

Nevertheless, to the best of the authors’ knowledge, there are no works
related to the study of the termination and consistency of the distributed ver-
sion of SRP, apart from the preliminary work presented in [13]. We next list
the contributions of this paper compared to the work presented in [13]. In this
work we carry out an improvement of the UPPAAL model of SRP resource
reservation mechanism which is explained in more detail in Section 12.4. We
study the termination and consistency of the reservations in different scenar-
ios and components with this new UPPAAL model. We design an enhanced
version of SRP that does exhibit the termination and consistency properties,
thereby eliminating all the issues we have identified for SRP and that provides

156 12.3. SRP Overview

the network devices with enough information to make rather complex deci-
sions about the reservation of resources within a bounded time. Finally, we
implement the proposed solution, i.e., CSRP, in the UPPAAL model and we
verify that it is correct.

12.3 SRP Overview

As we anticipate in Section 12.1, SRP is a key piece for many of the projects
developed by the AVB and TSN TGs. Specifically, SRP is key to provide real-
time guarantees to Ethernet-based communications. More concretely, SRP
allows verifying that there are enough resources in the network to convey the
traffic and reserving said resources. This allows to bound the end-to-end delay
of the frames and to avoid the loss of packets due to the buffer overflow. More-
over, SRP can be used to modify the traffic requirements at run-time, giving
the network a certain degree of flexibility.

SRP follows the publisher-subscriber paradigm, where the publisher is
called talker and the subscribers, listeners. The real-time data communica-
tions are made through streams. A stream is a logical communication channel
that carries traffic defined by a set of parameters, such as the period or frame
size. For example, if one temperature sensor, the talker, wants to transmit its
measurements with a period of 10 ms and a payload of 1 byte to other nodes,
the listeners, the network has to check that there are enough resources and, if
there are, it must create a stream with the specified period and payload.

As we have already said, there are three different SRP architectures. Nev-
ertheless, as this work focuses on the distributed version of SRP, next we only
explain the resource reservation mechanism of this version. Further details on
the other architectures can be found in [7].

It is important to note that all the decisions regarding the reservation of re-
sources are taken using local information only. Nevertheless, there is important
information related to the reservations that must be propagated throughout the
network; e.g. the amount of resources needed for a stream, whether a certain
bridge has resources available or not, etc. This information is conveyed within
special messages called talker and listener attributes. The arrows in Figure12.3
represent the direction in which the attributes are propagated throughout the
network. Next we describe the process in detail.

Figure12.1 shows the time diagram of the resource reservation mechanism
in a network with a line topology. This network consists of one talker (T),
one listener (L) and two bridges (B1 and B2). As we can see in the figure,
when a talker wants to transmit a set of frames with certain parameters, it must
first create the stream to convey such frames. To create a stream the talker has

Paper E 157

T B1 B2 L

AC exec

AC exec

TA

TA/F

AC exec &
config resources

TA/F

LAF/R
AC exec &

config resources

AC exec &
config resources

Stream Data

LAF/R

LAF/R

Figure 12.1: Time diagram of the resource reservation mechanism in a network with
a line topology.

to declare its intention to communicate by transmitting in broadcast mode a
special message called Talker Advertise (TA) message. This message conveys
stream identification information, as well as the resources needed to convey
the traffic. This information is then used in the rest of devices of the network
to check whether there are enough resources for the stream so that it can be
created. This evaluation of available resources is called Admission Control
(AC). Note that SRP relies on other mechanisms that eliminate the loops in the
network to prevent the TA message from circulating the network indefinitely.

The TA message transmitted by the talker is received by the bridge con-
nected to it. When a bridge receives a TA message, each forwarding port
checks if it has enough resources for the stream or not by executing the AC. In
this protocol, a forwarding port is any port through which the TA message was
not received, e.g., the port that connects B1 to B2 in Figure12.1. If the port has
enough resources, the TA message is forwarded to the next device, i.e., the next
bridge or node. On the other hand, if the port does not have enough resources,
it sends a so called Talker Failed (TF) message instead. A TF message conveys
the same information as the TA message plus the reason for the failure in the

158 12.3. SRP Overview

reservation. Bridges that receive a TA message transmitted by another bridge
through one of their ports behave as we have just described. In contrast, if the
message received is a TF message, bridges transmit a TF message through all
their forwarding ports, without carrying the AC.

Regarding nodes, we have to note that not all nodes are listeners for all
streams. Therefore, if a node that does not want to become a listener of the
stream receives a TA or TF message, it does not carry any further actions. In
fact, it does not even inform the talker about its lack of interest in the stream.
On the other hand, if a node receives a TA or TF message and is willing to lis-
ten to the stream there are three possible scenarios to consider: (i) the listener
receives a TF message and cannot therefore become a receiver of the stream
that is being created, so it sends a message called Listener Asking Failed (LAF)
to the bridge; (ii) the listener receives a TA message but, while checking its re-
sources it realizes that it does not have enough resources to receive the stream,
so it sends an LAF message to the bridge; and, (iii) the listener receives a
TA message and, while checking its resources it realizes that it has enough
resources to receive the stream, so it sends a message called Listener Ready
(LR) message to the bridge.

Each port of the bridges connected to a listener can receive an LR or LAF
message. If a port receives an LAF message it does nothing else. If a port
receives an LR message the port checks its resources again. If it does not have
enough resources the port changes the LR received to an LAF; otherwise, if it
has enough resources, the port reserves the resources (config resources in the
figure). Whenever a bridge is connected to several bridges or nodes, it may
have several listener responses to forward. In this case the bridge combines
the responses into a single one and transmits it towards the talker. The result
of combining the responses is the following: (i) if the bridge receives an LR
in all the ports, it transmits to the talker an LR message; if the bridge receives
an LAF in all the ports, it transmits to the talker another LAF message; and,
if the bridge receives LR messages in some ports and LAF messages in other
ports, it will transmits to the talker a new message called Listener Ready Failed
(LRF) message. Whenever a bridge receives an LRF message it forwards an
LRF message to the talker, regardless of the other listener attributes it receives.
Note that in Figure12.1 listener attributes cannot be LRF because in a linear
topology there is only one port receiving responses, therefore, bridges cannot
receive LR messages through some ports and LAF messages through other
ports.

Finally, the talker waits until it receives an LR or LRF message to start the
data transmission. Once the stream has been created, the talker can delete it
at any time by means of the unadvertise stream mechanism. The talker trans-

Paper E 159

mits a message to eliminate the stream from all devices. This message is also
transmitted in broadcast mode to ensure that all bridges and listeners receive
the indication to eliminate the stream.

We call a reservation distribution to each possible combination of paths
that reserve resources. We need to note that we consider to be good and bad
reservation distributions. For instance, let us assume that we have a network
with a star topology with one talker, two listeners and one bridge in the middle.
One example of good reservation distribution is one where all the ports have
reserved the required resources, whereas one example of bad reservation distri-
bution is one where the listener ports have reserved the required resources but
the talker port has not. In this last case there is a waste of resources in the links
to the slaves because, as the port of the talker is not reserved, the slaves are not
going to receive anything from that talker, regardless of their reservations.

12.4 SRP Uppaal Model

This section introduces the model developed in this work. The model is im-
plemented using the UPPAAL model checker which is a tool for modeling
real-time systems and formally verifying their properties [11]. In UPPAAL

the systems are modeled by means of interconnected timed automata (finite-
state machines extended with clocks that progress at the same pace). Each
automaton is specified by a template that can be instantiated several times. At
the same time, templates are constructed using locations, edges, local variables
and local clocks, and can synchronize through different types of channels.

In addition, UPPAAL provides a formal query language that allows defin-
ing properties that the system should exhibit. These properties can be classified
into 3 types and 5 sub-types represented in Figure 12.2. In this figure, circles
represent states of the model whereas filled ones represent states with certain
characteristic. The first property type, shown in Figure 12.2a, is the reachabil-
ity property. It checks if it exists any state with a specific characteristic, e.g.,
a state in which the message arrived to the listener correctly. The second one
is the safety property. It checks if a specific characteristic is in all the states
(Figure 12.2b) or in all the states of a path of the state space (Figure 12.2c),
e.g., it can check if, in all the states of the state space, messages are not lost
or are not affected by errors. Finally, the third property type is the liveness
property. It checks if a state with specific characteristics is eventually reached
(Figure 12.2d) or if the state (φ) is eventually reached after another state (Ψ)
with another characteristic was reached (Figure 12.2e).

Using the model and the queries as inputs, the tool performs an exhaustive
check of the properties, i.e., it explores all the possible execution paths of the

160 12.4. SRP Uppaal Model

(a) Representation of the
reachability property.

(b) Representation of the
first safety property.

(c) Representation of the
second safety property.

(d) Representation of the
first liveness property.

(e) Representation of the
second liveness property.

Figure 12.2: Types of properties that can be evaluated in UPPAAL based on a figure
from [11]. Each figure shows a representation of the state space of the model. The
filled circles are the states that exhibit certain characteristic.

model to verify whether the properties hold. After this, UPPAAL informs the
user about the result and, if a property does not hold, it shows an execution
path in which the property is violated.

In this paper we abstract the description of the model. Section III of [14]
describes our model in an exhaustive way. The complete model files and the
files used for its verification can also be found in [14].

Figure12.3 (a) represents the network we modeled with UPPAAL while
Figure12.3 (b) represents the resulting UPPAAL model. As can be seen, our
SRP model is made of 5 different templates: Talker template, Stream template,
Listener template, BridgeInput template and BridgeOutput template (repre-
sented as T, S, L, BI, BO respectively in Figure12.3(b)). These templates
model the different relevant actions of the protocol carried out by the talk-
ers, bridges and listeners. Specifically, as we can see in Figure12.3, our model
has one instantiation of the Talker and Stream templates to model the actions
carried out by one talker. It also has three instantiations of the Listener tem-
plate to model the actions carried out by three listeners. And, finally, it has 3
instantiations of the BridgeInput template and five instantiations of the Bridge-
Output template to model the actions carried out by three AVB bridges. Other
network elements, such as links, are represented in the model by variables,

Paper E 161

BI

BI

BI

BO

BO
BO

BO

S T

BO

Talker

Bridge 1

Bridge 2

Bridge 3

Listener 1

Listener 2

Listener 3

L

L

L

Ta
lk

er
 A

ttr
ib

ut
e

tra
ns

m
is

si
on

Li
st

en
er

 A
ttr

ib
ut

e
tra

ns
m

is
si

on

(a) Modeled network consisting of
one talker, three listeners and
three bridges.

(b) Abstraction of the network
model made with UPPAAL.

Figure 12.3: Representation of the modeled network and its model by means of tem-
plates where T represents the Talker template, S the Stream template, BI the BridgeIn-
put template, BO the BridgeOutput template and L the Listener template.

clocks and channels.
As we can see in Figure12.3(a), and as we have already said, our model

is made up of one talker, three bridges and three listeners, each connected to
one bridge. We decided to use three listeners for many reasons. The first
reason is that, in many critical systems is usual to use active replication, using
three replicas which perform majority vote on each result, in order to tolerate
the failure of nodes. Moreover, three listeners are enough to have all relevant
combinations of responses of the listeners. This is because, as listeners can
only be or not interested in the stream or interested with or without resources,
having more listeners would increase the times one of this options appears
but would not produce a different scenario. On the other hand, we connected
one listener to each bridge to have paths with different lengths and end-to-end
delays, factors that increase the likelihood of encountering consistency issues.
Finally, we used a line topology because SRP relies on other protocols that

162 12.5. Evaluation of the Termination of SRP

eliminate the loops of the network, such as the Rapid Spanning Tree Protocol
[1] or the Shortest Path Bridging Protocol [6].

Like any model of a system, our SRP model has a series of abstractions.
First, we only model the transmission of one stream because allowing the
model to transmit several streams would lead to the explosion of the state space
without providing any benefit, on the contrary, it would make the model more
difficult to analyze. We neither model the transmission of data frames because
it is not part of SRP and it would increase the complexity of the model unnec-
essarily, as it would distort the model without giving greater precision to the
analysis of the protocol. Finally, we did not take into account the presence of
errors for several reasons. First, the property issues we detected appear in the
absence of faults in the network. Secondly, there are some works like the one
presented in [10] that allow tolerating faults in the channel by using proactive
replication of frames. It is important to note that this level of abstraction is
typical for network models and that we have validated our model to ensure
that it is a faithful representation of SRP.

The model used in [13] abstracted the number of ports of the devices.
Specifically, all devices had a single reception port and a single transmission
port, even though AVB bridges can have an undetermined number of ports.
This abstraction reduced the state space and the complexity of the Bridge tem-
plate, and, in addition, avoided specifying a specific number of ports on the
bridges which would decrease the generality of the model. However, this ab-
straction moved slightly away from reality, reduced the information present in
the bridges and transferred certain decisions from the bridges’ output ports to
the input ports of the devices connected to them.

In this work we present a more detailed, yet analyzable and general model.
Specifically, our model divides the Bridge template into two, one for the re-
ception port of the talker attributes and transmission of the listener attributes
and another for the reception of the listener attributes and transmission of the
talker attributes. These templates can be instantiated as many times as neces-
sary for each bridge, so the generality of the model is maintained. In addition,
the model conforms more to reality and allows to keep decisions and informa-
tion on the bridge. Nonetheless, this new model has an increased state space
compared to the one in [13], which increases the time required for the analysis.

12.5 Evaluation of the Termination of SRP

As we said in Section 12.1, termination is a basic property of the CDESs. Thus,
all TSN protocols should provide it in order to support this kind of systems,

Paper E 163

even more if we talk about SRP which is responsible to accept the streams and
reserve the resources, a key piece to ensure a good behavior of the system.

This analysis does not aim at demonstrating that the distributed version
of SRP does not present termination, since this is relatively obvious once we
know the protocol. Instead, we use it to analyze in depth the cases of non-
termination and their consequences. In addition, this analysis is helpful to find
a solution to the problem and to have a reference to evaluate the proposed
solution.

In this work we differentiate two levels of termination: termination for
the application and for the infrastructure. The first one affects the nodes and,
therefore, the application. The lack of termination at the application level can
cause malfunction of some critical applications. This is due to the fact that
many of those applications require to know the result of the reservation to
make important decisions.

The infrastructure level refers to the bridges of the network. Even if in
an ideal system these devices do not require termination, it is important to
provide it to prevent unforeseen and undesirable effects in future reservations.
For example, if a bridge receives many requests without resolution, it would
be possible to cause an overflow of the buffer that could prevent the bridge
from accepting new reservation requests or force it to eliminate some already
accepted ones.

We next present the problems detected but it is important to note that the
issues are mainly due to the fact that in SRP listeners do not inform the bridges
nor the talkers when they are not interested in binding to a stream. Section IV
of [14] shows and explains in more detail the queries used.

12.5.1 Termination at the Application Level

Using the UPPAAL model, we find a series of scenarios where the talker does
not receive any response from the listeners and, thus, it waits indefinitely. This
can happen even in the absence of faults, when there are no listeners interested
in the stream. As we have said before, many critical applications require to
know the result of the reservations to make important decisions. Thus, the lack
of termination can cause a malfunction of those applications, such as block-
ing the decision process or leading to incorrect decisions due to the lack of
knowledge.

To check the termination for the application level and determine the causes
of the issues detected we used the query (Q1), which corresponds to query 1
(safety property) in [14]. This query checks if there is a path of states in the
system in which the talker never receives any listener response. The query

164 12.5. Evaluation of the Termination of SRP

is satisfied which means that there are scenarios in which a talker does not
receive any listener response leading to a termination issue. Then we checked
if it is possible that this happens if at least one listener is interested in the
stream. To do that we used another query (Q2), which corresponds to query
2 (liveness property) in [14]. This query checks if, at the end of the listeners
actions, the response of at least one listener, i.e., there is at least one listener
interested in the stream, implies the reception of responses by the talker. This
query is satisfied, which means that if at least one listener is interested in the
stream, the talker receives at least one response. Finally, we checked that the
non-reception of responses by the talker was due to the non-transmission of
responses by the listeners. This was checked with another query (Q3), which
corresponds to query 3 (liveness property) in [14]. This query checks if, at the
end of the listeners actions, if no listener has responded, the talker receives no
response.

The use of the previous queries allowed us to determine that the only case
where termination is not achieved in the application level is when no listener
is interested in the stream that the talker is announcing.

12.5.2 Termination at the Infrastructure Level

A bridge that forwards the request of a talker waits for the responses of the
listeners indefinitely. Also, bridges register talkers’ attributes in all their ports,
and they do so for all the talkers willing to transmit. Similar to what happens
for termination at the application level, we find some scenarios where some
bridges do not receive any response from the listeners, even in the absence
of faults and even if the first level of termination is actually achieved by the
protocol. Thus, bridges can wait indefinitely, e.g., if there are no listeners
interested in the stream connected directly or indirectly to the bridge. This
can cause an unnecessary use of memory in bridges and can later prevent the
creation of streams with listeners willing to bind due to a lack of memory.

To check the termination at the infrastructure level, and determine the
causes of the issues detected, we used three different queries for each port.
These queries are similar to the ones used in the verification of the termination
at the application level, but have the particularity that must be checked for each
port of the bridge. The first of these three queries (Q4), which corresponds to
queries 4, 7, 10, 13 and 16 (safety property) in [14], checks if there is any
path of states in the system in which the port of the bridge does not receive
any listener response. As the query is satisfied, it is possible that the port of a
bridge does not receive any listener response, leading to a termination issue in
the bridges.

Paper E 165

Then, we used another query (Q5), which corresponds to queries 5, 8, 11,
14 and 17 (liveness property) in [14], to verify if this is possible even if at least
one listener connected directly or indirectly to the bridge is interested in the
stream. This query checks if the response of at least one listener, i.e., if at least
one listener is interested in the stream, leads to the reception of responses by
the bridge port. As this query is satisfied, if at least one listener is interested in
the stream, the port of the bridge receives at least one response.

Finally, we checked that the non-reception of responses by the port of a
bridge was due to the non-transmission of responses by the listeners connected
directly or indirectly to the port of the bridge. This was checked with the
third query (Q6), which corresponds to queries 6, 9, 12, 15 and 18 (liveness
property) in [14]. This query checks if when no listeners have responded at the
end of the listeners actions, so there are no listeners interested in the stream,
the port of the bridge receives no response.

The use of these queries allowed us to conclude that the only case where
there is no termination at the infrastructure level is the one where no listeners
connected directly or indirectly to a bridge are interested in the stream.

12.6 Evaluation of the Consistency of SRP

As it was introduced in Section 12.1, consistency is an important property in
CDESs. For instance, SRP should do the reservation of resources in a consis-
tent manner if we intend to have several replicated nodes. The nodes should
have the same inputs and outputs, which cannot be guaranteed without a con-
sistent reservation of resources. This is just a simple example that illustrates
the importance of consistency, even though consistency can be required in any
distributed system.

As in Section 12.5, this analysis was not performed to demonstrate that
the distributed version of SRP does not present consistency, which is relatively
obvious once you know the protocol, but to analyze in depth the scenarios
that can cause inconsistencies and their consequences. In addition, again, this
analysis is helpful to find a solution to the problem and to have a reference to
evaluate the proposed solution.

As in the previous section, we differentiate two levels of consistency: con-
sistency for the application level and for the infrastructure level. Again, the first
one affects the nodes and, therefore, the application. The lack of consistency
at the application level can cause malfunction of some critical applications.
Some of the applications targeted by TSN require the different nodes to carry
out coordinated actions because, e.g., they may rely on active replication of
the nodes. In these applications, consistency in the communications is key to

166 12.6. Evaluation of the Consistency of SRP

guarantee the correct operation of the overall system. The first step towards
achieving consistent communications is to reserve the network resources con-
sistently. Thus, at this level, SRP should guarantee that enough listeners have
resources reserved for the communication before starting to transmit.

As before, the infrastructure level refers to the bridges of the network. As
we will see later, inconsistencies when reserving resources in bridges can cause
the waste of resources. This, in the long term, causes that streams, for which
there would be sufficient resources, cannot be declared due to the resources
reserved and wasted in some bridges.

As in the evaluation of the termination, despite the importance of consis-
tency, we found some issues in both levels even in the absence of faults. We
next present the problems detected but it is important to note that the issues
are mainly due to the fact that information related to the reservations is propa-
gated in a single direction. That is, the talker attribute transmitted by a talker
is forwarded always towards the listeners; while, when listeners and bridges
reply to a stream declaration, the information is only forwarded towards the
talker. Thus, not all the devices involved in the reservation of a stream receive
the same information. We next describe the consistency issues detected and
their effects. Section V of [14] shows and explains in more detail the queries
used.

12.6.1 Consistency at the Application Level

In SRP, resources can be reserved for a subset of listeners, even when there
are listeners willing to communicate that do not have resources to do it. In
this case, the talker only communicates to a subset of listeners, generating
an unnoticed inconsistency in the exchange of data. This means that actually
starting a stream (with some listeners) has priority over doing it consistently
(with either all or none of them). In addition, talkers cannot know which lis-
tener has enough resources and which one does not. A talker only knows if all
interested listeners have enough resources when it receives LR messages; if all
interested listeners have not enough resources when it receives LAF messages;
if no listener is interested when it does not receive any answer; or, if at least
one interested listener has enough resources when it receives LRF messages.
This limited information does not allow the talker to take intelligent decisions.
Furthermore, we have to take into account that this information can change
during the execution of the SRP mechanism e.g. it is possible for a talker to re-
ceive an LR message and then receive an LRF message. Something similar can
happen in listeners. They may be interested in the stream and have sufficient
resources, but they do not receive anything because during the transmission of

Paper E 167

the response, the route to the talker did not have enough resources.
Furthermore, even when all listeners willing to bind have enough resources

to do so, there are scenarios where consistency for the application is not guar-
anteed all the time. This can happen for two reasons, first the paths between
a talker and different listeners may differ in length and end-to-end delay and,
second, the talker starts transmitting as soon as it receives the response of
one listener ready to receive. Therefore, some listeners willing to bind to the
stream, with enough resources throughout the whole path towards the talker,
may miss the first frames transmitted by the talker. This can cause, for ex-
ample, two replicas to be in two different states so that, although from that
moment they receive the same data, they will not provide the same result.

To check the consistency for the application level, and to determine the
causes of the issues detected, we used query (Q7), which corresponds to
queries 19, 20 and 21 (reachability property) in [14], to check if there is
at least one state in which the talker is already transmitting, a listener is
interested in the stream and, from his point of view, has sufficient resources
but the route from the talker to the listener has not reserved the necessary
resources for that stream. This test shows that the talker can start transmitting
even when there are interested listeners that will not be able to receive the
stream. Moreover, it also shows that there are listeners that believe they are
going to receive the stream but never will.

Another query (Q8), which corresponds to query 22 (liveness property) in
[14], is used to verify that, even when all interested listeners can bind to the
stream, some of them may miss the first messages because the talker starts
transmitting before finishing the resource reservation. Specifically, it checks if
a talker transmitting, a listener waiting for the stream and the route not yet re-
served may lead the system to a state in which the route will never be reserved.
As the query is not satisfied we proved the inconsistency in the data received
at the beginning of the stream.

12.6.2 Consistency at the Infrastructure Level

In this work we also find out that bridges can make inconsistent decisions
regarding the reservation of resources of a stream. Specifically, in SRP it is
possible that some bridges reserve resources for a stream but other bridges in
the same route to the listener do not. This implies a waste of resources in the
bridges that reserved the resources because the listener for which they reserved
the resources is not going to receive the stream because of the bridges in the
same route that did not reserve the resources. This may not be problematic at
first, but, with an utilization close to 100%, this may cause streams, for which

168 12.7. CSRP Description

there would be sufficient resources, cannot be declared due to the resources
wasted in these bridges.

To check the consistency for the infrastructure level, and to determine
the causes of the issues detected, we used query (Q9), which corresponds to
queries 23 and 24 (reachability property) in [14], to check if there is at least
one state, after the mechanism has been executed, in which the stream is being
transmitted while the link that supplies one or more bridges is not reserved but
the links of the bridges are. This reservation distribution implies a waste of
resources in all the links reserved by the bridges affected because, as the link
that supplies them is not reserved, they are not going to receive data messages
from this stream. Finally, another query (Q10), which corresponds to query
25 (liveness property) in [14], checks if the transmission of the stream always
leads to one of all correct distributions of resource reservations. As it is not
satisfied, we can determine that incorrect distributions of resource reservations
(with waste of resources) may happen using SRP.

12.7 CSRP Description

We designed a series of solutions to deal with the drawbacks described in Sec-
tions 12.5 and 12.6. The main objective is to provide network devices with
a consistent view of the reservation of resources so that they can make rather
complex decisions within a bounded time.

A trivial solution could consist in modifying the current SRP in the follow-
ing way:

1. The talker multicasts the talker attribute instead of broadcasting it.
With this change, the network avoids sending the talker attribute
to non-interested listeners, eliminating the termination issue of the
application and infrastructure level. The problem is that it makes the
network less open and adaptive, understanding open as a network where
nodes can join or leave a stream dynamically and adaptive as a network
where stream requirements change during run-time.

2. A bridge that has decided that it has enough resources when retransmit-
ting the talker attribute cannot change this decision when it receives the
listeners’ responses. This would allow bidirectional propagation of deci-
sions without adding another round of transmissions solving the consis-
tency issue at the infrastructure level. The problem is that it can hinder
the creation of streams that attempt to be declared simultaneously and
does not prevent the waste of resources in unnecessary reservations.

Paper E 169

3. The listeners multicast the listener responses, instead of unicasting them,
conveying their ID in the response. In this way the listeners can inform
the talker, the bridges and other listeners of whether they can receive or
not, solving the consistency issue at the application level.The problem is
that listeners can flood the network with control messages because each
of them would transmit its status in multicast mode.

4. The talker, listener and bridges must make decisions deterministically
based on the information received which, in the absence of faults, will
be consistent.

Despite solving the problems detected, this solution greatly modifies the
mechanism and has several limitations. For these reasons we decided to de-
velop the following solution which is a compendium of the different solutions
proposed in [13].

The most relevant differences between this new protocol and previous pro-
posals are:

1. The listener responses convey the ID of the listeners that sent them. This
gives the talkers and bridges the necessary information to know which
listeners can receive and which not.

2. Bridges’ and listeners’ decisions can change depending on the decision
taken by the talker.

3. The talker, after a bounded time limited by a timer in it, will decide
which listener can receive the stream and which cannot based on the
information received. After this, the talker will send the result of his
decision to all the devices so that they have a consistent view of the
status of the reservations and carry out the necessary actions.

Even if this solution requires some changes in SRP, it can be implemented
in a way that non-modified devices can still work normally. For example, in
the implementation we are proposing next, listeners do not need to implement
the solution although this would imply that these listeners would not have a
consistent view of the network. Furthermore, it provides the talker the neces-
sary information to make a centralized, rather complex and bounded in time
decision which, in addition, will be sent to the rest of the network to maintain
the consistent view of the reservation of resources. Moreover, all this would be
achieved by adding only one additional broadcast transmission, the one by the
talker with the final decision, avoiding the multiple multicast transmissions of
the listeners added in the previously proposed trivial solution.

170 12.7. CSRP Description

The name of this new protocol is CSRP and its resource reservation mech-
anism is as follows:

The transmission of talker and listener attributes proceeds as in SRP, as it is
described in Section 12.3. The first modification of the protocol is found in the
transmission of listeners attributes by the bridges. Bridges receive the listener
attributes and combine them to send them to the talker. In order to accomplish
this, bridges analyze the responses received by each port and then generate
the new response that they transmit towards the talker. Whenever a bridge
receives an LR message through a port, it checks whether the port has enough
resources. If there are enough resources, the LR remains unchanged and the
port reserves the necessary resources provisionally, instead of definitely like in
SRP; otherwise, the LR becomes an LAF message. On the other hand, if the
bridge receives an LAF message the value is left unchanged and the port does
not reserve the resources. In case of concurrent requests, and this is another
change with respect to SRP, the provisional reservation is made for the first
LR or LRF message received, while the rest are transferred to a First-In, First-
Out (FIFO) list. The items in this list are only deleted when their reservation
processes are completed or when the reservation of resources is confirmed.

After processing the listener attributes, each bridge must join them to for-
ward an updated one to the talker. This process is the same as in SRP and
is described in Section 12.3. It is important to note that bridges do not wait
for the reception of all the listener attributes, but they are continuously joining
and retransmitting them as they receive new answers. In this way a bridge can
transmit an LR or LAF message and then transmit an LRF message, just like
in SRP. Nevertheless, in CSRP bridges must specify in the listener attribute
which listeners can receive and which listeners cannot. To do so, CSRP relies
on two lists, one for successful reservations and one for unsuccessful ones.
Specifically, edge bridges introduce the identifier of the node that sends the
LR or LAF message in the corresponding list and sends them embedded in
the response to the talker. Whenever a bridge receives a response from an-
other bridge, it checks the lists and updates them accordingly when joining the
responses.

The talker waits for the answers for a bounded period of time. This time
will depend on the application, topology and size of the network. Basically, it
must ensure that the response from the farthest slave has enough time to reach
the talker. This is implemented by means of a local timer in the talker which
is activated at the beginning of the transmission of the TA and expires after
the predefined time. After that time, the talker uses the lists with the nodes
identifiers to know which listeners can receive and which listeners cannot and
it decides whether to transmit the stream to all the listeners that can receive, to

Paper E 171

a subgroup or to none of them. This decision is communicated by transmitting
in broadcast mode a message called Final Decision (FD), which contains a list
of listeners that will receive the stream and listeners that will not receive the
stream.

When a bridge receives the FD message it knows which listeners must
receive the stream and which must not. In this way, bridges can lock the re-
sources or eliminate unnecessary reservations. Listeners, on the other hand,
can know whether they are subscribed to the stream or not and do not wait
indefinitely for the data transmission.

Once the FD message has been transmitted and the resource reservation
mechanism has finished, the talker starts transmitting the data stream. Finally,
as in standard SRP, once the stream has been created, the talker can delete it at
any time by means of the unadvertised stream mechanism.

12.8 CSRP Uppaal Model

The UPPAAL model of CSRP has the same topology, same templates, same
instantiations of the templates and same abstractions as the model of the stan-
dardized SRP explained in Section 12.4. To formally verify the correction of
the improved mechanism (CSRP’s resource reservation mechanism), we mod-
ified as little as possible the model shown above to include the changes pro-
posed in our solution. Again, the templates and the modifications applied to
them can be found in Section VII of [14]. The complete model files and the
files used for its verification can also be found in [14]. We next explain in an
abstract way the main changes done to the SRP model.

In the Talker template we basically eliminated the instantaneous transmis-
sion of data that occurred as soon as the speaker received an LR or LRF mes-
sage. On the other hand, we added a timer to define the waiting time for listener
responses and implement the transmission of the FD message.

In the bridge templates we implemented the reception and forwarding of
the FD message and the mechanisms to change the resource reservations based
on it.

Finally, in the Listener template we implemented the reception of the FD
message and the mechanism so that listeners know if they can receive or not. It
is important to remember that these modifications in listeners are not essential.
However, not implementing them would imply that listeners remain unsure of
whether they will receive or not until they receive any data message of the
stream.

172 12.9. Evaluation of the Termination of CSRP

12.9 Evaluation of the Termination of CSRP

We next describe the verification of CSRP from the termination point of view.
Again, we address the issues at the application and infrastructure level. To do
that, we used the same queries that proved the non-termination in SRP plus
some additional queries. These are explained in more detail in Section VIII of
[14].

Just like in SRP, if in CSRP no nodes want to bind to a stream, the talker
and bridges do not receive any listener responses. Thus, we provide termina-
tion with the timer in the talker and the FD message in the bridges, as now
both, talkers and bridges, know when to stop waiting for listener responses.

12.9.1 Termination at the Application Level

In CSRP it is still possible that the talker does not receive any response from
the listeners (see Sub-section 12.5.1). However, using the timer, the talker
always stops waiting for an answer, makes a decision based on the information
it has received and informs about it by means of the FD message to the rest
of the network. We used the UPPAAL model of CSRP to verify the behavior
of the protocol. Specifically, we check that all the nodes finish the resource
reservation process within a bounded time determined by the timer in the talker
and the distance between the talker and the listeners.

To check the termination at the application level of CSRP we used the same
three queries that we used to evaluate SRP (Q1, Q2 and Q3), which correspond
to queries 26, 27 and 28 in [14]. The results of evaluating these queries allow us
to determine that in CSRP it is still possible that the talker never receives any
response from the listeners. However, we used another query (Q11), which
corresponds to query 29 (liveness property) in [14], to evaluate whether the
talker stops waiting for a response after the timer has expired, makes a decision
based on the received information and informs about it by means of the FD
message to the other devices of the network. This query proved that CSRP
provides termination at the application level.

12.9.2 Termination at the Infrastructure Level

With this evaluation we see how bridges’ ports may not receive any listener re-
sponse. However, thanks to the FD message sent by the talker, bridges always
stop waiting for an answer and change their reserved resources based on the
talker decision. We used the UPPAAL model of SRP to verify that all bridges
finish the resource reservation process within a bounded time.

Paper E 173

Using the same queries as the ones used to evaluate SRP (Q4, Q5 and Q6),
which correspond now to queries 30 to 36, 38 to 40, 42 to 44 and 46 to 48
in [14], we found that bridges’ ports may not receive any listener response.
However, another query (Q12), which corresponds to queries 33, 37, 41, 45
and 49 (liveness property) in [14], demonstrated that, thanks to the FD mes-
sage, the bridges always stop waiting for an answer and change their reserved
resources based on the talker decision. Thus, CSRP provides termination at
the infrastructure level.

12.10 Evaluation of the Consistency of CSRP

In this section we describe the verification of CSRP from the consistency point
of view, at the application and infrastructure level. To do so, we use the same
queries that proved the inconsistency in SRP plus some additional queries.
These are explained in detail in Section IX of [14]. Nevertheless, this solution
solves all the detected consistency issues. We achieved this by centralizing the
decisions in the talker and ensuring the homogeneous propagation of informa-
tion related to the reservation of resources.

12.10.1 Consistency at the Application Level

First, note that this solution does not aim at providing resources for all the
listeners that want to bind. Instead, it aims at ensuring that all listeners know
what is the status of the reservation regardless of whether they can receive
or not. This was not guaranteed in the standard SRP but it is achieved in
CSRP thanks to the FD message. We verify the consistent view of the network.
Specifically we prove that when CSRP finishes the reservation process, all
devices know which nodes are subscribed to the stream and which are not,
including the nodes.

By using query Q7, which corresponds now to queries 50, 53 and 56 in
[14], also used to evaluate SRP, we found that in CSRP there are states where
a listener wants to bind to the stream and it thinks it can but the resources
have not been reserved. However, another query (Q13), which corresponds to
queries 51, 52, 54, 55, 57 and 58 (reachability and safety properties) in [14],
demonstrated that, thanks to the FD message, now listeners know when they
can and when they cannot receive the stream.

Finally, we used two queries (Q14 and Q15), which correspond to queries
59 and 60 (safety property) in [14], to verify the consistent view of the net-
work. These queries verify that always at the end of the reservation process

174 12.11. Conclusions

all the lists with the successful and unsuccessful reservations explained in Sec-
tion 12.7 are consistent. Therefore, we can conclude that CSRP provides con-
sistency at the application level.

12.10.2 Consistency at the Infrastructure Level

Finally, at the infrastructure level, we verify that CSRP avoids wasting re-
sources with unnecessary reservations thanks to the FD message that informs
the bridges about which listeners have been able to bind to the stream and
which listeners have not, so that the bridges can free the resources they re-
served for the listeners that cannot receive. We carry out this verification using
the CSRP UPPAAL model.

To check the consistency at the infrastructure level of CSRP we used
queries Q9 and Q10, which correspond now to queries 61, 62 and 63 in
[14], also used in the evaluation of SRP. These queries prove that, at the
infrastructure level, not only we avoid wasting resources with unnecessary
reservations but also only the appropriate reservation distributions are
generated. Moreover, we can conclude that CSRP provides consistency at the
infrastructure level.

12.11 Conclusions

The IEEE AVB TG defined a series of standards to provide Ethernet with soft-
real time capabilities. Later on, the TG broadened its scope and was renamed
to TSN. The new TG aims at providing hard real-time guarantees, flexibility of
the network configuration and fault tolerance mechanisms to Ethernet. There-
fore, the work carried out by the TSN TG is intended to enable the use of
standard Ethernet as the network technology for critical distributed embedded
systems. One of the most important projects of the TGs is SRP, as it allows to
reserve resources to provide timing guarantees and prevent frame losses.

In this work we present a model of the AVB’s distributed version of SRP in
UPPAAL. Thanks to it, we identify multiple scenarios in which SRP does not
exhibit termination nor consistency and we determine the possible adverse ef-
fects that their lack can cause. Moreover, we have proved that these properties
can be violated even in the absence of faults. Some of the problems detected
and their effects are: (i) talkers and bridges in most of the cases do not know
whether the resource reservation process is over, (ii) talkers never know which
listeners have bound to the stream and which ones have not, (iii) subscribed
listeners can miss the first data messages of the stream and (iv) some bridges
can waste resources because they don’t know if the bridges they depend on

Paper E 175

(bridges located on the route between the talker and them) have been able to
reserve resources for them.

Thus, in this work we propose an enhanced version of SRP that enforces
termination and consistency, thereby eliminating all the issues we have identi-
fied for SRP. This solution is called CSRP and not only it solves the aforemen-
tioned problems, but it also provides the nodes and bridges with enough in-
formation to make rather complex decisions about the reservation of resources
within a bounded time. For instance, now a talker can advertise a stream and
know which listeners can receive and which ones cannot, after a certain time
determined by an internal clock. Based on this information, the talker can de-
cide whether all, a subset or none of the nodes that manifest their interest in
the stream can subscribe.

Finally, we have developed a UPPAAL model of CSRP and we have used
it to verify that CSRP provides termination and consistency to the reservation
of resources in the absence of faults. Further work will be done to extend the
study of the behavior of CSRP in other scenarios and even using an exper-
imental implementation to evaluate new aspects, such as its performance in
real networks.

176 Bibliography

Bibliography

[1] IEEE Standard for Local and Metropolitan Area Networks: Media Ac-
cess Control (MAC) Bridges. IEEE Std 802.1D-2004 (Revision of IEEE
Std 802.1D-1998), pages 1–281, June 2004.

[2] IEEE Standard for Local and Metropolitan Area Networks - Virtual
Bridged Local Area Networks Amendment 12: Forwarding and Queu-
ing Enhancements for Time-Sensitive Streams. IEEE Std 802.1Qav-2009
(Amendment to IEEE Std 802.1Q-2005), pages C1–72, Jan 2009.

[3] IEEE Standard for Local and Metropolitan Area Networks—Virtual
Bridged Local Area Networks Amendment 14: Stream Reservation Pro-
tocol (SRP). IEEE Std 802.1Qat-2010 (Revision of IEEE Std 802.1Q-
2005), Sept 2010.

[4] IEEE Standard for Local and Metropolitan Area Networks - Timing and
Synchronization for Time-Sensitive Applications in Bridged Local Area
Networks. IEEE Std 802.1AS-2011, pages 1–292, March 2011.

[5] IEEE Standard for Local and Metropolitan Area Networks–Audio Video
Bridging (AVB) Systems. IEEE Std 802.1BA-2011, pages 1–45, Sept
2011.

[6] IEEE Standard for Local and Metropolitan Area Networks–Media Ac-
cess Control (MAC) Bridges and Virtual Bridges. IEEE Std 802.1Q, 2012
Edition, (Incorporating IEEE Std 802.1Q-2011, IEEE Std 802.1Qbe-
2011, IEEE Std 802.1Qbc-2011,IEEE Std 802.1Qbb-2011, IEEE Std
802.1Qaz-2011, IEEE Std 802.1Qbf-2011,IEEE Std 802.1Qbg-2012,
IEEE Std 802.1aq-2012, IEEE Std 802.1Q-2012, pages 1–1782, Dec
2012.

[7] IEEE Standard for Local and Metropolitan Area Networks–Bridges and
Bridged Networks – Amendment 31: Stream Reservation Protocol (SRP)
Enhancements and Performance Improvements. IEEE Std 802.1Qcc-
2018 (Amendment to IEEE Std 802.1Q-2018 as amended by IEEE Std
802.1Qcp-2018), pages 1–208, Oct 2018.

[8] YANG Modules. https://1.ieee802.org/yang-modules/,
2018.

[9] IEEE Audio and Video Bridging Task Group. https://1.ieee80
2.org/tsn/, April 2019.

https://1.ieee802.org/yang-modules/
https://1.ieee802.org/tsn/
https://1.ieee802.org/tsn/

Bibliography 177

[10] I. Alvarez, J. Proenza, and M. Barranco. Towards a Time Redundancy
Mechanism for Critical Frames in Time-Sensitive Networking. In Pro-
ceedings of the IEEE 22nd International Conference on Emerging Tech-
nologies and Factory Automation (ETFA 2017), January 2018.

[11] Gerd Behrmann, Alexandre David, and Kim G. Larsen. A Tutorial on
Uppaal. Springer Berlin Heidelberg, Berlin, Heidelberg, 2004.

[12] M Björklund, J Schönwälder, P Shafer, K Watsen, and R Wilton. NET-
CONF Extensions to Support the Network Management Datastore Ar-
chitecture. Technical report, RFC 8526, ISSN: 2070-1721, https:
//tools.ietf.org/html/rfc8526, 2019.

[13] D. Bujosa, I. Alvarez, D. Čavka, and J. Proenza. Analysing Termination
and Consistency in the AVB’s Stream Reservation Protocol. In Proceed-
ings of the IEEE 24th International Conference on Emerging Technolo-
gies and Factory Automation (ETFA 2019), October 2019.

[14] Daniel Bujosa, Inés Álvarez, and Julián Proenza. Description of the UP-
PAAL Models for SRP and CSRP and Verification of their Termination
and Consistency Properties. Technical report, arXiv:2007.15712 [cs.NI],
https://arxiv.org/abs/2007.15712, 2020.

[15] A. Gothard, R. Kreifeldt, and C. Turner. AVB for Automotive Use White
Paper. Technical report, AVnu Alliance, Oct 2014.

[16] M. D. Johas Teener, A. N. Fredette, C. Boiger, P. Klein, C. Gunther,
D. Olsen, and K. Stanton. Heterogeneous Networks for Audio and Video:
Using IEEE 802.1 Audio Video Bridging. Proceedings of the IEEE,
101(11):2339–2354, Nov 2013.

[17] O. Kleineberg, P. Fröhlich, and D. Heffernan. Fault-Tolerant Ethernet
Networks with Audio and Video Bridging. In ETFA2011, pages 1–8,
Sept 2011.

[18] H. Lim, D. Herrscher, and F. Chaari. Performance Comparison of IEEE
802.1Q and IEEE 802.1 AVB in an Ethernet-Based In-Vehicle Network.
In 2012 8th International Conference on Computing Technology and In-
formation Management (NCM and ICNIT), volume 1, April 2012.

[19] H. Lim, L. Völker, and D. Herrscher. Challenges in a Future IP/Ethernet-
based in-car Network for Real-Time Applications. In 2011 48th
ACM/EDAC/IEEE Design Automation Conference (DAC), pages 7–12,
June 2011.

https://tools.ietf.org/html/rfc8526
https://tools.ietf.org/html/rfc8526
https://arxiv.org/abs/2007.15712

178 Bibliography

[20] L. Lo Bello. Novel Trends in Automotive Networks: A Perspective on
Ethernet and the IEEE Audio Video Bridging. In Proceedings of the 2014
IEEE Emerging Technology and Factory Automation (ETFA), pages 1–8,
Sep. 2014.

[21] P. Meyer, T. Steinbach, F. Korf, and T. C. Schmidt. Extending IEEE
802.1 AVB with Time-Triggered Scheduling: A Simulation Study of the
Coexistence of Synchronous and Asynchronous Traffic. In 2013 IEEE
Vehicular Networking Conference, pages 47–54, Dec 2013.

[22] Jörn Migge, Josetxo Villanueva, Nicolas Navet, and Marc Boyer. Insights
on the Performance and Configuration of AVB and TSN in Automotive
Ethernet Networks. In 9th European Congress on Embedded Real Time
Software and Systems (ERTS 2018), Toulouse, France, January 2018.

[23] A. Nasrallah, A. S. Thyagaturu, Z. Alharbi, C. Wang, X. Shao,
M. Reisslein, and H. ElBakoury. Ultra-Low Latency (ULL) Net-
works: The IEEE TSN and IETF DetNet Standards and Related 5G
ULL Research. IEEE Communications Surveys Tutorials, 21(1):88–145,
Firstquarter 2019.

[24] D. Park, J. Lee, C. Park, and S. Park. New Automatic De-Registration
Method Utilizing a Timer in the IEEE802.1 TSN. In 2016 First IEEE
International Conference on Computer Communication and the Internet
(ICCCI), pages 47–51, Oct 2016.

[25] R. Queck. Analysis of Ethernet AVB for Automotive Networks using
Network Calculus. In 2012 IEEE International Conference on Vehicular
Electronics and Safety (ICVES 2012), pages 61–67, July 2012.

[26] R. Salazar, T. Godfrey, L. Winkel, N. Finn, C. Powell, B. Rolfe, and
M. Seewald. Utility Applications of Time Sensitive Networking White
Paper (D3). Technical report, IEEE, Sep 2018.

[27] S. Samii and H. Zinner. Level 5 by Layer 2: Time-Sensitive Networking
for Autonomous Vehicles. IEEE Communications Standards Magazine,
2(2):62–68, JUNE 2018.

[28] T. Steinbach, F. Korf, and T. C. Schmidt. Real-time Ethernet for Auto-
motive Applications: A Solution for Future In-Car Networks. In 2011
IEEE International Conference on Consumer Electronics -Berlin (ICCE-
Berlin), pages 216–220, Sep. 2011.

[29] S. Thangamuthu, N. Concer, P. J. L. Cuijpers, and J. J. Lukkien. Analysis
of Ethernet-switch Traffic Shapers for In-Vehicle Networking Applica-
tions. In 2015 Design, Automation Test in Europe Conference Exhibition
(DATE), pages 55–60, March 2015.

[30] M. Wollschlaeger, T. Sauter, and J. Jasperneite. The Future of Indus-
trial Communication: Automation Networks in the Era of the Inter-
net of Things and Industry 4.0. IEEE Industrial Electronics Magazine,
11(1):17–27, March 2017.

	Thesis
	Introduction
	Background
	TSN traffic classes
	TSN Clock Synchronization
	Stream Reservation Protocol

	Problem Formulation
	Legacy Ethernet-based Traffic Mapping
	TT Scheduling
	Legacy Networks Synchronization
	Distributed SRP

	State of the Art Review
	Mapping
	Scheduling
	Synchronization
	AVB SRP

	Research Methodology
	Thesis Goals and Contributions
	Research Gaps and Industry Needs
	Research Goals
	Research Contributions
	Included Papers

	Summary and Future Work
	Summary
	Future Work

	Included Papers
	Paper A LETRA: Mapping Legacy Ethernet-Based Traffic into TSN Traffic Classes.
	Introduction
	Related work
	Legacy Ethernet-based traffic model
	TSN traffic characteristics
	Proposed traffic mapping methodology
	Experiments and results
	Conclusions and Future Work

	Paper B HERMES: Heuristic Multi-queue Scheduler for TSN Time-Triggered Traffic with Zero Reception Jitter Capabilities.
	Introduction
	Related Work
	Background
	Proposed scheduling algorithm
	Evaluation of HERMES
	Conclusion and Future Work

	Paper C Clock Synchronization in Integrated TSN-EtherCAT Networks.
	Introduction
	Basics of Clock Synchronization Protocols
	Related Work
	Problem Description
	Proposed Solution
	Evaluation
	Conclusions

	Paper D Improved Clock Synchronization in TSN Networks with Legacy End-Stations.
	Introduction
	Related Work
	Background
	Problem statement
	TALESS: TSN with Legacy End-Stations Synchronization
	TALESS Validation Setup
	Simulation and experimental results
	Conclusions and Future work

	Paper E CSRP: An Enhanced Protocol for Consistent Reservation of Resources in AVB/TSN.
	Introduction
	Related Work
	SRP Overview
	SRP Uppaal Model
	Evaluation of the Termination of SRP
	Evaluation of the Consistency of SRP
	CSRP Description
	CSRP Uppaal Model
	Evaluation of the Termination of CSRP
	Evaluation of the Consistency of CSRP
	Conclusions

