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Till Lina, Billy och Frans

“Life is like riding a bicycle. To keep your balance you must keep
moving." - Albert Einstein
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Abstract

Autonomous control of mobile robots is a research topic that has received a lot
of interest. There are several challenging problems associated with autonomous
mobile robots, including low-level control, localisation, and navigation. Most
research in the past has focused on developing algorithms for three or four-
wheeled mobile robots, such as autonomous cars and differential drive robots,
which are statically stable systems. In this thesis, autonomous two-wheeled
robots are considered, such as autonomous bicycles, which are naturally unsta-
ble systems, and without proper actuation, they will lose balance and fall over.
Thus, before developing algorithms for higher-level functionality such as lo-
calisation and navigation of an autonomous bicycle, the balance of the bicycle
needs to be addressed. This is an interesting research problem as the bicycle
is a statically unstable system that has proven difficult to control, but given ad-
equate forward velocity, it is possible to balance a bicycle using only steering
actuation. Moreover, given a sufficient forward velocity, the bicycle can even
become self-stabilised.

In this thesis, the balance and trajectory tracking of an autonomous bicycle
is investigated. First, we propose an extension of previously proposed bicycle
models to capture the steering dynamics including the motor used for control-
ling the handlebar. Next, several control methods which can stabilise an au-
tonomous bicycle by actuation of the steering axis and the forward velocity of
the bicycle are developed. The controllers are compared in simulations on both
a linear and nonlinear bicycle model. The simulation evaluation proceeds with
experiments conducted on an instrumented bicycle running on a bicycle roller.
Moreover, trajectory tracking of an autonomous bicycle is addressed using a
model predictive controller approach where the reference lean angle is com-
puted at every sample interval and is tracked by the balance controller in the
inner loop. Finally, path planning in a static environment is considered where
the proposed strategy realises a smooth path that adheres to the kinematic and
dynamic constraints of the bicycle while avoiding obstacles and optimises the
number of heading changes and the path distance. The results obtained from de-
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tailed multibody simulations highlight the feasibility of the balance controller,
trajectory tracking controller, and path planner.



Sammandrag

Autonom styrning av mobila robotar är ett forskningsämne som har fått stort
intresse. Det finns flera utmanande problem förknippade med autonoma
mobila robotar, inklusive lågnivåkontroll, lokalisering och navigering. Den
mesta forskningen tidigare har fokuserat på att utveckla algoritmer för tre-
eller fyrhjuliga mobila robotar, såsom autonoma bilar och differentialdrivna
robotar, vilka är statiskt stabila system. I denna avhandling studeras autonoma
tvåhjuliga robotar, som autonoma cyklar, vilka är naturligt instabila system,
och utan korrekt reglering kommer de att tappa balansen och ramla omkull.
Innan man utvecklar algoritmer för funktionalitet på högre nivå, såsom
lokalisering och navigering av en autonom cykel, måste således balansen i
cykeln lösas. Detta är ett intressant forskningsproblem eftersom cykeln är ett
statiskt instabilt system som har visat sig vara svårt att kontrollera, men med
tillräcklig hastighet framåt är det möjligt att balansera en cykel med enbart
styret. Dessutom, givet en tillräcklig hastighet framåt, kan cykeln till och med
bli självstabiliserad.

I denna avhandling undersöks balanskontroll och banspårningen av en au-
tonom cykel ur ett regleringsperspektiv. Först föreslår vi en utökning av tidi-
gare föreslagna modelleringar av cyklar för att fånga styrdynamiken inklusive
motorn som används för att kontrollera styret. Därefter utvecklas flera regler-
metoder som kan stabilisera en autonom cykel genom aktivering av styraxeln
och hastigheten av cykeln. Regulatorerna jämförs i simuleringar på både en
linjär och olinjär cykelmodell. Simuleringsutvärderingen efterföljs av experi-
ment utförda på en instrumenterad cykel som körs på en cykelrulle. Dessutom
adresseras banspårning av en autonom cykel med hjälp av en modellpredik-
tiv reglering där referenslutningsvinkeln beräknas vid varje sampelintervall
och följs av den inre balanskontrollen. Slutligen undersöks vägplanering i en
statisk miljö där den föreslagna strategin realiserar en kontinunerlig väg som
hörsammar cykelns kinematiska och dynamiska begränsningar samtidigt som
man undviker hinder och optimerar antalet kursändringar och vägavståndet.
Resultaten som erhållits från detaljerade flerkroppssimuleringar visar genom-
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förbarheten av balanskontrollern, banspårningskontrollern och vägplaneraren.
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Chapter 1

Introduction

A bicycle is a popular means of transportation and has both health and envi-
ronmental benefits. However, bicycles are often forced to share road segments
with motorized vehicles, which places the unprotected cyclist at a higher risk of
injuries. The safety of vulnerable road users, such as cyclists and pedestrians,
can potentially be improved with the development of autonomous vehicles [1].
The vehicles are equipped with a variety of sensors for mapping the surrounding
environment and detecting and classifying other road users, including vulner-
able road users. Even though most cars are not fully autonomous yet, modern
cars are often equipped with autonomous emergency braking (AEB) systems.
When the AEB systems are evaluated by the European car safety performance
assessment program, EuroNCAP, a bicycle is placed on a moving platform and
tests are conducted using two different scenarios 1. In the first scenario, the
platform is moving in front of the vehicle, crossing its path, and the car should
brake before the collision. In the second scenario, the platform and the vehicle
are moving in the same direction and the vehicle is driving past the platform.
In both scenarios, the platform is moving in a straight line and can not cap-
ture the realistic manoeuvres of a bicycle, nor the sometimes unpredictable
behaviour of a cyclist. Thus, an autonomous bicycle that can manoeuvre real-
istically would resemble a cyclist to a larger extent compared to a bicycle on
a moving platform and provide a more realistic test environment for the devel-
opment of autonomous vehicles. Other potential areas of use for autonomous
bicycles are within message delivery service or bike-sharing system [2, 3]. A
common problem within the bike-sharing system is that the bicycles usually
end up at a few popular sites and have to be manually distributed among the
less popular sites. This is a time-consuming task that could be solved by using

1https://www.euroncap.com/en/vehicle-safety/the-ratings-explained/vulnerable-road-user-
vru-protection/aeb-cyclist/

3

https://www.euroncap.com/en/vehicle-safety/the-ratings-explained/vulnerable-road-user-vru-protection/aeb-cyclist/
https://www.euroncap.com/en/vehicle-safety/the-ratings-explained/vulnerable-road-user-vru-protection/aeb-cyclist/
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autonomous bicycles which could distribute themselves, similar to what has
already been proposed for autonomous scooters [4]. However, an autonomous
bicycle that is only used at the test tracks is not restricted by the same rules
and regulations as an autonomous bicycle in an urban environment would be,
simplifying the problem.

The bicycle is an interesting vehicle that has been subject to research for
more than a century [5]. On the one hand, a bicycle standing still is similar
to an inverted pendulum and will fall over, making it a statically unstable sys-
tem. On the other hand, given enough forward speed, the bicycle becomes
self-stabilising. Thus, it is a dynamically stable system. Moreover, the bicy-
cle is a non-minimum phase system at low velocities, thus it has a zero in the
right half of the complex plane, which makes it more difficult to control from a
control-theoretic point of view. Nevertheless, numerous controllers have been
proposed for balancing an autonomous bicycle, but only a handful of the pro-
posed strategies have been evaluated in real-life experiments.

In this licentiate thesis, the development and control design of an
autonomous bicycle is investigated. An autonomous bicycle is similar to
other wheeled robots such as cars and differential drive robots. However,
a fundamental difference is that the bicycle is a statically unstable system,
and without proper actuation, it will fall over. Therefore, a controller for
stabilising a bicycle is investigated, and later evaluated and compared to
different control methods including Proportional-Integral-Derivative (PID)
controller, Linear Quadratic Regulator (LQR) and a Fuzzy controller, in
both simulations and experiments conducted on an instrumented bicycle.
Moreover, both linear and nonlinear models of a bicycle are considered in the
thesis and we investigate how the models differ from each other and also how
the dynamic models resemble the dynamics of a real instrumented bicycle.
We extend previously proposed bicycle models with a steering step response
matching procedure to capture the main dynamics of the steering system,
including the DC motor used for controlling the handlebar. Moreover, by
utilising a linear model and a balance controller, we formulate a solution
for the trajectory tracking problem for an autonomous bicycle. The balance
controller is incorporated into a bicycle model, which is used to formulate
a Model Predictive Controller (MPC) for tracking a predefined reference
path. Finally, the path planning problem for vehicles with non-holonomic
constraints is considered. Techniques including grid searching methods,
sampled-based methods, and hybrid path planning methods are used as inputs
to an optimisation problem for smoothing the path while avoiding obstacles
and adhering to the kinematic constraints of a bicycle. An initial path planned
by Theta∗ and optimised using Time Elastic Bands (TEB) shows the most
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promising results and the planned path is tracked using the MPC while the
balance of the bicycle is controlled by a PID, highlighting the feasibility of
the proposed method.

The rest of the thesis is organised as follows. Background on bicycle dy-
namics and modelling and a brief introduction to human control of a bicycle
is given in Chapter 2. In Chapter 3 the related work is presented. Next, an
overview of the conducted research is given in Chapter 4 which includes the
problem formulation and the research method. Chapter 5 presents the research
contributions of the thesis and a summary of the included papers. Finally, the
thesis is concluded and future work is presented in Chapter 6.





Chapter 2

Background

The bicycle is a naturally unstable system. To develop and evaluate different
control schemes for stabilisation, motion planning, and tracking for such a sys-
tem it is often very beneficial and time-saving to use a model of the system. In
this chapter, different bicycle models found in the literature are presented first.
Next, some background on rider control of a bicycle is given which is important
for understanding how a controller for a riderless bicycle can be developed.

2.1 Model

In the late 19th century Francis Whipple [6] and Emmanuel Carvallo [7], ap-
parently independent of each other [8], derived equations for the dynamics of
a bicycle. The bicycle is modelled with two wheels, a frame and a front fork
with handlebars, each with an associated mass and inertia. The joint friction
between the four rigid parts is neglected, also the effect of pedals, brakes, chains
and other peripherals is disregarded. The contact between the wheels and the
ground is modelled as a point contact, thus assuming the wheels to be thin.
The friction between the ground and the wheels is neglected and the wheels
are assumed to roll without side or longitudinal slip, i.e non-holonomic con-
straints. The rider is assumed to be a rigid part of the mainframe and thus
follows the lean angle and velocity of the frame. Thus, for a riderless bicycle,
the same model can be used by simply reducing the mass of the main frame.
By linearising around small lean and steering angles and assuming a constant
velocity, the model presented in the work of Mejiard et al. [5] is obtained as:

𝐌𝐪̈(𝑡) + 𝑣(𝑡)𝐂1𝐪̇(𝑡) + [𝑔𝐊0 + 𝑣2(𝑡)𝐊2]𝐪(𝑡) = 𝐟 (𝑡), (2.1)
where 𝐪 = [𝜑(𝑡), 𝛿(𝑡)]⊤ are the lean angle and steering angle respectively, the
symmetric invertible matrix 𝐌 represents the inertia and mass properties of the

7



8 2.1. Model

bicycle. The damping matrix is denoted 𝐂 and is proportional to the forward
velocity 𝑣. The stiffness matrix is made up of a constant part 𝐊0 and one part,
𝐊2, which is proportional to the square of the forward velocity. The input,
𝐟 (𝑡) = [𝜏𝜑(𝑡), 𝜏𝛿(𝑡)]⊤ are the lean torque and the torque applied to the handlebar
respectively. Given this fourth-order model, known as the Whipple model, it is
possible to form its characteristic fourth-degree polynomial:

det(𝐌𝜆2 + 𝑣𝐂1𝜆 + 𝑔𝐊0 + 𝑣2𝐊2) = 0, (2.2)
which can be used to estimate the region of self-stability of bicycles [5]. In
certain velocity ranges, depending on the physical and geometric parameters
of a bicycle, all the real parts of the Eigenvalues, 𝜆, in (2.2) become negative.
In these velocity ranges, the system is stable, thus the bicycle can balance on
its own. In Figure 2.1 the real part of the Eigenvalues are varying with the
velocity, and in between the so-called weave speed (𝑣𝑤), and capsize speed
(𝑣𝑐) all real parts are less than zero. To compute these Eigenvalues JBike61 is
used, which requires 25 physical parameters to be measured and estimated on a
bicycle. The parameters used to compute the velocity ranges in Figure 2.1 are
measured from the instrumented bicycle used in papers A and B.

The characteristic polynomials in (2.2) were also used to experimentally
validate the Whipple model in the work of Kooijman et al. [9]. With sensors
attached to the bicycle the roll and yaw rate, steering angle, and velocity of
the bicycle were measured. A human ran beside the bicycle to adequate speed
and then released it into free coasting. When the human released the bicycle,
he also perturbed the bicycle’s roll angle. From the measurements, the Eigen-
values were extracted using curve fitting and compared to the Eigenvalues of
the characteristic polynomial. In velocities between 3 and 6m/s the model and
experimental data are similar, which suggests that the model is a good approx-
imation of a real bicycle in this velocity span. In lower velocities, they found it
difficult to get quality measures as the bicycle were too unstable at those speeds.

A number of extensions have been proposed for the Whipple model, for
example, Plöchl et al. added a passive rider, frame compliance and lateral slip-
ping tyres, where the lean angle of the rider was added as an additional degree
of freedom to the model [10]. In the work of Schwab et al. [11] two passive
rider models, with different postures, were investigated. It was shown that the
posture of the rider impacts the controllability and the self-stability of the bi-
cycle. The results also highlight the fact that it is much easier to control the
bicycle using only steering actuation compared to upper body motions.

1http://ruina.tam.cornell.edu/research/topics/bicycle_
mechanics/JBike6_web_folder/index.htm

http://ruina.tam.cornell.edu/research/topics/bicycle_mechanics/JBike6_web_folder/index.htm
http://ruina.tam.cornell.edu/research/topics/bicycle_mechanics/JBike6_web_folder/index.htm
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Figure 2.1: The Eigenvalues of the linearised Whipple model change with respect
to the forward velocity. Between the weave speed (𝑣𝑤) and capsize speed (𝑣𝑐) all
Eigenvalues have a negative real part, and the bicycle is self-stabilised.

The Whipple model is complex and to use it for modelling a physical bi-
cycle there are 25 parameters to be measured or estimated [12, 9]. Simpler
models require in general fewer physical parameters, at the cost of modelling
accuracy. For example, the bicycle model presented in the work of Getz and
Marsden [13, 14] only requires the vertical, (ℎ), and horizontal position, (𝑎),
of the centre of mass with respect to the rear wheel, the wheelbase (𝑏) and the
total mass of the bicycle (𝑚), lumped together in a point mass at the centre of
mass (𝐺), see Figure 2.2. In addition to the assumptions made in the Whipple
model, this model also assumes negligible width, radii and inertial moments
of the wheels. Furthermore. it also makes the assumption that the bicycle
possesses zero trail which means that the steering axis is perpendicular to the
ground plane, i.e 𝜆 = 0 in Figure 2.2. The control input for balance is the steer-
ing velocity, 𝛿̇ in contrast to the steering torque which is the control input to the
Whipple model.

A similar model as the one presented in the work of Getz and Marsden, is
found in the work of Limebeer and Sharp [15], where they instead use the steer-
ing angle, 𝛿, as control input for balance. An advantage of using the steering
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position or the steering velocity as a control input, as compared to the steer-
ing torque, is that the steer dynamics can be neglected which simplifies the
model [16]. The roll dynamics of Getz bicycle model are:

ℎ𝜑̈ = 𝑔 sin(𝜑) −
(
(1 − ℎ𝜎 sin(𝜑))𝜎𝑣2 + 𝑏𝜓̈

) (2.3)
where 𝑔 = 9.81𝑚∕𝑠2 is the approximated acceleration due to gravity, 𝜎 is the
curvature of the path and is defined as

𝜎 = 1
𝑅

= tan(𝛿)
𝑏

, (2.4)

and 𝜓 is the yaw angle of the bicycle, obtained through

𝜓̇ = 𝑣
tan(𝛿)
𝑏

= 𝑣𝜎. (2.5)

This yaw angle computation is also frequently used for approximating the ori-
entation of a four-wheeled vehicle by exploiting the fact that the vehicle is sym-
metric around its x-axis. However, instead of computing the orientation with
respect to the rear wheel as in (2.5) it is common to originate the yaw angle es-
timation from the centre of gravity instead [17]. This approximation of the cur-
vature, and in extension the yaw angle, is valid as long as the roll angle is kept
small, which is true in the case of a car, but not for bicycles and motorcycles.
By including the roll angle in the curvature computation [15], equation (2.5)
becomes:

𝜓̇ = 𝑣
tan(𝛿)
𝑏 cos(𝜑)

(2.6)

which is defined for all practical lean angles, i.e |𝜑| < 𝜋∕2.
In the work of Yi et al. [18, 19] a model of a motorcycle is presented which

is an extension of the Getz model. As bicycles and motorcycles share many
characteristics such as under-actuation, statically unstable, two inline wheels
as well as numerous geometrical similarities, the model by Yi has successfully
been used in bicycle research as well [20, 21]. An essential difference between
the models is that the model proposed by Getz assumes that the steering axis is
vertical, i.e a caster angle 𝜆 = 0. The model proposed by Yi considers the case
when 𝜆 ≠ 0 which provides a trail 𝑐 ≠ 0 to the bicycle. This extension offers a
more realistic model of a bicycle as most bicycles possess a positive trail, even
though it is not necessary for the self-stabilisation of a bicycle [8]. The caster
angle will also have an impact on the orientation (𝜓) and in extension the (𝑥, 𝑦)
position of the bicycle in the world frame which can be computed using the
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Figure 2.2: A bicycle riding on a flat horizontal plane.

following kinematic model:
𝑥̇ =𝑣𝑥 cos(𝜓) (2.7a)
𝑦̇ =𝑣𝑥 sin(𝜓) (2.7b)
𝜓̇ =

𝑣𝑥 tan(𝛽)
𝑏

(2.7c)

where 𝑣𝑥 is the forward velocity of the rear wheel, and 𝛽 is the effective steering
angle at the ground:

𝛽 = arctan
(
tan(𝛿) sin(𝜆)

cos(𝜑)

)
. (2.8)

As a consequence of the non-zero caster angle, the roll dynamics become:

ℎ2𝜑̈ = 𝑔(ℎ sin(𝜑) + 𝑐𝑎 sin(𝜆)
𝑏

𝜎 cos(𝜑)) − (1 − ℎ𝜎
𝑏

sin(𝜑))ℎ𝜎
𝑏

cos(𝜑)𝑣2𝑥

− 𝑎ℎ𝜎
𝑏

cos(𝜑)𝑣̇𝑥 −
𝑎ℎ
𝑏

cos(𝜑)𝑣𝑥𝜔𝜎 .
(2.9)

where 𝜔𝜎 is the effective steering angular velocity.
On the one hand, the Getz model is a simple model which is straightfor-

ward but neglects important aspects of the complex dynamics of a bicycle. On
the other hand, the more elaborated model by Yi, and later by Zhang and Yi,
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is slightly more complicated but has been proven successful for the develop-
ment of balance controllers [20, 22], for path tracking [18], and recently also
for localisation [21]. The Whipple model has mainly been used for investiga-
tion of rider and bicycle stability [23, 9], but also to develop controllers for
autonomous bicycles [24].

Numerous nonlinear models have also been proposed in the literature in-
cluding analytic models [25] and multibody dynamics software models [24].
Even though a model often simplifies the process of designing a control scheme,
it is also possible to develop successful balance controllers for a bicycle with-
out any model using for example reinforcement learning [26]. The research
on the modelling of bicycle dynamics stretches over more than a decade and
a comprehensive survey of it is out of scope for this thesis. Instead, the inter-
ested reader is referred to [5, 27, 28] for a more detailed discussion of dynamic
models of two-wheeled vehicles.

2.2 Human Control

With a combination of upper body lean, forward velocity and actuation of the
handlebar a human steers into the fall of the bicycle to maintain balance. The
upper body motion only has a small impact on balance, as revealed in the work
of Kooijman [23] and later by Moore [29] using an in-depth motion capture
analysis. The upper body motions were only visible at pedalling frequencies
and hypothesized to be a reaction of pedalling and not crucial for balancing
a bicycle. This was also evident in the work of Zhang et al. where a bicycle
equipped with a flywheel was ridden by a human [22]. The flywheel was used to
produce random lean torque disturbance on the bicycle without the awareness
of the rider. They noticed that the rider responded to these random perturba-
tions by actuation of the handlebar for the most part. This result agrees with the
results from Kooijman and Moore which conclude that the handlebar motion
is the preliminary control input for balancing and performing normal manoeu-
vres, even though at low speeds knee movements also play an important role.
Thus, for stabilisation of a riderless bicycle riding at adequate forward speed,
it is enough to use steering actuation.

Furthermore, to initiate a turn to the left, a small counter-steer to the right
is first performed by the rider [30]. The small counter-steer to the right makes
the bicycle lean to the left, and when the handlebar is turned left the bicycle
continues to the left while maintaining balance. This is a fact that is not known
by the common rider, and most people are performing it unconsciously. In
the words of Mont Hubbard "Everybody knows how to ride a bike, but nobody
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knows how we ride bikes" [31]. For a comprehensive survey on rider control,
the reader is referred to the survey by Kooijman and Schwab [30].





Chapter 3

Related Work

In this chapter, previous work focusing on balancing a bicycle is presented first.
This is followed by a section on trajectory tracking for a riderless bicycle, a topic
that has received less attention compared to balance control, and the proposed
solutions are usually restricted to simulations. At the end of the chapter, path
planning of autonomous bicycles is discussed.

3.1 Balance controller

To balance a riderless bicycle a wide range of control approaches has been
used, ranging from classic control methods such as the PID controller [32, 33],
to more sophisticated methods such as Active Disturbance Rejection Controller
(ACDR) [24] and fuzzy controller [34]. However, it is not only the control ap-
proaches that differ but also the actuation. Typically, there are three different
approaches. The first approach is to attach a DC motor to the steering axis
and use the regulation of the handlebar. This approach relies on the concept
of steering the bicycle into the fall, similar to how a human balances a bicycle
as discussed in Section 2.2. A second approach is to mount a flywheel or a
motor-driven inverted pendulum on the bicycle and regulate the lean angle of
the bicycle directly, similar to a human locking the handlebar in place and bal-
ancing solely by upper body motion. Finally, as a third option, a combination
of the two former approaches can be used. Regardless of the actuation method,
all these three approaches rely on sensing the roll angle of the bicycle. This is
commonly accomplished by an Inertial Measurement Unit (IMU) or an Atti-
tude and Heading Reference System (AHRS), but successful experiments have
also been reported where a laser beam was utilised to compute the lean angle
of a stationary bicycle [35]. However, such an approach is difficult to realise
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outside a laboratory environment.
In 2005 Tanaka and Murakami presented experimental results from bal-

ancing a bicycle using only actuation of the forward velocity and the handle-
bar [32]. The error between the sensed lean angle and a reference of zero was
fed to a PD controller which controlled the handlebar. The system was first eval-
uated in simulations, and then in experiments on a bicycle running on a bicycle
roller. Actuation of the handlebar for balancing a bicycle was also used in the
work of He et al. [20]. In their work, both experimental and simulation results
of balancing a bicycle using feedback and feedforward control were presented.
The experiments were conducted on an ordinary-sized bicycle where right and
left turns were commanded to the bicycle through a radio controller. To change
the heading of the bicycle, the lean angle and lean rates references were altered,
which in extension adjusts the steering angle. The controller was designed us-
ing the model presented by Yi [18], linearised around its equilibrium and with
a constant velocity. Nevertheless, using a lookup table for several different
velocities the control parameters could vary with the velocity. However, it is
not clear from the paper how the experiments were conducted and if varying
velocities were considered in one experiment, or if several experiments were
conducted where a different constant velocity was used for each experiment.

Defoort and Murakami relied on nonlinear control techniques for stabilis-
ing a bicycle [36]. More specifically, a second-order Sliding Mode Controller
(SMC) in combination with a disturbance observer was used to balance the
bicycle in both simulation and experiments by actuation of the handlebar. A
comparison between the SMC with and without the disturbance observer, as
well as a PD controller with the disturbance observer was conducted in sim-
ulation on a nonlinear bicycle model. The results from the simulation clearly
show that the SMC with disturbance observer converges faster to the desired
lean angle compared to the other two controllers. The same bicycle and similar
experimental setup as in the work of Tanaka and Murakami [32] were utilised to
evaluate the proposed solution. It was shown that the controller could balance
the bicycle at several different velocities, ranging from 0.4 to 3m/s.

Baquero-Suárez et al. [24] used an active disturbance rejection controller to
stabilise an ordinary-sized bicycle equipped with actuators for controlling the
rear wheel velocity and the steering torque. By computing the characteristic
equation of the Whipple model (2.2), similar analyses as in Figure 2.1 were
conducted to investigate the velocity range for self-stabilising. However, it is
questionable how accurate such a velocity analysis is since the self-stabilisation
range assumes self-stabilisation without any external actuation of the handle-
bar. Obviously, a servo motor attached to the handlebar as in the case of their
bicycle will violate this assumption. An analysis of the zeros of the system
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from the steering torque to the lean angle was also performed. This analysis
revealed that the system becomes a non-minimum phase, and is much more
difficult to control, at velocities below 𝑣𝑙 = 0.78m/s and therefore the con-
troller was designed for velocities higher than 𝑣𝑙. The control strategy was first
evaluated in simulation on a detailed CAD model of their bicycle, imported to
Adams View and controlled through co-simulation with Matlab. Next, exper-
iments were conducted where both a constant velocity and a velocity profile
between 2.3 and 3.1m/s were considered. The results clearly show that the bi-
cycle could balance in both simulation and on straight asphalts tracks under
varying forward velocities, but with noticeable oscillation in both the lean and
steering angles in experiments. An ADRC scheme was also utilised in [37] to
balance a bicycle in simulation. An Extended State Observer (ESO) was de-
signed to estimate the uncertainties of the system such as unmeasured states,
physical parameters and unmodeled dynamics. Based on the properties of the
ESO, a feedback linearization control law was proposed to control the steering
angle. The system was evaluated in a co-simulation between V-rep and Matlab
and the outcome shows that the ESO was able to estimate the uncertainties, and
the controller was able to balance the bicycle at several different velocities.

The bicycle is one of the most energy-efficient systems for transporta-
tion [33], though, the energy consumption of the control algorithms for
riderless bicycles is rarely considered. In the work of Rodriguez-Rosa [38]
an adaptive PI control scheme was proposed to address the issue of energy
consumption. The steering angle was considered as the control signal. The
integral and proportional gain of the PI controller was optimised with respect
to energy consumption, steady-state error, settling time, and disturbance
rejection. Furthermore, as the velocity was changing, so were the gains. The
control energy was computed as the sum of the squared input signal. Not
only does the bicycle model stabilise in simulation, but the adaptive controller
consumes significantly less energy compared to a PI controller which had the
same gains for all velocities.

Instead of mounting actuators and sensors to a bicycle, Huang et al. used a
humanoid to pedal, steer, and in extension balance their miniature bicycle [39].
The bias in the roll angle measurements was estimated using an online estima-
tor and used in an LQR with integral action to balance the bicycle. To model
the system a linearised point mass model was utilised, similar to the one pro-
posed by Åström et al. [40]. By inverse kinematics, the humanoid could apply
the commanded steering angle and forward speed to the bicycle. Moreover,
a weight was attached to the right side of the handlebar with the purpose of
disturbing the system in experiments. To evaluate the performance of the pro-
posed controller, it was compared to a PD controller. It is evident from the



18 3.1. Balance controller

results that the proposed controller was superior compared to the PD controller
in straight-line balancing when the disturbance was present. This is not sur-
prising, as the PD controller is lacking an integral action that is efficient for
steady-state tracking, additionally, the biased lean angle measurements were
used when the PD controller was evaluated. An extension of their work can
be found in [41] where the proposed controller was shown to be superior to a
full-state feedback controller without the estimator.

For a human, mastering the balance of the bicycle is typically learnt by per-
forming numerous less successful attempts. A similar approach can be used for
balancing a riderless bicycle, using reinforcement learning. Such an approach
was used by Tuyen and Chung [26], where a nonlinear model of a bicycle was
stabilized in simulation. The Deep Deterministic Policy Gradient (DDPG) [42]
algorithm was used for learning how to balance the bicycle using steering ac-
tuation. Three different reward functions were considered, one where the agent
was rewarded if the lean angle of the bicycle was kept close to the equilibrium
for a full trial, which lasted for 60 seconds. The two other reward functions
considered a weighting between the lean angle, rate and acceleration and these
reward functions converge to a solution much faster compared to the function
which only considered the lean angle. To evaluate the system, the nonlinear
bicycle model in [43] was utilised. A LEGO bicycle was considered for further
evaluation, however, the limited computational power of the hardware that was
mounted on the bicycle was found to be insufficient for this control algorithm.

As mentioned before, another approach for stabilisation of a bicycle is by
sole actuation of the lean angle, for example by using a moving mass or a fly-
wheel. On the one hand, both these approaches share the advantage of being
able to balance at zero velocity [44]. On the other hand, the approaches strug-
gle to balance at higher velocities [20]. Nevertheless, balancing a bicycle using
a spinning flywheel has shown several successful results [22, 45, 46] or using a
moving mass as proposed by Keo et al. [47]. To control the moving mass, and in
extension balance the bicycle, an output zeroing controller was utilised and the
system was evaluated in simulations. However, in 2011, Keo et al. concluded
that a flywheel balancer was superior to the moving mass in terms of balancing
a bicycle [44]. By spinning the flywheel, a torque is generated to keep the bicy-
cle stabilised. To control the direction of the torque, the flywheel is often used
in a Control Moment Gyroscope (CMG) where one or more motorized gimbals
are used to control the angle of the flywheel. Thanh et al. [45] used a CMG to
maintain the balance of a bicycle at zero forward speed. To control the CMG a
2∕∞ controller was optimised using a Particle Swarm Optimization (PSO)
algorithm. The controller was compared to another 2∕∞ optimised using
the Genetic Algorithm, as well as a traditional PD controller. They concluded
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that the 2∕∞ controller optimised using PSO shows better performance in
terms of step response in simulation and also in terms of balancing the bicycle
in experiments. Furthermore, a fuzzy sliding mode controller was used in the
work of Hsieh et al. [46] to balance a stationary bicycle equipped with a CMG.
The bicycle managed to balance even though it was subject to lateral forces
during experiments.

Finally, a third alternative for balancing a riderless bicycle is to use a com-
bination of actuation on the lean and steering angle. By using the lean torque
actuation as the main actuator in low velocities and the steering actuation in
high velocities the bicycle can balance in a wide range of velocities as shown in
simulations by Garcia et al. [48]. Moreover, experimental results were reported
in the work of Wang et al. [49], where a flywheel was used for the stationary
balance of the bicycle and up till 𝑣 = 1.2m/s. At 𝑣 = 1.2m/s steering actua-
tion was used for balancing the bicycle. From the results, it is clear that it was
more difficult to maintain balance in the transfer from moving to stationary,
compared to going from stationary to moving.

3.2 Trajectory tracking

Trajectory tracking of an autonomous bicycle is more complex than for many
other wheeled robots. This is mainly due to the fact that a bicycle requires
active actuation to maintain stability. Moreover, if the autonomous bicycle is
stabilised through steering actuation, it is not straightforward to track the de-
sired path using the steering input as well. Instead, a desired lean angle can be
used which an inner balance controller can track. Such a solution is proposed in
the work of Dao and Chen [50] where a multi-loop control was used to realise
both balance and trajectory tracking. In the inner loop, an SMC was used to
balance the bicycle and realise tracking of a desired lean angle. The outer loop
consists of a fuzzy logic controller with gain scheduling and integral action.
Small tracking errors were reported when the proposed solution was evaluated
in simulation. Baquero-Suárez et al. [24] also considered an extension of their
ADRC approach to realise trajectory tracking. They established a mathemat-
ical relationship between the lean angle of the bicycle and its yaw angle, thus
by manipulating the desired lean angle they could track the desired yaw an-
gle. The solution was evaluated in multi-body simulations for low velocities,
1.5m/s, and only for wide circular paths and straights. Shafiei and Emami in-
stead use a numerical approach to establish a relationship between the desired
yaw angle and the reference lean angle in their work [51]. First, an inner control
law is derived which stabilises the bicycle by using the steering input to track
a desired lean angle. Next, a relationship between the desired lean angle and
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the steady-state steering angle is numerically established by means of numer-
ous simulations using different desired lean angles at varying velocities. This
relationship is fitted with a fifth-order polynomial and is then used to compute
the desired roll angle needed for tracking a reference path. The presented result
from simulations shows good tracking performance while maintaining balance.

A nonlinear control approach for trajectory tracking is proposed by Yi et
al. [18] for a motorcycle. As a motorcycle is considered instead of a bicycle, the
forward velocity was higher. The controller was evaluated in numerical simula-
tions with noise on the measured variables. The velocity ranges approximately
from 5m/s to 14m/s. Because of the high velocities and wide curves, the re-
ported steering angles were small, around 2◦. Thus, it is not clear if it would be
possible to apply such a controller for an autonomous bicycle which in general
operates at lower velocities. A nonlinear controller was also used in the work
of Turnwald et al. [52], where a passivity-based trajectory tracking controller
was designed. The reported results from the simulation were promising and
the controller was also planned to be used in experiments [53], but because of
problems with sensor accuracy, it is yet to be evaluated in experiments. An
asymptotic trajectory tracking approach for autonomous bicycles is presented
by Cui et al. [3]. An optimal control algorithm is used to balance the bicy-
cle and backstepping is utilised for trajectory tracking. A comparison is made
with the external-internal convertible (EIC) approach of Getz [54], and it is
highlighted that the EIC approach manages to approximately track the desired
trajectory, while the proposed method can asymptotically track the trajectory
when evaluated on an analytic model of a bicycle. Experimental results of a tra-
jectory tracking controller for an autonomous bicycle are reported in the work
of Wang et al. [55]. A feedback controller is designed by examining the EIC
structure of the autonomous bicycle dynamics, inspired by the previous work
of Getz. The autonomous bicycle is equipped with three actuators, one propul-
sion motor, one steering motor, and a gyro balancer for direct regulation of the
lean angle. Two controllers are compared, in both controllers the gyro balancer
is used for lower velocities and stationary balance of the bicycle. However, the
first controller only uses steering actuation at higher velocities to track a given
trajectory, while the second controller also incorporates the gyro balancer to
improve the tracking performance at higher velocities. From the results, it is
suggested that the second controller is superior to the first one. The results are
also compared to a human riding a bicycle, and the results are similar in terms
of tracking performance and control.
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3.3 Path planning

Path planning deals with the problem of planning a feasible route on a map
from an initial point to a goal point. By discretising the map into cells graph
searching algorithms such as Dijkstra’s [56], A∗ [57] or Theta∗ [58] can be
used to find a feasible path. Each cell represents either free space or occupied
space. It is also possible to use a sample-based path-searching algorithm, such
as Rapidly Exploring Random Tree (RRT) [59], and hybrid methods, such as
Hybrid A∗ [60], which does not require a discretized map. Hybrid A∗ relies
on a set of manoeuvres that are constrained by the minimum turning radius
of the vehicle. Another advantage of using Hybrid A∗ is the fact that it can
plan smooth paths which adhere to the non-holonomic constraints of a bicycle.
If grid search methods such as A∗ or Theta∗ are used, the path needs to be
smoothed using methods such as path optimisation, polynomial interpolation,
B-splines or Dubin’s Curves [61].

In the work of von Wissel and Nikoukhah [62] an approach similar to Hy-
brid A∗ was used. A set of bicycle manoeuvres were pre-computed, and at the
end of each manoeuvre, or path segment, a neutral position of the bicycle was
considered with zero lean and steering angle. By enforcing this constraint, the
case of turning right when leaning to the left can be avoided as this would make
the bicycle lose balance. The result from numerical simulations shows that the
proposed solution can plan a path, feasible for a bicycle, through a map with
static obstacles.

Yuan et al. also focused on planning trajectories for a bicycle in their
work [63]. The trajectory is created from a curve between two points in the XY
plane, satisfying initial and final constraints on the yaw angle and the x and y
position of the bicycle on the plane. Furthermore, the curve is parameterized
by two third-order polynomials, thus there is one parameter in each polynomial
that can be chosen freely to optimise the trajectory with respect to some quan-
tity. In their work, they focus on minimising the roll angle of the bicycle, and
the two parameters of the polynomials are found using PSO. However, they do
not consider any obstacles when the proposed method is evaluated in simula-
tion. This shortcoming is addressed in later work by Yuan et al. [64] where
the optimisation is now solved by means of the Gauss pseudospectral method,
where the cost function is the square of the roll angle. From the simulation re-
sults, it is clear that the proposed method can plan a smooth path while avoiding
obstacles, however, there seem to be no constraints on the minimum turning ra-
dius, thus the planned paths sometimes have very narrow curves which would
be difficult to track with an autonomous bicycle. Moreover, no simulation or
experimental results are reported where a bicycle follows the planned path, thus
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the proposed strategy is yet to be validated. Moreover, to compute the curves,
the Getz bicycle mode [13] was used. However, as discussed previously, this
model does not include the trail of the bicycle which is important for plan-
ning realistic paths for bicycles, as revealed in the work of Turnwald and Liu
when they investigated motion planning for an autonomous bicycle [53]. In
their work, they compare motion planning using models with and without trail.
To compute the desired motion for a specific trajectory, the models are used to
find the reference lean angle, steering angle and forward velocity throughout
the trajectory. For evaluation, the resulting motion sets are tested on an instru-
mented bicycle. They conclude that the trailed model produces more natural
motions compared to the model that assumes a vertical steering axis. However,
there is no ground truth reported in their experiment which makes it difficult to
evaluate how the different models differ from the desired trajectory.

Obstacle detection and avoidance for autonomous bicycles are considered
in the work of Zhao et al. [65]. To detect obstacles, a Lidar is mounted in
the front of the bicycle, replacing the position of the headlight. Moreover, an
obstacle avoidance strategy consisting of four phases is used to avoid static
obstacles. In the first phase, the bicycle tracks a global path. If an obstacle is
detected the second phase is initialised, and the bicycle either turns right or left
around the obstacle. The choice of direction is not only based on the position of
the obstacle with respect to the bicycle but the current roll angle of the bicycle
is also taken into consideration. This creates a smoother and more stable route
for the bicycle. In phase three, the bicycle is passing the obstacle. Finally, in
phase four, after passing the obstacle, the global path is tracked once again.
The proposed solution is experimentally evaluated on an instrumented bicycle
and successful results are reported.

The research presented in this thesis considers the balancing problem of an
autonomous bicycle, the trajectory tracking problem, and path planning. Many
of the previously proposed balance controllers are only evaluated in simula-
tions and there are rarely any comparisons made to other control algorithms.
Thus, we perform a comparative comparison of different control methods in
simulations and experiments. Moreover, previous contributions in trajectory
tracking for an autonomous bicycle have considered simplified paths. In this
thesis, the trajectory tracking controller is evaluated using narrow curves and
different velocities in detailed multibody simulations. Furthermore, we pro-
pose a path planning strategy that results in smooth paths that adhere to the
non-holonomic constraints and the minimum turning radius of the bicycle. Fi-
nally, the instrumented bicycle used in this thesis does not consider direct lean
angle regulation, instead, the actuation of the handlebar is used in combination
with forward speed.
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Research Overview

In this chapter, the problem formulation is presented and a hypothesis is for-
mulated. From the hypothesis, four research questions are defined. Next, the
research method used in the thesis is presented with details of the experimen-
tal setup and simulation software. The chapter ends with a discussion on the
problem of generalising the presented results.

4.1 Problem Formulation

An essential difference between an autonomous bicycle and many other au-
tonomous wheeled vehicles is the fact that the bicycle needs actuation to main-
tain stability. With its two in-line wheels, it is a naturally unstable system.
Therefore, the design and functionality of the low-level controller are prerequi-
sites for any higher-level controller to function properly. At the same time, the
performance of the low-level balance controller is dependent on how the system
is modelled, i.e what assumptions are made, model accuracy etc. Moreover, an
autonomous bicycle should not only be able to balance, but it is also important
to investigate frameworks and algorithms for localisation, trajectory tracking,
and path planning and how they can be adapted to an autonomous bicycle. A
hypothesis is formulated as:

Hypothesis: By extending previous bicycle models, a controller
can be designed for balancing an instrumented bicycle in real-time
by actuation of the rear wheel and steering axis, meanwhile follow-
ing a reference trajectory that is planned in a realistic environment
with static obstacles.

23
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From the hypothesis and the problem formulation, the following research ques-
tions (RQ) are defined:

RQ 1. How can an autonomous bicycle’s dynamics and kinematics character-
istics be modelled, and how can the models be used for control design?

The first research question investigates what models have been pro-
posed in the literature for modelling the main dynamics and kinemat-
ics of a bicycle, and the possible benefits and limitations of the models.
It also investigates if the models had previously been used for control
design.

RQ 2. How to design a controller for balancing an autonomous instrumented
bicycle by actuation of the rear wheel and the steering axis and how to
evaluate such a controller?

The second research question addresses the problem of balancing a bi-
cycle using no direct lean angle regulation. Furthermore, it will also
investigate how different control techniques compare to each other in
terms of balancing an instrumented bicycle and what performance met-
rics can be used for the evaluation of the different control methods.

RQ 3. How can an autonomous bicycle track a trajectory with narrow curves
and at velocities common for a bicycle, and maintain balance?

The third research question investigates how a trajectory-tracking con-
troller can be designed for an autonomous bicycle to track a reference
trajectory. While tracking the reference trajectory, the bicycle needs
to remain stable, given the actuation of the steering axis and forward
velocity.

RQ 4. How can a smooth path be planned for an autonomous bicycle in an
environment with static obstacles?

The final research question considers the problem of path planning for
an unmanned bicycle. The planned path should adhere to the phys-
ical constraints of a bicycle, such as velocity and acceleration limits
and the minimum turning radius. Moreover, due to the non-holonomic
constraints of a bicycle, it is crucial that the planned path is smooth and
avoids static obstacles.
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4.2 Research Method

In this thesis, an iterative research approach is used. The process is illustrated
in Figure 4.1. First, a research problem is identified and relevant literature is
reviewed. Depending on the findings of the literature review, the research prob-
lem may be reformulated. The knowledge gained from the literature review is
used to propose a solution to the identified problem, and the solution is then im-
plemented in software. The solution is first evaluated in simulations and if the
results are promising, the solution may be implemented on an embedded system
where experiments are conducted on an experimental platform, see Figure 4.2.
For example, the balance controllers in papers A and B are first evaluated in
simulation on different models, and later in experiments on the instrumented
bicycle. In both experiments and in simulations, a quantitative analysis is per-
formed on the collected data. In experiments, sensors are utilised to measure
the relevant parameters of the bicycle and two motors are used to control the
motion of the instrumented bicycle. The trajectory tracking controller and the
path planning algorithm have only been evaluated in simulations due to the lack
of reliable localisation data of the bicycle in experiments. If promising results
are obtained, the literature review, the implementation details, and the evalu-
ation are collected in an article and submitted to a relevant venue for reviews
and possibly a publication.

4.2.1 Simulation tools

As experiments are often time-consuming, and sometimes difficult to repro-
duce, the ideas are first implemented and tested in simulations using differ-
ent software. First, the analytical models are implemented in Matlab 1 and
Simulink 2. Moreover, the instrumented bicycle is dismantled and each com-
ponent is measured, weighted, and a model of the bicycle is designed in Solid-
Works 3. The SolidWorks model is then exported to two different multibody
dynamic simulation tools and represents two nonlinear models of the bicycle.
In papers B and C, Adams View 4 is used and co-simulations between Adams
View and Simulink are performed. The relevant control loops are implemented
in Simulink and the nonlinear graphical model is realised in Adams View. In
paper D, Adams View is replaced with Simscape 5 which is an extension of
Simulink and offers better performance in terms of execution time compared to

1https://mathworks.com/products/matlab.html
2https://se.mathworks.com/products/simulink.html
3https://www.solidworks.com/
4https://hexagon.com/products/adams-student-edition
5https://mathworks.com/products/simscape.html

https://mathworks.com/products/matlab.html
https://se.mathworks.com/products/simulink.html
https://www.solidworks.com/
https://hexagon.com/products/adams-student-edition
https://mathworks.com/products/simscape.html
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Adams View. The discrete time control schemes are implemented in Simulink
and controls the graphical nonlinear Simscape model. Matlab is used to post-
process the simulation data.

Identify
Research
Problem

Literature
Review

Propose
Solution

Implement
Solution

Simulink
Matlab

LabVIEW

Simulation
Simulink

Simscape

Adams
View SolidWorks

Experiment

Instru-
mented
Bicycle

Publish
Results

Latex

Figure 4.1: Research approach used in this thesis.
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4.2.2 Experimental setup

An instrumented bicycle, based on a regular-sized electric bicycle of a male
model is used in this thesis as an experimental platform, see Figure 4.2. The
design of the bicycle was first developed in a student project at Mälardalens
University [66]. The propulsion motor and battery are located in the rear wheel
and on the mainframe of the bicycle respectively. The VN-100 AHRS is used
for sensing the orientation of the bicycle and is mounted underneath the bottom
bracket shell of the bicycle. The handlebar is actuated by a DCX32L Maxon
motor together with a gear hub and encoder for sensing the position of the han-
dlebar with respect to the mainframe, i.e the steering angle. A Hall sensor
together with 12 evenly distributed magnets on the rear wheel is used for mea-
suring the forward velocity of the bicycle. National Instruments roboRIO is
used as the main processing unit and it consists of a Field Programmable Gate
Array (FPGA) target and a real-time target. The code on both the real-time
target and the FPGA is written in LabVIEW 6, which is a visual programming
environment based on G-code and is specialised for tests and measurements.
The sensor measurements and the actuation commands are processed on the
FPGA. On the real-time target, the deterministic control loop and the logging
of signals are performed. Communication between the real-time target and the
FPGA target is realised through first in first out (FIFO) queues. The logged
data is later post-processed in Matlab.

4.3 Threats to validity

An identified threat to the external validity is the fact that real-life experiments
are only conducted on one bicycle. A similar problem is related to the multi-
body simulations which are based on a Solidworks model of the instrumented
bicycle. To address these issues, and generalise the proposed solutions, a fleet
of instrumented bicycles would be needed, where the bicycle model, size, and
instrumentation are altered.

6https://www.ni.com/sv-se/shop/labview.html

https://www.ni.com/sv-se/shop/labview.html
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1

2

3
4

5

6

7
8

Hardware used on the instrumented bicycle

1 Electric Speed Controller Phoenix edge HV 60 AMP

2 Hall effect sensor 103SR13A-9

3 Bafang RM G040.250.DC Motor

4 AHRS VN-100

5 Battery 11.6 Ah 36V

6 Junus motor controller

7 Maxon DCX 32 L motor

8 roboRIO (on opposite side)

Figure 4.2: Instrumented bicycle used as the experimental platform in this thesis.

https://www.castlecreations.com/en/phoenix-edge-hv-60-esc-010-0106-00
https://www.mouser.se/datasheet/2/187/HWSC_S_A0012708798_1-3073293.pdf
https://bafang-e.com/en/oem-area/components/component/motor/rm-g040250dc/
https://www.vectornav.com/resources/datasheets/vn-100-imu-ahrs
https://www.maccon.com/servo-drives-motion-control/copley-servodrives/junus.html
https://www.maxongroup.com/maxon/view/product/motor/dcmotor/DCX/DCX32/DCX32L01GBKL470
https://www.ni.com/sv-se/support/model.roborio.html


Chapter 5

Thesis Contributions

The research contributions of the thesis are presented in this chapter. A map-
ping between the four research questions and the four contributions is given in
Table 5.1. The chapter is wrapped up with an overview of the papers included
in the thesis.

5.1 Contributions

This thesis includes four contributions that address the research questions in
Section 4.1. The research began with a literature review to understand how bi-
cycles have been modelled in past. This is crucial as the design of a controller
is highly dependent on the model, and how accurately the model can capture
the main dynamics of a bicycle. The first contribution (C1) extends previous
models with a transfer function that represents the steering dynamics, includ-
ing the steering motor, of an instrumented bicycle. The second contribution
(C2) is within applied control theory and is focusing on finding controllers for
balancing an autonomous bicycle and important metrics for evaluating the per-
formance of the controllers. As the controllers are evaluated on both different
models and an instrumented bicycle, the comparison also evaluates the models.
The third contribution (C3) makes use of both a bicycle model and a balance
controller and integrates them into a tracking controller for solving the trajec-
tory tracking of an autonomous bicycle while maintaining balance through the
actuation of the steering axis. The fourth and final contribution (C4) of this the-
sis is within path planning for non-holonomic constrained vehicles, such as the
autonomous bicycle. A mapping between the research questions (RQ1-RQ4)
and the contributions (C1-C4) are given in Table 5.1, while the contributions
with respect to a control hierarchy are illustrated in Figure 5.1.
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Table 5.1: Mapping between research questions and contributions.

RQ1 RQ2 RQ3 RQ4

C1 X X
C2 X X
C3 X X
C4 X

C1 - The steering dynamics of an autonomous bicycle are often neglected,
for example, in [19] and [20] assumptions are made that the motor attached
to the handlebar can instantly move from one position to another without any
delay. Others assume a human operator, which of course is a valid assumption
when studying cyclist behaviour. However, for an autonomous bicycle where
the steering is motorized, it is important to consider not only the steering dy-
namics but also the dynamics of the motor. To this end, an extension of previous
models was proposed. To model the steering dynamics, including the steering
motor attached to the instrumented bicycle, a step response matching proce-
dure was used. The bicycle was held in an upright position by a human, while
a desired steering position or steering velocity was commanded to the motor
controller. The output of the system was sampled and visualised in Matlab.

Furthermore, in Matlab, the sampled data was matched with a transfer func-
tion, 𝑃 (𝑠), which could then be used to model the steering dynamics. The trans-
fer function was put in series with previous models found in the literature. In
paper A,𝑃 (𝑠)was put in series with the linear point mass model [40] for design-
ing a controller which was evaluated in experiments on an instrumented bicycle.
The same model was then used in paper B for designing different controllers.
In both papers A and B, the controllers could successfully be transferred from
simulation to real-life experiments without any further tuning, highlighting the
usefulness of the modelling approach. Moreover, in paper C, 𝑃 (𝑠) was put in
series with the model proposed by Yi et al. [19]. Additionally, 𝑃 (𝑠) was also
successfully used in multi-body simulations using Adams View, in papers B
and C, and Simscape in paper D. Thus, the proposed method of modelling the
steering dynamics and steering motor using a step response matching method
has successfully been used in papers A, B, C, and D. Furthermore, the simple,
yet the useful procedure of step response matching can be generalised for sim-
ilar autonomous bicycles as well. Finally, the Simscape multibody model has
been made publicly available online 1.

1https://github.com/NiklasPerssonMDU/On-the-Initial-of-Timed-Elastic-Bands.git

https://github.com/NiklasPerssonMDU/On-the-Initial-of-Timed-Elastic-Bands.git
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C2 - The second contribution includes a comparative quantitative analy-
sis between several different controllers and tuning techniques and the results
are presented in papers A and B. The modelling approach in C1 was used for
tuning the different controllers. Moreover, the model was used as a first step to
evaluate the performance of the controllers. For further evaluation, simulations
were conducted on the nonlinear model in Adams View and experiments on an
instrumented bicycle. To evaluate the controllers in simulations, the integrated
squared error of the lean angle error and a step disturbance in the lean angle
measurements were used. The step disturbance was meant to simulate a gentle
push on the bicycle. Furthermore, on the instrumented bicycle the balancing
time on a narrow roller was considered as well as the execution time of the
controllers implemented on the embedded system. All metrics can easily be
transferred to others controllers for evaluation. Based on the conclusion drawn
in paper B, a PID controller was also used for balancing in paper C and paper
D.

C3 - The third contribution is within trajectory tracking for an autonomous
bicycle. A cascade control scheme was utilised, where the outer control loop
computed a desired lean angle by considering the position and orientation of
the bicycle and comparing it to a reference trajectory. Constraints on both dy-
namic and kinematic properties, such as the lean angle, steering angle and max-
imum tracking error were incorporated into an MPC framework. In the inner
control loop, the aforementioned PID controller is utilised for stabilising the
bicycle and tracking the reference lean angle. It is shown that the control ap-
proach can track a reference trajectory in high velocities and narrow curves,
as in comparison to previous work where either wide curves or low velocities
have been considered. By using the Adams model of the instrumented bicycle
and inducing disturbance and noise in the measurements the solution was eval-
uated. The small Hausdorf distance and the low mean squared error between
the reference trajectory and the actual trajectory highlighted the feasibility of
the approach. The trajectory tracking controller was also used in paper D to
show that the autonomous bicycle could track the reference trajectory from the
proposed path planner. Furthermore, as different sampling rates are used in
the different control loops, the trajectory tracker could be implemented on the
instrumented bicycle.

C4 - The fourth and final contribution is related to the problem of path plan-
ning for a non-holonomic constrained vehicle such as a bicycle. More specifi-
cally, a strategy is proposed that is not only smooth but also tries to minimise
the number of heading changes and the path distance in an environment with
static obstacles. An initial path is planned using Theta∗ and then smoothed and
optimised using TEB. Moreover, the optimisation problem takes into account
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Figure 5.1: Contributions matched to a control hierarchy of an autonomous bicycle.

the geometric and dynamic constraints of the vehicle, such as the minimum
turning radius and the maximum velocity while keeping a safe distance from
the obstacles. We compare our approach to several other methods, and it is clear
from the results that the proposed approach with Theta∗ and TEB have fewer
heading changes and a shorter path distance compared to the other methods.

5.2 Overview of Included Papers

In this section, the four papers and how they relate to the contributions are
given. Moreover, the personal contribution of the author of this thesis is also
highlighted for each paper.

5.2.1 Paper A

Title: A Loop Shaping Method for Stabilising a Riderless Bicycle
Authors: Tom Andersson, Niklas Persson, Anas Fattouh, Martin C. Ekström
Status: Published at European Conference on Mobile Robots (ECMR), 2019.
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Abstract: Several control methods have been proposed to stabilise riderless
bicycles but they do not have sufficient simplicity for practical applications.
This paper proposes a practical approach to model an instrumented bicycle
as a combination of connected systems. Using this model, a PID controller
is designed by a loop shaping method to stabilise the instrumented riderless
bicycle. The initial results show that the bicycle can be stabilised when
running on a roller. The work presented in this paper shows that it is possible
to self stabilise a riderless bicycle using cascade PI/PID controllers.
Paper contirbutions This paper relates to contribution C1 and C2.
Personal Contributions Me and Tom Andersson were the main drivers of
the paper and contributed equally to the idea, implementation, and writing of
most of the manuscript. During the work, the other co-authors came with
constructive feedback on the implementation and improved the manuscript in
collaboration with me and Tom Andersson.

5.2.2 Paper B

Title: A Comparative Analysis and Design of Controllers for Autonomous
Bicycles
Authors: Niklas Persson, Tom Andersson, Anas Fattouh, Martin C. Ekström,
Alessandro V. Papadopoulos
Status: Published at European Control Conference (ECC), 2021
Abstract: In this paper, we develop and compare the performance of different
controllers for balancing an autonomous bicycle. The evaluation is carried
out both in simulation, using two different models, and experimentally,
on a bicycle instrumented with only lightweight components, and leaving
the bicycle structure practically unchanged. Two PID controllers, a Linear
Quadratic Regulator (LQR), and a fuzzy controller are developed and
evaluated in simulations where both noise and disturbances are induced
in the models. The simulation shows that the LQR controller has the best
performance in the simulation scenarios. Experimental results, on the
other hand, show that the PID controllers provide better performance when
balancing the instrumented bicycle.
Paper contirbutions This paper relates to contribution C1 and C2.
Personal Contributions I was the main author of the paper, contributing
to the simulations and writing most of the paper. The experimental results
and the idea were joint work between me and Tom Andersson. The other
co-authors contributed with feedback and improved the manuscript in
collaboration with me.
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5.2.3 Paper C

Title: Trajectory tracking and stabilisation of a riderless bicycle
Authors: Niklas Persson, Martin C. Ekström, Mikael Ekström, Alessandro V.
Papadopoulos.
Status: Published at International Conference on Intelligent Transportation
Systems (ITSC), 2021
Abstract: Trajectory tracking for an autonomous bicycle is considered in this
paper. The trajectory tracking controller is designed using a Model Predictive
Controller with constraints on the lean, steer, and heading angle as well as the
position coordinates of the bicycle. The output from the trajectory tracking
controller is the desired lean angle and forward velocity. Furthermore, a PID
controller is designed to follow the desired lean angle, while maintaining
balance, by actuation of the handlebar. The proposed control strategy is
evaluated in numerous simulations where a realistic nonlinear model of the
bicycle is traversing a go-kart track and a short track with narrow curves. The
Hausdorff distance and Mean Squared Error are considered as measurements
of the performance. The results show that the bicycle successfully can track
desired trajectories at varying velocities.
Paper contirbutions This paper relates to contribution C1, C2, and C3.
Personal Contributions I was the main author of the paper, contributing
to the idea, the implementation, and the simulation setup. Also, I wrote the
major part of the paper.

5.2.4 Paper D

Title: On the Initialization Problem for Timed-Elastic Bands
Authors: Niklas Persson, Martin C. Ekström, Mikael Ekström, Alessandro V.
Papadopoulos.
Status: Submitted
Abstract: Path planning is an important part of navigation for mobile
robots. Several approaches have been proposed in the literature based on
a discretisation of the map, including A∗, Theta∗, and RRT∗. While these
approaches have been widely adopted also in real applications, they tend
to generate non-smooth paths, which can be difficult to follow, based on
the kinematic and dynamic constraints of the robot. Time-Elastic-Bands
(TEB) have also been used in the literature, to deform an original path in
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real-time to produce a smoother path, and to handle potential local changes
in the environment, such as the detection of an unknown obstacle. This work
analyses the effects on the overall path for different choices of initial paths
fed to TEB. In particular, the produced paths are compared in terms of total
distance, curvature, and variation in the desired heading. The optimised
version of the solution produced by Theta∗ shows the highest performance
among the considered methods and metrics, and we show that it can be
successfully followed by an autonomous bicycle.
Paper contirbutions This paper relates to contribution C3 and C4.
Personal Contributions I was the main author of the paper, contributing
to the idea, the implementation, and the simulation setup. Also, I wrote the
major part of the paper.





Chapter 6

Conclusions and Future Work

This thesis investigates a framework for an autonomous bicycle in a bottom-up
approach. First, an extension for previous bicycle models is proposed where
a step response matching procedure is used for capturing the steering dynam-
ics, including the motor controlling the handlebar. The proposed model is then
used to design balance controllers that can stabilise the bicycle by controlling
the position of the handlebar and the forward velocity. The controllers are eval-
uated in both simulations, and later in experiments without any need for future
tuning. In comparing different controllers for stabilising the riderless bicycle,
the simple PID controller shows promising results and is recurring as the bal-
ance controller when trajectory tracking and path planning are investigated for
an autonomous bike. A linear model that considers a tilted steering axis and
captures the steering dynamics is used in an MPC framework to realise trajec-
tory tracking. Constraints on both the dynamics and kinematics of the bike are
included in the formulation of the controller, where the reference lean angle and
velocity are the output. The reference lean angle is tracked by the aforemen-
tioned PID controller. Narrow curves and predefined varying reference paths
are tracked initially. Next, we consider the problem of planning a smooth path
for a non-holonomic constrained vehicle while adhering to the physical and
dynamic constraints of the bicycle. The path is initially planned by the any an-
gle path planning algorithm, Theta∗, and optimised and smoothed using TEB.
Finally, we show that we can control and guide a realistic multibody dynamic
modelled bicycle in an environment with static obstacles by utilising the linear
model, the balance controller, the trajectory tracking controller, and the path
planner.

In the future, the trajectory tracking controller and the path planner should
be evaluated in experiments on an instrumented bicycle. However, this calls
for reliable localisation of the bicycle. Nonlinear filtering algorithms, such as

37
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Extended Kalman filters or particle filters could be utilised in combination with
the models in chapter 2 and data from GPS, Lidars, and cameras mounted on
the bicycle. Furthermore, for the functionality of an autonomous bicycle oper-
ating on test tracks, the bicycle should be redesigned such that the components
mounted on the bicycle are leaving a minimum footprint on the appearance of
the bicycle. Moreover, the impact on the balance controller when a dummy is
mounted on top of the bicycle, to mimic a rider, should be investigated. Fi-
nally, dynamic obstacle avoidance and capabilities of handling unknown envi-
ronments should be investigated to improve path planning.
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Abstract

Several control methods have been proposed to stabilise riderless bicycles but
they do not have sufficient simplicity for practical applications. This paper pro-
poses a practical approach to model an instrumented bicycle as a combination
of connected systems. Using this model, a PID controller is designed by a loop
shaping method to stabilise the instrumented riderless bicycle. The initial re-
sults show that the bicycle can be stabilised when running on a roller. The
work presented in this paper shows that it is possible to self stabilise a riderless
bicycle using cascade PI/PID controllers.
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7.1 Introduction

A bicycle is a well-known and popular means of transportation. The bicycle is
often configured to have two inline wheels which make the system inherently
unstable and difficult to control. The rider must train how to balance the bi-
cycle. Balancing a bicycle is based on the simple concept, steering into the
fall direction, but it is hard to be applied automatically as many features of the
bicycle should be considered such as the trail, the gyroscopic torque, the mass
distribution, and the forward velocity.

Two common models which represent, to some extent, the dynamics of a
bicycle are the Whipple model and the point-mass model. The Whipple model,
developed by Francis John Welsh Whipple in 1899, is the first analytic model
that in a correct way describes the dynamics of a bicycle [1]. Linearised equa-
tions were derived from the Whipple model by Meijaard et al. [2] and they
have been used in many implementations regarding control of a riderless bicy-
cle, such as in the work by Baquero-Suarez et al. and Shafiekhani et al. [3, 4]. A
less complex dynamic model of a bicycle is the point mass model, as described
by Liembeer and Sharp [5], where a set of assumptions allows the bicycle to
be modelled as an inverted pendulum, with its mass as a point mass.

Several control methods were proposed to stabilise the riderless bicycle us-
ing the point mass model [6, 7]. However, the proportional integral derivative
(PID) is still attractive from an industrial point of view [8] and more investiga-
tion is needed to come up with an effective tuning method for PIDs.

In this paper, the mass-point model is considered to model the riderless bi-
cycle. A robust PID controller design method is proposed to come up with the
simplifications on the considered model. It is then used to stabilise an instru-
mented bicycle.

The remaining of this paper is structured as follows. Section II gives a brief
survey of related works. The simulation model of the bicycle is explained in
Section III. The proposed robust PID designed method is developed in Section
IV. Section V is devoted to the application of the robust PID control design
method on an instrumented riderless bicycle and the obtained results. Finally,
concluding remarks and future works are given in Section VI.

7.2 Related Works

Different types of controllers have been proposed in the literature to control
and balance riderless bicycles. From the more traditional ones, such as the
Proportional-Integral-Derivative (PID) controllers, to more complex ones
which rely on various Artificial Intelligence (AI) controllers.
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Tanaka and Murakami [9] presented one of the first riderless bicycles which
managed to keep its balance while riding on a roller. To control the bicycles
steering axis, and by extension the balance, a PD controller was utilised along
with disturbance observers. From the results, it is possible to see how the steer-
ing angle follows the lean angle which makes the bicycle balanced. A PD con-
troller was also implemented in the work by Suebsomran [10], where a bicycle,
equipped with a reaction wheel was kept stable. The controller regulates the
angle of the reaction wheel to produce a necessary torque for the bicycle to
be able to balance. The PD controller manages to stabilise the bicycle, how-
ever, only in a simulated environment. In the work by Wang et al. a cascade
controller for balance and directional control of a bicycle-type two-wheeled
vehicle is presented [11]. In the inner loop, a PD controller was used for bal-
ancing the vehicle by sensing the lean angle and output a steering torque to the
plant. The outer loop, which composed of the directional control, also relied on
a PD controller, but by sensing the yaw angle it outputs a reference lean angle
which was fed to the inner loop. Experiments were made in simulation and on
a real bicycle-type two-wheeled vehicle. Both the balance and the directional
controller showed promising results. However, the platform used for testing
was small and was some sort of hybrid between a kid bicycle model and small
scooter. A regular sized bicycle have a greater height and mass compared to
small bicycle, and also the center of gravity is generally at a greater distance
from the ground which makes the regular sized bicycles more sensitive to dis-
turbance and harder to control. Because of the size and the structure of the
platform, the presented results cannot be generalised to a regular sized bicycle.

Since many systems, including bicycles, are simplified when modelled,
there are some uncertainties present. A robust controller is specially designed
to tune a system to have the desired behaviour, even with some uncertainties
in the models [12]. Many of the proposed controllers in the related works are
only evaluated in simulation and often experiments conducted on a real bicycle
is missing. For example, in the work by Chen and Dao [13], a Sliding-Mode
Controller (SMC) was proposed to track the bicycles roll angle. The benefits of
using SMC to control a bicycle is that the uncertainties in the Whipple model’s
velocity can be compensated. The results showed that the bicycle was stable in
15km/h in a simulation environment.

Anjumol and Jisha [14] proposed an LQR controller to control a second-
degree bicycle model. The results obtained from the controller was compared
with a posture controlled proposed by Tanaka and Murakami [15]. The result
from the comparison shows that an LQR controller performs better. However,
the posture controller uses a PD controller with a disturbance observer which
was better for disturbance rejection. An adaptive self-tuning regulator is pro-
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posed by Al-Buraiki and Ferik [16]. The controller uses an estimation stage
and a construction stage for the input signal, the first stage uses a weighted re-
cursive least squares approach to estimate the models state-space, which is used
in the second stage to construct the input signal. Additionally, in the second
stage, an LQR controller is adapted for the on-line estimation. The proposed
controller was only evaluated in simulation, where it successfully managed to
balance the bicycle.

An AI-controller is used in the work by Sharma, where a fuzzy controller
is presented to balance a bicycle[6]. The developed controller takes two inputs,
the lean angle, and the steering angle, and outputs a correction lean. Thus, the
controller relies on direct regulation of the lean angle which would require a
reaction wheel, an inverted pendulum or something similar. In this paper, reg-
ulation of the steering angle and the rear wheel speed is used to keep the bicycle
stable. Sharmas’ controller manages to stabilise the bicycle in a simulated en-
vironment but was never used in any real-life experiments.

Real-life experiments are conducted in the work of Shafiekhani et al. [4]
where an adaptive critic-based neuro-fuzzy controller was developed. A com-
parison was made between the neuro-fuzzy controller and a Fuzzy Inference
System (FIS) controller, and it was concluded that the neuro-fuzzy offers more
accurate performance in term of tracking the lean angle in both simulation and
reality. Additionally, Abdolmalaki [17] presented a control system that relies
on a FIS in combination with a PID controller to balance a bicycle. Results from
experiments showed that the bicycle was able to balance along with a straight
line, however with oscillations of ± 5◦. The oscillations were also present
when a sinusoidal trajectory was followed, despite this, the proposed control
was still able to keep the bicycle from falling over in real-life experiments.

In 2018, Baquero-Suarez et al. [3] presented promising results where a
regular sized bicycle, of a male model, equipped with sensors and actuators,
manage to balance itself. It was able to follow a path using steering torque and
forward velocity as the only control outputs. The results showed that the pro-
posed system can balance even under small accelerations, however, the control
structure is complex.

7.3 Modelling of the Riderless Bicycle

The riderless bicycle consists of three main parts, the bicycle, the steering unit,
and the moving unit. The point-mass model is used in this paper to model the
bicycle where a direct relationship between the lean angle and the steering angle
are described. The steering motor is internally controlled to get the desired
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second-order system dynamic. The rear wheel motor is controlled such that
the bicycle can move in a constant speed and it is not considered in this paper.

7.3.1 The Point-Mass Model

The point-mass model is one of the more basic analytic bicycle models, it’s
a simple second-order linear model with a set of simplifications. The model
assumes that both the front and rear wheel along with the front frame is mass-
less, giving them inertia of zero. However, their masses are lumped together
forming a point-mass, hence the models’ name. To simplify the bicycle model
further, it is assumed that the forward speed is constant and the heading angle
𝜆 and the trail distance are zero. Consider the bicycle shown in Fig. 7.1, with
x-axis in the forward direction of the bicycle and the z-axis in the vertical direc-
tion. The two points, P1 and P2 are the contact points between the ground and
the rear wheel and front wheel respectively. P3 is the point where the steering
axis and the horizontal plane intersects with each other. The parameters 𝑎 and
ℎ describe the distance from the rear wheel to the centre of gravity (CoG) in
the x- and z-axis. 𝜆 is the head angle, 𝑐 is the trail distance, and the 𝑏 is the
wheel base [18].

Figure 7.1: The 𝑎 and ℎ corresponds to the position of the CoG. The wheelbase is
given by 𝑏, 𝜆 describes the head angle, and 𝑐 is the trail.

Following the procedure described in [18], we get the following transfer
function from steer angle 𝛿 to lean angle 𝜑
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𝐺𝜑𝛿(𝑠) =
𝑣(𝐷𝑠 + 𝑚𝑉 ℎ)
𝑏(𝐽𝑠2 − 𝑚𝑔ℎ)

=𝑣𝐷
𝑏𝐽

𝑠 + 𝑚𝑉 ℎ
𝐷

𝑠2 − 𝑚𝑔ℎ
𝐽

≈ 𝑎𝑣
𝑏ℎ

𝑠 + 𝑣
𝑎

𝑠2 − 𝑔
ℎ

. (7.1)

As can be seen from the transfer function, it will behave differently for different
velocities. In this paper, a constant forward velocity of 14km/h and the bicycles
physical parameters presented in Table 7.1 are considered.

Table 7.1: Instrumented bicycle parameters.
Design parameters

Parameter Symbol Unit Value
CoG with respect to O (x) a [𝑚] 0.486
CoG with respect to O (z) h [𝑚] 0.519
Gravity g [𝑚∕𝑠2] 9.820
Wheel base b [𝑚] 1.080

7.3.2 Steering Response Matching

The internal structure of the position controller is composed of one PD steering
angle controller followed by a speed and a current PI controller as shown in
Fig. 7.7. Instead of modelling the three closed loop controllers, handlebar
mass, friction and the motor characteristics, a step matching response method
is applied where the recorded step response from the instrumented bicycle is
matched with a timed delayed second-degree transfer function. To record the
step response from the instrumented bicycle, it is held in an upright position
with the wheels on the ground and a step of 3 degrees are commanded. The
input to the transfer function is the desired steering angle and the output is the
actual steering angle.

𝑃 (𝑠) = 𝑒−𝑑⋅𝑠
𝜔2
𝑛

𝑠2 + 2𝜁𝜔𝑛𝑠 + 𝜔2
𝑛
. (7.2)

Matching the response in Fig. 7.2 gives a transfer function with damping factor
𝜁 = 0.6, 𝜔𝑛 = 33.9, and the time delay 𝑑 = 0.015.

By coupling the system (2) and (1), i.e expanding the point-mass model
with the dynamics captured from the steering system, the instrumental bicycle
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Figure 7.2: Recorded response along with the matched transfer function.

is modelled. Converted into discrete time, using zero-order hold as the dis-
cretisation method, with a sampling time of 0.01 seconds, the complete model
is given by the following transfer function. The input to the system is the de-
sired steering angle and the output is the current lean angle.

𝑃 (𝑧) = 𝑧−2×
0.000461𝑧3 + 0.00198𝑧2 − 0.00186𝑧 − 0.000324
𝑧4 − 3.574𝑧3 + 4.813𝑧2 − 2.905𝑧 + 0.6658

(7.3)

7.4 Balance Controller Design

In this section, the design problem of a PID controller is formulated as an opti-
misation problem that can be solved using an appropriate algorithm. The goal
of the balance controller is to track a lean angle, by outputting a desired steering
angle to the steering position controller. Consider the feedback control system
in Fig. 7.3, where 𝐺(𝑧) is the plant, 𝐾(𝑧) is the controller, 𝑟(𝑡) is the reference
signal, 𝑦(𝑡) is the system output signal, 𝑢(𝑡) is the control signal, 𝑑(𝑡) is the
disturbance signal, and 𝑛(𝑡) is the noise signal.
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The objectives of the feedback control loop are to ensure the stability of the
closed loop system, good tracking performance, robustness against the plant
uncertainties, and rejection of the disturbances affecting the system. These
objectives can be formulated as constrained on the frequency response of the
loop transfer function as follows [19]:

• The open loop frequency response should cross the 0 dB once with a con-
straint on the phase margin (to ensure the stability and the performance
of the closed loop system).

• The gain of the open loop frequency response should be high below the
desired bandwidth (to ensure the rejection of the disturbances).

• The gain of the open loop frequency response should be low above the
desired bandwidth (to ensure the robustness against the plant uncertain-
ties).

A controller that meets the above constraints can be designed by optimising the
following objective function [20]:

𝐽 =𝜔1(𝜔𝑏 − 𝜔𝑡)2

+𝜔2
∑
𝜔>𝜔𝑏

20𝑙𝑜𝑔|𝐾(𝑗𝜔)𝑃 (𝑗𝜔)|

−𝜔3
∑

𝜔<=𝜔𝑏

20𝑙𝑜𝑔|𝐾(𝑗𝜔)𝑃 (𝑗𝜔)| (7.4)

where 𝜔𝑡 is the target bandwidth, 𝜔𝑖, 𝑖 = 1, 2, 3, are weights, and 𝜔𝑏 is the
bandwidth of the loop transfer function defined by:

𝜔𝑏 = inf
𝜔

|𝐾(𝑗𝜔)𝑃 (𝑗𝜔)| ≤ 1 (7.5)
The weights 𝜔𝑖, 𝑖 = 1, 2, 3 have to be selected properly in order to approxi-
mately satisfy the design requirements. The following weights are suggested

Figure 7.3: A standard feedback control system.
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by [20]
𝜔1 =

1
𝜔2
𝑡
, 𝜔2 = 𝜔3 =

1
2000

(7.6)
The above optimisation problem is solved for the bicycle model in eq. 7.3 using
fmincon, which is a nonlinear programming solver in MATLAB. The solution
yields the following PID controller:

𝐾(𝑧) = 𝐾𝑃 (1 +𝐾𝐼𝑇𝑠
1

𝑧 − 1
+
𝐾𝐷
𝑇𝑠

(𝑧 − 1)
𝑧

) (7.7)
where 𝐾𝑃 = 2.5117, 𝐾𝑃 = 1.5431, 𝐾𝐷 = 0.075, and 𝑇𝑠 = 0.01𝑠.

Fig. 7.4 shows the sensitivity function of the designed system. It shows
that the largest value of the sensitivity function is 2.02 which is in the range
of the recommended values and the system will have a good rejection of the
disturbance in lean angle.

Figure 7.4: Sensitivity function of the designed system.

7.5 Simulation Results

The complete system is modelled in Simulink along with the noise of the lean
angle sensor which has a measured variance of 0.0001 and a standard devi-
ation of 0.01. In the Simulink model, the balance controller has a sampling
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time of 100 Hz, the transfer function which represents the steering system exe-
cutes in 600 Hz and the point-mass model is implemented in continuous time.
The result of running the complete Simulink model with a disturbance on the
lean angle is shown in Fig. 7.5. The simulation shows that the bicycle keeps
balancing after disturbing the lean angle.

Figure 7.5: The steering and lean angles from simulation.

7.6 Application to the instrumented bicycle

The bicycle is a modified electrical bicycle of a regular sized male model with
a motor in the rear wheel. The bicycle is equipped with a brushed DC motor for
controlling the steering angle which is measured with an encoder. To control
the steering motor a Junus motor controller is utilised. A VN-100 is used for
measuring the lean angle of the bicycle and is mounted underneath the bottom
bracket shell. To be able to send remote commands to the bicycle, a receiver is
mounted on the bicycle. As the main processing unit a National Instruments ro-
boRIO is utilised and the software is written using LabVIEW, the instrumented
bicycle is shown in Fig. 7.6.
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Figure 7.6: The instrumented bicycle with its rear wheel motor inside the green square.
The blue box indicates the position of the VN-100, used for measuring the lean angle.
Inside the yellow box is the electrical speed controller. National Instruments roboRIO
is mounted on the bicycle and is highlighted by the purple box. To be able to send
remote commands to the bicycle, the receiver inside the red box is utilised. The motor
used to control the steering angle is highlighted by the orange rectangle.

7.6.1 Control structure

The control structure on the roboRIO is devised of an inner and an outer loop
forming a cascade controller as shown in Fig. 7.7

The steering angle controller tracks the position of the handlebar and the
outer loop tracks the desired lean angle of the bicycle. The steering angle con-
troller uses a PD controller running on the roboRIO FPGA target with a loop
speed of 600Hz, while the outer balancing PID controller is implemented on
the real-time OS running with a loop frequency of 100Hz. The output of the
steering angle controller is a PWM signal which is fed to the motor controller.
Inside the motor controller, the PWM signal is mapped to the desired motor
velocity and compared to the current motor velocity. The error is inputted to
a PI controller and the resulting output is forwarded as the desired current to
the last control loop which regulates the voltage going to the motor by using
another PI controller.

Using software which accompanied the motor controller, the current con-
troller is auto-tuned. The velocity controller is manually tuned using the same
software and their respective control gains can be seen in Table 7.2 along with
their saturation limits. The two controllers which reside on the roboRIO use
the values shown in Table 7.3.

To control the forward velocity of the bicycle, a PI controller is imple-
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Figure 7.7: The complete control structure where 𝜑∗, 𝛿∗, 𝛿̇∗, 𝐼∗ represents the desired
values and𝜑, 𝛿, 𝛿̇, 𝐼 are the measured values from the bicycle. The balancing controller
and steering angle controller are implemented on the roboRIO while the velocity and
current controller reside on the motor controller.

Table 7.2: The gains used for the two PI controllers which resile on the motor con-
troller.

Junus controllers
Velocity controller Current controller
𝐶𝑝 70 𝑉𝑝 700
𝐶𝑖 81 𝑉𝑖 200
Limit 4.12 A Limit 7000 RPM
Speed 4 kHz Speed 20 kHz

mented on the FPGA target of the roboRIO. To measure the speed of the rear
wheel, 12 magnets are mounted on the rear wheel, and a Hall sensor measures
the pulses from the magnets and converts it to speed. The output from the PI
controller is fed to the rear wheel motor through an electrical speed controller.

7.6.2 Experimental setups
To evaluate the proposed controller, the bicycle is placed on a bicycle roller
with the front wheel pointing forward and is kept in an upright position by a
human. Riding a bicycle on a roller is similar to riding a bicycle in an outdoor
environment [21].

An experiment begins with a small calibration phase where the steering
angle is initialised to zero and the IMU is powered on. During the calibration
phase, it is important that the front wheel is pointing forward. Using a small
offset, the IMU angle is also initialised to approximately zero. Next, the control
loop is deployed and the rear wheel is powered on and accelerates to approxi-
mately 14km/h. When the bicycle rides at a nearly constant velocity the human
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Table 7.3: Controller gains for the PD controller implemented on the FPGA target of
the roboRIO and the PID controller which executes on the real-time target.

roboRIO controllers
Steering angle controller Balance controller

𝐊𝐩 0.10 2.5117
𝐊𝐢 0 1.5431
𝐊𝐝 0.04 0.0750
Output range ±50 ±45
Speed 600 Hz 100 Hz
Filter coefficient 0.80 -

is releasing the bicycle and the control loop is fully in-charge of keeping the
bicycle stable, as shown in Fig. 7.8.

Figure 7.8: Self stabilising bicycle on a roller running with a forward speed of 14 km/h.
The width of the rollers is 37 cm.

Two experiments are conducted, in the first one the bicycle is simply riding
on the bicycle roller and the signals are logged until a human has to interfere
with the bicycle. To further evaluate the controller and its robustness, lean an-
gle disturbance is injected in the lean angle measurements. The amplitude is
1 degree and its present for 0.25 seconds, and the disturbance is injected two
times. Another possibility is to induce disturbance manually by introducing
some lateral forces on the bicycle. However, by inducing the disturbance di-
rectly in the measurements, the experiment can easily be reproduced.
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7.6.3 Results

In Fig. 7.9 and Fig. 7.10 the result from the bicycle experiment is presented.
The signals are only logged while the bicycle self-stabilising, as soon as a hu-
man interacts with the bicycle the logging is turned off. Fig. 7.9 plots the lean
and steering angle of the bicycle as well as the desired steering angle which
is outputted from the balance controller. The forward speed of the bicycle is
given in Fig. 7.10. In the experiment, the gains of the PID controller are taken
from the tuning process done in simulation without any modifications and can
be found in Table 7.3. The results from the disturbance rejection experiment
are shown in Fig. 7.11.

Figure 7.9: The result from the bicycle experiment where the bicycle is placed on a
roller and a commanded forward speed of 14km/h is used. The signals are logged when
the bicycle is self-stabilising on the roller. The PID controller, employed for balancing
the bicycle, is first tuned in simulation and then implemented on a roboRIO.

Figure 7.10: The forward speed of the bicycle during the experiment. To measure
the speed of the bicycle, 12 magnets are mounted on the rear wheel and its pulses are
measured with a Hall sensor. By calculating the time between the pulses and knowing
the radius of the rear wheel it is possible to calculate the speed of the bicycle.
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Figure 7.11: A disturbance is injected at approximately 1.5 seconds and another one
at 2.2 seconds. Each disturbance period is present for 0.25 seconds and each period
highlighted by a grey rectangle in the figure. The amplitude of the disturbance, which
is injected in the lean angle measurements, is 1 degree.

7.7 Conclusion & future work

The work presented in this paper showed that it is possible to self stabilise a
riderless bicycle using a cascade PID controller. By modelling a dynamic bi-
cycle model, step response matching, and sensor noise a controller can be tune
in simulation and adopted on an instrumented bicycle. The roller experiment
showed that the instrumented bicycle is self-stabilising for 51 seconds or ap-
proximately 200 meters. Additionally, from the disturbance experiment, it is
possible to see that the proposed controller can reject disturbance on the lean
angle and still maintain to balance the bicycle. Both experiments are cancelled
when a human has to interfere with the bicycle, this is due to the width lim-
itations of the bicycle roller and the lack of trajectory tracking which makes
bicycle drift to the sides. This could also be the result of asymmetric mass
distribution of the bicycle or that the testing ground is not entirely flat. Addi-
tionally, in reality, the lean and steering angle might not be initialised to the
absolute zero position. This needs to be investigated further, and an outer loop
for trajectory tracking should be implemented. Furthermore, to avoid the lim-
itations of the roller, future experiments should be conducted on a flat surface
without the confined limitations of the roller.
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Abstract

In this paper, we develop and compare the performance of different controllers
for balancing an autonomous bicycle. The evaluation is carried out both in
simulation, using two different models, and experimentally, on a bicycle in-
strumented with only lightweight components, and leaving the bicycle struc-
ture practically unchanged. Two PID controllers, a Linear Quadratic Regulator
(LQR), and a fuzzy controller are developed and evaluated in simulations where
both noise and disturbances are induced in the models. The simulation shows
that the LQR controller has the best performance in the simulation scenarios.
Experimental results, on the other hand, show that the PID controllers provide
better performance when balancing the instrumented bicycle.
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8.1 Introduction

Modern vehicles, equipped with sensors for mapping the surrounding environ-
ment and to detect and classify other road users struggle when it comes to detec-
tion of bicycles [1]. When the vehicle’s autonomous emergency braking system
is tested by the car safety performance assessment program, EuroNCAP, a bi-
cycle with a dummy on top is placed on a moving platform1. The platform then
moves in a straight line in front or beside the vehicle being tested. A riderless
bicycle which is design to have a minimal impact on its resemblance and can
manoeuvre realistically would improve the testing environment for autonomous
vehicles.

The control of a bicycle motion is an interesting research problem, that has
been investigated for decades [2], with several different variants [3]. Its config-
uration with two inline wheels makes the bicycle a statically unstable system,
making the control of the bicycle dynamics a very interesting control problem
at low speeds [3]. A cyclist uses a combination of regulation on the forward
speed, the steering angle, and the lean angle to balance the bicycle. A simi-
lar approach can also be used to control a driverless bicycle [3, 4]. However,
direct control of the lean angle requires a flywheel, an inverted pendulum or
something similar to be mounted on a bicycle and will, therefore, alter the ap-
pearance of the bicycle to a large degree, as well its usability.

Different control approaches have been proposed in the literature to design
an autonomous bicycle, ranging from model-free to model-based [5, 2], from
control-theoretic to machine learning [6, 7]. Several such approaches are eval-
uated in simulation, and the results strictly depend on the level of accuracy of
the bicycle model. Furthermore, aspects like the computational complexity,
the execution time, and implementation issues are hardly discussed.

As a first step to develop a riderless bicycle which can be used for testing of
autonomous vehicles safety systems, several control strategies which are com-
monly used in literature for controlling bicycles are investigated and compared
in this paper. The controllers are evaluated both in simulation, and on an in-
strumented bicycle running on a bicycle roller, to understand what is the more
effective approach. Their performance is assessed both in terms of the ability
of balancing the bicycle, and in terms of their execution time on the embedded
control platform. In particular, three main control strategies are designed and
compared: (i) a Proportional Integral Derivative (PID) controller, (ii) a Linear
Quadratic Regulator (LQR), and (iii) a fuzzy controller.

1https://www.euroncap.com/en/vehicle-safety/
the-ratings-explained/vulnerable-road-user-vru-protection/
aeb-cyclist/

https://www.euroncap.com/en/vehicle-safety/the-ratings-explained/vulnerable-road-user-vru-protection/aeb-cyclist/
https://www.euroncap.com/en/vehicle-safety/the-ratings-explained/vulnerable-road-user-vru-protection/aeb-cyclist/
https://www.euroncap.com/en/vehicle-safety/the-ratings-explained/vulnerable-road-user-vru-protection/aeb-cyclist/
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8.2 Related Work

In the past, several researchers focused on the design of suitable bicycle dy-
namic models. The Whipple model [8] is often utilised such as in the work
by Baquero-Suárez et al. [6] and Mejiard et al. [9]. The main drawback of the
Whipple model is that it uses steering and lean torque as control variables which
may be difficult to realise on a real autonomous bicycle. Moreover, the instru-
mented bicycle used in this paper has no direct regulation of the lean angle. An-
other commonly used bicycle model is the point-mass model, also known as the
inverted pendulum model. For example, Sharma et al. [10] utilised the point-
mass model to produce a fuzzy controller for stabilising a bicycle. Hauser et
al. [11] used the point-mass model to investigate trajectory tracking for a mo-
torcycle. The point-mass model only has angular inputs and outputs, thus elim-
inating the problems of dealing with torques. Both the point-mass model and
the Whipple model can be used for the control design, thanks to their simplic-
ity. However, more accurate models are needed to validate the control design
in simulation before going to the implementation on the real bicycle. In this
paper, we model the bicycle using Adams2, a multibody dynamics software,
and a linear model based on the point mass model.

Numerous control structures have been proposed to balance an autonomous
bicycle. Tan et al. [5] developed a reinforcement learning approach to teach
a humanoid to balance a bicycle in simulation. Shafiekhani et al. [7] devel-
oped adaptive critic-based neuro-fuzzy controller to solve the same problem.
However, Meehan and Ruina [12] highlights that the complexity of designing
complex nonlinear controllers for balancing a bicycle is often not worth the
small performance benefits with respect to simpler control strategies. In [12],
an LQR is compared with an dynamic programming optimal controller and the
results shows that the two controllers have almost identical basin of attraction
under reasonable constrained steer angles and rates.

In the work of García et al. [13], an autonomous bicycle is modelled and
evaluated in several different scenarios, including starting from a stationary
conditions. Thanks to an innovative design for a flywheel mounted on the bicy-
cle together with steering control, the bicycle managed to balance in a forward
speed range between 0–6m/s. To control the flywheel, an LQR controller is
designed and to control the steering torque an intuitive controller [14] is used.
Though, the 7.5kg flywheel peaks at around 500rpm which would consume
a lot of energy. Furthermore, according to He et al. [15], methods involving
direct regulation of the lean angle usually struggle when it comes to the bal-
ance of regular size bicycles, where the weight and velocity are often increased

2https://www.mscsoftware.com/it/product/adams

https://www.mscsoftware.com/it/product/adams
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compared to a small bicycle.
Alternatively, regulation of the steering angle can be used to stabilise the

bicycle. Such an approach was used in the work of Tanaka and Murakami [16],
where the lean angle and lean rate were used in a PD controller to compute
the desired steering acceleration. Vatanshevanopakorn and Parnichkun [17]
proposed an LQR optimised for a bicycle model coupled with the dynamics
of an electrical steering motor. The simulation results presented show that the
proposed LQR controller structure was capable of stabilising the bicycle with
an initial lean angle and steering angle other than zero. An LQR was also
utilised in the work of Anjumol and Jisha to control a second-degree bicycle
model [18]. The results obtained was compared with a posture controlled pro-
posed by Tanaka et al. [19], and concluded that the LQR performed better than
the posture controller in simulation.

In [15], three proportional gains are used in a feedforward and feedback
loop scheme to stabilise a bicycle in both simulation and experiments. The
control scheme utilises measurements of both the lean angle and the lean angle
rate to compute a desired steering angle of the handlebar. The bicycle used
in experiments is equipped with two motors, a few sensors, a battery, and a
compactRIO which serves as the main processing unit. The results of the ex-
periments are impressive, however, the bicycle is quite massive with a weight
of 52.5kg.

In this work, we conduct a comparative performance evaluation of the main
control approaches, designed for the instrumented bicycle. The way the handle-
bar is controlled depends on the motor and motor controller used, it can either
be by steering position [15], steering torque [6], or steering velocity [12]. We
control the steering position when using the PID and the fuzzy controller and
steering velocity for the LQR to understand what can be more beneficial for
future autonomous bicycles. The bicycle is designed with lightweight compo-
nents and without altering the main structure of a regular bicycle.

8.3 Modeling of instrumented bicycle

8.3.1 Experimental platform

The instrumented bicycle, illustrated in Fig. 8.1 is based on a regular-sized
electrical bicycle of a male model with the propulsion motor in the rear wheel
(#1). The 11.6Ah and 36V battery is mounted on the frame of the bicycle (#5).
In the design process of the instrumented bicycle, care has been taken into both
the size and the weight of the components to fit all extra components, such as
IMU and main processing unit, in a bicycle basket in the upcoming iteration of
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Figure 8.1: Instrumented bicycle. (#1) Propulsion motor; (#2) NI roboRIO; (#3) Mo-
tor controller; (#4) Steering motor; (#5) Battery; (#6) IMU.

the instrumented bicycle. A DCX32L Maxon motor together with a gear hub
and encoder are utilised to control the handlebar through two cogwheels with
a rubber band in between (#4). To control the steering motor a Junus motor
controller is mounted on the side of the battery (#3) where the steering velocity
(𝛿̇), is the input signal. Power distribution boards and the main processing unit,
a National Instruments roboRIO (#2), are attached to the centre of the bicycle
however on the opposite side of the one visualised in Fig 8.1. To measure the
speed of the bicycle, a Hall sensor is used which measures the time between
pulses of 12 evenly distributed magnets around the rear wheel (#1). To sense
the lean angle a VectorNav VN-100 IMU is used and configured to output the
lean angle and the lean rate of the bicycle (#6).

The roboRIO is equipped with both a dual-core ARM Cortex-A9CPU and

Balance
controller

Steering
position

controller
Bicycle

Motor
encoder

IMU

𝑟 𝛿∗ + 𝛿̇ 𝑦

𝛿

−

𝜑

−

Figure 8.2: Control structure of the instrumented bicycle where a PD controller is
used in an inner loop to control the steering position.
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an Artix-7 FPGA and the code is written using LabVIEW3. The FPGA is used
for acquiring sensor data and actuating the motors. To actuate the steering
motor using a steering position, a PD controller is implemented on the FPGA
which takes the error between the current steering position 𝛿 and the desired
one 𝛿∗ and computes a steering velocity fed to the bicycle 𝛿̇ as presented in
Fig. 8.2. The parallel structured PD controller is tuned experimentally and is
executing at 600Hz with 𝐾𝑃 = 0.1, 𝐾𝐷 = 0.04, and a filter time constant
𝑇𝑓 = 0.8.

The different balancing controllers are realised on the CPU and execute
at a frequency of 100Hz. The main geometrical features of the instrumented
bicycle are illustrated in Fig. 8.3 and given in Table 8.1 along with constraints
on the lean angle, lean rate, steering angle, and steering rate.

Table 8.1: Parameters of the instrumented bicycle.

Design parameters

Parameter Symbol Unit Value

CoG with respect to O (𝑥) 𝑎 [m] 0.473
CoG with respect to O (𝑧) ℎ [m] 0.515
Gravity 𝑔 [m/s2] 9.820
Wheelbase 𝑏 [m] 1.080
Mass 𝑚 [kg] 23.720
Wheel radius 𝑟 [m] 0.349
Trail 𝑐 [m] 0.087
Head angle 𝜆 [deg] 72.950

Constraints

Lean angle 𝜑 [deg] ±2
Lean rate 𝜑̇ [deg/s] 50
Steer angle 𝛿 [deg] ±15
Steer rate 𝛿̇ [deg/s] 70

8.3.2 Linear model

The point-mass model [3] describe the dynamics of the lean angle 𝜑 based on
the steering angle 𝛿 and velocity 𝛿̇ and is lineariased about the equilibrium of
zero lean and steer angle for Getz bicycle model [2]:

𝜑̈ − 𝑚𝑔ℎ𝜑 = 𝑣
𝑏
𝛿̇ + 𝑚𝑣2ℎ

𝑏
𝛿, (8.1)

3https://www.ni.com/sv-se/shop/labview.html

https://www.ni.com/sv-se/shop/labview.html
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Figure 8.3: Geometrical features of a bicycle, where 𝑎 and ℎ corresponds to the mea-
sures horizontal and vertical measure of the CoG. The wheelbase is denoted by 𝑏.

where 𝑣 is the forward velocity of the bicycle, and the physical parameters are
reported in Table 8.1. The model assumes zero head angle (𝜆 = 0), constant
velocity (𝑣), massless wheels and front fork. Instead, the total mass of the
bicycle is lumped together forming a point mass 𝑚. The transfer function from
𝛿 to 𝜑 is

𝐺(𝑠) = Φ(𝑠)
Δ(𝑠)

= 𝑎𝑣
𝑏ℎ

𝑠 + 𝑣
𝑎

𝑠2 − 𝑔
ℎ

. (8.2)

However, as 𝐺(𝑠) does not model friction or dynamics of the steering setup
including the steering position controller, 𝐺(𝑠) is put in series with another
transfer function, 𝐻(𝑠). To obtain 𝐻(𝑠), a step response is recorded from the
instrumented bicycle, see Fig. 8.4.A, and matched with a Second-Order Plus
Dead Time (SOPDT) transfer function

𝐻(𝑠) = Δ(𝑠)
Δ∗(𝑠)

=
𝜔2
𝑛

𝑠2 + 2𝜁𝜔𝑛𝑠 + 𝜔2
𝑛
𝑒−𝑑𝑠, (8.3)

where 𝜁 = 0.6, 𝜔𝑛 = 33.9, and the time delay, 𝑑 = 0.015. During the step
response, the bicycle is held in an upright position with both wheels on the
ground and the handlebar pointing forward. The input to 𝐻(𝑠) is the desired
steering angle, 𝛿∗ and the output of 𝐻(𝑠) is the actual steering angle 𝛿. The
complete model, from 𝛿∗ to𝜑, is obtained as 𝑃 (𝑠) = 𝐻(𝑠)𝐺(𝑠) and is discretize
using the zero-order hold method and a sample time 𝑇𝑠 = 0.01 seconds.

For control strategies, such as LQR, the point-mass model given in (8.1) is
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Figure 8.4: Step response matching of the steering system configured for steering
position (A), and steering velocity (B). The matched responses are used in simulation
to model the steering system including the motor and friction.

utilised in its state-space representation, with:

𝐀𝟏(𝑣) =
⎡
⎢⎢⎣

0 1 0
𝑔
ℎ

0 − 𝑣2

𝑏ℎ
0 0 0

⎤
⎥⎥⎦
, 𝐁𝟏(𝑣) =

⎡
⎢⎢⎣

0
− 𝑎𝑣
𝑏ℎ
1

⎤
⎥⎥⎦
,

𝐂𝟏 =
[
1 0 0
0 0 1

]
, 𝐃𝟏 =

[
0
0

]
,

(8.4)

where, the state vector consists of 𝐱1 = [𝜑, 𝜑̇, 𝛿]⊤. Note that the input, 𝑢1 = 𝛿̇
represents the steering velocity, instead of the desired steering position which
is the input signal to the model given by the transfer function 𝑃 (𝑠). When
the LQR is implemented on the instrumented bicycle, the PD controller for
steering position is bypassed, and the steering velocity is fed directly to the
motor controller.

To include the dynamics of the steering system, comparable to the approach
of the transfer function 𝑃 (𝑠), another step response is matched. However, the
reference is a steering velocity instead of a steering position since the model
in (8.4) is using the steering velocity as its input. As a reference angular ve-
locity, 9deg/s is commanded to the DC motor mounted on the instrumented
bicycle. The Junus motor controller, used for controlling the steering system,
logs the angular velocity data for post-processing. The result is presented in
Fig. 8.4.B.

The matched step response in Fig. 8.4.B is converted to its state-space, and
its matrices are:

𝐀2 =
[
−100

]
, 𝐁2 =

[
1
]
, 𝐂2 =

[
100

]
, 𝐃2 =

[
0
]
, (8.5)

with the state vector 𝐱2 = 𝛿̇, and the control input 𝑢2 = 𝛿̇∗ representing the
desired steering velocity. The two state spaces in (8.4) and (8.5) are combined
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Figure 8.5: Reference feedback control scheme for balancing a bicycle.

in series as:
𝐀(𝑣) =

[
𝐀2 𝟎

𝐁1𝐂2 𝐀1

]
, 𝐁(𝑣) =

[
𝐁2

𝐁1𝐃2

]
,

𝐂 =
[
𝐃1𝐂2 𝐂1

]
, 𝐃 =

[
𝐃1𝐃2

]
.

(8.6)

The input signal is the desired steering velocity 𝑢 = 𝑢2 = 𝛿̇∗.

8.3.3 Nonlinear model

The instrumented bicycle was disassembled and each part was measured,
weighed, and designed in SolidWorks4. Both the rear wheel motor and the
steering motor are defined as rotary motors in SolidWorks. The complete
model is then exported to Adams which is a multibody dynamics simulation
software that uses the Newton-Euler method to obtain the equations of motion.

In Adams, the steering motor of the bicycle is defined as either steering
position or steering velocity depending on the control structure used. Gravity
and a contact surface between the wheels and the ground are included as well.
To model the Columb friction force between the ground and the wheels, the
static and dynamic friction coefficients 𝜇𝑠 = 0.7 and 𝜇𝑑 = 0.7 are used as well
as a stiction transition velocity of 0.2m/s and a friction transition velocity of
1m/s.

8.4 Control strategies

The closed-loop system in Fig. 8.5 is used to design control strategies for bal-
ancing the bicycle. The control signal 𝑢 depends on which model is used as
explained in the previous section. The reference signal is denoted with 𝑟, and
the controlled variable with 𝑦. A load disturbance 𝑑, which intend to emulate a
small physical side push of the bicycle is included in simulations. Additionally,
the measurement noise 𝑛 in the lean angle measurements is also considered.

4https://www.solidworks.com/

https://www.solidworks.com/
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8.4.1 PID controllers

Two PID controllers, tuned using different methods, are used in this paper. Both
PID controllers are designed using the ideal form of a PID controller in discrete
time

𝑈 (𝑧) = 𝐾𝑃

(
1 +𝐾𝐼 ⋅ 𝑇𝑠

1
𝑧 − 1

+𝐾𝐷 ⋅
1
𝑇𝑠
𝑧 − 1
𝑧

)
, (8.7)

with 𝑇𝑠 = 0.01 seconds. The first PID controller – in the following referred as
LSPID – is tuned using a loop shaping method explained in detail in the work by
Andersson et al. [20]. The general objectives of the loop shaping method is to
ensure good stability, tracking performance and robustness to disturbances and
uncertainties [21]. The control loop objectives are formulated as the following
constraints on the loop transfer function frequency response:

• The target bandwidth is selected so that the open loop system should
cross the 0 dB mark once with a phase margin of at least 30◦

• For disturbance rejection, the gain for the frequency response of the open
loop system below the target bandwidth should be high

• To assure robustness of plant uncertainties, the gain for the frequency
response of the open loop system above the target bandwidth should be
low

The cost function 𝐽 , is defined as:
𝐽 =𝑤1(𝜔𝑏 − 𝜔𝑡)2

+𝑤2 ∫

𝜋∕𝑇𝑠

𝜔𝑏
20 log |𝐾(𝑗𝜔)𝑃 (𝑗𝜔)| d𝜔

−𝑤3 ∫

𝜔𝑏

0
20 log |𝐾(𝑗𝜔)𝑃 (𝑗𝜔)| d𝜔, (8.8)

where 𝜔𝑡 = 15rad/s is the target bandwidth and 𝜔𝑏 is the bandwidth of the loop
transfer function defined as:

𝜔𝑏 = inf
𝜔

|𝐾(𝑗𝜔)𝑃 (𝑗𝜔)| ≤ 1, (8.9)
and weights are chosen as 𝑤1 = 0.05, 𝑤2 = 𝑤3 = 5 × 10−4.

An alternative tuning of the PID controller, referred to as ATPID, is per-
formed using the Simulink PID tuner applied on the linear model 𝑃 (𝑠). A
cross-over frequency 𝜔𝑐 = 15rad/s and phase margin 𝜙𝑚 = 60◦ were chosen
in the design process which results in a stable controller with a rise time of
0.05s and settling time of 1.44s. The gains for the respective PID controller are
reported in Table 8.2.



78 8.4. Control strategies

Table 8.2: The gains for the two PID controllers

PID gains
Gain LSPID ATPID

𝐾𝑃 2.514 3.167
𝐾𝐼 1.544 1.326
𝐾𝐷 0.074 0.069

8.4.2 Linear quadratic regulator

The LQR [22] in discrete time, is set to minimise the cost function:
𝐽 (𝐮) =

∞∑
𝑘=1

(𝐱(𝑘)⊤𝐐𝐱(𝑘) + 𝐮(𝑘)⊤𝐑𝐮(𝑘)) (8.10)
where the 𝐐 and 𝐑 are semi-definite positive matrices. The state-feedback
control law is given by:

𝐮(𝑘) = −𝐊𝐱(𝑘 − 1) (8.11)
where 𝐊 is computed as

𝐊 = (𝐑 + 𝐁⊤𝐏𝐁)−1𝐁⊤𝐏𝐀 (8.12)
and 𝐏 is obtained by solving the discrete-time algebraic Riccati equation:

𝐏(𝑘 − 1) = − 𝐀⊤𝐏(𝑘)𝐁(𝐁⊤𝐏(𝑘)𝐁 + 𝐑)−1𝐁⊤𝐏(𝑘)𝐀
+𝐐 + 𝐀⊤𝐏(𝑘)𝐀. (8.13)

The matrices 𝐀 and 𝐁, the state vector 𝐱, and the input 𝐮 are given by the state-
space model of the system (8.6), converted to discrete time with a sampling
time 𝑇 𝑠 = 0.01s. The 𝐐 = diag(𝑄𝑖𝑖) and 𝐑 = diag(𝑄𝑗𝑗) matrices were chosen
according to Bryson’s Rule [23], as

𝑄𝑖𝑖 =
1

Max value of 𝑥2𝑖
𝑅𝑖𝑖 = 1

Max value of 𝑢2𝑖
(8.14)

with the constraints found in table 7.1. Now, by utilising equation (8.12) the
following state-feedback gain, 𝐊, is obtained:

𝐊 =
[
22.46 −37.35 −4.91 8.77

]⊤ . (8.15)
On the instrumented bicycle it is possible to access all states except the

steering velocity, which is estimated from the steering position as:
𝛿̇(𝑡) ≈

𝛿(𝑡) − 𝛿(𝑡 − 𝑇𝑠)
𝑇𝑠

, 𝑇𝑠 = 0.01s. (8.16)
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Figure 8.6: The fuzzy controllers membership functions, the first membership func-
tion is the lean angle error 𝑒𝜑 and the second membership function is the lean angle
error difference Δ𝑒𝜑. The output membership function presented in the bottom graph
correlates to the desired steering angle 𝛿∗.

8.4.3 Fuzzy controller

The fuzzy controller is inspired by the work of Abdolmalaki [24] and modified
using a trial and error approach. The controller uses two inputs, the lean angle
and the lean angle difference, and computes the desired steering angle, hence
the linear model 𝑃 (𝑠) is utilised. The input and output membership functions
are shown in Fig. 8.6 where NL, NM, NS, Z, PS, PM, PL are short for Nega-
tive Large, Negative Medium, Negative Small, Zero, Positive Small, Positive
Medium, and Positive Large respectively. The fuzzy rule set is defined in Ta-
ble 8.3, using the same abbreviations as in Fig. 8.6. The columns represent the
lean error 𝑒𝜑 and the rows represent the lean error difference Δ𝑒𝜑. To repre-
sent implication and the “And” operation, the product function is utilised. The
methods of aggregation and defuzzification are represented by the sum and the
centroid functions respectively.
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Table 8.3: The fuzzy rule set with “And" linguistic interception term.

𝚫𝐞𝜑
𝐞𝜑 NL NM NS Z PS PM PL

NL NL NL NM NM NS NS Z
NM NL NM NM NS NS Z PS
NS NM NM NS NS Z PS PS
Z NM NS NS Z PS PS PM

PS NS NS Z PS PS PM PM
PM NS Z PS PS PM PM PL
PL Z PS PS PM PM PL PL

8.5 Results

To evaluate the performance of the different controllers in simulation the In-
tegrated Squared Error (ISE) of the lean angle and rejection of lean angle dis-
turbances is used. For the experimental results, the execution time of the con-
trollers on the platform is considered as well as their maximum balancing time
of the bicycle on a bicycle roller.

8.5.1 Simulation setup

To evaluate the behaviour of the different controllers and models in simula-
tion, Mathworks Simulink5 is utilised. The nonlinear model is exported from
ADAMS and used in co-simulation through Simulink where it is put in series
with the transfer functions of the step response matching to capture the dynam-
ics of the steering setup. Both the linear and nonlinear models are set up in
continuous time and the controllers are using a sampling time 𝑇𝑠 = 0.01s, to
transfer the data between the time domains rate transition blocks are utilised.
The forward speed during simulations on both the linear and nonlinear model is
set to 14km/h and reference lean 𝑟 of 0 degrees. In simulations, Gaussian noise
is added to the lean angle measurements with a standard deviation of 0.01◦.
The noise is measured by placing the VN-100 on a flat surface and collect the
roll angle data for 30 minutes, this is repeated 3 times. To simulate a gentle
push on the bicycle, a disturbance is induced in the lean angle measurements
with an amplitude of 1 degree and lasts for 0.25s. The disturbance is activated
after 5s. The constraints of the steering angle and steering velocity presented
in Table 7.1 are implemented in simulation as saturation of the control signals.

5https://se.mathworks.com/products/simulink.html

https://se.mathworks.com/products/simulink.html
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8.5.2 Simulation results

The lean and steering angle of both the nonlinear and the linear models are
shown in Fig. 8.7. The grey area in the subplots indicates where the disturbance
in the lean angle measurements is injected. In the nonlinear case, the bicycle
starts from zero and instantly accelerates up to 14km/h which makes the lean
angle, and in extension the steering angle, to deviate a bit from zero in the
beginning. The Integrated Square Error (ISE) are computed for the lean angle
of the bicycle and presented in Table 8.4.

The most consistent control structure in simulation is the LQR which shows
promising results for both models, for the linear case, this is not surprising
as the LQR is optimised for that model. As the LQR behaves similarly on
both models this suggests that the linear model is a good approximation of the
more complex nonlinear model. However, it is obvious from the results of
the PID controllers that the nonlinear model is more challenging to control for
this type of controller. Especially the LSPID which has smaller gains struggles
when it comes to disturbance rejection of the nonlinear model, this is confirmed
by the ISE values for the LSPID. The ATPID, with a set of higher gains, are
performing much better on both models. The ISE also verifies the consistency
of the LQR and shows that the Fuzzy controller struggles on both models.

Table 8.4: The ISE values from the lean angle error in simulation

Integrated Squared Error (ISE) on lean angle
Nonlinear model Linear model

LSPID 83.79 30.25
ATPID 31.25 24.16
LQR 27.24 23.39
Fuzzy 71.47 88.55

8.5.3 Experimental setup

In experiments, the instrumented bicycle is placed on a bicycle roller and ref-
erence lean of 0 degrees is used for all controllers6. The reason for choosing a
bicycle roller is due to space limitations and weather conditions. At startup, the
handlebar is pointing approximately forward and the bicycle is held by an oper-
ator in an upright position. After the bicycle has accelerated up to 14km/h, the
operator releases the bicycle and the logging of data begins. In case the oper-
ator touches the bicycle, the remaining data does not qualify as self stabilising

6A footage of one experiment is available at this link: https://youtu.be/
9owSiGU-Z0o

https://youtu.be/9owSiGU-Z0o
https://youtu.be/9owSiGU-Z0o
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of the bicycle, which is indicated by the grey areas in Fig. 8.8. There were no
disturbance injected in the lean angle measurements in the experiments, mainly
due to the experimental setup using a bicycle roller.
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Figure 8.7: Results of the different control strategies when controlling the linear model
and the nonlinear model in simulation.

8.5.4 Experimental results

The outcome of the experiments conducted on the roller is presented in Fig. 8.8.
All four controllers manage to balance the bicycle. However, due to the narrow
bicycle roller, the instrumented bicycle tends to go out of bounds and an op-
erator needs to assist the bicycle to keep it on the roller. The Fuzzy controller
manages to balance the bicycle, but with large oscillations in the lean angle
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which makes it drift off the roller after 10 seconds. Perhaps with a better tuned
fuzzy system, the bicycle balancing could be improved. However, the long ex-
ecution time of the fuzzy system makes it a weak candidate compared to LQR
and PID on a real-time embedded system. The two PIDs and the LQR manages
to stabilise and keep the bicycle on the roller for over 40 seconds, with the LQR
performing slightly worse than the PID’s. A reason for this might be caused by
the estimation of the steering velocity, which could be improved by a Kalman
filter. The results also suggest that in experiments, it is more beneficial to use
the steering position as the control signal compared to the steering velocity.
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Figure 8.8: Results of the experiments conducted on the bicycle roller. The top row
presents the lean angle of the bicycle while steering angle is reported in the second
row for LSPID and ATPID. The third and the fourth row presents the lean angle and
steering angle of the LQR and Fuzzy controller respectively. The gray area indicates
that the bicycle has been aided by an operator, thus the experiment is considered to be
aborted at that point.

The LSPID, which did not show the most promising results in simulation,
produced the best results in experiments, indicating that the nonlinear valida-
tion model could be improved in future work. The most consistent controllers,
when considering both experiment and simulation, are the ATPID and LQR.
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To evaluate the execution time of the different control structures they
are implemented on the roboRIO platform. Random numbers in the range
[−15, 15]deg are used as inputs to the controllers and the mean execution
time and standard deviation of 10 000 loops are calculated for each controller.
Table 8.5 shows the obtained averages for the three classes of controllers.
Both the PID and the LQR show an execution time of few micro-seconds,
while the Fuzzy controller has an execution time in the order of hundreds
of micro-seconds. Even though, all the controllers manage to complete
the respective control laws within the sampling period (𝑇𝑠 = 0.01s), it is
preferable to use the PID or the LQR controllers since it can allow additional
functionalities to be implemented on the same computing platform, such as
the motion planning, localization algorithms, and so on.

8.6 Conclusion and Future Work

To improve the evaluation process of vehicles ability to detect and classify bi-
cycles, a driverless instrumented bicycle is designed with components which
could fit into the bicycle frame or be hidden away in a bicycle basket. To eval-
uate and compare different control algorithms for stabilising the system, two
different models are developed. The instrumented bicycle senses the lean angle
and adjusts the steering angle to maintain balance. For the purpose of control-
ling the handlebar, two different tuned PID controllers, an LQR and a Fuzzy
controller are evaluated and implemented in both simulations and on the in-
strumented bicycle. In the simulation, the controllers are compared both on
a linear and a nonlinear model and a disturbance is induced in the lean angle
measurements to evaluate the robustness of the four controllers. The outcome
from the conducted experiments shows promising results when using the PID
controllers or LQR, which all manages to keep the bicycle balanced for over 40
seconds on a narrow roller.

To maintain the silhouette of a bicycle, the next iteration of the instru-
mented bicycle should focus on embedding the components into the bicycle

Table 8.5: Execution time of the different control strategies

Execution time
Controller Mean [𝜇s] Standard deviation [𝜇s]
PID 8.24 4.78
LQR 9.97 3.96
Fuzzy 582.37 54.50



Bibliography 85

frame. Since the LQR and PID controller with the set of higher gains shows
consistent results in simulation and experiments these controllers should be
considered for balancing the bicycle in future work where path following will
be addressed.
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Abstract

Trajectory tracking for an autonomous bicycle is considered in this paper. The
trajectory tracking controller is designed using a Model Predictive Controller
with constraints on the lean, steer, and heading angle as well as the position
coordinates of the bicycle. The output from the trajectory tracking controller
is the desired lean angle and forward velocity. Furthermore, a PID controller is
designed to follow the desired lean angle, while maintaining balance, by actu-
ation of the handlebar. The proposed control strategy is evaluated in numerous
simulations where a realistic nonlinear model of the bicycle is traversing a go-
kart track and a short track with narrow curves. The Hausdorff distance and
Mean Squared Error are considered as measurements of the performance. The
results show that the bicycle successfully can track desired trajectories at vary-
ing velocities.
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9.1 Introduction

The bicycle, with its slim structure of two inline wheels and a frame, is stati-
cally unstable but with proper actuation, it can be made stable [1]. A human
can learn to balance and control a bicycle from an early age by using the prin-
ciple of steering into the fall of the bicycle. This simple principle has also been
replicated in autonomous self-balancing bicycles [2]. However, a cyclist does
not only balance a bicycle but does in general also follow a path to a desti-
nation. A self-balancing bicycle, which also could navigate on its own could
potentially be used in several applications, e.g., for message delivery service
or bike-sharing [3]. Furthermore, autonomous road vehicles, such as cars and
trucks, struggle to correctly detect and classify Vulnerable Road Users (VRU),
such as cyclists, as discussed by Fairley [4]. Thus, a fully autonomous bicy-
cle could be used on the test tracks to aid the evaluation process and improve
the VRU detection and emergency braking system of other road vehicles. It is
crucial that the evaluation of test tracks is conducted in realistic environments,
with realistic behaviour of the VRU. An autonomous bicycle, which can nav-
igate and balance will resemble a cyclist to a larger degree compared to the
current bicycle targets which are mounted on a sledge and pulled in front of, or
beside the car1.

Motion planning and path tracking are important components for
autonomous vehicles, and they have been extensively explored in the area
of mobile robotics and autonomous cars [5]. However, the application of
such techniques cannot be applied as an off-the-shelves solution to riderless
bicycles, as some manoeuvres may make the bicycle fall. For example, path
trackers for cars typically use the steering angle to manipulate the heading [6],
while in the case of a bicycle that uses steer actuation to maintain balance, the
desired steering angle could potentially interfere with its balance and cause a
fall. Instead, a desired lean angle is commonly used to alter the heading of the
bicycle, which in extension controls the steering angle by using the principle
of steering into the fall [7, 8].

In this paper, we present a cascaded control architecture to (i) balance the
autonomous bike, and (ii) track the desired trajectory. The inner controller is
in charge of balancing the bicycle, and it is designed as a robust PID control
loop. The outer controller, is in charge of the trajectory tracking task, control-
ling the desired lean-angle of the bicycle to adjust its heading, and it is designed
as a Model Predictive Controller (MPC). The system is evaluated through co-

1https://www.euroncap.com/en/vehicle-safety/
the-ratings-explained/vulnerable-road-user-vru-protection/
aeb-cyclist/

https://www.euroncap.com/en/vehicle-safety/the-ratings-explained/vulnerable-road-user-vru-protection/aeb-cyclist/
https://www.euroncap.com/en/vehicle-safety/the-ratings-explained/vulnerable-road-user-vru-protection/aeb-cyclist/
https://www.euroncap.com/en/vehicle-safety/the-ratings-explained/vulnerable-road-user-vru-protection/aeb-cyclist/
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simulation between Adams2 and Matlab, where noise in the lean angle mea-
surements and disturbance on the steering system are included.

The rest of this paper is organized as follows. In Section 9.2 the related
work is presented. The bicycle model is derived in Section 9.3 followed by
Section 9.4 where the control design is discussed. Section 9.5 presents the
results and the paper is concluded in Section 9.6 which also includes future
research.

9.2 Related Work

The path tracking problem for bicycles has received some attention in previous
research. However, most previous bicycle research focuses on the modelling
and balance of unmanned bicycles. In this section, the modelling is discussed
first, then previously proposed solutions to the path tracking problem are dis-
cussed.

9.2.1 Modelling

The dynamic stability of bicycles has been researched for over a century, with
Whipple and his work on bicycle stability dated back to 1899 as one of the first
contributions to the topic [9]. To use the Whipple model, a set of 25 parame-
ters needs to be measured from the bicycle, which can be time-consuming and
sometimes difficult to obtain accurate measures. A simplified dynamic model
was presented in the work of Getz, where the mainframe of the bicycle was
modelled as a point-mass [10, 11]. In comparison to the Whipple model, this
model requires only 4 parameters to be measured. Extending Getz work, Yi et
al. presented a similar bicycle model [12, 13]. However, an important differ-
ence between the models is that the model proposed by Getz assumes that the
steering axis is vertical, while the model by Yi et al. allows for a tilted steering
axis, providing a positive trail to the bicycle. This extension offers a more re-
alistic model of a bicycle as most bicycles possess a positive trail, even though
it is not necessary for the self-stabilisation of a bicycle [14]. Yi used the model
to develop a nonlinear control for path tracking and balance of a motorcycle in
simulations [12]. The model has also been used for developing balance con-
trollers for bicycles in both the work of He et al. [15] and Zhang et al. [16], as
well as for bicycle localisation in the work of Miah et al. [17].

2https://www.mscsoftware.com/it/product/adams

https://www.mscsoftware.com/it/product/adams
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9.2.2 Path tracking

In order to solve the path tracking problem, Dao and Chen [8] used a multi-
loop control. To control their bicycle model, a sliding mode controller was
used for lean angle tracking and a fuzzy logic controller with gain scheduling
and integral controller constituted the path tracking controller in the outer loop.
The results are promising as small tracking errors are achieved, however, a
discussion regarding discretization and sampling times of the system is lacking.
This is an important topic if the transition from simulation to experiments is to
be made, and requires a discrete-time algorithm. The path tracking problem
was also addressed in the work of Baquero-Suárez et al. [7], where an Active
Disturbance Rejection Controller (ADRC) was designed from the linearised
equations of the Whipple model [18] to balance the bicycle. A control law was
also established which relates the lean angle of the bicycle to its yaw angle,
and the controller was extended with path tracking capabilities. A reference
lean angle other than zero was fed to the outer loop of the controller which
enables the bicycle to track the desired heading. Baquero-Suárez path tracker
showed promising results in simulation where a forward velocity of 1.5m/s was
considered when evaluated on both a straight path and a circular path with a
radius of 15m. In this paper, higher forward velocities are considered as well
as narrow curves.

A way to address the path tracking problem, which has proven successful
for both mobile robots and autonomous vehicles is the MPC [5]. A desired
property of the MPC is the possibility to incorporate constraints on the states
and control signals of the system while tracking a reference by looking ahead.
By recursively minimising a cost function over a finite time horizon an optimal
control signal is computed. However, there is an important trade-off. Typically,
the larger the time horizon, the higher the accuracy, but so is the execution
time. An MCP were used by Frezza et al. [19] as a path tracking controller for
a motorcycle. To evaluate the controller, a multi-body simulation environment
was used and the obtained results showed good tracking accuracy. Clearly, the
proposed controller produces satisfactory results when used on a high-speed
motorcycle, but unfortunately, it was never evaluated for a lower speed range
typical for a bicycle. Also, the sampling and execution times were not consid-
ered in their work. Path planning and path tracking as well as obstacle detection
and avoidance for an autonomous bicycle were presented in the work by Zhao et
al. [20]. The path planning algorithm considered a global linear path between
two points and re-plans the path using four phases if an obstacle is detected by
the onboard Lidar. To balance the bicycle, the controller presented in [15] was
used. The simulation and experimental results are impressive, however, the
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details of the path tracking algorithm are not disclosed as well as any details of
sampling and execution time of the different systems.

In this paper, we propose an MPC controller to address the path track-
ing problem for a riderless bicycle. Instead of considering low velocities and
wide curves as in [7], we are using operating velocities typical for a bicycle.
Moreover, the reference path includes both wide and narrow curves as well as
straights. Many of the previous path tracking controllers are only considered
in simulation and the transition to an experimental setup, including sampling
and execution times is not discussed [19, 8]. In this paper, different sampling
times are considered for the inner and outer control loop when controlling the
nonlinear bicycle model in simulation.

9.3 Bicycle model

To model the bicycle, the point-mass model presented in the work of Yi et
al. [13] is used. The model assumes the bicycle to ride on a horizontal plane,
where the interaction between the wheels and the ground is point contacts and
the geometry and thickness of the wheels are neglected. Furthermore, the mass
of the rear frame is considered as a point mass, and non-holonomic constraints
are imposed resulting in 𝑣𝑥 = 𝑣 and 𝑣𝑦 = 0. There are three coordinate sys-
tems associated with the model, the navigation frame  (𝑋, 𝑌 ,𝑍) fixed on the
ground plane, the wheelbase frame (𝑥, 𝑦, 𝑧) associated with the line between
the point 𝐶1 and 𝐶2 and the last frame is attached to the rear frame of the bi-
cycle (𝑥, 𝑦, 𝑧), as shown in Fig. 9.1. The lean angle, 𝜑(𝑡), and steering
angle, 𝛿(𝑡), are positive following the right-hand rule.

𝜑

𝛽

𝛽
𝑅

ℎ

𝑐
𝑏
𝑎

𝑥𝑦 𝑧

𝐺
𝛿

𝜆

𝜓𝐶1 𝐶2

𝑋
𝑌 𝑍

𝑥𝑦 𝑧

Figure 9.1: A bicycle riding on a flat horizontal plane.
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The projected steering angle 𝛽(𝑡), i.e, the steering angle at the horizontal
plane, can be obtained as:

tan(𝛽(𝑡)) = tan(𝛿(𝑡)) sin(𝜆)
cos(𝜑(𝑡))

, (9.1)

where 𝜆 is the caster angle. Consider a bicycle riding on a path with radius 𝑅,
then the curvature 𝜎(𝑡) is:

𝜎(𝑡) = 𝑏
𝑅(𝑡)

= tan(𝛽(𝑡)) (9.2)

with 𝑏 representing the wheelbase. The small angle approximation for the steer
angle 𝛿 and lean angle 𝜑 yields:

𝜎(𝑡) ≈ 𝛿(𝑡) sin(𝜆), (9.3)
and the respective curvature rate of change:

𝜔𝜎(𝑡) = 𝜎̇(𝑡) ≈ 𝛿̇(𝑡) sin(𝜆). (9.4)
The lateral dynamics of the bicycle on the plane can be formulated as:

𝑥̇ = 𝑣(𝑡) cos(𝜓(𝑡))
𝑦̇ = 𝑣(𝑡) sin(𝜓(𝑡))

𝜓̇(𝑡) = 𝜎(𝑡)𝑣(𝑡)
𝑏

= tan(𝛿(𝑡)) sin(𝜆)
𝑏 cos(𝜑(𝑡))

𝑣(𝑡).
(9.5)

The roll dynamics of the bicycle can be expressed as:
ℎ2𝜑̈(𝑡)𝑚 = 𝑔𝑚

(
ℎ sin

(
𝜑(𝑡)

)
+ 𝑐𝑎
𝑏
sin(𝜆)𝜎(𝑡) cos

(
𝜑(𝑡)

))
−

(
1 − ℎ

𝑏
𝜎(𝑡) sin

(
𝜑(𝑡)

)) ℎ
𝑏
𝜎(𝑡) cos

(
𝜑(𝑡)

)
𝑣2(𝑡)𝑚

− 𝑎ℎ𝑚
𝑏

cos
(
𝜑(𝑡)

)(
𝜎(𝑡)𝑣̇(𝑡) − 𝑣(𝑡)𝜔𝜎(𝑡)

)
.

(9.6)

Here, the mass, 𝑚, cancels out and using the relationships in Eq. (9.1) and
Eq. (9.2) the roll dynamics can be simplified as:

ℎ2𝜑̈(𝑡) = 𝑔
(
ℎ sin

(
𝜑(𝑡)

)
+ 𝑐𝑎𝑝2

𝑏
tan

(
𝛿(𝑡)

))
−

(
1 − ℎ𝑝

𝑏
tan

(
𝛿(𝑡)

)
tan

(
𝜑(𝑡)

)) ℎ𝑝
𝑏

tan
(
𝛿(𝑡)

)
𝑣(𝑡)2

− 𝑎ℎ𝑝
𝑏

tan
(
𝛿(𝑡)

)
𝑣̇(𝑡) − 𝑎ℎ

𝑏
cos

(
𝜑(𝑡)

)
𝑣(𝑡)𝜔𝜎(𝑡).

(9.7)
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where 𝑝 = sin(𝜆). To linearise the model, we apply the small angles approxi-
mation, and a constant velocity (𝑣̇ = 0) obtaining:

ℎ2𝜑̈(𝑡) = 𝑔
(
ℎ𝜑(𝑡) + 𝑐𝑎𝑝2

𝑏
𝛿(𝑡)

)
−

(
1 − ℎ𝑝

𝑏
𝛿(𝑡)𝜑(𝑡)

)
ℎ𝑝
𝑏
𝛿(𝑡)𝑣2 − 𝑎ℎ𝑝

𝑏
𝑣𝛿̇(𝑡)

(9.8)

Finally, we linearise at the equilibrium point 𝜑̄(𝑡) = 0, 𝛿(𝑡) = 0 and ̄̇𝛿(𝑡) = 0
using first order Taylor expansion and the linearised roll dynamics becomes

𝜑̈(𝑡) = 𝑔
ℎ
𝜑(𝑡) + 𝑔𝑐𝑎𝑝2

𝑏ℎ2
𝛿(𝑡) − 𝑝

𝑏ℎ
𝑣2𝛿(𝑡) − 𝑎𝑝

𝑏ℎ
𝑣𝛿̇(𝑡). (9.9)

Eq. (9.9) can be rewritten in state-space form, with the input 𝐮𝜑 = 𝛿̇, output
𝐲𝜑 = 𝜑, and the state 𝐱𝜑 = [𝜑̇, 𝜑, 𝛿]⊤ as:

𝐀𝜑 =
⎡
⎢⎢⎣

0 𝑔
ℎ

𝑝
𝑏ℎ
( 𝑔𝑐𝑎𝑝
ℎ

− 𝑣2)
1 0 0
0 0 0

⎤
⎥⎥⎦
, 𝐁𝜑 =

⎡
⎢⎢⎣

− 𝑎𝑝
𝑏ℎ
𝑣

0
1

⎤
⎥⎥⎦

𝐂𝜑 =
[
0 1 0

]
, 𝐃𝜑 =

[
0
]
.

(9.10)

The relevant model parameters are obtained through measurements on the
instrumented bicycle in [21] and presented in Table 9.1. To model the steering
dynamics, including the steering motor and frictions, a step response matching
is performed. The instrumented bicycle in [21] is held in an upright position
with a steering angle of approximately 0 degrees, a reference angular velocity

Table 9.1: Parameters of the instrumented bicycle.

Design parameters

Parameter Symbol Unit Value

CoG with respect to O (𝑥) 𝑎 [m] 0.473
CoG with respect to O (𝑧) ℎ [m] 0.515
Gravity 𝑔 [m/s2] 9.820
Wheelbase 𝑏 [m] 1.080
Mass 𝑚 [kg] 23.720
Trail 𝑐 [m] 0.087
Head angle 𝜆 [deg] 72.950
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of 9deg/s is commanded to the motor and the results are sampled and stored on
the motor controller. The step response is shown in Fig. 9.2 and the matched
response is represented by a state-space model as:

𝐀𝛿̇ =
[
−100

]
, 𝐁𝛿̇ =

[
100

]
,

𝐂𝛿̇ =
[
1
]
, 𝐃𝛿̇ =

[
0
]
,

(9.11)

with the desired steering velocity, 𝐮𝛿 = 𝛿̇∗, as input and the actual steering
velocity, 𝐲𝛿 = 𝐱𝛿 = 𝛿̇, serving as both the output and the state. The state-space
model resulting from the series of the steer dynamics and the roll dynamics is:

𝐀𝛿̇𝜑 =
[

𝐀𝛿̇ 𝟎
𝐁𝜑𝐂𝛿̇ 𝐀𝜑

]
, 𝐁𝛿̇𝜑 =

[
𝐁𝛿̇

𝐁𝜑𝐃𝛿̇

]
,

𝐂𝛿̇𝜑 =
[
𝐃𝜑𝐂𝛿̇ 𝐂𝜑

]
, 𝐃𝛿̇𝜑 =

[
𝐃𝜑𝐃𝛿̇

]
,

(9.12)

with the state vector 𝐱𝛿̇𝜑 = [𝐱𝛿̇, 𝐱⊤𝜑]
⊤, and the control input 𝐮𝛿̇𝜑 = 𝛿̇∗ represent-

ing the desired steering velocity.

0 0.1 0.2
0

4.5
9

Time [s]

𝛿
[ de

g∕
s]

Step response matching

Reference
Actual response
Matched response

Figure 9.2: Step response matching of the steering system. The matched response is
used in simulation to model the dynamics of the steering system.

9.4 Control design

In this section, the PID controller in charge of balancing the bicycle is derived
first. The tuned PID controller is then put in series with the roll dynamics and
appended to the lateral dynamics, and the complete model is used to design an
MPC for the outer loop.

9.4.1 Balance controller

To maintain the balance of a bicycle, the front fork is steered in the same direc-
tion as the fall which will cause an acceleration in the opposite direction and
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bring the bicycle to an upright position again. In the case of uneven terrain,
side wind, or other disturbances the task of balance becomes more challeng-
ing. Therefore, disturbance rejection is an important property for the balancing
controller and should be emphasised in the control design.

Consider the system in Fig. 9.3 where 𝑅(𝑠) is a real PID controller in par-
allel form

𝑅(𝑠) = 𝐾𝑝 +
𝐾𝑖
𝑠

+
𝐾𝑑𝑁

1 + 𝑁
𝑠

. (9.13)

In the figure,𝐺(𝑠) is the transfer function of the steering dynamics in Eq. (9.11),
and 𝐻(𝑠) is the transfer function associated with Eq. (9.9), with input 𝛿̇ and
output 𝜑, and it is equal to:

𝐻(𝑠) = Φ(𝑠)
Δ̇(𝑠)

= (𝑔𝑐𝑎𝑝2 − ℎ𝑝𝑣2) − 𝑎ℎ𝑝𝑣𝑠
𝑏ℎ2𝑠3 − 𝑏ℎ𝑔𝑠

. (9.14)

The roll dynamics, including the actuation, can be therefore expressed as the
transfer function 𝑃 (𝑠) = 𝐺(𝑠)𝐻(𝑠). As illustrated in Fig. 9.3, a disturbance
𝑑, acting on the control signal 𝛿̇∗, and noise 𝑛 on the lean angle measurements
𝜑 are considered, and their effect should be minimized. The reference lean
angle is denoted 𝜑∗ and the steering velocity which affects 𝐻(𝑠) is 𝛿̇. The
open-loop transfer function from the load disturbance to the system output is
𝑄(𝑠) = 𝑃 (𝑠)

1+𝑅(𝑠)𝑃 (𝑠) .
The system with transfer function 𝐻(𝑠) has three poles in 𝑠 = 0, and

𝑠 = ±
√
𝑔∕ℎ, and therefore it is unstable with a pole in the right-half-plane.

As a consequence, also the system with transfer function 𝑃 (𝑠) = 𝐺(𝑠)𝐻(𝑠)
is unstable. As such, several autotuning techniques cannot be applied for the
problem at hand [22]. Instead, the PID tuning problem, for a forward velocity

𝑅(𝑠)

Balance control
𝐺(𝑠)

Steer dynamics
𝐻(𝑠)

Bicycle

𝜑∗ + 𝛿̇∗ + 𝛿̇ 𝑦

+𝜑

−

𝑑
+

𝑛+

𝑃 (𝑠)

Figure 9.3: Balance controller 𝑅(𝑠) and the linear model 𝑃 (𝑠).
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𝑣 = 14km/h, is formulated as a nonlinear optimisation problem:

min
𝐾𝑝, 𝐾𝑖, 𝐾𝑑 , 𝑁

(𝜔des
𝑐 − 𝜔𝑐)2 +𝑤1 ∫

∞

0
𝑡𝑞(𝑡)2d𝑡 +𝑤2 ∫

∞

0
𝑡𝓁(𝑡)2d𝑡

s.t. 𝐾𝑝, 𝐾𝑖, 𝐾𝑑 ∈ [−200, 0],
𝑁 ∈ [10, 1000],
𝜔des
𝑐 = 60rad/s.

(9.15)

with 𝑤1, 𝑤2 ∈ [0, 1] and 𝑤1 +𝑤2 = 1. Here, the desired crossover frequency
is denoted 𝜔des

𝑐 and the crossover frequency of the open-loop response is 𝜔𝑐 .
The function 𝑞(𝑡) is defined as the integrated mean squared value for the load
disturbance. Similarly, 𝓁(𝑡) is the integrated squared error for the closed-loop
step response. To leverage the influence of these performance measurements
the weights, 𝑤1 = 0.5, 𝑤2 = 0.5 are utilised.

The nonlinear optimisation problem in Eq. (9.15) is solved by means of
Particle Swarm Optimisation (PSO) [23] which is an iterative search algorithm.
PSO does not require the optimisation problem to be differentiable and can
search a large space of candidate solutions to the problem, however, it does
not guarantee a globally optimal solution. A population size, or swarm size,
is chosen initially as well as the size of the search space of possible solutions.
Each particle in the population is given a random position in the search space
and evaluate the cost function in Eq. (9.15) at their respective position. The
result of the evaluation generates a velocity for the particle towards both its own
best cost solution, but also towards the global best cost solution. The speed of
the particle towards the local and global best solutions is a also dependent on
the stochastic local and global acceleration coefficients, 𝑐𝐿 ∼  (0, 𝜒𝜑1) and
𝑐𝐺 ∼  (0, 𝜒𝜑2), where 𝜑1,2 is chosen as 2.05 and with 𝜅 = 1, 𝜒 is computed
as:

𝜒 = 2𝜅
|2 − 𝜑 −

√
(𝜑2 − 4𝜑)|

. (9.16)

The algorithm stops after a termination criterion is met or the maximum num-
ber of iterations, chosen as 1000, is reached. The resulting PID parameters are
shown in Table 9.2.

The state-space matrices of the PID controller in (9.13) are defined as:

𝐀𝑅 =
[
−𝑁 0
1 0

]
, 𝐁𝑅 =

[
1
0

]
,

𝐂𝑅 =
[
𝐾𝑖 −𝐾𝑑𝑁2 𝐾𝑖𝑁

]
, 𝐃𝑅 =

[
𝐾𝑝 +𝐾𝑑𝑁

]
,

(9.17)
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where the state vector is 𝐱𝑅 = [𝑒1, 𝑒2]⊤, the output 𝐲 = 𝛿̇∗, and the input 𝐮 = 𝑒
with 𝑒 = 𝜑∗ − 𝜑. Now, the open loop system in Fig 9.3 can be written as:

𝐀𝑂 =
[

𝐀𝑅 𝟎(2×4)
𝐁𝛿̇𝜑𝐂𝑅 𝐀𝛿̇𝜑

]
𝐁𝑂 =

[
𝐁𝑅

𝐁𝛿̇𝜑𝐃𝑅

]

𝐂𝑂 =
[
𝐃𝛿̇𝜑𝐂𝑅 𝐂𝛿̇𝜑

]
𝐃𝑂 =

[
𝐃𝛿̇𝜑𝐃𝑅

] (9.18)

and by closing the loop we obtain
𝐀𝐶 = 𝐀𝑂 − 𝐁𝑂𝐂𝑂
𝐁𝐶 = 𝐁𝑂
𝐂𝐶 = 𝐂𝑂
𝐃𝐶 = 𝐃𝑂.

(9.19)

The input to the closed loop system is 𝐮𝐶 = 𝜑∗, the output 𝐲𝐶 = 𝜑, and the
state vector 𝐱𝐶 = [𝑒1, 𝑒2, 𝛿̇, 𝜑̇, 𝜑, 𝛿].

Table 9.2: Computed optimal PID parameters.

PID parameters
Parameter Value

𝐾𝑝 -82.6193
𝐾𝑖 -69.4433
𝐾𝑑 -22.4138
𝑁 234.4655

9.4.2 Path tracking

A cyclist who does not preview the path ahead would struggle and ultimately
could lose control and balance of the bicycle. Instead, a cyclist typically looks
ahead and plans a path and by proper actuation of the handlebar, pedals, and
body movements the path can be tracked. The MPC is an online optimal con-
trol algorithm that predicts the future behaviour of the plant for a given pre-
diction horizon 𝐻𝑝, similar to how a cyclist tracks a path. Constraints on the
states, output and input variables are considered as well. If the plant model and
constraints are linear, the optimisation problem becomes convex and thus an
optimal solution can be guaranteed. However, if the model does not success-
fully approximate the plant to a satisfying degree, the output of the MPC will
be flawed. Thus, the results are highly dependent on the model and the design
parameters of the MPC.
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Consider the bicycle riding on a horizontal plane, the motion can be de-
scribed by the lateral dynamics in Eq. (9.5), and given small angle approxima-
tion and a constant velocity, it can be written in state space form as:

𝐀𝐾 =
⎡⎢⎢⎣

0 0 0
0 0 0
𝑣𝑐 0 0

⎤⎥⎥⎦
, 𝐁𝐾 =

⎡⎢⎢⎣

𝑝
𝑏
𝑣𝑐 0
0 1
0 0

⎤⎥⎥⎦

𝐂𝐾 =
⎡
⎢⎢⎣

1 0 0
0 1 0
0 0 1

⎤
⎥⎥⎦
, 𝐃𝐾 =

[
0
]
,

(9.20)

with the state vector 𝐱 = [𝜓, 𝑥, 𝑦]⊤, and the input 𝐮 = [𝛿, 𝑣]. A model which
includes both the motion of the bicycle, as well as its roll dynamics, can be
obtained by augmenting the lateral dynamics in Eq. (9.20) to the closed loop
dynamics in Eq. (9.19). When augmenting the systems, the steering angle 𝛿,
used for computing the heading 𝜓 , can now be obtained from the state vector
instead. The state matrices of the complete model are:

𝐀 =
[
𝐀𝐾 𝟎(3×5) 𝐁𝐾1
𝟎(6×3) 𝐀𝐶

]
, 𝐁 =

[
𝐁𝐾2 𝟎(3×1)
𝟎(6×1) 𝐁𝐶

]
,

𝐂 =
[
𝐂𝐾 𝐂𝐶

]
, 𝐃 =

[
𝟎(4×2)

]
,

(9.21)

where 𝐁𝐾1 and 𝐁𝐾2 corresponds to the first and second column of the 𝐁𝐾 ma-
trix respectively. The state vector is 𝐱 = [𝜓, 𝑥, 𝑦, 𝑒1, 𝑒2, 𝛿̇, 𝜑̇, 𝜑, 𝛿]⊤, the input
𝐮 = [𝑣, 𝜑∗], and the output 𝐲 = [𝜓, 𝑥, 𝑦, 𝜑, 𝛿]⊤.

Consider a reference trajectory Γ(𝑡) = [𝜓𝑟(𝑡), 𝑥𝑟(𝑡), 𝑦𝑟(𝑡)]⊤. A new refer-
ence point on the path is extracted at each sampling interval 𝑇𝑠 = 0.1𝑠, and the
𝐻𝑝 − 1 subsequent reference points are extracted which enables the bicycle to
look ahead 𝐻𝑝 points. However, as the linear model in Eq. (9.21) is linearsed
at its equilibrium state, i.e 𝐱 = [𝟎], the model will more accurately describe
the system close to the its equilibrium. Therefore, the measured output is set
to zero for all states, and instead the difference in the bicycle frame,  , is used
as the reference output for the MPC with lean and steer angle set to zero. The
difference are computed as:

Δ𝜓 = 𝜓𝑟 − 𝜓 (9.22)
Δ𝑥 = cos(𝜓 − Δ𝜓)(𝑥𝑟 − 𝑥) + sin(𝜓 − Δ𝜓)(𝑦𝑟 − 𝑦)
Δ𝑦 = − sin(𝜓 − Δ𝜓)(𝑥𝑟 − 𝑥) + cos(𝜓 − Δ𝜓)(𝑦𝑟 − 𝑦),

and the input reference to the MPC is 𝐫 = [Δ𝜓,Δ𝑥,Δ𝑦, 0, 0]⊤. The quadratic
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cost function, optimised by the MPC, can now be formulated as:

min𝐮𝑘

𝐻𝑝∑
𝑘=0

‖𝐲𝑘 − 𝐫𝑘‖2𝐐 +
𝐻𝑢∑
𝑘=0

‖𝐮𝑘 − 𝐮𝑟𝑘‖2𝐑 + ‖Δ𝐮𝑘‖2𝐒
s.t. 𝐱𝑘+1 = 𝐀𝐱𝑘 + 𝐁𝐮𝑘,

𝐲𝑘 = 𝐂𝐱𝑘,
𝐲min ≤ 𝐲𝑘 ≤ 𝐲max 𝑘 = 0,… ,𝐻𝑝,
𝐮min ≤ 𝐮𝑘 ≤ 𝐮max,
Δ𝐮min ≤ Δ𝐮𝑘 ≤ Δ𝐮max

(9.23)

where 𝐐, 𝐑, and 𝐒 are positive semi-definite weighting matrices penalizing the
tracking error, control signals and control moves respectively. The control hori-
zon is denoted 𝐻𝑢, 𝐮𝑟 = [𝑣, 0]⊤ is the control reference signal, 𝐮 is the control
signal, 𝐲 the output, and Δ𝐮 represents the control move from one iteration to
the next. The matrices 𝐀,𝐁,𝐂 are given by the state-space model in Eq. (9.21)
discretized using zero-order hold and a sampling time of 𝑇𝑠 = 0.1s. The de-
sign parameters for the MPC and their corresponding values are presented in
Table 9.3. To estimate the states of the model, a Kalman filter is utilised and
integral terms are used for estimating the output [24].

Table 9.3: MPC parameters and constraints.

Parameter Value Parameter Value
𝐲min −[𝜋, 50, 50, 𝜋6 ,

𝜋
3 ]
⊤ 𝐐 diag([5, 10, 5, 10, 0])

𝐲max [𝜋, 0.1, 50, 𝜋6 ,
𝜋
3 ]
⊤ 𝐑 diag([0, 0])

𝐮min [0.5𝑣, −𝜋6 ]⊤ 𝐒 diag([0.1, 0.1])
𝐮max [1.5𝑣, 𝜋6 ]

⊤ 𝐻𝑢 4
Δ𝐮min −[0.2, 𝜋3 ]

⊤ 𝐻𝑝 10
Δ𝐮max [0.2, 𝜋3 ]

⊤

9.5 Results

To evaluate the proposed control system, two different reference trajectories
are considered. Instead of restricting the path to a circular or straight path as
in [7], or a sinusoidal as in [8], a realistic path is considered in this paper. Using
OpenStreetMap a go-kart track is exported to the Driving Scenario Designer in
Matlab. This allows for a more realistic behaviour of the bicycle since cyclists
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typically manoeuvre both straights and curves. The z-coordinates of the track is
set to zero, i.e., the bicycle is riding on a flat horizontal plane. The centerline of
the track is extracted and used as the reference path for the bicycle. The second
reference trajectory, which is much shorter than the go-kart track, consists of
a few narrow curves and is a more challenging track. For both trajectories, six
different nominal velocities: 10, 12, 14, 16, 18, and 20km/h are considered. On
the short track, the simulations are repeated ten times for each nominal velocity.
The model in Eq. (9.21) used for the MPC is updated for each nominal velocity,
however, the PID parameters reported in Table 9.2 remains the same for all
simulations.

To evaluate the performance of the proposed system, the Mean Squared
Error (MSE) is utilised and computed as:

𝑀𝑆𝐸 =
∑𝑁
𝑘=0(‖𝐱bike

𝑘 − 𝐱ref
𝑘−1‖2)𝑇𝑠

𝑡
(9.24)

where 𝐱bike and 𝐱ref are the 𝑥 and 𝑦 coordinates of the bicycle and the reference
trajectory respectively, 𝑇𝑠 = 0.1s is the sampling time, and 𝑡 is the time it takes
for the bicycle to go from it start position to its goal position. Since the reference
trajectory 𝐱ref should be ahead of the bicycle, the previous reference point is
considered, i.e., 𝐱ref

𝑘−1. Moreover, to measure the maximum difference between
the reference trajectory and the bicycle trajectory, the Hausdorff distance [25]
is utilised. The Hausdorff distance can be used to measure the similarity of two
parametrised curves, 𝐴 and 𝐵, as:

𝑑𝐻 (𝐴,𝐵) = max
{
sup
𝑎∈𝐴

inf
𝑏∈𝐵

𝑑(𝑎, 𝑏), sup
𝑏∈𝐵

inf
𝑎∈𝐴

𝑑(𝑎, 𝑏)
}
, (9.25)

where 𝑑(𝑎, 𝑏) is the Euclidian distance between the points 𝑎 and 𝑏. On the
short track, the standard deviation and the mean of the ten repetitions for each
nominal velocity are computed.

9.5.1 Simulation setup

The ordinary-sized male bicycle in [21] was dismantled and each component
was weighed, measured, and designed in SolidWorks3 and imported to Adams,
a multibody dynamics simulation software. In Adams, the steering motor and
the propulsion motor are defined as general point motions around the steer-
ing and rear-wheel axis respectively. Furthermore, the interaction between the

3https://www.solidworks.com/

https://www.solidworks.com/
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wheels and the ground is modelled as a Coulomb friction force with the dy-
namic and static friction coefficients 𝜇𝑑 = 𝜇𝑠 = 0.7, a stiction transition veloc-
ity of 0.2m/s, and friction transition velocity of 1m/s. The bicycle, as visualised
in Adams, is presented in Fig. 9.4.

Figure 9.4: The instrumented bicycle designed in SolidWorks and imported to Adams
is used as the plant in the co-simulation between Adams and Matlab.

The nonlinear bicycle model is then exported as a plant to Matlab Simulink,
with the input 𝐮 = [𝑣, 𝛿]⊤ and the output 𝐲 = [𝜓, 𝑥, 𝑦, 𝑣, 𝛿, 𝜑]⊤. The outer path
tracking loop has a sampling time of 𝑇𝑠,𝑜𝑢𝑡𝑒𝑟 = 0.1s, while the inner stabilisation
loop is set up with the sampling time 𝑇𝑠,𝑖𝑛𝑛𝑒𝑟 = 0.01s. To simulate the bicycle
riding on uneven terrain, a disturbance 𝑑 ∼  (0rad/s, 0.7012rad/s) is acting
on the steering velocity input. Moreover, the lean angle measurement noise is
an additive white Gaussian noise 𝑛 ∼  (0deg, 10(−3∕2)2deg) and added to the
lean angle measurements as shown in Fig. 9.5. The variance of the noise is
estimated using the Inertial Measurement Unit (IMU) in [21] placed on a flat
surface. The data from the IMU is collected over 30minutes and repeated three
times.

9.5.2 Simulation results

The reference trajectory and the bicycle trajectory riding on the go-kart track
for each of the nominal velocities are presented in Fig. 9.6. For the short track,
the simulation is repeated ten times for each nominal velocity. The mean and
standard deviation for the ten repetitions are presented in Fig. 9.7 and in Fig. 9.8
for the MSE and Hausdorff distance respectively. Note that at the nominal ve-
locity of 18km/h only one repetition completed the trajectory (highlighted with
a red asterisk in the figures). At 20km/h the bicycle fell over before reach-
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ing the finish line in all ten repetitions. In Fig. 9.9 the short track trajectory
is presented for the nominal velocity of 14km/h4. The variance, due to noise
and disturbances, between the ten repetitions is represented in blue, and the
reference path is highlighted in red.

9.5.3 Discussion

The results in Fig. 9.6 clearly shows that the proposed system is able to follow
a trajectory in a real-life scenario at varying velocities. An MSE of 4.6cm is
the highest value computed for the go-kart track and is obtained with the nom-
inal velocity of 20km/h as seen in Fig. 9.7. The Hausdorff distances in Fig. 9.8
are all located at the narrow curves for all velocities, which indicates that the
tracking performance is better for straights and wide curves. The Hausdorff
distance and the MSE both increase slightly at the higher velocities of 18km/h
and 20km/h. Since riding a bicycle at low speeds demands higher steering
actuation compared to riding the same bicycle at higher speeds [26], the dis-
turbance induced in the input steering signal will also have a greater impact on
the performance at higher velocities

The short track in Fig. 9.9 is a more challenging track with narrow s-curves
and short straights compared to the go-kart track in Fig. 9.6 or the tracks con-
sidered in [7, 12]. As a result, both the MSE and the Hausdorff distance in
Fig. 9.7 and Fig. 9.8 are increased compared to MSE and Hausdorff distances
at the go-kart track. For the short track, the velocity plays an important role in
path tracking performance. The results up till 14km/h is consistent and with
small variations, this is also highlighted in Fig. 9.9 for 14km/h. However, at
higher velocities, the curves are too narrow and both the mean and standard de-
viation of the MSE and the Hausdorff distance at 16km/h is considerably higher

4https://www.youtube.com/watch?v=Wq6SvOX7erA

𝑀𝑃𝐶 𝑅(𝑠) 𝐺(𝑠) Adams
bicycle

Compute
difference

𝜑∗ + 𝛿̇∗+ 𝛿̇ 𝐲

+𝜑
−

𝑛
+

𝑑
+

𝐲𝐫Δ
Γ

𝟎5×1

Figure 9.5: Simulation setup of the control system.

https://www.youtube.com/watch?v=Wq6SvOX7erA
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Figure 9.6: The Adams bicycle riding on a go-kart track.

compared to the low velocities. Above 16km/h, all except one simulation (at
18km/h) failed due to the bicycle falling over. The majority of falls takes place
at the s-curve, either at the first curve or at the beginning of the second curve.
When recovering the lean angle from the initial curve, the steering actuation
is too aggressive in the opposite direction which causes the fall. One possible
way to address this problem is with a longer prediction and control horizon,
however, this would also increase the computational time. Introducing braking
to the bicycle also needs to be investigated.

9.6 Conclusion

In this paper, an MPC is used to address the trajectory tracking problem for an
autonomous bicycle. A point-mass model is used to model the bicycle, and the
steering dynamics is obtained through a step response matching procedure. To
balance the bicycle, a PID controller regulates the steering velocity. The PID
parameters are computed by formulating the stabilisation of the bicycle as a
nonlinear optimisation problem, solved by means of PSO. The bicycle model
and the inner control loop are included in a prediction model, and an MPC is
formulated for trajectory tracking. The balancing and path tracking capabili-
ties of the autonomous bicycle are demonstrated in numerous co-simulations
between Matlab and Adams where two different reference trajectories are con-
sidered. The Mean Squared Error and the Hausdorff distance is used to evaluate
the path tracking performance. The results show that the riderless bicycle suc-
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Figure 9.7: The Mean Squared Error between the reference path and the bicycle paths
at each nominal velocity. The blue dots correspond to the MSE and computed for
the go-kart track. The red dots and error bars correspond to the mean and standard
deviation of the MSE for ten runs at each nominal velocity on the short track. The
red asterisk marks the result for the nominal velocity of 18km/h, only one out of ten
repetitions reached the final position. In the case of 20km/h the finish line was never
reached in any of the ten repetitions.
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Figure 9.8: The Hausdorff distance at respective velocity for the long go-kart track
is represented by the blue dots. Similarly, the red dots represent the mean Hausdorff
distance, with error bars indicating the standard deviation, when riding on the short
track with narrow curves. At the nominal velocity of 18km/h, only one repetition
completed the whole track and the Hausdorff distance for this repetition is marked
with the red asterisk. At 20km/h the finish position was never reached.

cessfully can balance and follow both reference trajectories in a range of veloc-
ities. For further evaluation of the system and to obtain experimental results,
the MPC will be considered for implementation on an instrumented bicycle.
However, a prerequisite for path tracking performance is reliable localisation,
thus the localisation problem of a bicycle needs to be investigated first.
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Abstract

Path planning is an important part of navigation for mobile robots. Several
approaches have been proposed in the literature based on a discretisation of
the map, including A∗, Theta∗, and RRT∗. While these approaches have been
widely adopted also in real applications, they tend to generate non-smooth
paths, which can be difficult to follow, based on the kinematic and dynamic
constraints of the robot. Time-Elastic-Bands (TEB) have also been used in the
literature, to deform an original path in real-time to produce a smoother path,
and to handle potential local changes in the environment, such as the detection
of an unknown obstacle. This work analyses the effects on the overall path for
different choices of initial paths fed to TEB. In particular, the produced paths
are compared in terms of total distance, curvature, and variation in the desired
heading. The optimised version of the solution produced by Theta∗ shows the
highest performance among the considered methods and metrics, and we show
that it can be successfully followed by an autonomous bicycle.
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10.1 Introduction

Planning a path between two points in a known, partially known or completely
unknown environment is called path planning. A map is commonly divided
into cells and graph-based search methods, such as Dijkstra’s algorithm [1],
can be used to find the shortest path between two given cells. Other popular
search methods include A∗, Theta∗, D∗ Lite and Rapidly-exploring Random
Tree (RRT). A∗ is an extension of Dijkstra’s, by using a heuristic to focus its
search towards the goal [2]. Moreover, D∗ Lite and Theta∗ are extensions of A∗

where D∗ Lite is intended to be used in an unknown environment [3]. As long
as the path is planned from the start position to the goal position, it only has
to re-plan parts of the path when obstacles are encountered. Theta∗ belongs to
any angle path planning algorithms and is not constrained by the edges of the
cells which is the case of A∗, D∗ Lite, and Dijkstra’s [4].

The initial path planned by A∗, Theta∗, D∗ Lite and its variants, can be
tracked by many different types of robots, such as differential drive robots or
omni-wheeled robots, which can rotate around their centre axis without forward
or backward motion, thus making sharp turns. The algorithms are also popular
in computer games where a low execution time is desirable [5]. However, many
other vehicles such as cars and bicycles that are subject to non-holonomic con-
straints can not follow the paths planned by A∗, Theta∗, or D∗ Lite. Instead,
a continuous path is required. To address this issue, there are several ways of
post-smoothing the path, such as utilising B-splines, Dubin’s Curve, or poly-
nomial interpolation [6]. As an alternative, it is also possible to define the
problem as an optimisation problem. Time-Elastic-Bands (TEB) [7] is formu-
lated as a nonlinear optimisation problem with constraints on parameters such
as the maximum velocity and acceleration, minimum turning radius, and mini-
mum distance to obstacles in the optimisation problem. The TEB has been used
for trajectory planning for numerous different robots, such as differential drive
robots [8], carlike robots [9], and mobile base platforms [10]. However, how
the initial condition of the nonlinear optimisation problem is often neglected
or assumed known in beforehand.

In this paper, we investigate four different path-finding algorithms and com-
pare the results by providing them as initial paths for the TEB. A basic A∗ path-
finding algorithm, an any angle path finder represented by Theta∗, a smooth
path finder represented by Hybrid A∗, and finally, RRT∗ as a sample-based
path-finder are considered. To evaluate the performance of the optimised and
non-optimised paths, the length of the path, the integrated absolute value of the
heading derivative, and the curvature of the path are taken into account. Fur-
thermore, to demonstrate the feasibility of the approach an autonomous bicycle
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Figure 10.1: The path planned by A∗, Theta∗, Hybrid A∗, and RRT∗ respectively.

is tracking the paths in a realistic multi-body simulation using a previously de-
signed Model Predictive Controller (MPC) [11].

The paper is structured in the following way, first, background on the dif-
ferent path planners and related work is presented in Section 10.2. The optimi-
sation of the paths using the TEB is described in Section 10.3. Next, the mea-
surements used for the evaluation of the different path planners are presented
in Section 10.4 followed by the results in Section 10.5. Concluding remarks
and future work are outlined in Section 10.6.

10.2 Background

In this section, the background and details of the path planners considered in
this paper are presented. Next, work conducted using TEB and related work in
terms of path planning for autonomous bicycles are given.
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10.2.1 Path planning

In this paper, we consider a map, 𝑀𝑚×𝑛, which is represented by a
2-dimensional binary occupancy grid, and each cell, 𝑚𝑖, is either free 𝑚𝑖 = 0
or occupied 𝑚𝑖 = 1. Four different path planners are used to find a path
between the start and goal position. A∗ is a graph search algorithm where a
heuristic is used to focus the search towards the goal. It was the first path
planning algorithm that combined the cost, 𝑓 (𝑛), from the start node to the
current node, 𝑔(𝑛), with the heuristic, ℎ(𝑛), between the current node and the
goal:

𝑓 (𝑛) = 𝑔(𝑛) + ℎ(𝑛). (10.1)
In this paper, the euclidean distance is chosen as the heuristic. Moreover, A∗ is
a complete path planner, meaning that if there is a path of free cells between the
start and goal node, it will be found. In the A∗ algorithm, each node has eight
neighbouring nodes, i.e, its horizontal, vertical and diagonal neighbours. In
Figure 10.1(a) it is clear that A∗ is constrained to movements in the directions
of these neighbours.

Theta∗ works similarly to A∗ and in fact, they are sharing the same main
loop. The difference is how the parent to a node is computed. In the case of
A∗, the parent will be within the neighbours of its parent node. However, the
parent to the current node in Theta∗ is not constrained to the neighbours of the
current node. Instead, Theta∗ checks if the current node and the parent node lie
within Line Of Sight (LOS) of each other [4], i.e the two nodes do not need to
be connected. Thus, the resulting path of Theta∗ is made up of several line seg-
ments which have an arbitrary angle and in general result in a path with fewer
turns and shorter paths compared to a path planned by for example A∗ where
the heading is constrained [4]. However, it is important to note that Theta∗ re-
quires longer execution time compared to A∗, due to the LOS check, which is
an important consideration in some applications [12]. From Figure 10.1(b), it is
clear that the path planned by Theta∗ is shorter, includes fewer heading changes
compared to both A∗ and RRT∗, and can have an arbitrary angle between two
nodes. As in the case of A∗, Theta∗ considers eight nodes as neighbours and
searches the grid, i.e the edges of the cells.

In this paper, we also consider the Hybrid A∗ algorithm which is a path
planner designed for creating smooth paths. The paths planned by Hybrid A∗

are constrained by the minimum turning radius of the vehicle, the length of
the motions, and the number of motion primitives generated [13]. Instead of
planning on a grid as in the case of A∗ and Theta∗, Hybrid A∗ generates 𝑁
number of smooth motion primitives from the current node and the planner is
constrained to these motion primitives. As a consequence, Hybrid A∗ is not
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constrained to only search on the grid or the centre of the cells, which is the
case of A∗ and Theta∗. Instead, the nodes of Hybrid A∗ can be placed anywhere
within a free cell. This is illustrated in Figure 10.1(c), where the five motion
primitives, in red, generated by Hybrid A∗ are not constrained by the edges or
the centre of the cells. The resulting path is visualised in green.

There are also sampling-based path planners, such as RRT and RRT∗. A
tree structure is obtained by repeatedly sampling a new randomly selected node
in space and connecting this node with the closest node already in the tree. The
advantage of the sampling-based algorithms compared to graph-based search
methods is that they can effectively find feasible paths in large state spaces and
are not constrained to discrete cells in the map [14]. Another advantage of the
RRT∗ is that even if the original planned path is found unfeasible due to some
unknown obstacle, a new path can quickly be planned by using the already
generated tree structure [15]. Similarly to Hybrid A∗, RRT∗ is not constrained
to discrete cells either, and the nodes can be anywhere within the free space of
the map. Furthermore, as in the case of A∗ and Theta∗, RRT∗ is a complete path
planner if a sufficient number of iterations are performed. In fact, RRT∗ will
converge towards the optimal path as the number of nodes approaches infinity
as it continues to optimise the path after the goal is reached. This is the main
difference between RRT and RRT∗ [15]. However, an infinite number of nodes
is impracticable. Instead, it is up to the designer to determine the maximum
number of iterations and the maximum number of nodes. Another important
parameter for RRT∗ is the maximum distance between a new sample and the
nodes in the tree as this choice will have a high impact on the convergence
time. In Figure 10.1(d), the tree of RRT∗ after 500 iterations and a maximum
connection distance of 1m is illustrated together with the shortest path in purple.

However, both Hybrid-A∗ and RRT∗ share the drawback of often produc-
ing jagged paths where an increasing number of heading changes is required,
as compared to straight paths. This will lead to increased energy consump-
tion and longer reference paths. Moreover, it might increase the complexity of
the path tracker. In the case of an autonomous bicycle, the change of heading
can be slow, especially if the bicycle is only equipped with a propulsion motor
and a steering motor, as the steering regulation would also be in charge of bal-
ancing the bicycle [16]. Furthermore, the resulting path from Theta∗, A∗, and
RRT∗ have sharp turns which would require the vehicle tracking the path to
turn around its own axis. This is a manoeuvre that is not possible for vehicles
which adhere to non-holonomic constraints, such as an autonomous bicycle,
instead a smooth path is desirable.
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10.2.2 Related work

One approach for smoothing the path is to use TEB [7] which are based on the
Elastic Bands proposed by Quinlan and Khatib [17]. An advantage of the TEB
is that constraints on the kinodynamic properties of the vehicle can easily be
included in the nonlinear optimisation problem while keeping a safe distance
from obstacles and minimising travel time. In the work of Deray et al. [10] the
Timed-Elastic Smooth Curve (TESC), an extension of TEB that relies on Lie
groups, is proposed and compared to the TEB. Both TESC and TEB are given
the task to plan between the start position and randomly selected goal position,
i.e no initial path is planned. Both planners fail repeatedly in environments
with static obstacles, something that could have been avoided if an initial path
was planned with a complete path planner such as A∗ or Theta∗. In the work
of Yongzhe et al. a car-like robot used TEB to park the robot in a parking
lot [9]. The initial path was planned by A∗ and the strategy was evaluated in
both simulations and experiments with promising results. A∗ was also used in
the work of Ma et al. where the number of heading changes in the planned path
was reduced by minimising the snap of the trajectory [18]. Next, TEB was used
as a local path planner to find a local optimal path.

Planning a feasible path for an autonomous bicycle requires the path
to be smooth due to the non-holonomic constraints of the bicycle. This
has been solved using different methods such as in the work of Wissel and
Nikoukhah [19], where a path is planned based on the manoeuvres which
can be performed by an autonomous bicycle, similar to Hybrid-A∗. The
manoeuvres are optimised to minimise the time of travel of the bicycle. The
trajectory for a bicycle is also considered in the work of Yuan et al. [20], where
the trajectory is optimised by means of Particle Swarm Optimisation (PSO).
A curve in the XY plane is parameterized by two third-order polynomials
while satisfying initial and final constraints on the yaw angle and the x,y
position. This leaves two free parameters, one for each polynomial which
can be used by PSO to minimise the maximum lean angle of the bicycle.
By using a higher order of polynomials, initial and final constraints of more
parameters, such as the steering angle, could be included. However, the
initial path is assumed known is neglected, moreover, it is not clear how the
proposed method would handle obstacles between the two points. In the work
of Turnwald et al. motion planning of a bicycle is investigated [21]. Three
different models are used to construct three different nonlinear optimisation
problems. Two of the models assume a zero trail, i.e the distance between
the contact point of the front wheel with the ground and the intersection of
the steering axis with the ground. The third model includes a positive trail.
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Simulation and experimental results are compared and it is concluded that
the nonlinear model which includes trail, produces paths best suitable for an
autonomous bicycle.

10.3 Path optimisation

Since we are interested in smooth paths which can be tracked by an autonomous
bicycle, the planned paths are smoothed by TEB [7]. The TEB can be visu-
alised as putting an elastic band on top of the previously planned path, then
tightening the band between the start and goal position to remove any slack
and create a smooth path, while keeping a safe distance to obstacles, 𝐨𝑚𝑖𝑛,
and adhere to a minimum turning radius, 𝑟𝑚𝑖𝑛. Moreover, the algorithm min-
imises the time to travel from the start pose, 𝐱𝑠, to the goal pose, 𝐱𝑔 while
considering constraints on the velocity, acceleration, angular velocity and an-
gular acceleration. Thus, it is a multi-objective optimisation problem where
the states of the vehicle,  = 𝐱1, 𝐱2,… , 𝐱𝑛 and time of travel between states,
𝑇 =

∑𝑛−1
𝑘=1Δ𝑇1,Δ𝑇2,… ,Δ𝑇𝑛−1, are the objectives and collected as:

 ∶= {𝐱1,Δ𝑇1, 𝐱2,Δ𝑇2,… , 𝐱𝑛−1,Δ𝑇𝑛−1𝐱𝑛}. (10.2)
Following the approach in the work of [22], the optimisation problem can be
formulated as:

min


𝑛−1∑
𝑘=1

Δ𝑇 2
𝑘

s.t. 𝐱1 = 𝐱𝑠,
𝐱𝑛 = 𝐱𝑔,
𝐡𝑘(𝐱𝑘+1, 𝐱𝑘) = 𝟎,
𝑟𝑘 − 𝑟𝑚𝑖𝑛 ≥ 0,
𝐨𝑘(𝐱𝑘) − 𝐨𝑚𝑖𝑛 ≥ 𝟎,
|𝑣| ≤ 𝑣𝑚𝑎𝑥, |𝑎| ≤ 𝑎𝑚𝑎𝑥,
|𝜔| ≤ 𝜔𝑚𝑎𝑥, |𝛼| ≤ 𝛼𝑚𝑎𝑥

(10.3)

where 𝐡𝑘(𝐱𝑘+1, 𝐱𝑘) = 𝟎 iff two consecutive poses 𝐱𝑘, 𝐱𝑘+1 are located on
a common arc of constant curvature. Thus, this constraint affects the smooth-
ness of the resulting path. 𝐨𝑘(𝐱𝑘) is the distance to a set of obstacles in the
proximity of 𝐱𝑘. Moreover, 𝑣𝑚𝑎𝑥, 𝑎𝑚𝑎𝑥, 𝜔𝑚𝑎𝑥, and 𝛼𝑚𝑎𝑥 define the maximum
velocity, acceleration, angular velocity and angular acceleration respectively.
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Table 10.1: Constraints and weights for TEB

Constraint Value 𝐰 Constraint Value 𝐰

𝑣𝑚𝑎𝑥 5m/s 1 𝑟𝑚𝑖𝑛 3m 10
𝑎𝑚𝑎𝑥 2m/s2 1 Δ𝑇 0.1s -
𝜔𝑚𝑎𝑥 0.3rad/s 1 ∑𝑛−1

𝑘=1Δ𝑇
2
𝑘 - 20

𝛼𝑚𝑎𝑥 0.5rad/s2 1 𝐡 - 1000
𝐨𝑚𝑖𝑛 1m 3

The nonlinear program in equation (10.3) is solved by means of Levenberg-
Marquard solver by approximating the problem as a nonlinear least square prob-
lem where the constraints are used as penalty terms in the objective. Moreover,
each penalty term is weighted with a weight to express the importance of each
constraint. The constraints and the corresponding weights are presented in Ta-
ble 10.1.

As the problem is a nonlinear program, there is no guarantee for converg-
ing to the optimal solution. The solution is heavily dependent on the initial
conditions, which in this case are the initial path and the initial velocities and
accelerations. The initial path is the path planned by the A∗, Theta∗, Hybrid
A∗, and RRT∗ respectively. Moreover, the initial velocity, acceleration, angular
velocity, and angular acceleration are all set to 0.

10.4 Evaluation

The paths planned by Theta∗, A∗, Hybrid-A∗, RRT∗ and their optimised ver-
sions are compared in 300 randomised maps. The size of each map is 100 ×
100m with a resolution of 1 cell per meter. For each map, a maze is randomised
with a wall thickness of 3m and a passage width of 8m. Three different scenar-
ios are used, in the first scenario, the passages in the maze are made up of free
space. In the second scenario, the free space is cluttered with 50 randomly po-
sitioned obstacles and in the third scenario 100 randomly positioned obstacles
are used. The start and goal positions are placed randomly on the map, with a
minimum distance of 70m apart. Moreover, to realise a safety distance to the
obstacles and the walls of the mazes, the obstacles and walls are inflated by a
radius of 1m. To evaluate the performance of the different path planners the
euclidean distance of the paths, the curvature of the paths and the integrated
absolute value of the heading derivative (IAT) are considered. A shorter path
length is desirable as it can save both time and energy for the vehicle tracking
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the path. The number of heading changes metric is also related to energy effi-
ciency as a vehicle consumes more energy when it has to change its heading a
lot. It is also related to the comfort of the ride, as constantly changing the steer-
ing direction will make an uncomfortable ride. However, the metric is better
suited to be used in noncontinuous paths where sharp heading changes are ap-
plied such as those produced by A∗ or Theta∗. In the case of continuous paths,
there may be small variations in the heading even on paths that appear straight.
Moreover, small and large heading changes would count the same which makes
the metric favouring large changes which are rarely found on continuous paths.
Instead, the IAT is considered and is defined as:

IAT =
𝑛−1∑
𝑘

||||
𝜃𝑘+1 − 𝜃𝑘

𝑇𝑠

|||| , (10.4)

where 𝑇𝑠 is the sampling time 𝜃𝑘 is the heading in sample 𝑘. This metric com-
bines the magnitude of the heading changes with the frequency of heading
changes. Before IAT is computed each path is interpolated over 1000 sam-
ples. The resulting value is normalised with respect to Optimised Theta∗ for
each map and the mean and standard deviation of 100 iterations for mazes with
0, 50, and 100 obstacles are computed. The curvature of the paths is only com-
puted for the interpolated paths planned by the optimised versions of the path
planners and the Hybrid A∗, as the paths planned by Theta∗, A∗, and RRT∗ are
made up of line segments and thus are not smooth. As in the case of the path
distance and the IAT, the curvature is normalised with respect to the Optimised
Theta∗ for each map and the mean and the standard deviation are computed.

10.5 Results

In this section, the results from the different path planning algorithms are pre-
sented. In the comparison, the maximum distance between a new node and the
tree in RRT∗ is set to 10m, and 105 iterations are performed with a maximum
of 3 × 104 nodes in the tree. The Hybrid A∗ uses a minimum turning radius
of 3m, a motion primitive length of 1.5m and 15 motion primitives are sam-
pled at each node. Moreover, only forward motion is considered for all path
planners. The resulting paths planned by A∗, Theta∗, Hybrid A∗, and RRT∗

are optimised using the TEB as described in Section 10.3. Moreover, the path
tracking results are presented where an autonomous bicycle is tracking a path
planned by Optimised Theta∗. The code for the comparisons and simulation,
together with a video of the simulation, are available online 1. The section is

1https://github.com/NiklasPerssonMDU/On-the-Initial-of-Timed-Elastic-Bands.git

https://github.com/NiklasPerssonMDU/On-the-Initial-of-Timed-Elastic-Bands.git
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Figure 10.2: Average and standard deviation of the normalised path lengths for 100
iterations with zero obstacles, 100 iterations with 50 randomised obstacles, and 100
iterations with 100 randomised obstacles in a randomised maze. The path lengths are
normalised with respect to Optimised Theta∗.

wrapped up with a discussion of the results.

10.5.1 Path planning results

In Figure 10.2, the mean and standard deviation of the normalised path lengths
are presented. The mean and standard deviation of the curvature is presented
in Figure 10.3. Moreover, the mean and standard deviation for the IAT value
for all paths are given in Figure 10.4.

10.5.2 Simulation results

As the Optimised Theta∗ produces the most promising results when compared
to the other path planners, it is used to plan a path for an autonomous bicycle in a
realistic multi-body dynamics simulation using Simscape. A randomised maze
of size 50 × 50m with a resolution of 1 cell per meter with no further obstacles
is considered. A minimum turning radius of 3m is used and a safety distance
of 1m is considered. The 2-dimensional map is generated as a 3-dimensional
environment in Simscape and a SolidWorks model of an ordinary-sized bicy-
cle is imported and controlled through Simulink. Based on previous work [11],
an MPC is used to track the reference trajectory and a PID controller is used
for balancing the bicycle. The inner loop in charge of balancing the bicycle
by steering the bicycle into the fall is executing at 100Hz and the outer tra-
jectory tracking loop is running at 10Hz, while the bicycle model is simulated



124 10.5. Results

0 obs 50 obs. 100 obs.0
1
2
3
4
5

Cu
rva

tur
e

Curvature of planned paths

Opt. Theta∗ Opt. A∗ Opt. Hybrid A∗ Opt. RRT∗

Hybrid A∗

Figure 10.3: The mean and the standard deviation for the curvature of the planned
paths, normalised with respect to Optimised Theta∗ in every iteration.

in continuous time. The control strategy is illustrated in Figure 10.5. To en-
sure a uniform sampling time of the optimised trajectory it is re-sampled with
a sampling time of 𝑇𝑠 = 0.1s before the simulation starts. The planned path
and path-tracking performance of the autonomous bicycle are presented in Fig-
ure 10.6.

10.5.3 Discussion

From Figure 10.2, 10.3, 10.4 it is clear that the paths optimised using the TEB
are shorter, have less curvature, and do not require as much heading regulation
as compared to their non-optimised counterparts in general. However, RRT∗

is actually performing worse when optimised using TEB in terms of IAT for
mazes which are cluttered with obstacles. Due to the cluttered environments
RRT∗ tends to plan paths which have lots of nodes on a short distance which
makes it difficult for the TEB to respect some constraints such as the minimum
turning radius. An increased number of iterations and nodes allowed in the
solution could improve the results of RRT∗ but at the cost of the execution time
which is already high compared to the other path planners. Moreover, tuning
of the maximum distance could have a positive effect on the results.

The paths length are decreased with 4.4%, 3.1%, 2.1% and 7.3% for A∗,
Theta∗, Hybrid A∗, and RRT∗ respectively when computing the average of the
three different obstacle scenarios. Furthermore, the Optimised Theta∗ produces
the shortest paths which were expected as Theta∗, in general, produces short
paths, by smoothing the path using an elastic band the slack at the curves can
be minimised. However, the TEB perform worse on paths which are already
smooth, as in the case of Hybrid A∗. This can be explained by the ratio of the
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Figure 10.4: Integrated absolute value of the heading derivative normalised with re-
spect to Optimised Theta∗.

weights and that the TEB favours smoothing the path and gets stuck in a locally
optimal solution. The results highlights the importance of the initial conditions
given to the NLP in equation (10.3). For the initial condition of the TEB, a
discrete path with sharp turns, but with a low number of heading changes and
short path length is performing better compared to an already smooth path with
a longer path length and an increasing number of heading changes such as in the
case of Hybrid A∗. The results also suggests that TEB performs better on paths
planned by grid search algorithms compared to sampled based algorithms and
hybrid search algorithms. Moreover, Figure 10.6 shows that the path planned
by Optimised Theta∗ successfully can be tracked by an autonomous bicycle in
an environment with static obstacles.

𝑀𝑃𝐶 PID Simscape
bicycle

Compute
reference

𝜑∗+ 𝛿̇ 𝐲

𝜑

+

𝐲𝐫Δ

Γ

𝟎5×1

Figure 10.5: Simulation setup of the control system.
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Figure 10.6: Autonomous bicycle tracking the reference path planned by Optimised
Theta∗.

10.6 Conclusion

In this paper, four different path planners are compared in 300 different maps.
The resulting paths are optimised using Timed-Elastic-Bands which creates
smooth paths that adhere to a number of different constraints, including max-
imum velocity, acceleration, and minimum turning radius. The results high-
light the importance of the initial path fed to the TEB. Moreover, the results
show that the resulting paths from the optimised Theta∗ have the shortest path
length, the lowest curvature, and the lowest IAT. The optimisation does not only
smooth the paths but in general improves the path planned by all algorithms in
terms of all path lengths, heading changes, and curvature. This emphasizes the
importance of optimisation when it comes to path planning for non-holonomic
constrained vehicles. Furthermore, to demonstrate that it is possible to track
the resulting path of the Optimised Theta∗, an autonomous bicycle is used in
a multi-body dynamic simulation. An MPC is utilised as a path tracker and a
PID is used to keep the bicycle balanced by steering the bicycle into the fall.
In the future, a TEB formulation with a bicycle model could be investigated
to constrain the maximum lean angle of the bicycle and include dynamic and



Bibliography 127

unknown obstacles in the path planning.
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