
Abstract

Real-time systems are central components in, e.g., industrial robots and auto-
mated guided vehicles, which integrate a wide range of algorithms with vary-
ing levels of timing requirements to achieve their functional behavior. Histori-
cally, in certain systems, these algorithms were deployed on dedicated single-
core hardware platforms that exchanged information over a real-time network,
while more recent designs have adapted an integrated architecture where these
algorithms are executed on an embedded multi-core hardware platform. Mean-
while, the advantages provided by cloud and fog architectures for non-real-
time applications have prompted discussions about the possibility of achieving
similar benefits for systems such as industrial robot controllers. This thesis
addresses a subset of challenges related to scheduling to facilitate this transi-
tion, and presents three main contributions aimed at improving online schedul-
ing approaches in multi-server systems for applications with real-time require-
ments. First, an approach based on minimum parallelism reservations is pro-
posed for scheduling sequential tasks in hierarchical multi-server systems with
clairvoyant inputs, ensuring adherence to hard real-time requirements. Second,
a framework is introduced that utilizes estimated processing times to enhance
average throughput in distributed multi-queue multi-server systems while man-
aging tasks with stochastic inputs and firm real-time requirements, thereby im-
proving resource utilization. Finally, competitive algorithms are proposed that
leverage estimated processing times to minimize average (modified) tardiness
in centralized single-queue multi-server systems, addressing the scheduling of
sequential tasks with arbitrary arrivals and soft real-time requirements. Col-
lectively, these contributions establish a robust foundation for improving the
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performance of real-time systems operating in increasingly complex environ-
ments characterized by dynamic workloads and varying resource availability.



Sammanfattning

Realtidssystem är centrala komponenter i till exempel industrirobotar och
automatiserade självkörande fordon. I dessa system integrerar realtidssys-
tem ett brett utbud av algoritmer med varierande nivåer av tidskrav för att
uppnå sitt funktionella beteende. Historiskt sett har dessa algoritmer i vissa
system distribuerats på dedikerade enkärniga hårdvaru plattformar, som ut-
bytte information över ett realtids nätverk, medan nyare design har anpassat
en integrerad arkitektur där dessa algoritmer körs på en inbäddad flerkärnig
hårdvaruplattform. Fördelarna med nyare så kallade moln- och dimarkitekturer
för andra typer av tillämpningar har föranlett diskussioner kring möjligheten att
uppnå liknande fördelar för exempelvis styrsystem för industrirobotar, genom
att gå från en inbäddad arkitektur till en molnbaserad arkitektur. Denna avhan-
dling tar upp en del utmaningar relaterade till schemaläggning för att un-
derlätta en sådan övergång, och presenterar tre huvudsakliga bidrag som syf-
tar till att förbättra online schemaläggningsmetoder i multi-serversystem för
applikationer med realtidskrav. För det första föreslås ett tillvägagångssätt
baserat på minsta parallellitetsreservationer för att schemalägga sekventiella
uppgifter i hierarkiska multiserversystem med klärvoajanta indata, vilket
säkerställer att hårda realtidskrav följs. För det andra introduceras ett ramverk
som använder beräknade behandlingstider för att förbättra den genomsnit-
tliga genomströmningen i distribuerade multi-queue multi-server system sam-
tidigt som uppgifter hanteras med stokastiska indata och fasta realtidskrav,
och därigenom förbättra resursutnyttjandet. Slutligen föreslås konkurren-
skraftiga algoritmer som utnyttjar uppskattade bearbetningstider för att min-
imera genomsnittlig (modifierad) försening i centraliserade enkelköiga multi-
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serversystem, vilket tar itu med schemaläggning av sekventiella uppgifter med
godtyckliga ankomster och mjuka realtidskrav. Tillsammans skapar dessa
bidrag en robust grund för att förbättra prestandan och effektiviteten hos re-
altidssystem som arbetar i allt mer komplexa miljöer som kännetecknas av dy-
namiska arbetsbelastningar och varierande resurstillgänglighet.
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Chapter 1

Introduction

Systems such as industrial robots and automated guided vehicles rely on al-
gorithms whose functional correctness depends on the availability of computed
results within certain time intervals [1]. Such systems are said to have real-time
requirements and are referred to as real-time systems. Software that manages
systems with real-time requirements has been historically deployed on a net-
work of dedicated single-core hardware devices. More recent designs embrace
an integrated multiprocessor deployment architecture. In both approaches, the
hardware devices are part of the physical system (embedded) or are in proxim-
ity to the system they control and the environment in which the system operates.

On the other hand, the cloud computing [2] paradigm provides computing
capabilities through large data centers which often are geographically distant
from end users. Despite this distance, it has transformed the ability to scale and
deploy software for a broad set of businesses through platform-as-a-service and
infrastructure-as-a-service models. This has led to considerable interest among
academics and the industry in investigating and replicating the benefits offered
by cloud computing for use cases that are dependent on embedded architec-
tures.

For instance, architectural paradigms such as fog computing have been de-
veloped that intend to provide resources in proximity to end users to provide
low response times while acting as gateways to centralized cloud resources [3].
Realizing the benefits of such architectures requires addressing a myriad of
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4 Chapter 1. Introduction

technical challenges [4, 5, 6]. These include developing protocols that ensure
predictable communication latencies [7], virtualization techniques that ensure
isolated access to hardware resources [8], orchestration approaches that im-
prove utilization [9] and scheduling techniques that can satisfy computational
latency requirements of real-time applications [10].

In this context, this thesis focuses on a subset of challenges related to
scheduling techniques to satisfy certain real-time requirements, taking into ac-
count on-demand availability and elasticity of computational resources. Specif-
ically, the thesis provides:

Online algorithms that satisfy hard real-time requirements of elastic ap-
plications in clairvoyant settings, improve throughput in non-clairvoyant
settings for firm real-time applications and reduce average modified tar-
diness in non-clairvoyant settings for soft real-time applications.

The design and evaluation of these algorithms is explored in detail in the
papers included in this thesis. To guide the reader, the following section out-
lines the thesis structure.

Thesis outline: This thesis consists of two parts. Part I provides an overview
of the thesis and is organized as follows. Chapter 2 provides background in-
formation on scheduling, while Chapter 3 presents an overview of the current
state-of-art closely related to the work in this thesis. Chapter 4 discusses the re-
search challenges addressed in this thesis. Chapter 5 summarizes the research
methods used to develop the contributions presented in the thesis. Chapter 6
provides an outline of the included papers and their contributions. Lastly, Chap-
ter 7 summarizes the thesis and introduces potential directions for future work.
Part II of the thesis consists of the included papers.



Chapter 2

Background

As the work in this thesis addresses scheduling challenges, this chapter provides
the relevant background with an overview of scheduling concepts (Section. 2.1)
together with the considered multi-server configurations (Section. 2.2) and the
variants of the online scheduling problem that depend on the knowledge of job
processing times (Section. 2.3).

2.1 Scheduling Theory

Scheduling theory broadly deals with the problem of providing sufficient re-
sources (servers) to requesters (jobs) such that certain performance criteria are
satisfied. Addressing this problem involves controlling the order and the dura-
tion for which the jobs are allowed to access servers. Variants of this problem
are investigated via tools such as mathematical modeling, analysis, and simu-
lations. The parameters contributing to the different variants of this problem
include:

• Number of servers and their types.

• Job characteristics such as their processing times and release times.

• The ability to preempt and migrate the jobs among the different servers.

• Knowledge of job characteristics at the time of decision making.

5



6 Chapter 2. Background

• Performance objectives such as minimization of completion times, flow
times, tardiness, and throughput maximization.

Depending on the parameters and the objective, a decision-making entity,
commonly referred to as a scheduler, assigns, at any time t, jobs to servers
according to a scheduling policy that determines the job order and the server
access duration. Scheduling policies may allow preemption and possibly mi-
gration, i.e., jobs can be paused and resumed later and possibly on a different
server. Depending on the availability of the complete knowledge of the input
job instance before processing begins, scheduling policies can be offline or on-
line. A scheduling policy is optimal for a given problem instance if it provides
the best possible solution while satisfying all the associated constraints. An ap-
proximate scheduling policy offers a feasible solution that may not be optimal
but is within a bounded factor of an optimal solution.

Offline Scheduling: In the offline version of a scheduling problem, informa-
tion about an input job instance is assumed to be available before executing
the first job. This information includes knowledge of processing times and
the arrival times of all jobs. The goal is to utilize this information to create
an optimal or approximate schedule that establishes a mapping between jobs,
servers, and the time intervals during which a server is made available to a spe-
cific job [11]. This problem is commonly addressed in application areas such
as distributed embedded systems [1]. Solution techniques include constraint
programming [12] and meta-heuristics like simulated annealing [13].

Online Scheduling: In the online version of a scheduling problem, jobs ar-
rive over time. Schedulers assign jobs to servers and determine the processing
order based on the information available at the time of decision making. They
make no assumptions about future jobs and have no information about the fu-
ture jobs [14]. Typical decision-making time points include job arrival times
and job completion times with the possibility of additional decision time points
depending on the algorithm and problem instance [15, 16]. Online scheduling
finds applications in computer systems such as cloud computing and real-time
embedded systems.
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Competitive Ratio: The performance of an approximate solution is com-
monly measured as the ratio between the performance of an approximate solu-
tion and that of an optimal solution. For online problems, an often-used mea-
sure is the online competitive ratio.

It is defined as the worst-case ratio between the performance of the online
algorithm and the optimal offline algorithm [17]. For a minimization problem,
the online competitive ratio c is defined as:

c = sup
σ

Conline(σ)

Coptimal(σ)

where Conline(σ) is the cost incurred by the online algorithm for input sequence
σ, and Coptimal(σ) is the cost incurred by the optimal offline algorithm for the
same input sequence. An algorithm with an online competitive ratio of c is said
to be c-competitive.

2.2 Multi-Server Configurations

The work in this thesis, in most cases, focuses on online scheduling in a par-
allel server environment in which all the servers are homogeneous; that is, a
job takes the same amount of processing time to finish on any server. Since
several multi-server configurations are considered in this thesis, an overview is
provided below.

Centralized Single-Queue Multi-Server Systems: This configuration is a
fundamental model in scheduling [18] involving the availability of multiple
parallel servers. Here, incoming jobs either preempt an existing job or wait in
a centralized single queue. At any given time, each server may process at most
one job. A preempted job is returned to the queue and may resume its execution
on possibly a different server. Some servers may remain idle if there are fewer
jobs in the queue than there are servers.

Distributed Multi-Queue Multi-Server Systems: This configuration mod-
els computer systems in which each server has its own queue [18]. Here, in-
coming jobs are assigned to a server as soon as they arrive. A scheduling policy
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at each server determines the order in which the assigned jobs waiting in their
respective queues are processed. Additionally, preempted jobs are retained in
the same queue as the server on which they were preempted and resume their
execution later on the same server.

Hierarchical Multi-Server Systems: This configuration models systems
that consist of at least one dedicated server and, at most, one fractional server.
In a hierarchical scheduling framework, the computational needs of an applica-
tion are abstracted by a single interface that specifies the computational time to
be reserved along with the time period in which it should be provisioned [19].
The reserved computing time can be made available to the application through
various reservation approaches such as the periodic server model [20] or the
minimum-parallelism supply model [21]. Here, a local scheduler determines
the order in which jobs of an application are ordered, while a global sched-
uler determines the scheduling order of the reserved servers. The job queuing
and processing policies may follow a single-queue or distributed multi-queue
approach.

On-Demand Multi-Server Systems: This configuration models computer
systems in cloud-computing in which jobs are assigned to on-demand servers
and a fixed set of servers. Here, on-demand servers refer to the computational
resources that can be accessed by an application almost instantaneously and re-
turned to a server pool after the application completes it processing. The usage
of on-demand servers may vary in terms of the number of servers and the du-
ration for which they are available. This model can be applied to all previously
discussed configurations.

2.3 Online Scheduling Variants

As the work in this thesis focuses on online scheduling, this section briefly
describes the different variants of the problem depending on the job processing
time information available at the time of decision-making.



Chapter 2. Background 9

Clairvoyant Online Scheduling: In the clairvoyant version of the online
problem, the processing time of a job is made available to the scheduler upon
arrival. In this setting, the Shortest-Remaining-Processing-Time (SRPT) algo-
rithm is optimal for minimizing mean response times on single machines[18].
Algorithms such as SRPT are not common in practice since obtaining precise
processing time for individual jobs is generally difficult. Yet, this setting pro-
vides valuable insights into optimal online scheduling.

Semi-Clairvoyant Online Scheduling: In the semi-clairvoyant version of
the online problem, the class of a job is made available to the scheduler upon
arrival instead of its exact processing time. A job’s class is defined as an integer
i such that the actual processing time of the job is in the range [2i, 2i+1]. The
Lowest-Class-First (LCF) algorithm is known to be optimal in this setting for
the objective of minimizing mean response times [22].

Stochastic Online Scheduling: In the stochastic version of the online prob-
lem, it is assumed that the information about the distribution of a job’s pro-
cessing time is known to the scheduler on the arrival of the job, but the true
processing time is known only at its completion time [11]. The MinIncrease
algorithm is known to be optimal for minimizing mean response times in this
setting [23].

Prediction Clairvoyant Online Scheduling: In the prediction clairvoyant
version of the online problem, it is assumed that the predicted value (or a proxy)
of a job’s processing time is available to the scheduler on the arrival of a job.
The scheduler can use this information to decide the order in which the jobs
are processed. It has been shown that even single-bit classifiers that distinguish
long jobs from short jobs can significantly improve performance for minimizing
mean response times [24].

Non-clairvoyant Online Scheduling: In the non-clairvoyant version of the
online problem, it is assumed that no information about the processing time is
available for an incoming job. A scheduler has to decide the order in which
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incoming jobs are processed without knowing how long they will take to exe-
cute. For single-server settings, the round-robin algorithm has been shown to
be 4-competitive [25].

2.4 Performance Objectives

The performance objectives of the work in the thesis are related to real-time
guarantees. In real-time theory, a widely considered performance objective is
that of satisfying hard real-time guarantees. In this scenario, jobs must access
servers such that each job completes its execution before its deadline. Even
one job missing its deadline results in failure. Another performance objective
relates to providing soft real-time guarantees. This metric relaxes the condi-
tion that all jobs must complete their execution within their deadlines to one in
which some jobs can miss their deadlines. Additionally, all jobs must complete
their execution even if they have missed their deadlines. A third type of perfor-
mance objective relates to providing firm real-time guarantees. This objective
not only allows some jobs to miss their deadlines but also requires jobs that
missed their deadlines to be removed from the queue of jobs that need access
to servers.

The contributions of this thesis address each of the objectives outlined
above. To further facilitate a comprehensive understanding of these perfor-
mance objectives, the following definitions are essential:

Definition 1. Tardiness (Tj) is defined as the maximum of zero or the difference
between the completion time and the deadline of a job j, i.e.,

Tj = max(Cj − dj , 0)

Definition 2. Modified Tardiness (T̃j) is defined as the maximum between com-
pletion time and deadline of a job j. i.e.,

T̃j = max(Cj , dj)

Definition 3. Throughput is defined is as the ratio of the number of jobs that
finish within their deadlines and the total number of released jobs in a mea-
surement interval.
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With these definitions in place, the performance objectives considered in
this thesis can now be formally stated.

Zero Tardiness: For applications with hard real-time guarantees, the objec-
tive is to ensure that all jobs finish within their deadlines; that is, given an
instance of jobs J , the number of tardy jobs should be equal to zero, i.e.,∑

(Uj) = 0, where Uj is defined as:

Uj =

{
1 if Cj > dj ,

0 otherwise

where Cj is the completion time of job j and dj is its deadline.

Average Throughput Maximization: For applications with firm real-time
guarantees, the objective is maximizing the average number of jobs that finish
within their deadlines, given job arrival and processing time distributions. This
can be expressed as:

E

∑
j∈J

(1− Uj)


Total Modified Tardiness Minimization: Another tardiness-related objec-
tive for applications with soft real-time guarantees is minimizing the total mod-
ified tardiness of jobs. This can be expressed as:

min
∑
j∈J

T̃j



Chapter 3

Related Work

Since the work in this thesis focuses on challenges related to scheduling with
real-time requirements on multi-server systems, this chapter summarizes the
current state-of-art closely related to the contributions in this thesis. This
includes work related to ensuring zero tardiness in hierarchical multi-server
systems (Section. 3.1), maximizing throughput in multi-server systems (Sec-
tion. 3.2), minimizing tardiness in multi-server systems (Section. 3.3) and re-
sults related to scheduling with predictions (Section 3.4).

3.1 Hierarchical Scheduling in Multi-Server Systems

In a hierarchical scheduling framework, the computational needs of an ap-
plication are abstracted by a single interface that specifies the computational
time to be reserved along with the time period in which it should be provi-
sioned [19]. The reserved computing time can be made available to the appli-
cation through various reservation servers such as the periodic server and the
deferrable server [20]. The mechanisms for defining such an interface and the
schedulability tests vary depending on the scheduling strategies used for both
local and global schedulers.

For single-server systems, Davis and Burns [20] provided an exact schedu-
lability test for a hierarchical system with Fixed-Priority preemptive schedulers
(FP) for local and global scheduling. They evaluated the schedulability under

12
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periodic servers, sporadic servers, and deferrable servers. They concluded that
the periodic servers provide better schedulability than the deferrable and spo-
radic servers. Similarly, Zhang and Burns [26] provided schedulability anal-
ysis for a system with the Earliest-Deadline-First (EDF) policy as the local
scheduling policy and either FP or EDF as the global scheduling policy. Mok
and Alex [27] proposed the regularity-based resource supply model and pro-
vided schedulability conditions for applications where either FP or EDF was
used as the local scheduler. Shin and Lee [28] proposed the periodic resource
supply model to define the guaranteed resource time for an application and
the schedulability tests when FP or EDF is used as the local scheduling pol-
icy. Easwaran et al. [29] generalized the periodic resource model and provided
methods to generate the optimal bandwidth interfaces and improve resource
utilization. Dewan and Fisher [30, 31] proposed an algorithm to determine
the optimal server parameters for the periodic resource model while Kim et
al. [32] proposed a method to reduce the overhead associated with the periodic
resource model. Yang and Dong [33] considered scheduling mixed-criticality
tasks within a periodic resource model where each resource supply reservation
had multiple bandwidth estimates.

For multi-server reservations, Leontyev and Anderson [34] proposed the
minimum-parallelism supply model to schedule applications with soft real-
time requirements. Yang and Anderson [21] provided conditions to preserve
the optimality of the minimum-parallelism supply model for hard real-time ap-
plications. Easwaran et al. [35] extended the periodic resource model with an
additional parameter that specifies the maximum number of physical servers
that can be used to supply the reserved computation time at a given time. They
investigated the schedulability of sporadic tasks within such a reservation using
the global EDF scheduling policy [36]. In addition, they provided a transforma-
tion to generate equivalent periodic tasks for multi-server resource reservations
(MPR) to be scheduled at the system level. Burmaykov et al. [37] proposed
a generalization of the MPR model to reduce bandwidth allocation pessimism
and provided schedulability conditions for global EDF and global FP schedul-
ing policies. Pathan et al. [38] proposed an overhead-aware interface generation
method for multi-server reservations with global FP scheduling policies.

Khalilzad et al. [39, 40, 41] proposed a feedback-based adaptive resource
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reservation scheme that adjusts the bandwidth of resource supply for variable
tasks to minimize deadline overruns. Groesbrink et al. [42] considered a similar
approach to variable task management in which bandwidth is adjusted so that
each server receives a guaranteed minimum supply while the remaining spare
capacity is used to meet the demands of applications whose bandwidth should
be increased. Cucinotta et al. [43] provided an adaptive scheme similar to the
work presented in this thesis for applications with a finite set of modes and also
consider power consumption as a constraint.

3.2 Throughput Maximization in Multi-Server Sys-
tems

Centralized Single-Queue Multi-Server Systems: When the number of ma-
chines is fixed, the problem of online throughput maximization has been ex-
tensively studied, especially in the clairvoyant and stochastic settings for both
single and multiple servers. A well-known result is the optimality of the EDF
algorithm for a set of feasible jobs on a single machine. Here, optimality refers
to the fact that given any feasible set of jobs schedulable on a single machine,
EDF schedules the jobs without missing any deadlines. For centralized single-
queue multi-server systems where all jobs have unit weights, Phillips et al. [44]
showed that EDF and Least-Laxity-First (LLF) are (2 − 1

m)-speed algorithms
where m is the number of machines. If the objective is zero tardiness and extra
machines are allowed compared to an offline algorithm, they showed that EDF
needs at most O(P ) extra machines, where P is the ratio of the maximum and
minimum processing times of the jobs in the instance whereas LLF needs at
most O(logP ) extra machines. Chen et al. [45] improved this and provided an
O(logm)-optimal algorithm. Azar [46] provided an improved algorithm that
requires O( logm

log logm) extra machines. Im et al. [47] further improved this result
and provided an algorithm that needs O(log logm) extra machines.

In firm real-time settings (i.e., when some jobs can be abandoned),
Kalyanasundaram and Pruhs [48] provided a randomized algorithm that is
O(1)-competitive for the problem of throughput maximization. For instances
where all jobs have some slackness ϵ, Lucier et al. [49] provide O(1 + ϵ)-
speed, O(1ϵ )-competitive algorithm. Moseley et al. [50] remove the require-
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ment of slackness and provide the best known O(1)-competitive algorithm for
this problem.

For a more general version of the problem where each job has a weight,

Canetti and Irani [51] showed a Ω
(√

log k
log log k

)
lower bound for any random-

ized algorithm where k is the minimum between the maximum job value, the
maximum job duration, and the ratio between the maximum and minimum
job value-density. Azar [52] showed an improved lower bound of Ω(log k).
Eberle [53] provided a (1ϵ )-competitive algorithm for the case where jobs have
slackness.

For the stochastic version of the problem, Abhaya et al. [54] provided a
method to calculate the mean delay for the M/G/1/ queuing systems. Kargahi
et al. [55] provided bounds for deadline miss probabilities for the M/M/k sys-
tems. Bryant et al. [56] showed that an EDF-based policy which postpones
execution of certain jobs was optimal for scheduling on related machines when
the total system load was less than one and jobs have exponentially distributed
processing times.

Distributed Multi-Queue Multi-Server Systems: For distributed multi-
queue multi-server systems, Kargahi et al. [57] considered stochastic online
scheduling settings where jobs at individual servers are ordered according to
the EDF policy. These jobs are assumed to be exponentially distributed with
firm real-time requirements. They provided an approach to estimate deadline
miss probabilities. As case studies, they considered three routing policies:
Join-Shortest-Queue (JSQ), Minimal Expected Unfinished Work (MED), and
a Threshold-Based Policy (TBP). JSQ assigns incoming jobs to the server with
the least number of pending jobs. MED is a generalization of JSQ for het-
erogeneous servers, which assigns incoming jobs to the server with minimal
expected unfinished work. With TBP, the assignment probabilities depend on a
threshold for the number of pending jobs at individual servers.

3.3 Tardiness Minimization in Multi-Server Systems

Centralized Single-Queue Multi-Server Systems: The problem of mini-
mizing tardiness even in offline settings and on a single machine is known to be
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NP-hard [58]. Due to inherent difficulty in developing competitive algorithms
for this problem a modified tardiness objective of the form

∑
wj(Tj + dj) was

considered. This modified objective was introduced in the offline version of the
problem with unit weights in which all jobs have a common deadline by Ko-
valyov and Werner [59]. Kolliopoulos and Steiner [60] considered the general
version of the problem and showed a reduction to the problem of finding an
approximate solution to the problem of weighted total completion time. Their
result showed that any ρ-approximation algorithm for the problem of minimiz-
ing total weighted completion time was an (ρ+1)-approximation algorithm for
the problem of minimizing weighted modified total tardiness. Liu et al. [61] ex-
tended this idea to online settings in addition to an availability constraint. They
provided O(1)-competitive algorithms for clairvoyant scenarios. Specifically,
for the single-machine version of the problem with weights, they showed a 2-
competitive lower bound and a 3-competitive algorithm as an upper bound. For
the multiple-machine version of the unit weight problem, they provided a lower
bound of 1.309 and a 3-competitive algorithm. For the distributed multi-queue
multi-server version of the problem that takes into account on-demand servers,
Nakahira et al. [62] provided algorithms that minimized the mean and variance
of the service capacity while minimizing the tardiness costs. In each of these
scenarios, it is assumed that the knowledge of the processing time of a job is
available at its release time. For the stochastic version of the problem, where
the processing times are exponentially distributed, Bryant et al. [56] showed
that the earliest-deadline-first was optimal for scheduling on multiple machines
when the total system load was less than one.

Distributed Multi-Queue Multi-Server Systems: In multi-server environ-
ments, dispatching policies determine the server on which an incoming job will
be executed. In online dispatching, the dispatching decision is made when the
job arrives at a dispatching server. Dispatching policies, such as JSQ, and vari-
ants, such as Join-Shortest-Queue among k randomly chosen servers (JSQ-k),
need to know the number of pending jobs in each of the considered servers [18].
Gathering this information may take significant time, depending on the number
of servers and the network traffic. As an alternative, policies such as round-
robin are agnostic to pending jobs on the servers and dispatch incoming jobs to
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the servers in a repeating pattern. The advantage of policies such as round-robin
is that they do not have the overhead associated with policies that require in-
formation about the pending workload. In most existing work, the objective of
dispatching policies has been to minimize mean flow time. Several additional
policies, such as join-the-idle-queue and join-below-threshold, where servers
notify the dispatchers when they are idle or have pending jobs less than a pre-
defined value, have been proposed to balance the trade-off between overheads
and flow time [63, 64].

Hyytiä and Righter [65] considered the problem of routing jobs with known
processing times and deadlines in distributed multi-queue multi-server systems.
They consider the case where all jobs have a single waiting time deadline, and
each server schedules jobs based on their arrival order. Additionally, jobs that
miss their deadlines still need to complete. They developed a deadline-aware
dispatching policy that outperforms the Least-Work-Left (LWL) dispatching
policy concerning deadline violation probability for low-variance job process-
ing time distributions and high-variance distributions. The dispatching policy
assigns jobs to servers for which the expected weighted tardiness is the least.
Hyytiä et al. [66] consider a slightly different problem in which all jobs have
the same processing time requirements, but each job has a unique waiting time
deadline. They developed a dispatching policy that relies on the first policy iter-
ation of the random dispatch policy and showed that this policy performs best to
minimize expected weighted tardiness. They further considered a generalized
version of this problem in which job processing times are discrete. That is, the
job processing times are random multiples of some concrete processing time
value [67]. Here, too, their policy outperforms JSQ and LWL dispatching poli-
cies. Wang et al. [68] provided a load balancing and a core allocation strategy
to minimize mean flow time on heterogeneous servers with both reserved and
on-demand servers. Here, the on-demand servers are utilized when the queue is
full or the waiting time exceeds a predefined maximum waiting time threshold.

3.4 Scheduling with Predictions

Much of the discussed related work assumes clairvoyant settings in which the
job processing times are known or assume knowledge of their distributions.
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In several practical scenarios, such information is hard to come by. To ad-
dress this, non-clairvoyant algorithms in deterministic and randomized settings
have been developed to minimize completion time and flow time objectives.
Motwani et al. [14] presented a Ω(P )-competitive deterministic algorithm to
minimize total flow time on multiple servers. Bechhetti and Leonardi [69]
developed a randomized version of the multi-level feedback algorithm which
is O(min{log n, log n

m , log n logP})-competitive (Given n jobs and m ma-
chines). For semi-clairvoyant settings, they developed a O(logP )-competitive
algorithm. Several works have investigated the possibility of improving the per-
formance of algorithms with machine-learned advice or predictions, including
classical algorithms targeting problems such as online scheduling and load-
balancing [70]. The evaluation of these prediction-augmented algorithms has
been done in terms of competitive analysis under accurate predictions and for
possibly incorrect predictions [24, 64, 71, 72]. Some algorithms rely on predict-
ing job processing times [64, 73] while others rely on predicting job orders [72].

Since predictions are most likely to be erroneous, Scully et al. [73] showed
that in an M/G/1 system, the predicted shortest job first algorithm had an ap-
proximation ratio bounded by the parameters α, β when estimated processing
time of a job j with actual processing time pj was within an interval [αpj , βpj ]
and Akbari et al. [74] developed a simple dynamic priority scheme that relies on
estimated job processing times and showed that their algorithm performed quite
well for the same objective of minimizing mean flow time for low variance pre-
diction errors. Mitzenmacher [24] studied the impact of single-bit predictors
that can indicate if a job’s processing time is above or below some threshold in
the context of large-scale queuing systems for the performance metric of mean
flow time and showed that such predictors can provide benefits similar to those
achievable with the knowledge exact processing times for Poisson arrivals and
certain processing time distributions. The analysis identified the impact of in-
correct predictions and highlighted the improvements achieved even with such
incorrect predictions against an algorithm that chooses a queue with the least
number of pending jobs. Similarly, they extended their analysis for the case
where the individual job processing times are predicted and showed via simu-
lations that the benefits of the supermarket model in large distributed systems
were retained if the predictions were reasonably precise [71]. Based on the
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evaluations, they recommended choosing the queue with least number of pend-
ing jobs and using the preemptive shortest predicted job first policy for ordering
jobs on a single server for use in actual systems, as this combination performed
well in a diverse range of scenarios.

Zhao et al. [75] extended the Randomized Multi-Level Feedback algo-
rithm (RMLF) to use predicted job processing times to minimize mean flow
time. Their experimental evaluation shows that the prediction-based algo-
rithm achieves performance close to SRPT’s when the prediction error is small.
If the error is large, their algorithm can achieve performance no worse than
RMLF. Azar et al. [76] developed a deterministic, non-migratory O(µ logP )-
competitive algorithm for multiple servers. Unlike the algorithm developed by
Zhao et al. [75], their algorithm requires no knowledge of the distortion pa-
rameter µ, which is the product of the ratio of maximum overestimation and
maximum underestimation of true processing times. The work in this thesis is
inspired by the findings of these studies and extends these approaches to objec-
tives involving deadlines.
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Research Challenges

Scheduling algorithms have been extensively used to address the problem of
managing resource access and the associated performance objectives in various
settings. Nonetheless, architectural paradigms such as edge and fog computing,
and the demands of emerging applications have created new challenges that
require improved techniques to address these demands. This chapter provides
an overview of the research challenges addressed in this thesis. The challenge
related to ensuring zero tardiness is discussed in Section 4.1. The challenges
related to throughput maximization and tardiness minimization are discussed
in Section 4.2 and Section 4.3, respectively.

4.1 RC1: Zero Tardiness and Dynamic Demands

There exist classes of real-time applications where ensuring zero tardiness is of
paramount importance. Key factors that facilitate this include approaches that
identify and specify the amount of processing time required, the time intervals
during which the processing time should be available, and implementations
that provide this guaranteed amount of processing time in required intervals. A
common practice to model such resource demand for some applications is to
use the sporadic task model that specifies the demand of a single task τj using a
triplet of the form {Cj , Tj , Dj}, where each element represents the worst-case
processing time, the minimum inter-arrival time between consecutive requests

20
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and the time before which the requested processing time should have been al-
located, respectively. An application Γ then consists of a set of n such tasks
{τ1, · · · , τn}. Using this information, one can analyze the schedulability of
the application for algorithms such as earliest-deadline-first using associated
schedulability tests [77].

Dynamic Computational Demand: For some systems such as industrial and
mobile robots, the computational demand is influenced by the environment in
which they operate. In static environments, it may be possible to precisely mea-
sure the demand, while in dynamic environments, the measurement might only
be approximate. This demand variability can be observed both in the process-
ing times and in the periodicity of the tasks [78]. For example, processing time
variability can be due to different conditional branches in the code triggered
by external events, while period variability can result from different control
laws. Mode-based analysis [79, 80, 81] is an alternative approach to ensure the
schedulability of applications with varying demands. In this approach, each
mode is be defined by a specific set of tasks. When tasks exist in multiple
different modes, they are distinguished by different processing times and peri-
ods. Schedulability is then evaluated for each mode and the transition intervals.
In cases where such an approach is not possible, e.g., difficulty in identifying
and defining different modes due to dynamic environments, or when schedu-
lability within a mode cannot be guaranteed due to insufficient computational
resources, it may be necessary to introduce some form of overload management
to maintain the schedulability of the application [82, 83].

Elastic Task Model: The elastic task model [82, 84] provides an approach
for specifying dynamic demands by allowing task parameters to be defined as a
range of values rather than a single value as in the sporadic task model. It takes
into account the possibility that task parameters can be changed at runtime to
any value within the predefined range. An additional parameter, the elastic
coefficient, is associated with each task to indicate the relative flexibility of the
task to changes in its timing parameters. At runtime, overload management
algorithms attempt to keep the application schedulable by modifying the task
parameters to be as close as possible to their desired values based on the elastic
coefficient of individual tasks.
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RQ 1: What strategies can reduce the frequency of reservation bandwidth
changes while ensuring zero tardiness for real-time applications with dy-
namic computational demands?

Reservation-Based Scheduling: Reservation-based scheduling approaches
[85, 86] allocate processing time for each task according to its reservation
parameters and schedule reservation servers rather than task instances (jobs).
They allocate a fixed amount of computation time (called a budget) to a task
during certain time intervals (called server periods) to ensure that each job of
a task is completed by its deadline. Reservation servers allow each task to run
for the duration of its budget within a server period. If a task has not completed
its execution at the end of its budget, it is blocked until the next server period.
If a task is released before the end of its minimum inter-arrival time, it will
not be processed until its next server period starts. This approach ensures that
tasks that violate their timing specifications do not affect the temporal behavior
of other tasks in the system [83]. Static allocation of budget and the period,
however, might be unable to meet the performance needs of applications with
dynamic computational demands [87]. Applications with multiple modes and
varying computational demands are managed by changing resource reserva-
tions and ensuring their schedulability during transition intervals [81, 41, 88].
In cases where sufficient spare capacity is available, the bandwidth changes can
be made without affecting the performance of concurrently running applica-
tions or, alternatively, by considering their quality-of-service requirements [42].
An alternative mechanism to manage varying computational demand is to ad-
just the timing parameters of an application without changing the reservation
parameters. Hierarchical adaptive reservation systems have been proposed for
applications with distinct modes in [43, 89]. These solutions aim to change
the reservation parameters so that all applications sharing the resource can run
in optimal modes by considering the computational needs of all applications.
This thesis extends this idea to support applications that do not have distinct
modes but are rather specified according to the elastic task model to enable the
execution of such applications in shared multi-server systems. Concretely, the
work in this thesis addresses the research question RQ 1.
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4.2 RC2: Throughput Maximization and Dynamic Ca-
pacity

Zero tardiness objective is the norm for control algorithms that manage critical
components of a real-time system, such as the emergency stop functionality for
industrial robots. Other components with dynamic demands may be more ro-
bust to occasional dropped jobs and perhaps even benefit if newer job instances
based on fresh inputs are processed over older instances based on possibly stale
inputs, thus allowing incomplete job instances to be dropped to process new
jobs. Since ensuring zero tardiness often relies on resource allocation based
on worst-case demands that may occur with low probability in some scenar-
ios, it may result in underutilization of these resources. Instead of allocating
resources based on worst-case demands, allocating resources based on aver-
age demands may provide improved resource utilization at a low or moderate
loss in performance. Additionally, new architectural paradigms such as server-
less computing and microservices are attractive due to their scaling capabilities
thanks to the almost instantaneous on-demand availability of computational re-
sources in large data centers and possibly in smaller geographically closer dis-
tributed data centers. A possible challenge is to consider how to effectively
utilize these on-demand servers, given that accessing these servers dynamically
may incur some costs. Therefore, the second challenge in the thesis deals with
the objective of throughput maximization for firm real-time applications with
on-demand availability of servers.

Focus on Clairvoyance: Substantial effort has been made to address the
problem of throughput maximization for settings in which the processing times
of jobs are precisely known or have known distributions. For instance, when the
number of servers is fixed, randomized and deterministic algorithms exist that
are O(1)-competitive [48, 50]. For the general model of weighted throughput
on heterogeneous servers with slackness ϵ, there is a O(1ϵ )- competitive algo-
rithm [53]. These algorithms rely on precise knowledge of a job’s processing
times on its arrival. For the stochastic model where processing times are expo-
nentially distributed, a migratory EDF-based algorithm has been shown to be
optimal with respect to average throughput if the system load is less than one
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on related servers [56].

Dynamic Service Capacity: Very few results consider the on-demand avail-
ability of service capacity for the throughput maximization problem. The only
known result appears to be the generalized exact distributed scheduler [62] to
minimize the variance of service capacity for jobs with deadlines. A closely
related setting appears to be the dynamic bin-packing problem where the ob-
jective is to minimize the usage time of bins when jobs occupy the bins for a
fixed duration of time and depart once they reach their deadlines [90, 91, 92].
This can be considered as a distributed multi-queue multi-server system where
each server schedules jobs in their arrival order and processes them non-
preemptively. Jobs are assigned to already open servers only if they can be
processed on that server before their deadlines, otherwise they are dispatched
to an on-demand server. Unfortunately, these approaches rely on knowledge of
job processing times. Therefore, the work in this thesis addresses the research
question RQ 2.

RQ 2: Which approaches can improve average throughput for firm real-
time applications with limited job processing time information in on-
demand distributed multi-queue multi-server systems?

4.3 RC3: Tardiness and Non-Clairvoyance

Another challenge that is addressed in the thesis relates to scenarios where
a large amount of data that acts as input to control algorithms needs to be
processed. For instance, controlling a mobile robot using a vision-based mo-
tion planning algorithm deployed on the cloud may require transmitting images
from multiple sources to localize the robot’s position and plan an obstacle-free
path for it to navigate. In this scenario, it may be beneficial from an end-to-end
perspective to continue running the request to completion even if the job is past
its deadline. The delay due to re-transmission and re-computation may not be
worthwhile. Therefore, the third challenge addressed in this thesis relates to the
problem of tardiness minimization in multi-server systems.
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RQ 3: What strategies can be employed to minimize modified total tardi-
ness for soft real-time applications with limited job processing time infor-
mation in centralized single-queue multi-server systems?

Focus on Clairvoyance: Additionally, several variants of the tardiness min-
imization problem have been investigated as discussed in Section 3.3. How-
ever, no optimal algorithm is known even in clairvoyant settings. To overcome
the difficulty in developing competitive algorithms for this objective [60], a
modified tardiness objective has been considered. For this modified objec-
tive, the best-known results appear to be a 3-competitive algorithm by Liu et
al. [61]. The dispatching policies by Hyytiä et al. [65, 66, 67] perform the best
for the original tardiness objective in distributed multi-queue multi-server sys-
tems. When on-demand servers are allowed, Nakahari et al. [62] provide an
efficient algorithm for the considered settings. These approaches, however, de-
pend on precise knowledge of the processing times of jobs. While no known
result exists for the non-clairvoyant scenario, following the reduction approach
in [60, 61], it is straightforward to show a O(P )-competitive upper bound for
the non-preemptive run-to-completion algorithm by Motwani et al. [14]. There-
fore, the third challenge addresses the research question RQ 3.



Chapter 5

Research Methodology

The thesis results were developed following the hypothetico-deductive method
[93]. This method involves making hypotheses based on existing theories and
then deducing the logical consequences of these hypotheses. The research pro-
cess consisted of the following four steps:

• Problem Definition - This step involves understanding the field of the
topic through a comprehensive literature review, state-of-art and state-of-
practice studies to identify gaps. Based on this, the scope of the problem
is defined, setting the boundaries for the research. As an outcome of this
approach, the three research challenges were identified.

• Idea Development - This step involves the iterative development of so-
lutions to the defined problem. It starts with brainstorming and ideation,
as well as proposing and discussing various potential solutions. These
ideas are then refined and developed further, considering the problem’s
constraints and requirements. The solutions in this thesis addressing the
identified research challenges were designed following this approach.

• Implementation - This step involves converting the idea and theory into
an artifact. The proposed solution is implemented, often through a com-
bination of coding, experimentation, and prototyping. This step is cru-
cial for testing the solution’s performance and identifying any practical
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Research Methods Research Question
State-of-Art Study RQ 1, RQ 2, RQ 3
State-of-Practice Study RQ 1, RQ 2, RQ 3
Simulation RQ 1, RQ 2
Algorithm Design and Analysis RQ 3

Table 5.1: Mapping of research methods utilized to address research questions
in this thesis.

issues that might arise. The algorithms presented in this thesis were im-
plemented and evaluated using C++ programs.

• Evaluation - This step involves evaluating the idea and its implementa-
tion. The solution is tested against predefined criteria or benchmarks to
assess its effectiveness. The results of these tests are then analyzed and
interpreted to draw conclusions about the solution’s performance. This
step involves comparing other existing solutions to determine the relative
strengths and weaknesses of the proposed solution. While most solutions
in this thesis were evaluated using simulations, a few were evaluated us-
ing competitive analysis.



Chapter 6

Thesis Contributions

Building on the research challenges and questions outlined in the previous
chapter, this chapter presents the thesis contributions that address scheduling
in multi-server systems and the performance requirements of real-time applica-
tions. Section. 6.1 summarizes the contribution addressing the research ques-
tion related to the zero tardiness objective. Section. 6.2 summarizes the con-
tribution addressing research question related to average throughput improve-
ment. Section. 6.3 summarizes the contribution addressing the research ques-
tion related to tardiness minimization.

Table. 6.1 establishes the relationship between the included papers and the
research questions formulated in Chapter 4.

6.1 C1: Minimizing Bandwidth Changes in Hierarchi-
cal Multi-Server Systems

Topic: This contribution addresses the research question RQ 1 and forms the
main content of Paper A. It addresses the challenges of resource allocation and
scheduling in hierarchical multi-server systems where applications may have
computational needs that vary over time. This work bridges the gap between
traditional real-time scheduling theory and the demands of adaptive computing
environments.

28
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Contribution RQ 1 RQ 2 RQ 3
C1 Paper A - -
C2 - Paper B,C and D -
C3 - - Paper E

Table 6.1: Mapping of Research Contributions and Research Questions

Goal: This contribution focuses on minimizing reservation bandwidth cha-
nges while maintaining zero tardiness in hierarchical multi-server systems
where several independent real-time applications can share the servers. This
goal has been defined to ensure that other independent applications running on
the same hardware are minimally impacted. To achieve this goal, a scheduling
approach has been developed that minimizes reservation bandwidth changes
for elastic tasks while satisfying period change requests. The approach com-
bines per-server utilization modification, task re-partitioning, and reservation
bandwidth adjustment.

Approach: This work considers a system model where elastic tasks must
execute within reservation servers designed according to the multiprocessor
minimum-parallelism resource supply form [21, 34]. This reservation approach
offers applications a fixed number of fully dedicated servers and, at most, one
partial server, available according to the periodic resource supply model. Each
reservation has a local scheduler that manages application tasks. This sched-
uler adheres to the partitioned EDF scheduling policy, with reservation param-
eters initially set based on the desired utilization and period of the application’s
tasks. The primary goal is to minimize the frequency of reservation bandwidth
changes once the initial parameters are established. To achieve this, when a
task requests a period change, the utilization modification algorithm focuses
solely on the tasks sharing the server with the requesting task. It attempts to
generate new periods that satisfy the constraints of these affected tasks. If the
algorithm fails to find a solution, a two-step approach is employed:

First, an attempt is made to re-partition the tasks among the servers, in-
cluding the partial server, using a reasonable allocation scheme [94]. If re-
partitioning is unsuccessful, the reservation bandwidth is then considered for
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modification. This modification may involve adjusting the partial server band-
width or, if necessary, allocating a new fully dedicated server.

The effectiveness of this approach is demonstrated through an evaluation
presented in paper A. The per-server utilization modification scheme can sat-
isfy up to 94 percent of requests. When combined with the re-partitioning step,
a 100 percent success rate for period change requests is achieved, highlight-
ing the approach’s robustness in managing dynamic task requirements while
considering the impact on other co-located applications.

Potential Impact: This contribution has implications for practical applica-
tions and academic research. In practice, this approach can help ensure schedu-
lability by adjusting the application demands when additional capacity is un-
available. From an academic perspective, this study provides a basis for further
research on elastic task scheduling in compositional systems. It offers a refer-
ence point for comparing future adaptive scheduling algorithms.

Limitations: While this contribution remains valuable, some aspects could
be addressed in future work. An area for potential improvement could be ex-
amining overhead costs associated with frequent task re-partitioning, which the
current work does not explicitly address. Additionally, the approach currently
focuses on partitioned EDF as the local scheduling policy, which may limit its
applicability in systems using different scheduling algorithms. Another area
of improvement could be the run-time complexity of the approach. While
the run-time complexity of this approach’s task period assignment algorithm
is quadratic in the number of tasks, this design provides only a probabilistic
and slight improvement by reducing the number of tasks that may need to be
modified. A more efficient approach may be desirable.

6.2 C2: Improving Average Throughput in Distributed
Multi-Server Systems

Topic: This contribution addresses the research question RQ 2 and is pro-
vided in papers B, C, and D. The broader area of contribution of these papers is
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real-time scheduling and load balancing in on-demand multi-server systems. It
focuses on managing jobs with stochastic execution times, inter-arrival times,
and deadlines in multi-server systems, emphasizing meeting firm real-time re-
quirements without precise processing time information. This work bridges
the gap between traditional real-time systems and emerging edge computing
paradigms, addressing the challenges due to on-demand resource availability.

Goal: The goal of this research is to develop online algorithms to maximize
average throughput for a distributed multi-queue multi-server system with on-
demand resource availability when inputs arrive following a Poisson process;
the jobs processing times are drawn from an exponential distribution. The stud-
ies compare prediction-based admission and scheduling policies against tradi-
tional approaches like EDF, assessing their performance in meeting deadlines.
A key objective has been to investigate the effectiveness of on-demand resource
allocation for satisfying firm real-time requirements, particularly in scenarios
where job processing times are not fully known in advance.

Approach: In paper B, the approach involves considering a dual-bit job size
predictor that classifies an incoming job into one of four job size classes: small,
medium, large, and very large. This information is then used with a Preemp-
tive Shortest-Job-Class-First (PSJF) scheduling policy. The policy orders jobs
according to their job size classes, and jobs in each class are in the First-In-
First-Out (FIFO) order. The evaluation indicates that FIFO and EDF policies
outperform the prediction-based policy in under-loaded conditions. However,
in overloaded scenarios, the prediction-based policy offers better performance.

In paper C, the framework integrates an on-arrival dispatcher with EDF
scheduling for an on-demand distributed multi-queue multi-server system. The
dispatching policy uses a schedulability test that estimates job response times
based on the number of pending jobs in each queue and dispatches jobs to
servers likely to meet their deadlines. The dispatcher employs a Join-Shortest-
Queue (JSQ) policy for assigning jobs across the servers. Simulations demon-
strate that this approach significantly enhances throughput. It outperforms the
first-fit heuristic and systems using only reserved servers, especially when jobs
are dispatched to on-demand servers.
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In paper D, a single-bit execution time prediction-based admission policy
for online dispatching and scheduling jobs in distributed multi-queue multi-
server systems is explored. The performance of this policy is compared against
mean-approximation and clairvoyant policies, using simulations to evaluate
throughput under various loads. The results indicate that the single-bit predic-
tion policy outperforms the mean approximation policy but remains less effec-
tive than the clairvoyant policy which has precise processing time information
of each of the jobs.

Potential Impact: This contribution has the potential for impact in both prac-
tical and academic settings. In practice, the results could lead to improved
resource management in edge computing platforms for real-time applications,
enhancing performance for industrial embedded systems that require offloading
to edge resources. Academically, this work advances the understanding of real-
time scheduling in distributed edge computing environments, providing new
insights into the trade-offs between prediction-based and traditional scheduling
policies for throughput maximization.

Limitations: The contributions rely primarily on simulation-based evalua-
tion, which may not capture all real-world complexities. Additionally, the im-
pact of network delays and communication overhead is not fully explored, po-
tentially limiting the applicability of the findings in highly distributed environ-
ments.

6.3 C3: Minimizing Total Tardiness in Centralized
Multi-Server Systems

Topic: This contribution addresses the research question RQ 3 for soft real-
time applications in centralized single-queue multi-server systems and is the
main content of Paper E. The research explores using predictions to minimize
total tardiness, addressing scheduling challenges in environments where job
characteristics may not be fully known in advance. This work bridges the gap
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between traditional real-time scheduling and prediction based approaches, aim-
ing to improve system performance as measured by job tardiness.

Goal: The primary goal of this research has been to develop and evaluate
prediction-based scheduling algorithms that can effectively minimize total tar-
diness in soft real-time applications. A key objective has been to investigate
how incorporating predictions can enhance the outcome of scheduling deci-
sions in centralized multi-server environments, particularly when dealing with
uncertainties in job processing times and arrival patterns.

Approach: Three algorithms are proposed in paper E. All three algorithms
were originally designed for minimizing flow times and completion times
which are different from the tardiness minimization objective considered in
this thesis. These algorithms prioritize jobs based on different criteria, such
as job classes based on predicted processing time, actual class of the job, and
job density calculated considering weight, predicted speeds, and known pro-
cessing times. The first algorithm is O(µ logP )-competitive for scheduling
unit weight jobs on parallel identical machines in prediction-clairvoyant set-
tings. Similarly, the second algorithm is O(logP )-competitive when schedul-
ing unit weight jobs on parallel identical machines in semi-clairvoyant settings
while the third algorithm is O(µ)-competitive for scheduling arbitrary weight
jobs on parallel unrelated machines and clairvoyant processing times in speed-
prediction settings.

Potential Impact: Academically, this work advances the understanding of
prediction-based scheduling in real-time systems, providing new insights into
the trade-offs between prediction accuracy and scheduling performance for soft
real-time jobs. It establishes a baseline for further research on integrating ma-
chine learning techniques with real-time scheduling.

Limitations: The focus on centralized single-queue multi-server systems
limits the applicability of the findings to distributed or decentralized architec-
tures. Moreover, this contribution does not consider the computational over-
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head of making and utilizing predictions in real-time scenarios, which could
impact overall system performance.

6.4 Personal Contributions

My personal contributions in the papers included in this thesis are summarized
based on CRediT1 (Contributor Roles Taxonomy) definitions in Table 6.2.

CRediT Contribution Paper A Paper B Paper C Paper D Paper E
Conceptualization ✓ ✓ ✓ ✓ ✓

Data curation ✓ ✓ ✓ ✓ ✓
Formal analysis ✓ ✓

Funding acquisition
Investigation ✓ ✓ ✓ ✓ ✓
Methodology ✓ ✓ ✓ ✓

Project administration
Resources
Software ✓ ✓ ✓ ✓ ✓

Supervision
Validation ✓ ✓ ✓ ✓ ✓

Visualization ✓ ✓ ✓ ✓ ✓
Writing – original draft ✓ ✓ ✓ ✓ ✓

Writing – review and editing ✓ ✓ ✓ ✓ ✓

Table 6.2: Personal contribution following CRediT in included papers

6.5 Included Papers

Paper A

Title: Multi-processor scheduling of elastic applications in compositional real-
time systems [95]
Authors: Shaik Mohammed Salman, Alessandro V. Papadopoulos, Saad
Mubeen, Thomas Nolte

1https://credit.niso.org/

https://credit.niso.org/
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Status: Published in Journal of Systems Architecture, (December 2021)
Abstract: Scheduling of real-time applications modeled according to the pe-
riodic and the sporadic task model under hierarchical and compositional real-
time systems has been widely studied to provide temporal isolation among in-
dependent applications running on shared resources. However, for some real-
time applications that are amenable to variation in their timing behavior, us-
age of these task models can result in pessimistic solutions. The elastic task
model addresses this pessimism by allowing the timing requirements of an ap-
plication’s tasks to be specified as a range of values instead of a single value.
Although the scheduling of elastic applications on dedicated resources has re-
ceived considerable attention, there is limited work on scheduling such appli-
cations in hierarchical and compositional settings.

In this paper, we evaluate different earliest deadline first scheduling algo-
rithms to schedule elastic applications in a minimum parallelism supply form
reservation on a multiprocessor system. Our evaluation indicates that the pro-
posed approach provides performance comparable to the current state-of-the-art
algorithms for scheduling elastic applications on dedicated processors in terms
of schedulability.

Paper B

Title: Evaluating Dispatching and Scheduling Strategies for Firm Real-Time
Jobs in Edge Computing [96]
Authors: Shaik Mohammed Salman, Alessandro V. Papadopoulos, Saad
Mubeen, Thomas Nolte
Status: Published in the proceedings of 49th Annual Conference of the IEEE
Industrial Electronics Society (IECON 2023)
Abstract: We consider the problem of on-arrival dispatching and scheduling
jobs with stochastic execution times, inter-arrival times, and deadlines in multi-
server fog and edge computing platforms. In terms of mean response times, it
has been shown that size-based scheduling policies, when combined with dis-
patching policies such as join-shortest-queue, provide better performance over
policies such as first-in-first-out. Since job sizes may not always be known apri-
ori, prediction-based policies have performed reasonably well. However, little
is known about the performance of prediction-based policies for jobs with firm
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deadlines. In this paper, we address this issue by considering the number of
jobs that complete within their deadlines as a performance metric and investi-
gate, using simulations, the performance of a prediction-based shortest-job-first
scheduling policy for the considered metric and compare it against scheduling
policies that prioritize based on deadlines (EDF) and arrival times (FIFO). The
evaluation indicates that in under-loaded conditions, the prediction-based pol-
icy is outperformed by both FIFO and EDF policies. However, in overloaded
scenarios, the prediction-based policy offers slightly better performance.

Paper C

Title: Dispatching deadline-constrained jobs in edge computing systems [97]
Authors: Shaik Mohammed Salman, Alessandro V. Papadopoulos, Saad
Mubeen, Thomas Nolte
Status: Published in the proceedings of IEEE 28th International Conference
on Emerging Technologies and Factory Automation (ETFA 2023)
Abstract: The edge computing paradigm extends the architectural space of
real-time systems by bringing the capabilities of the cloud to the edge. Unlike
cloud-native systems designed for mean response times, real-time industrial
embedded systems are designed to control a single physical system, such as a
manipulator arm or a mobile robot, that requires temporal predictability. We
consider the problem of dispatching and scheduling of jobs with deadlines that
can be offloaded to the edge and propose DAL, a deadline-aware load balancing
and scheduling framework that leverages the availability of on-demand comput-
ing resources along with an on-arrival dispatching scheme to manage temporal
requirements of such offloaded applications. The evaluation indicates that DAL
can achieve reasonably good performance even when execution times, arrival
times, and deadlines vary.

Paper D

Title: Scheduling firm real-time applications on the edge with single-bit exe-
cution time prediction [98]
Authors: Shaik Mohammed Salman, Van Lan Dao, Alessandro V. Papadopou-
los, Saad Mubeen, Thomas Nolte
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Status: Published in the proceedings of IEEE 26th International Symposium
on Real-Time Distributed Computing (ISORC 2023)
Abstract: The edge computing paradigm brings the capabilities of the cloud,
such as on-demand resource availability, to the edge for applications with
low latency and real-time requirements. While cloud-native load balancing
and scheduling algorithms strive to improve performance metrics like mean
response times, real-time systems that govern physical systems must satisfy
deadline requirements. This paper explores the potential of an edge-computing
architecture that utilizes the on-demand availability of computational resources
to satisfy firm real-time requirements for applications with stochastic execution
and inter-arrival times. As it might be difficult to know the precise execution
times of individual jobs before completion, we consider an admission policy
that relies on single-bit execution time predictions for dispatching. We evaluate
its performance in terms of the number of jobs that complete by their deadlines
via simulations. The results indicate that the prediction-based admission policy
can achieve reasonable performance for the considered settings.

Paper E

Title: Taming Tardiness on Parallel Machines: Online Scheduling with Lim-
ited Job Information [99]
Authors: Shaik Mohammed Salman, Alessandro V. Papadopoulos, Saad
Mubeen, Thomas Nolte
Status: MRTC Report. MDU 2024
Abstract: We consider the problem of scheduling n jobs with soft deadlines
on M parallel machines in online settings. Since no bounded competitive al-
gorithms exist to minimize total tardiness

∑
wjTj , we consider an objective of

the form
∑

wj(Tj + dj). For this modified objective, we provide competitive
algorithms with different levels of information about job processing times.
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Conclusion

7.1 Conclusion

In this thesis, challenges in scheduling real-time applications in multi-server
systems were addressed through the investigation of three key research ques-
tions. The first question investigated how the frequency of reservation band-
width changes could be reduced while ensuring zero tardiness for real-time
applications with dynamic computational demands, assuming a setting with
complete knowledge of job processing times. The second question explored
approaches to improve average throughput for firm real-time applications with
limited job information in on-demand distributed multi-queue multi-server sys-
tems, given knowledge of job size distributions. Finally, the third question ex-
amined methods to minimize tardiness for soft real-time applications in central-
ized single-queue multi-server systems, specifically in non-clairvoyant settings
where exact job processing times are unknown. For each of these research
questions, solutions are proposed in the papers included in this thesis.

To address the first research question, a framework was developed to min-
imize reservation bandwidth changes in compositional multi-server systems
while ensuring zero tardiness. For the second question, a framework was pre-
sented that aimed to improve average throughput for firm real-time applica-
tions in distributed multi-queue multi-server systems by utilizing processing
time predictions. Finally, to address the third research question, a set of online

38
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scheduling algorithms was introduced for soft real-time applications aimed at
minimizing tardiness in centralized single-queue multi-server systems. These
algorithms, characterized by their competitive ratios, utilized varying levels of
information regarding processing times to achieve their objective.

7.2 Future Directions

Building on the insights derived from investigation of the research questions,
some potential directions for future research can be identified. These directions
could extend the findings presented and address further challenges in schedul-
ing real-time applications within multi-server systems.

Zero Tardiness: Zero tardiness is a critical requirement in many real-time
applications, particularly those that demand strict adherence to deadlines. One
promising direction is to examine the effectiveness of the approach proposed in
this thesis by employing local scheduling policies other than partitioned EDF.
This investigation may provide valuable insights into how various scheduling
algorithms interact with the elastic task model and reservation server frame-
work. Additionally, considering an elastic parallel task model in a hierarchi-
cal multi-server system could represent a meaningful extension of the current
work, contributing to a deeper understanding of task allocation and resource
utilization in more complex environments.

Throughput Maximization: Maximizing throughput is essential for ensur-
ing that systems can efficiently handle the workload of firm real-time appli-
cations, particularly in environments where resources are limited or variable.
Another avenue worth exploring is the integration of machine learning tech-
niques for enhancing the accuracy of execution time predictions, which could
potentially improve the effectiveness of the proposed scheduling approaches.
Developing theoretical bounds and analytical models for these strategies may
offer a stronger foundation for understanding their behavior and limitations.
Furthermore, extending the scope of this research to consider end-to-end la-
tency in complex edge-cloud ecosystems could address broader system-level
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integration challenges. Investigating the use of heterogeneous edge comput-
ing resources with varying processing capabilities may also yield insights into
optimizing performance in more realistic hardware configurations.

Tardiness Minimization: Tardiness minimization is particularly important
in soft real-time applications, where occasional deadline misses may be ac-
ceptable but should be kept to a minimum to maintain quality of service. The
algorithms proposed in this thesis for minimizing tardiness primarily focus on
the availability of a fixed number of servers. A potential direction for future
work could involve integrating these scheduling algorithms with the concept
of on-demand server availability, thereby offering more flexibility and respon-
siveness in dynamic environments. Additionally, exploring performance within
a distributed multi-queue multi-server system could lead to scalable solutions
and improved efficiency in resource allocation. Through the investigation of
these areas, future research could build upon the findings of this thesis and
contribute to the development of effective scheduling strategies for real-time
applications.
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[6] Mohammed Salman Shaik, Václav Struhár, Zeinab Bakhshi, Van-Lan
Dao, Nitin Desai, Alessandro V Papadopoulos, Thomas Nolte, Vasileios
Karagiannis, Stefan Schulte, Alexandre Venito, et al. Enabling fog-based
industrial robotics systems. In 2020 25th IEEE International Conference

41



42 BIBLIOGRAPHY

on Emerging Technologies and Factory Automation (ETFA), volume 1,
pages 61–68. IEEE, 2020.

[7] Victor Millnert, Johan Eker, and Enrico Bini. Achieving predictable and
low end-to-end latency for a network of smart services. In 2018 IEEE
Global Communications Conference (GLOBECOM), pages 1–7. IEEE,
2018.

[8] Michael Pearce, Sherali Zeadally, and Ray Hunt. Virtualization: Is-
sues, security threats, and solutions. ACM Computing Surveys (CSUR),
45(2):1–39, 2013.
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and Patrik Sandin. Overhead-aware temporal partitioning on multicore
processors. Real-Time Technology and Applications - Proceedings, 2014-
Octob(October):251–262, 2014.

[39] Nima Moghaddami Khalilzad, Moris Behnam, and Thomas Nolte. Adap-
tive hierarchical scheduling framework: Configuration and evaluation. In
ETFA, pages 1–10. IEEE, 2013.

[40] Nima Moghaddami Khalilzad, Moris Behnam, and Thomas Nolte. Multi-
level adaptive hierarchical scheduling framework for composing real-time
systems. In RTCSA, pages 320–329. IEEE Computer Society, 2013.

[41] Nima Khalilzad, Fanxin Kong, Xue Liu, Moris Behnam, and Thomas
Nolte. A feedback scheduling framework for component-based soft real-
time systems. In 21st IEEE Real-Time and Embedded Technology and
Applications Symposium, pages 182–193, 2015.

[42] Stefan Groesbrink, Luis Almeida, Mario De Sousa, and Stefan M. Pet-
ters. Towards certifiable adaptive reservations for hypervisor-based virtu-
alization. Real-Time Technology and Applications - Proceedings, 2014-
October(October):13–24, 2014.

[43] Tommaso Cucinotta, Luigi Palopoli, Luca Abeni, Dario Faggioli, and
Giuseppe Lipari. On the integration of application level and resource level



46 BIBLIOGRAPHY

QoS control for real-time applications. IEEE Transactions on Industrial
Informatics, 6(4):479–491, 2010.

[44] Cynthia A Phillips, Cliff Stein, Eric Torng, and Joel Wein. Optimal
time-critical scheduling via resource augmentation. In Proceedings of
the twenty-ninth annual ACM symposium on Theory of computing, pages
140–149, 1997.

[45] Lin Chen, Nicole Megow, and Kevin Schewior. An o(m)-competitive
algorithm for online machine minimization. SIAM Journal on Computing,
47(6):2057–2077, 2018.

[46] Yossi Azar and Sarel Cohen. An improved algorithm for online machine
minimization. Operations Research Letters, 46(1):128–133, 2018.

[47] Sungjin Im, Benjamin Moseley, Kirk Pruhs, and Clifford Stein. An o
(log log m)-competitive algorithm for online machine minimization. In
2017 IEEE Real-Time Systems Symposium (RTSS), pages 343–350. IEEE,
2017.

[48] Bala Kalyanasundaram and Kirk R Pruhs. Maximizing job completions
online. Journal of Algorithms, 49(1):63–85, 2003.

[49] Brendan Lucier, Ishai Menache, Joseph Naor, and Jonathan Yaniv. Ef-
ficient online scheduling for deadline-sensitive jobs. In Proceedings of
the twenty-fifth annual ACM symposium on Parallelism in algorithms and
architectures, pages 305–314, 2013.

[50] Benjamin Moseley, Kirk Pruhs, Clifford Stein, and Rudy Zhou. A com-
petitive algorithm for throughput maximization on identical machines.
Mathematical Programming, pages 1–18, 2024.

[51] Ran Canetti and Sandy Irani. Bounding the power of preemption in ran-
domized scheduling. In Proceedings of the twenty-seventh annual ACM
symposium on Theory of computing, pages 606–615, 1995.

[52] Yossi Azar and Oren Gilon. Scheduling with deadlines and buffer man-
agement with processing requirements. Algorithmica, 78:1246–1262,
2017.



BIBLIOGRAPHY 47

[53] Franziska Eberle. O (1/ε) is the answer in online weighted throughput
maximization. In 41st International Symposium on Theoretical Aspects
of Computer Science (STACS 2024). Schloss Dagstuhl–Leibniz-Zentrum
für Informatik, 2024.

[54] Vidura Gamini Abhaya, Zahir Tari, Panlop Zeephongsekul, and Albert Y.
Zomaya. Performance analysis of edf scheduling in a multi-priority pre-
emptive M/G/1 queue. IEEE Transactions on Parallel and Distributed
Systems, 25(8):2149–2158, 2014.

[55] Mehdi Kargahi and Ali Movaghar. A method for performance analysis
of earliest-deadline-first scheduling policy. Journal of Supercomputing,
37(2):197–222, 2006.

[56] Richard Bryant, Peter Lakner, and Michael Pinedo. On the optimality of
the earliest due date rule in stochastic scheduling and in queueing. Euro-
pean Journal of Operational Research, 298:202–212, 4 2022.

[57] Mehdi Kargahi and Ali Movaghar. Dynamic routing of real-time jobs
among parallel edf queues: A performance study. Computers & Electrical
Engineering, 36(5):835–849, 2010.

[58] Richard K Congram, Chris N Potts, and Steef L van de Velde. An it-
erated dynasearch algorithm for the single-machine total weighted tardi-
ness scheduling problem. INFORMS Journal on Computing, 14(1):52–67,
2002.

[59] Mikhail Y Kovalyov and Frank Werner. Approximation schemes for
scheduling jobs with common due date on parallel machines to minimize
total tardiness. Journal of Heuristics, 8:415–428, 2002.

[60] Stavros G Kolliopoulos and George Steiner. Approximation algorithms
for scheduling problems with a modified total weighted tardiness objec-
tive. Operations research letters, 35(5):685–692, 2007.

[61] Ming Liu, Yinfeng Xu, Chengbin Chu, and Feifeng Zheng. Online
scheduling to minimize modified total tardiness with an availability con-
straint. Theoretical computer science, 410(47-49):5039–5046, 2009.



48 BIBLIOGRAPHY

[62] Yorie Nakahira, Andres Ferragut, and Adam Wierman. Generalized exact
scheduling: A minimal-variance distributed deadline scheduler. Opera-
tions Research, 71(2):433–470, 2023.

[63] Xingyu Zhou, Fei Wu, Jian Tan, Yin Sun, and Ness Shroff. Design-
ing low-complexity heavy-traffic delay-optimal load balancing schemes:
Theory to algorithms. Proceedings of the ACM on Measurement and
Analysis of Computing Systems, 1(2):1–30, 2017.

[64] Yecheng Zhao, Runzhi Zhou, and Haibo Zeng. Design optimization for
real-time systems with sustainable schedulability analysis. Real-Time Sys-
tems, 58(3):275–312, 2022.
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Abstract

Scheduling of applications modeled according to the periodic and sporadic task
model under hierarchical and compositional real-time systems has been widely
studied to provide temporal isolation on shared resources. However, for some
real-time applications which are amenable to a certain amount of variation in
their timing behaviour while still maintaining their functional correctness, these
tasks models are pessimistic. The elastic tasks model addresses this pessimism
by allowing the timing requirements of the application’s tasks to be specified
as a range of values instead of a single value. While the scheduling of elastic
applications on dedicated resources has received considerable attention, there
is limited work on scheduling of such applications under hierarchical and com-
positional settings.

In this paper, we evaluate different earliest deadline first scheduling algo-
rithms to schedule elastic applications in a minimum parallelism supply form
reservation on a multiprocessor system. Our evaluation shows that the proposed
approach provides similar performance as compared to the current state-of-art
algorithms for scheduling elastic applications on dedicated processors but with
reduced algorithmic complexity.
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8.1 Introduction

The elastic task model enables convenient modelling of real-time applications
that can tolerate some amount of variation in their timing behaviour (changes
in interarrival times or changes in execution times) while still maintaining their
functional correctness. In uniprocessor systems and multi-processor systems
where the resources are fully dedicated to an elastic application, the variation
can be managed online by modifying the utilization of the application’s tasks to
ensure schedulability. Scheduling multiple elastic applications on a shared re-
source, however, requires the use of reservation-based mechanisms to minimize
the impact of such variations on the co-scheduled applications. While different
solutions have been proposed for scheduling applications with tasks specified
according to the periodic or the sporadic task model under reservation-based
mechanisms, there is limited work related to scheduling of elastic applications
under reservation schemes. In this context, we propose a scheduling framework
for executing elastic applications under the minimum-parallelism periodic re-
source supply model (MPS) on multi-processor systems. While the elastic task
model allows defining the task parameters to capture the variable timing re-
quirements of the application, the minimum-parallelism periodic resource sup-
ply model [1, 2] provides a relatively simpler mechanism to reserve the re-
source supply on a multi-processor system. Moreover, under certain period
assignment constraints, the MPS model dominates other comparable state-of-
art techniques [2].

Concretely, in this paper, we address the following questions:

Q1 Given an application with elastic tasks, what is a feasible bandwidth re-
quired to schedule the applications in an MPS reservation on a multipro-
cessor system?

Q2 Given a fixed bandwidth MPS reservation, what mechanism can the elas-
tic application tasks adopt to remain schedulable?

Q3 Given an elastic application, can a schedulable reservation be found if
the application requests for a modified bandwidth reservation?
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Q4 What is the trade-off between the proposed approach and the current
state-of-art approaches?

8.2 Proposed System Model

We consider the scheduling of a real-time application specified according to
the elastic task model with each task having an implicit deadline(See Section.
8.2.1). At the system level, we assume that the CPU resources are made avail-
able to each application according to the multi-processor Minimum Parallelism
Supply Model (MPS) [2, 1] (see Section 8.2.2). We assume that each appli-
cation provides its own local scheduling mechanism, based on the partitioned
dynamic-priority scheduling implementing the Earliest Deadline First (EDF)
policy. The dedicated full processors do not need a system-level scheduler but
rather use the application provided scheduler. The partial processor can be
managed by any scheduler which can ensure that the partial processor provides
supply according to the periodic resource model [3].

8.2.1 The Basic Elastic Task Model

We define an elastic application A as a set of n tasks where each task is spec-
ified as τi = {Ci, T

min
i , T d

i , T
max
i , Ei}. Here, Ci is the Worst-Case Execution

Time (WCET) of the task while Tmin
i and Tmax

i specify the minimum and the
maximum interarrival time between consecutive jobs of τi. T d

i represents the
desired period of the task τi. The elastic co-efficient Ei determines the flexi-
bility of the task τi to change in its period [4]. For instance, if Ei is defined to
be in the range [0, 1], Ei = 0 ensures that the task’s desired period cannot be
modified, implying that Tmin

i = T d
i = Tmax

i . Similarly, Ei = 1 indicates that
the task’s period can be modified to take up values up to its maximum period.
Further, the elastic coefficient acts as a weighting factor, determining the extent
to which its utilization can be reduced in relation to other tasks. We use Ti

(without any postscript) to indicate the current inter-arrival time of τi. An ex-
ample of an elastic taskset is shown in Table 8.1. Here, the period of the task τ1
can be extended up to its maximum period, while the task τ5 can only execute
with its desired period.
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Task ID WCET Tmin
i T d

i Tmax
i Ei

τ1 4 40 120 240 1
τ2 8 40 80 360 0.75
τ3 12 240 240 480 0.5
τ4 12 200 240 600 0.25
τ5 4 40 40 40 0

Table 8.1: An Elastic Task Set.

The utilization of a task τi is defined as Ui = Ci
Ti

. The minimum
and maximum utilization of each task is represented by Umin

i = Ci
Tmax
i

and

Umax
i = Ci

Tmin
i

, respectively. The desired utilization is represented by Ud
i = Ci

T d
i

.
The desired application utilization is given by the sum of the desired utiliza-
tion of the individual tasks. i.e., Ud =

∑n
i=1 U

d
i . Similarly, the minimum

and maximum application utilization is given by Umin =
∑n

i=1 U
min
i and

Umax =
∑n

i=1 U
max
i . The relative deadline of each job of an elastic task is

equal to its current period at runtime. If a task requests for a change in its cur-
rent period, its desired utilization Ud

i is updated and a schedulable utilization
for rest of the tasks is calculated. An elastic application is said to be schedulable
if Ud ≤ Uub , where Uub is the utilization upper-bound for a given scheduling
algorithm. It is assumed that the deadline is elastic-implicit. Note that when the
utilization of a task is changed to accommodate increased utilization of another
task, the reduced utilization is used to check for schedulability instead of the
initial desired period.

8.2.2 Minimum-Parallelism Resource Supply Model

The resource supply provided to the application is based on the minimum par-
allelism resource supply model [1, 2]. Here the resource supply is provided by
reserving m dedicated processors for an application and at most one periodic
resource model based partial processor [3] for the exclusive use of the applica-
tion. Here, the partial processor is defined as Γ(Θ,Π), where Θ is the periodic
resource allocation time and Π is the resource period. Essentially, the periodic
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Task ID Ud
i

τ1 0.55
τ2 0.50
τ3 0.50
τ4 0.45
τ5 0.25
τ6 0.15

Table 8.2: taskset with desired utilization.

resource Γ provides an application with Θ time units of CPU time every Π time
units. The utilization of the partial resource supply is defined as UΓ = Θ

Π .

Time

Π

2(Π − Θ)

Processor 1

Processor 2

Processor 3

Θ

Fig. 8.1: Minimum Parallelism Resource Supply Model.

Fig. 8.1 shows the resource supply provided according to the MPS model
with 3 processors. Here, processor 1 and processor 2 are fully dedicated to the
application, while processor 3 is available partially and modelled according to
the periodic resource model. In the worst case, i.e., when the resource budget is
exhausted at the beginning of its period and the next instant it is available close
to the end of the next period, the no supply interval of the partial processor is
equal to 2(Π−Θ) [3].
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Generating the resource supply reservation parameters: As the MPS
model requires reserving m full processors and one partial processor, we need
to identify the number of dedicated processors along with the resource supply
parameters of the partial processor necessary to schedule the application. We
identify these values based on the initial desired utilization. As we consider par-
titioned EDF scheduling, we apply the reasonable allocation decreasing (RAD)
partitioning heuristic specified in [5]. For example, consider the taskset with
its desired utilization in Table 8.2. The tasks τ1 and τ4 are assigned to the
same processor since their utilization sums up to one. Similarly τ2 and τ3 are
assigned to another processor. As τ5 and τ6 have their utilization much less
than the utilization limit for a fully dedicated processor under EDF, they are
assigned a partial processor. We apply the method described in [3] to identify
the capacity and the period of the partial processor to schedule τ5 and τ6.

Schedulability Bounds: For the dedicated processors, we assume the unipro-
cessor utilization bound of one for partitioned EDF. For the partial processor,
we use the utilization bound defined according to the periodic resource model.
Particularly, the application tasks assigned to the partial processor with utiliza-
tion UA are schedulable under EDF scheduling policy if the partial processor
resource supply utilization satisfies Eq. (8.1) (Eq. 21 in [3]).

UΓ,EDF (k) =
(k + 2).UA

k + 2(UA)
, (8.1)

where,

k = max

{
k ∈ Z

∣∣∣∣(k + 1)Π−Θ− kΘ

k + 2
< Tmin

}
(8.2)

and Tmin is the smallest period among the tasks assigned to the partial proces-
sor.

8.3 Proposed Solution

As the minimum parallelism resource supply model allows at most one par-
tial processor, the remaining resources are provided by dedicated processors.
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Therefore, we first consider scheduling of elastic applications on dedicated
multiprocessors. In this section, we summarize the current state-of-art solu-
tion to the scheduling problem based on the partitioned heuristics proposed by
Orr et al. [6]. We then extend this solution to include the partial processor.

8.3.1 Scheduling Elastic Applications on Dedicated Multi-
Processors

The schedulability of elastic applications on dedicated multi-processors was
evaluated by Orr et al. [6] using both global as well as partitioned scheduling
approaches. Their work highlighted the relatively better schedulability perfor-
mance of the partitioned approach when compared to global scheduling for
elastic applications. We summarize their approach below and refer to it as the
global re-partitioning approach in the rest of the paper.

The Global Re-Partitioning Approach: This approach involves iteratively
compressing the utilization and re-partitioning the taskset until a schedulable
partition is found. The algorithm iterates over the values in the range [0,Φ],
where Φ is calculated according to (8.4), to find the smallest value of λ such that
the utilization assigned to each task according to (8.3) can result in a schedu-
lable partition. During each iteration, it assigns a value to λ and calculates the
utilization to be assigned to each task. For this set of utilization values, it then
applies a predetermined partitioning heuristic such as the ”reasonable allocation
decreasing(RAD)”[5], where the tasks are ordered according to monotonically
decreasing utilization values and each task is then assigned to the processor on
which it fits. The task to processor assignment can be based on

1. First Fit: Assign the task to the first processor on which it fits. i.e., the
task meets its schedulability conditions.

2. Best Fit: Assign the task to the processor with minimum remaining ca-
pacity after its allocation.

3. Worst Fit: Assign the task to the processor with maximum remaining
capacity after its allocation.
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Task ID Umin
i Ud

i Umax
i Ei

τ1 0.25 0.55 0.75 1
τ2 0.25 0.45 0.65 1
τ3 0.25 0.50 0.75 1
τ4 0.25 0.50 0.75 1

Table 8.3: An Elastic Task Set

If a task remains unassigned, the value of λ is incremented by a granular-
ity constant ϵ and the process is repeated until either all tasks are assigned to
processors, resulting in a successful allocation, or the value of λ exceeds Φ,
resulting in failure.

Ui = max(Ud
i − λEi, U

min
i ) (8.3)

Φ = max

(
Ud
i − Umin

i

Ei

)
(8.4)

An Example: Consider an elastic taskset with values given in Table.8.3 that
needs to be scheduled on a 2 core processor. According to the first fit heuristic
and considering the desired utilization values, the tasks τ1 and τ2 are assigned
to core 1 while τ3 and τ4 are assigned to core 2. At runtime, suppose that the
task τ1 requests for a new utilization equal to 0.65. The algorithm tries to find
a suitable value for λ such that a schedulable partition is found. Observing
the utilization values in this example, one can notice that the new utilization
request of the task τ1 could have been easily accommodated by changing the
utilization of task τ2 from its desired value to its minimum utilization value
without the re-partitioning step. Based on this observation, we propose a new
algorithm that applies the utilization modification algorithm on a per-core basis
and only re-partitions the taskset if the per-core approach fails to successfully
accommodate the requests for increased utilization values.

Utilization Modification on a Single Core: While the re-partitioning ap-
proach is relatively straightforward to implement, one disadvantage of this ap-
proach is that if a taskset is not schedulable, the global re-partitioning can cause
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Task ID Umin
i Ud

i Umax
i Ei

τ1 0.25 0.55 0.75 1
τ2 0.35 0.45 0.65 1
τ3 0.15 0.50 0.75 1
τ4 0.15 0.50 0.75 1

Table 8.4: An Elastic Task Set with Unschedulable Demand

multiple task migrations resulting in additional book-keeping overhead. Fur-
ther, if the temporal isolation strategies such as cache partitioning are part of
an overall solution, especially those based on task-based cache allocation, then
task migrations may require re-partitioning of the caches adding to the over-
head. One way to minimize such overheads is to limit the utilization modifica-
tion to tasks running on the same processor or the partial processor as the task
requesting the increased utilization.

An Example: While the request for increased utilization of the task τ1 in
the previous example could be successfully managed following the per-core
utilization approach, this approach can fail to find a schedulable solution for
other requests and tasksets. To illustrate this, consider the elastic taskset as
given in Table. 8.4, which is similar to the previous example but with modified
minimum utilization values. Based on the desired utilization values, the tasks
τ1 and τ2 are assigned to core 1 while τ3 and τ4 are assigned to core 2. At
runtime, suppose that the task τ1 requests for a new utilization equal to 0.75.
Applying the per-core approach would require the utilization of the task τ2 to
be reduced to 0.25. Since the minimum utilization of task τ2 is greater than
the required value, this results in an unschedulable condition. If re-partitioning
was applied, however, the request could be successfully handled by assigning
τ1 and τ3 to the same core and reducing the utilization τ3 to 0.25. Similarly, τ2
and τ4 could be assigned to the same core to ensure schedulability.

Based on these observations, we describe next a combined approach that
exploits the advantages offered by the per-core approach while improving the
range of schedulable elastic tasksets through limited re-partitioning.
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The Combined Approach: Although the original re-partitioning approach
finds schedulable solutions for most of the evaluated scenarios(See Section.
8.4), the associated overheads can be minimised by first applying the utiliza-
tion modification algorithm to the tasks running on the same processor as the
task requesting for increased utilization to find a schedulable utilization on that
processor. Since the complexity of the utilization modification algorithm is
a function of the number of tasks and the number of processors, by reducing
the number of tasks whose utilization should be adjusted, the efficiency of the
algorithm can be improved. Indeed, if a schedulable utilization is not found,
then re-partitioning considering all the cores and the complete taskset cannot
be avoided and as such, the overheads related to task migration (and if appli-
cable, cache partitioning) remain the same as in the original approach. The
general steps for the combined approach are as follows:

1. Order the taskset either in an (i) arbitrary manner, or (ii) monotonically
increasing utilization, or (iii) monotonically decreasing utilization.

2. Order the processors in some arbitrary manner.

3. Allocate tasks to processors according to a ”Reasonable Allocation”
scheme.

4. When a task makes a request for increased utilization, apply the iterative
utilization modification algorithm only to tasks on the same core.

5. If such a request fails, apply the iterative utilization modification algo-
rithm including re-partitioning by considering all the cores.

The combined approach is able to find schedulable solutions similar to
the original re-partitioning approach but with improved efficiency since the re-
partitioning step is applied only if the per-core utilization modifications fail. In
some of the evaluated scenarios, the results indicate per-core utilization mod-
ifications are sufficient to keep the application schedulable while completely
avoiding the re-partition-ing step. In limited cases where the per-core utiliza-
tion fails, the re-partitioning approach successfully finds a schedulable parti-
tion.
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8.3.2 Extension to Minimum Parallelism Resource Supply Model

The approaches discussed in the previous section considering dedicated proces-
sors can be extended to the minimum parallelism resource supply reservation
model with some minor modifications. One of the key distinguishing charac-
teristics between the MPS reservation model and the fully dedicated processors
is the presence of the partial processor. Since the partial processor is only avail-
able periodically, under worst-case conditions, there can be a no supply interval
equal to 2(Π−Θ) ( See Fig. 8.1). Any task with a period less than this no sup-
ply interval cannot be allocated to the partial processor. As a consequence, the
re-partitioning step should not only consider the utilization but also the period
of the tasks. Moreover, in the case where both per-core utilization modifica-
tion, as well as re-partitioning, fail due to the period constraints, depending
on the availability of resources on the core executing the partial processor, a
re-allocation of the bandwidth on the partial processor can be considered. The
general steps of the proposed approach are as follows:

1. Order the taskset (i) arbitrary manner (ii) monotonically increasing de-
sired utilization or (iii) monotonically decreasing desired utilization.

2. Order the processors in some arbitrary manner.

3. Allocate tasks to processors according to a ”Reasonable Allocation”
scheme.

4. if any task remains unallocated, generate resource supply parameters for
the partial processor according to the initial desired utilization values of
the unallocated tasks.

5. When a task makes a request for increased utilization, apply the itera-
tive utilization modification algorithm only to tasks on the same core (or
partial processor as applicable).

6. if such a request fails, apply the iterative utilization modification algo-
rithm by including re-partitioning considering all the dedicated cores.
Include partial processor only if the failing request belongs to the partial
processor.
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7. During re-partitioning, only allocate tasks whose periods are greater than
the worst-case no-supply duration on the partial processor while ensur-
ing that the total utilization of the task assigned to the partial processor
remains below the partial processor utilization according to Eq.(8.1).

8. If this request fails, modify the bandwidth of the partial processor if re-
sources are available and repeat steps 3 and 4.

8.4 Evaluation

We evaluated the proposed approach for the case of fully dedicated processors
by considering randomly generated tasksets with a varying number of tasks and
utilization values along with a different number of processors and partitioning
heuristics. Here we present the results of the 16 such configurations as detailed
in Table 8.5. For each configuration, we measured the number of successful
requests along with the computation time (based on the Query Performance
Counter provided by the Windows OS) for a prototype implementation of the
proposed algorithms.

Taskset Generation: The desired utilization of each task of a taskset was
generated using the algorithm proposed by Griffin et al. [7]. The minimum uti-
lization was generated by subtracting a randomly generated percentage (taken
from a uniform distribution) from the desired utilization. Similarly, the maxi-
mum utilization was generated by adding a randomly generated percentage to
the desired utilization while ensuring that the maximum utilization for each task
was under one. Each request for increased utilization was generated by select-
ing a random task and a uniformly distributed random utilization value from
within the task’s desired and maximum utilization. The elastic co-efficient was
assigned to each task by randomly generating real values taken from a uniform
distribution between [1-10].

Configurations: To compare the performance of the proposed approaches
with a state-of-art method, we evaluated different configurations by varying the
number of processors, and tasks along with different percentage limits on the
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Configuration Maxmin No.of tasks No.of Processors
1 1, 0.5 100 2
2 1, 0.5 100 4
3 1, 0.5 100 8
4 1, 0.5 100 16
5 1, 0.5 200 2
6 1, 0.5 200 4
7 1, 0.5 200 8
8 1, 0.5 200 16
9 0.5, 0.5 100 2

10 0.5, 0.5 100 4
11 0.5, 0.5 100 8
12 0.5, 0.5 100 16
13 0.5, 0.5 200 2
14 0.5, 0.5 200 4
15 0.5, 0.5 200 8
16 0.5, 0.5 200 16

Table 8.5: Different Configuration Settings.

utilization values to define the maximum and minimum utilization of each task.
For the desired utilization, the maximum utilization of each task was set to be
not greater than 0.5. Further, the tasks were ordered according to monotonically
decreasing utilization values. The first fit approach was used as the task to
processor assignment strategy. Table 8.5 shows the different configurations
where the column ”maxmin” indicates the maximum and minimum values used
to define the utilization values. For example, the values (1, 0.5) indicate that the
maximum utilization that a task can have is in the interval [Ud, Ud + (1 · Ud)],
while the minimum utilization a task can have is in the interval [Ud − (0.5 ·
Ud), Ud]. The values under the column “configuration” refer to the respective
(row) configurations settings and are used as identifiers on the x-axis in the
associated graphs.
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8.4.1 Results

We evaluated the different approaches for schedulability along with the compu-
tation times under different configuration requirements. For each configuration,
we generated ten different tasksets and for each taskset, we simulated 1000 re-
quests for utilization modifications. For each utilization request, we assigned
the new utilization values chosen from a uniform distribution between the de-
sired utilization and the maximum utilization. Moreover, each task requesting
increased utilization was chosen randomly.

Schedulability: The schedulability of the different configurations for the
three methods is shown in Fig. 8.2. Here, GP refers to the global re- partitioning
approach of ORR et al., while PCM refers to the per-core utilization modifica-
tion approach and CA refers to the combined approach of per-core modifica-
tions and re-partitioning. The results show that the combined approach has a
100 percent success value while the per-core modifications have a success value
of 95 percent in the worst-case indicating that in most cases, the per-core mod-
ification is sufficient. In case of failure, the limited re-partitioning associated
with the combined approach can find a schedulable solution. The variation in
successful requests for certain configurations is mostly due to the randomness
in the generated tasksets and the tasks requesting for the modified utilization.

For configurations with a reduced number of tasks (Table 8.6), the schedu-
lability performance of the per-core approach was around 93 percent in the
worst-case scenario, which was relatively worse than compared to tasksets with
a larger number of tasks while the other two approaches had 100 percent suc-
cess.

Computation time: For each configuration, we measured the computation
time required to find a schedulable solution and to report a failure if no solu-
tion is found through a prototype implementation of the proposed approaches
on a Windows system. Fig. 8.3 shows the average computation time per re-
quest for each of the different configurations. The average was calculated by
measuring 10000 requests. The results indicate that the per-core and the com-
bined approach perform relatively better compared to the global re-partitioning
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Configuration Maxmin No.of tasks No.of Processors
1 1, 0.5 20 2
2 1, 0.5 20 4
3 1, 0.5 20 8
4 0.5, 0.5 20 2
5 0.5, 0.5 20 4
6 0.5, 0.5 20 8

Table 8.6: Configuration with a smaller number of tasks.

approach. In certain scenarios, the average computation time of the combined
approach is 6 times better than the global re-partitioning approach. This im-
provement is mostly due to the fact that most requests are managed within the
core and that re-partitioning is done only if necessary, unlike the global re-
partitioning approach where every new request results in re-partitioning.

Fig. 8.4 shows the worst-case computation times taken by the different ap-
proaches. The results indicate that for most configurations, the proposed ap-
proaches perform better than the global partitioning approach. In certain cases,
however, the worst-case performance of the combined approach is similar (or
worse in limited scenarios) to the global re-partitioning approach.

For configurations with a reduced number of tasks (Table 8.6), the compu-
tation performance of all the approaches was better compared to the configura-
tions with a larger number of tasksets. Comparing the performance of different
approaches for the same number of tasks (See Fig. 8.6), the average value of the
combined approach was up to two times better than the global partitioning ap-
proach. The worst-case performance of the combined approach (See Fig. 8.7)
was worse than the global approach for most of the evaluated configurations.
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Fig. 8.2: Schedulability Performance of the Different Approaches.
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Fig. 8.3: Average Computation Times of the Different Approaches.
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Fig. 8.4: Worst Case Computation Times of the Different Approaches.
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Fig. 8.5: Schedulability Performance of Smaller Tasksets.



Paper A 73

1 2 3 4 5 6

50

100

Configurations

tim
e

(i
n

m
ic

ro
se

co
nd

s)

GP PCM CA

Fig. 8.6: Average Computation Times for Smaller Tasksets.
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Fig. 8.7: Worst Case Computation Times for Smaller Tasksets.
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8.5 Related Work

Hierarchical scheduling of periodic and sporadic real-time applications was en-
capsulated in a compositional real-time scheduling framework by Lee et al. [3].
In this framework, the computational demand of an application was abstracted
with a single demand interface as a pair of capacity and period and the re-
source supply server was abstracted as a periodic resource model where each
server was guaranteed a reserved capacity Θ every Π time units. Easwaran et
al. [8] extended the periodic resource model to include the deadline parameter,
where each server was guaranteed a reserved capacity Θ within D time units,
in every time interval Π. Dewan et al. [9, 10] provided algorithms to find an
approximate allocation of bandwidth for a set of periodic and sporadic tasks
under the periodic resource model. The periodic resource model was further
extended for the case of multiprocessors by Shin et al. [11] where the peri-
odic resource supply model was augmented with a parameter indicating the
maximum concurrency with which the resource supply is provided. The tasks
assigned to this resource supply were then scheduled using a global scheduler.
Bini et al. [12, 13] provide a more expressive and general model for specifying
multiprocessor resource supply in the form of the parallel supply function. Lee
et al.[14] build upon the multiprocessor resource supply model and provide a
cache-aware compositional analysis for the minimum parallelism resource sup-
ply form for the global EDF scheduling policy.

The concept of elastic tasks was introduced by Buttazzo et al. [15] to model
applications whose computational demands can occasionally exceed the avail-
able capacity by allowing the application to modify the demand by changing
the frequency of its jobs through an elastic coefficient. This was extended
to address resource sharing within the elastic task model in [4]. Guangming
[16] provided an earlier time for accelerating and adding tasks for the elastic
scheduling approach. Chantem et al. [17, 18] reformulated the problem as a
quadratic optimization problem and showed that the original elastic tasks com-
pression algorithm was indeed a solution to solving a quadratic problem. Tian
et al. [19] extended the modified problem to include a “Quality-of-Control”
metric as a part of the objective function of the quadratic optimization prob-
lem. More recently, Orr et al. [20, 6] provided algorithms to schedule sequential
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elastic tasks on multiprocessor systems and further extended the concept of the
elastic task to federated DAG-based parallel task systems in [21, 22]. Beccari
et al. [23, 24] provided alternative algorithms to schedule similar applications
by expressing the task period ranges in a linear programming formulation.

Another commonly used approach to schedule application tasks with timing
variability is to modify the resource reservations. Thiele et al. [25] provide an
online reconfiguration algorithm for the constant bandwidth server. Khalilzad
et al. [26] proposed an adaptive hierarchical scheduling model to accommo-
date the adaptive behaviour of the periodic and sporadic tasks by changing the
bandwidth allocation. In contrast, this paper assumes that a bandwidth allo-
cated for a server under the periodic resource model remains constant and that
the workload within the server can be adapted according to the elastic task
model. However, if the elastic assignment fails, a request for a new bandwidth
allocation will be made. We note that the proposed solution does not take into
account possible bandwidth reclamation or mixed-criticality-based approaches
to assign new bandwidths if no schedulable allocation can be made. Instead, we
leave it to the individual application to handle such failures. For uniprocessor
systems, we provide a method to schedule elastic applications within a periodic
resource supply model reservation in [27].

8.6 Conclusion

Scheduling of elastic applications on reservation-based multiprocessors sys-
tems has not been extensively studied. To address this, we proposed a schedul-
ing framework based on the minimum-parallelism resource reservation model
and compared different partition-based EDF scheduling mechanisms. The pro-
posed methods introduce a relatively intuitive approach to scheduling elastic
tasks under reservation schemes on multiprocessors combining the advantages
of the simplicity offered by the MPS reservation and flexibility of the elastic
tasks. The evaluation results indicate the proposed methods outperform the
current state-of-art approaches on average, while in the worst case, none of
the approaches outperforms the other. In future work, we intend to investigate
methods to improve the worst-case performance and evaluate the results on a
real system.
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Abstract

We consider the problem of on-arrival dispatching and scheduling jobs with
stochastic execution times, inter-arrival times, and deadlines in multi-server fog
and edge computing platforms. In terms of mean response times, it has been
shown that size-based scheduling policies, when combined with dispatching
policies such as join-shortest-queue, provide better performance over policies
such as first-in-first-out. Since job sizes may not always be known apriori,
prediction-based policies have been shown to perform reasonably well. How-
ever, little is known about the performance of prediction-based policies for
jobs with firm deadlines. In this paper, we address this issue by considering
the number of jobs that complete within their deadlines as a performance met-
ric and investigate, using simulations, the performance of a prediction-based
shortest-job-first scheduling policy for the considered metric and compare it
against scheduling policies that prioritize based on deadlines (EDF) and ar-
rival times (FIFO). The evaluation indicates that in under-loaded conditions,
the prediction-based policy is outperformed by both FIFO and EDF policies.
However, in overloaded scenarios, the prediction-based policy offers slightly
better performance.
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9.1 Introduction

Edge computing architectures allow real-time system designers to deploy al-
gorithms on high-performance edge computing servers to improve response
times and reduce energy consumption in embedded devices[1, 2, 3]. In ad-
dition, these edge deployments may need to support several different devices
necessitating a multi-server system design. For such multi-server systems, dis-
patching and scheduling algorithms are important in satisfying response time
requirements[4]. Specifically, when the objective is mean response times and
the processing times of individual jobs are known apriori, multi-server variants
of shortest-remaining-processing-time (SRPT) and preemptive shortest job first
(SJF) are optimal under a central queue assumption [5]. Similarly, when jobs
are dispatched on arrival, Mitzenmacher et al.[6] showed that SRPT and SJF
outperformed the FIFO policy when combined with the join-shortest-queue
(JSQ) dispatching policy. A limitation of these policies is that they require
the knowledge of processing times of each job before its completion, which
may not always be possible[7]. As an alternative, usage of predicted val-
ues has been investigated to achieve improved performance in terms of mean
response times compared to size-oblivious policies such as first-in-first-out
(FIFO) ordering[8, 6]. In a large-scale queuing system, Mitzenmacher [8]
studied the impact of single-bit predictors that can indicate whether a job’s
processing time is above or below some threshold. They found that such pre-
dictors can provide benefits similar to those achievable with knowledge of ex-
act processing times for Poisson arrivals and certain processing time distribu-
tions. While mean response time can be a useful measure for certain appli-
cations, some real-time applications impose constraints in terms of deadlines,
where the output is only valid if it is generated before its deadlines. However,
they can tolerate some missed deadlines [9]. Additionally, some of these al-
gorithms may exhibit stochastic behavior in terms of processing times as well
as inter-arrival times(For example, See [10, 11]) The performance evaluation
of scheduling policies based on predicted processing times for such workloads
with firm deadline requirements has received limited attention.

We address this by first considering the presence of a dual-bit job size pre-
dictor that can classify an incoming job into one of the four job size classes:
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small, medium, large, and very large. We choose a dual-bit prediction approach
based on the intuition that the accuracy of such predictors may be better than the
accuracy of predictors estimating individual job processing times. Secondly, we
use the information the dual-bit predictor provides with a preemptive shortest-
job-class-first (PSJF) scheduling policy. This policy orders jobs according to
their job size classes, and jobs in each class are in FIFO order. Furthermore, we
consider an on-arrival dispatching policy and leave evaluation of central queue
approaches for future work.

Concretely, we formulate the following questions and address them using
simulations.

1. What is the impact of on-arrival job acceptance and rejection based on
response-time estimation of pending jobs on achievable throughput under
various load conditions?

2. How does a dual-bit prediction-based PSJF scheduling policy compare
against EDF, FIFO, and SRPT scheduling policies in terms of achievable
throughput under various load conditions?

3. What is the impact of on-arrival server selection policy on achievable
throughput under various load conditions when using dual-bit prediction-
based PSJF scheduling policy?

Our evaluation indicates that prediction-based PSJF provides no signifi-
cant advantage over FIFO and EDF scheduling policy for the considered set-
tings and under-loaded scenarios. However, under fully loaded and sustained
overload conditions, it performs better than FIFO and EDF when used with an
estimation-based admission policy.

9.2 Related Work

In on-arrival dispatching systems, dispatching policies determine the server on
which an incoming job will be executed. Dispatching policies such as JSQ and
its variants that require the knowledge of the number of pending jobs in each
server is optimal with respect to mean response times [4]. However, gathering
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this information may introduce overheads depending on the number of servers
and the network traffic. Alternatively, policies such as round-robin (RR) that do
not require knowledge of pending jobs dispatch incoming jobs in a cyclic or-
der. Consequently, they do not have the overhead associated with policies that
require information about the pending jobs on each server. Several other poli-
cies, such as join-the-idle-queue and join-below-threshold, have been proposed
to balance the trade-off between overheads and response times [12, 13].

Many studies have explored the potential for enhancing algorithm perfor-
mance through machine-learned advice or predictions, including classical al-
gorithms for online scheduling and load-balancing [14]. These prediction-
augmented algorithms have been evaluated through competitive analysis un-
der both accurate and possibly incorrect predictions [8, 6, 15, 13]. In on-
line scheduling, some researchers have considered predicting job execution
times [13, 16] and the ordering of jobs [15]. Mitzenmacher et al. [6] demon-
strated via simulations that the benefits of using predictions in large distributed
systems were retained if the predictions were reasonably precise. Based on the
evaluations, they proposed selecting servers with the least number of pending
jobs and using the predicted shorted processing job first policy for use in actual
systems. Zhao et al. [13] extended the RMLF algorithm to use predicted job ex-
ecution times. The prediction enhanced algorithm achieved performance close
to that of SRPT when the prediction error was small and better than RMLF
when the error was large. However, designing highly accurate predictors that
predict the exact size of a job may be difficult. Consequently, we consider dual-
bit predictors that coarsely classify an incoming job into one of the four distinct
job classes.

In single-server settings, Gao et al. [17] developed scheduling strategies for
firm semi-periodic real-time tasks. They introduced three control parameters to
decide at run-time whether to interrupt a job before its deadline and considered
four admission policies. Our work differs in that we consider a multi-server
setting and estimate response times using the job execution time distribution
and the number of pending jobs on a specific server on job arrival and allowing
admitted jobs to stay in the queue until completion or reaching their deadline.

Several works within queuing theory analyzed the performance of EDF
under different scenarios. Abhaya et al. solve a set of linear equations to
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calculate the mean delay for M/G/1/./EDF [18]. Kargahi et al. [19] provide
bounds for estimating the deadline miss probabilities for M/M/k/./NEDF+G
and M/M/1./EDF+G assuming a single queue system, unlike the dispatch on
arrival policy we considered. Kargahi provided an analytical method in [20] to
show the performance of parallel EDF queues for JSQ, the minimal expected
value of unfinished work(MED), and threshold-based dispatching strategy but
without any arrival time acceptance or rejection.

We previously evaluated the performance of a dispatching policy that relies
on single-bit predictions of job processing times in conjunction with a non-
preemptive FIFO scheduling policy where all jobs had a fixed relative dead-
line. [21]. Similarly, we evaluated the percentage of missed deadlines when
jobs have individual deadlines using preemptive EDF policy in [22]. The work
in the paper differs from our previous work in that we consider a prediction-
based policy and compare it with EDF and FIFO ordering.

9.3 System Model

9.3.1 Job Model

Jobs arrive online following a Poisson process with an arrival rate λ adjusted
accordingly to generate desired system load. We assume a Poisson process
since this has been extensively used in the literature in analyzing queuing sys-
tems and models quite well the use case we consider. i.e., requests for job
executions can arrive from several users, and each such user may have different
inter-arrival times. The processing time of each job is drawn from a trimmed
and discretized exponential distribution with a mean of 10 and lower bounded
with value 1 and upper bounded by value 100. (i.e., ten times the mean value).
While this may not be a realistic representation of many real-world workloads,
it has been widely used in the literature in queuing systems, and the loss of
accuracy compared to true exponential distribution may be acceptable since we
only consider the average throughput rather than numerically precise response
times. Additionally, each job’s relative deadline di is drawn from a uniform
distribution D with a range between five to ten times the mean value of the
execution time distribution. We choose the considered ranges due to negative
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results associated with low laxity systems[15]. The relative deadline is revealed
when the job arrives. Each job is assigned an absolute deadline on its arrival.

9.3.2 Server Model

We consider a network of homogeneous servers. Each server has its own queue
and executes jobs assigned to it according to the considered scheduling policy.
When a job arrives, a dispatching policy selects a server and accepts or rejects
the job based on the pending workload on the selected server. Each accepted
job is added to the queue of the selected server. The jobs in the queue are
ordered based on the scheduling policy. If a new job has a shorter deadline than
the currently executing job, the scheduler preempts that job, adds it to its own
queue, and starts executing the new job.

Server Selection Policy: We evaluate JSQ and RR server selection policies.
Under JSQ, whenever a new job arrives, the server with the least number of
pending jobs is selected, while in RR, the server is selected cyclically. We
combine these policies with an online schedulability test to enable admission
time control. If a job is deemed to be schedulable, it is immediately sent to the
selected server and is rejected otherwise.

Admission Policy: A schedulability test decides whether a job can be suc-
cessfully scheduled on a server, given a scheduling policy and information
about the pending jobs on the server. As jobs in our system are bound by
a deadline, we must determine whether the job can meet its deadline on the
selected server. Utilization-based schedulability tests that rely on worst-case
processing time values can be used if the service cannot tolerate any deadline
miss. However, if over-provisioning is a problem and deadline misses are tol-
erated, a low-overhead but less accurate test may be useful. If the jobs satisfy
such a schedulability test, they are accepted into the system.

We now describe the policies used to admit or reject the jobs. We consider
three policies based on how the job processing times are considered, (i) mean-
approximation policy and (ii) clairvoyant policy, and (iii) admit-all policy.
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Mean-approximation policy: In this policy, we use mean µ of the process-
ing time distribution to estimate the response time fi of a newly arrived job on
the selected server i. If the number of pending jobs on this server is given by
Ni, the estimated response time is given by

fi = (Ni + 1) · µ. (9.1)

Clairvoyant policy: In this policy, we assume the knowledge of exact pro-
cessing times. The response time fi on any server i is given by

fi = xj +

Ni∑
k=0

xk, (9.2)

where xk is the exact processing time of each job k assigned to server i and xj
is the processing time of the newly arrived job.

For both the estimation methods, the admission test returns true if the fol-
lowing condition is satisfied:

fi ≤ di. (9.3)

Admit-all policy: This policy dispatches each incoming job to a selected
server and does not reject any job.

Scheduling Policies

We consider four different policies depending on the workload parameters, (i)
FIFO policy, prioritizing jobs based on their arrival times, (ii) EDF, prioritiz-
ing jobs based on their deadlines (iii) PSJF, prioritizing jobs based on their
predicted processing times and (iv) SRPT, prioritizing jobs based on their true
remaining processing time.

• FIFO policy prioritizes jobs according to their arrival times, with ties
broken arbitrarily. It executes jobs in a non-preemptive manner.

• EDF policy prioritizes jobs according to their absolute deadlines with
preemptions. i.e., a newly added job can preempt a running job if its
absolute deadline is lower than that of the running job.
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(a) EDF Scheduling
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(b) Fifo Scheduling
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(c) SRPT Scheduling

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Load

T
hr

ou
gh

pu
t

mean
admit-all

clairvoyant

(d) PSJF Scheduling

Fig. 9.1: Comparison of throughput under three different admission policies for
round-robin dispatching and various scheduling policies

• SRPT policy prioritizes jobs according to their remaining processing
times with preemptions. Although this policy requires the exact pro-
cessing time to be known, we use this policy as a baseline to compare
against the size-aware prediction-based PSJF policy.

• PSJF policy prioritizes jobs according to their predicted job classes, with
jobs from the shortest class executed first with preemptions enabled. Jobs
within each class are in FIFO order.
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(a) Mean-Approximation Policy
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(b) Clairvoyant Policy
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(c) Admit All Policy

Fig. 9.2: Comparison of throughput under different scheduling and admission
policies for RR dispatching
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(b) Clairvoyant Policy
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(c) Admit-All Policy

Fig. 9.3: Comparison of throughput under different scheduling and admission
policies for JSQ dispatching
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Fig. 9.4: Comparison of throughput under different dispatching schemes for
PSJF scheduling policy
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9.4 Simulation Methodology

We compare the performance of the scheduling policies for (trimmed) ex-
ponentially distributed job processing times, Poisson inter-arrival times, and
uniformly distributed deadlines. We simulate 10000 time units and measure
throughput as the ratio of the number of jobs completed within their deadlines
and the total number of jobs released during this simulation interval. We repeat
the simulation over ten runs and present the average throughput calculated over
these ten runs.

Load generation: We generate jobs based on the load following Eq. (9.4),
where ρ is the load, µ is the mean processing time, and λ is Poisson arrival rate
per server, and n is the number of servers. Specifically for the results presented
in this paper, we fix µ to 10, set n to 2 and 4, and calculate λ for fixed values
of load ρ. Specifically, we set ρ between 0.5 and 1.2 and incremented in steps
of 0.1.

ρ =
µ

n · λ
(9.4)

Assigning processing times: For each job, we first assign the true processing
time generated according to the trimmed exponential distribution with µ set to
ten. The lower bound is set to one, and the upper bound is set to one hundred.
As we use integer time units for stepping through the simulation, we use the
ceil function to convert the generated floating point value to an integer. We
note that this discretization changes the mean of the distribution and deviates
from the true exponential distribution. However, considering a large sample
size, i.e., a hundred thousand samples, this deviation can be ignored without
significantly impacting the observed results.

Assigning predicted processing times: As we assume a dual-bit predictor,
which classifies jobs into four distinct classes, defining the thresholds that can
guide the classification is necessary. As a first approach, we consider quartile
values of the exponential distribution and use them as threshold values. Once
the true processing time has been assigned, we assign the predicted processing
time equal to the discrete version of the quartile values. Specifically, we use
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values 3, 7, 17, and 47, the rounded quartile values of the trimmed exponential
distribution with a mean of 10.

Assigning deadlines: To assign the relative deadline, we first generate a ran-
dom number from a uniform distribution of a range of 5 to 10. This generated
random number is multiplied by the mean of the processing time distribution,
and the result is assigned as the deadline. If the true processing time value is
greater than the assigned deadline, we reset the processing time to the mean of
the distribution while retaining the deadline. We do this since this allows us to
keep the generated jobs, as it eliminates the problem of having unschedulable
jobs even before they are released.

9.5 Evaluation

9.5.1 Performance of Admission Policies

We compared the performance of the scheduling policies with and without ad-
mission control policies. As a baseline, we considered a clairvoyant policy that
knows the exact size of each pending job on a chosen server. The estimated
response time of an incoming job is then calculated using eq.(9.2). We also
considered a low complexity mean approximation policy where the response
time is estimated using eq.(9.1). In addition to this, we considered the sce-
nario where all incoming jobs are admitted and dispatched to specific servers
depending on the dispatching policy. The achieved throughput with RR dis-
patching when using two servers is shown in Fig. 9.1. When using EDF as
the scheduling policy, rejecting jobs using the admission control policies has
a limited impact on achievable throughput when the load is below 0.9. How-
ever, the benefits of admission control are seen when the load is increased to
1.0, with even the mean-approximation policy achieving a six percent higher
average throughput than the admit-all policy. The difference, however, is re-
duced under the FIFO scheduling policy. Similarly, when considering SRPT
and the prediction-based PSJF policy, the impact of the admission control poli-
cies remains negligible until a load value of 0.9. When the load increases to 1.0
and above, admitting all jobs and mean-approximation policy-based admission
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control provide slightly better throughput than the clairvoyant policy. Based
on these observations, we can conclude that on-arrival admission control poli-
cies provide no significant advantage when the system load is below 0.9 when
combined with any of the considered scheduling policies. If the system load is
above 0.9, admission control policies perform better when combined with size-
oblivious EDF and FIFO scheduling policies. When combined with size-aware
PSJF and SRPT, it is better to admit all jobs rather than reject some jobs to
achieve a slightly better average throughput.

9.5.2 Impact of Scheduling Policy

Fig. 9.2 and Fig. 9.3 provide a comparison of the achieved throughput of the
considered scheduling policies when combined with different admission con-
trol policies for RR and JSQ dispatching, respectively. When using the mean
approximation policy and admit-all policy, we can observe that as load in-
creases, the throughput reduces for all the scheduling algorithms. When the
load is below 0.9, size-oblivious scheduling policies perform slightly better
than the baseline SRPT policy, while the prediction-based PSJF performs the
worst. However, when the load is close to 1.0, all the policies perform sim-
ilarly. Under overload conditions, PSJF performs better than both EDF and
FIFO, while SRPT performs the best. The performance of EDF is worst under
the admit-all policy. When using the clairvoyant policy, PSJF performs worst
at high loads, with EDF and FIFO performing better than SRPT.

9.5.3 Performance of Dispatching Policies

We compared the impact of JSQ and RR dispatching policies on the perfor-
mance of various scheduling and admission control policies. Fig. 9.4 shows
the throughput achieved with PSJF scheduling and various admission control
policies. We observe that the difference in performance due to the dispatch-
ing policy is almost negligible, with JSQ only slightly outperforming RR. This
is seen consistently across all load values. This behavior is also consistent for
size-aware and size-oblivious scheduling policies, irrespective of the admission
policy.
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9.5.4 Discussion

We compared the performance of various combinations of admission control
and scheduling policies, including a coarse prediction-based shortest job policy
for applications whose jobs exhibit variability in inter-arrival times, process-
ing times, and deadlines. The results show that for non-asymptotic conditions,
i.e., when the number of servers is limited to two and four, PSJF and SRPT
provide no advantage over EDF and FIFO policies when the load is below 0.9.
However, size-aware policies provide better throughput under overloaded con-
ditions, with even the coarse-grained PSJF performing better than both FIFO
and EDF when combined with mean approximation and the admit-all admis-
sion policies. Additionally, JSQ and RR perform similarly for all combinations
with no significant difference in performance. This indicates that the overheads
of JSQ can be avoided with very little loss by choosing RR. Moreover, suppose
it can be established that the load in the system will stay below 0.9. In that
case, the simple FIFO policy with an admit-all policy can be used instead of
the other policies with relatively higher computational complexities. Another
interesting observation is that using size-aware policies for admission control
and scheduling provides worse performance. However, it must be noted that
we only considered the exponential distribution for processing time distribu-
tion, and the observations may not apply to a different distribution. In addition
to this, we assumed an ideal predictor that is fully accurate with zero inaccu-
rate job size classifications. This may not be realizable in practice, and further
investigation is needed to study the impact of inaccuracies. Another missing
parameter is network communication and the lack of consideration of end-to-
end deadlines, which may be important in practical systems.

9.6 Conclusion

We considered the problem of on-arrival dispatching and scheduling firm real-
time jobs in multi-server settings. We evaluated the performance of the pre-
dicted job scheduling policy using coarse-grained predictions in terms of aver-
age throughput using simulations under non-asymptotic conditions. Our eval-
uation shows that the prediction-based size-aware policy does not offer sig-
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nificant benefits compared to policies that prioritize based on deadlines or ar-
rival times in under-loaded conditions. However, in overloaded scenarios, it
performs slightly better than other policies. In summary, our study provides
valuable insights into selecting dispatching and scheduling policies for edge
computing systems to meet the needs of firm real-time applications.
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Abstract

The edge computing paradigm extends the architectural space of real-time
systems by bringing the capabilities of the cloud to the edge. Unlike cloud-
native systems designed for mean response times, real-time industrial embed-
ded systems are designed to control a single physical system, such as a manip-
ulator arm or a mobile robot, that requires temporal predictability. We consider
the problem of dispatching and scheduling of jobs with deadlines that can be
offloaded to the edge and propose DAL, a deadline-aware load balancing and
scheduling framework that leverages the availability of on-demand computing
resources along with an on-arrival dispatching scheme to manage temporal re-
quirements of such offloaded applications. The evaluation indicates that DAL
can achieve reasonably good performance even when execution times, arrival
times, and deadlines vary.
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10.1 Introduction

Complex real-time systems such as mobile robots and industrial robots tradi-
tionally follow an embedded deployment model with software functions run-
ning on a shared hardware platform to control a single physical system such as
the robot [1]. Several studies have investigated the benefits of a cloud-oriented
design that depends on the elastic availability of resources for real-time ap-
plications [2, 3, 4, 5]. One approach to realize a cloud-oriented design is to
package much of the application software, including the operating system, as
a Virtual Machine (VM) or container and deploy it to the cloud or edge infras-
tructure [6, 7] where each VM or container is responsible for a single physi-
cal system. An alternative model is a microservice design, where individual
functions have their own resources, such as CPU and memory, and handle re-
quests from multiple physical systems rather than a single system. Several ap-
proaches have been proposed for scheduling microservices requests in such a
deployment model, which take into account latency requirements but have lim-
ited consideration for issues such as satisfying deadline constraints [8, 9, 10].
Within queuing theory, several works have addressed deadline-based schedul-
ing policies such as Earliest-Deadline-First (EDF) for systems with a single
queue [11, 12, 13] and for the scenario where the number of available proces-
sors is fixed [14, 15, 16].

Additionally, several algorithms that can be offloaded exhibit variability in
execution times [17], inter-arrival times [18] as well as in terms of their relative
deadlines [19]. For example, while most real-time task models assume that the
relative deadline of a real-time task is fixed, for some tasks this deadline may
also vary per job [20] as well as during the execution of a job [19]. The inter-
arrival time between successive jobs can also vary significantly [18, 21]. For
systems such as mobile robots, the inter-arrival time can be a function of the
current velocity and the distance they are expected to cover before new data is
needed [22].

To address this, we consider an edge architecture that relies on the concept
of on-demand processing commonly used in cloud-computing designs [23] and
uses existing low-complexity dispatching and scheduling policies. Specifically,
we present DAL, a deadline-aware load balancing and scheduling framework
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that integrates an on-arrival dispatcher along with an EDF scheduling policy by
considering the availability of a processor pool with reserved processors and
on-demand processors to reduce the number of jobs that miss their deadlines
even with variable execution times, arrival times, and deadlines. To keep the
design simple, each DAL instance manages a single microservice and assumes
that the computing infrastructure can be viewed as a processor pool with a set
of reserved processors and a set of on-demand processors. In the context of
controlling real-time physical systems, if we consider the physical system as a
client that makes a request for the service offered by the microservice task, a
response must be sent to this client within a certain time duration. DAL uses an
on-arrival dispatcher that assigns incoming requests to the processor that most
likely meets their timing requirements. The dispatcher estimates the time a
request will take on a processor before dispatching it. Based on recent work re-
lated to redundant designs [24], and overload management in data centers [25],
for requests that are deemed to miss their timing requirements, DAL includes
a feedback mechanism that notifies the requester of a possible violation of its
timing requirement so that it can take remedial action locally. Concretely, we
show via simulations that using on-demand processors and a low-complexity
admission policy can provide significantly improved performance compared to
using only reserved processors for jobs with deadline constraints and variable
execution and inter-arrival times.

10.2 Motivation

To further motivate DAL’s design choices, we consider path planning [26] and
trajectory generation [27] as examples of a microservice and highlight the chal-
lenges imposed by such services.

Variable Arrival Times: In a multi-user scenario, requests may come from
different clients. Even for periodic requests coming from the same clients,
each client may have different periods. For example, if the service computes
a trajectory for a robot, a robot moving at a higher velocity can send requests
at a higher frequency. To address this issue, we designed DAL to manage
variable arrivals with an incoming request dispatcher that can decide whether
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the incoming request can be processed within its deadline given the pending
requests and the constraints on available resources.

Variable Execution Times: Similar to varying arrival times, the execution
time for each request can also vary, even for a service that provides the same
functionality for all requests. For instance, a path planning service needs to
compute paths where execution times vary depending on the required accuracy,
segment lengths, and number of collision checks. For example, Alcon et al. [17]
analyzed the variability in execution times of prediction and planning modules
of an autonomous driving stack, and found that the variations ranged from a
minimum of 25 milliseconds to a maximum of 350 milliseconds, and between
175 and 250 milliseconds respectively. To manage such variability, we design
DAL to take advantage of the on-demand availability of resources.

Variable Deadlines: For a service like trajectory planning, each request can
have its own deadline. For example, a request may have a shorter deadline if
the current velocity of the client robot is higher for the same distance when
compared to another request where the client robot is moving slowly. Gog et
al. [20] highlighted this in the context of an autonomous driving system while
Shih et al. [19] considered such state-dependent deadlines. DAL addresses
deadline variability by considering EDF as its scheduling policy as it sorts jobs
according to their deadlines.

Latency Violation Feedback: Many real-time systems can tolerate missing
deadlines [28, 29, 30] and services like the path planner are no different. If a
request misses its deadline, a local planner running on the robot can take over
and take corrective action, such as running a local instance of the planner [24],
or it can reduce its speed and send a new request with a relaxed deadline. For
this reason, DAL is designed to notify a requester if its request cannot be satis-
fied as estimated by the dispatcher, and subsequently, if it misses the deadline
while waiting in the queue. Additionally, DAL deletes the requests that have
missed their deadlines to service pending requests and possibly new requests
from the same client robot, similar to the analysis in [15].
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10.3 Related Work

Kargahi [31] provided an analytical method to show the performance of paral-
lel EDF queues for join-shortest-queue(JSQ) dispatching and a threshold-based
dispatching strategy but without any arrival time acceptance or rejection. Wang
et al. [23] considered the problem of dispatching and scheduling requests with
heterogeneous reserved and on-demand processors where individual requests
have maximum waiting time described by an exponential distribution. They
provided a mathematical model as well as the multi-queue request scheduling
framework that assigns incoming jobs to different queues depending on the
type of the processors, followed by the allocation of jobs in queues to spe-
cific processors. They also provide a mechanism to decide the number of on-
demand processors to be provisioned. Here the on-demand processors are uti-
lized when the queue is full or when the waiting time exceeds the maximum
waiting time.Similarly, Meng et al.[32] considered the problem of dispatching
and scheduling jobs with arbitrary deadlines and bounded worst-case execution
time on a set of reserved processors along with network transmission delays.
However, these algorithms may be unsuitable for applications with low latency
requirements due to their complexity.

Gao et al. [33] proposed strategies for scheduling firm semi-periodic real-
time jobs in single-processor environments. The jobs are released periodically
and share the same relative deadline, but their execution times can have arbi-
trary probability distributions. The researchers explored several optimization
criteria, including the Deadline Miss Ratio (DMR). To determine whether a job
should be interrupted before its deadline, they introduced three new control pa-
rameters at runtime. These parameters include an upper bound on completion
times, which is used to drop a job if it cannot be completed by a certain time
between periodic inter-arrival time and relative deadline; an upper bound on job
execution times, which is used to reject jobs with execution times exceeding a
certain value; and an upper bound on waiting time, which is used to drop a
job that has waited until a certain bound. They also considered four admission
policies, which involve admitting all jobs, admitting jobs until a fixed number
of jobs are in the queue, admitting jobs with a fixed probability, and admitting
jobs following a repeating pattern. The evaluation of their work revealed that
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the most critical control parameter for achieving the best DMR is the upper
bound on the waiting time of each job. In contrast to this work, our research
utilizes admission policies that estimate the response times based on the job ex-
ecution time distribution and the number of pending jobs on a particular server.
Admitted jobs are allowed to remain in the queue until they are completed or
until their deadline.

10.4 System Model

Task Model: We consider a microservice as a task, and each task releases
a job of that task when a request arrives. A task is specified by its execution
time distribution1 E, a poisson arrival process with rate λ, and a deadline dis-
tribution D. Each job i of the task takes an unknown amount of time Ei from
the distribution E and is expected to be completed before a relative deadline di
drawn from a uniform distribution. The relative deadline di is revealed when
the request arrives at the dispatcher (Fig.10.1). We assume that the time to de-
code the deadline information is zero2. Each request is assigned an absolute
deadline Da

i by the request decoder at the time it arrives according to eq.(10.1).

Da
i = tc + di, (10.1)

where tc is the time at which the request is decoded.

Processor Pool: We assume that an arbitrary but fixed number of processors
are reserved to execute requests of the microservice task. Each job of the task
can be executed on any reserved processor. Each of the reserved processors
has its own queue with pending jobs ordered according to the EDF scheduling
policy. In addition to reserved processors, we also assume that a microservice
is deployed on a set of on-demand processors. An on-demand processor can be
released if it has no pending jobs of the considered task in its queue. Further-
more, we assume that there is no setup cost associated with on-demand proces-

1Same as service time distribution in queuing theory.
2In practice, a request arriving at the NIC is processed in FIFO order and may take a non-

negligible amount of time before its relative deadline is known.
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sors, i.e., when the dispatcher sends a job to an idle on-demand processor, it
immediately starts executing the dispatched job.

Dispatch-on-Arrival and Scheduling Policy: Once a request is processed, it
is immediately dispatched to the queue of a reserved processor. The processor
selection strategy is described in Section 10.5. The jobs in a processor queue
are ordered by their absolute deadlines which are calculated using Eq. (10.1). If
a new job has a shorter deadline than the currently executing job, the scheduler
preempts that job, adds it to its own queue, and starts executing the new job.

10.5 DAL

Scheduling jobs with stochastic parameters with static resource reservations
may not provide useful performance unless the reservations are made based on
worst-case behavior. For instance, when we evaluated join the shortest queue
dispatch policy for exponential arrival and service times with only reserved
processors and no on-demand processors, 20 percent of requests missed their
deadlines even when another 20 percent of requests were discarded by the dis-
patcher (see Table 10.5 and Table 10.1). We designed DAL to achieve the
goal of successfully completing jobs before their deadlines for microservices
with stochastic arrival times, execution times, and deadlines by considering the
availability of on-demand resources consistent with the computing model of
fog and cloud architectures. DAL’s architecture is shown in Fig. 10.1. In the
following sections, we describe the various components and policies that DAL
employs to achieve this goal.

10.5.1 Processor Pool

DAL’s design relies on the concept of a processor pool, which is based on the
idea of on-demand availability of processors as supported by cloud and fog
computing paradigms but can also work at the edge layer where the number
of available processors may be limited. DAL assumes that it has access to
fixed number of homogeneous processors at any given time in its processor
pool including reserved and on-demand processors. Among these processors,
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reserved processors are available for DAL’s exclusive use, while on-demand
processors may or may not be always available. An on-demand processor is
considered available if it is idle when a request is received by DAL’s dispatcher,
or if it has pending jobs belonging to DAL’s jobs and is unavailable when it is
executing jobs of a different microservice of lower priority.

Processor Allocation: When a request arrives at DAL’s dispatcher, DAL
first attempts to send the request to one of the reserved processors. If the dis-
patcher decides that the request cannot meet its deadline on one of the reserved
processors, it searches for an available on-demand processor within the group
of on-demand processors. If it finds an available processor, the job is immedi-
ately sent to that processor.

Processor Deallocation: Once a request executing on an on-demand proces-
sor completes, DAL is expected to release the processor for use by other ser-
vices. However, instead of releasing the on-demand processor after the request
completes, DAL holds the on-demand processor for a configurable duration by
speculating on the arrival of another request within the configured duration. If
no job is assigned to the processor within this period, it is released back to the
processor pool.

10.5.2 Dispatcher

Several dispatch-on-arrival load balancing strategies aim to minimize expected
response times for different types of job distributions and assume a fixed num-
ber of processors. Common dispatching strategies include join random queue,
join shortest queue, and the power-of-d strategy, where d processors are ran-
domly selected and the job is distributed to the processor with the fewest
jobs [34, 35]. Since it is known that the performance of the power-of-d pol-
icy [34] improves the average response times under different scheduling poli-
cies such as first-in-first-out and shortest remaining processing time, DAL com-
bines this policy with a configurable schedulability test to dispatch the jobs.
DAL’s dispatcher first looks for the reserved processor with the least number
of pending jobs and checks whether the incoming job is schedulable. If the job
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Fig. 10.1: System architecture of DAL.

is deemed to be schedulable, it is immediately sent to that processor. If the job
fails the schedulability test, the dispatcher searches for an available processor
from the set of on-demand processors, and if it finds one, it assigns the request
to that processor. If no such processor is found, it signals the latency feedback
component to send a response to the request sender about a potential deadline
miss and adds the request to the queue of the processor with the least number
of pending jobs among the reserved processors.

*: Online Schedulability Test A schedulability test decides whether a job can
be successfully scheduled on a processor given a scheduling policy and infor-
mation about the pending jobs on the processor. As jobs in our system are
bound by a deadline, we must determine whether the job can meet its deadline
on the selected processor. Utilization-based schedulability tests that rely on
worst-case execution time values can be used if the service cannot tolerate any
deadline miss. Such a test requires us to keep track of all deadlines of pending
requests in the queue. However, if over-provisioning is a problem and dead-
line misses are tolerated, a low-overhead but less accurate test may be useful.
DAL dispatches jobs to a processor if the jobs satisfy such a schedulability
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test. DAL’s schedulability test estimates the response time of an incoming job.
If the estimated response time is shorter than its deadline, the incoming job is
assumed to pass the schedulability test. Estimating the response time requires
information about job execution times and the number of pending jobs in the
queue. when using EDF policy, the accuracy of the response time estimation
depends on how many pending jobs have a lower absolute deadline on the pro-
cessor and the probability that future jobs will be assigned to that particular
processor and that those future jobs will have a lower absolute deadline than
the current job. While information about the deadlines of pending requests can
be obtained, the information about the number of future jobs that jump ahead
of the incoming job is difficult to predict. Moreover, even if such knowledge
is available, as the exact execution time is assumed to be unknown, but only
its distribution is known, the estimation depends on which value is chosen as
representative of this distribution. To be useful under different distributions,
DAL’s configurable schedulability test introduces a parameter α that decides
the proportion of pending jobs that it considers to have deadlines lower than
that of the incoming job. Baldwin et al. show in [36] how such a value can
be determined. The influence of α becomes relevant as the size of the pending
jobs in the queue increases. To account for the dependence on the distribution
of execution time, another parameter β decides which execution time value is
used to estimate the response time. This can be derived by applying the central
limit theorem [35]. The estimated response time R of the incoming job is given
by

R = β ∗ k ∗ Em, (10.2)

where k is the number of pending requests with a shorter deadline than the
incoming job, and Em is the expected value of the execution time distribution.
This is similar to Theorem 4 in [37]. k can be determined either by tracking the
deadlines of the pending jobs or from

k = α ∗N, (10.3)

where N is the number of pending jobs in the queue. If R is less than its
relative deadline di, the dispatcher assigns an absolute deadline value to the job
according to Eq. (10.1) and adds it to the processor’s queue.
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10.5.3 Scheduler

DAL instantiates the preemptive EDF scheduling policy on all processors in its
processor pool as DAL is designed to manage requests with deadlines. When-
ever a reserved processor receives a request from the dispatcher, it starts exe-
cuting the job if it has no pending requests. If it is currently executing a job,
it checks whether the new job has a lower absolute deadline than the job be-
ing executed. If it does, the executing job is preempted and the new job is
scheduled. otherwise, it sorts the pending requests including the newly arrived
job according to their absolute deadlines. Additionally, DAL’s per-processor
scheduler keeps track of the waiting times of jobs queued in its queue. When-
ever a new job arrives or a job is completed, it checks if any of the pending jobs
have waiting times that exceed their deadlines. If such jobs exist, it notifies
DAL’s latency feedback component and deletes the jobs from its queue.

10.5.4 Latency Feedback

As DAL is designed for request-response communication, the requester ex-
pects a response from the server. Instead of holding requests that could not
be dispatched until a processor is available, DAL notifies the requestor if the
request could not be dispatched. It also notifies the requestor when jobs as-
signed to processors do not complete their execution within the deadline. In
the first case, the advantage of early latency violation notification is that it al-
lows the requester to take remedial actions such as locally computing the result
on possibly slower computers, while still managing to get the result before the
deadline, which would not be possible if it received the notification after the
deadline. In addition, such early notification may also allow the requester to
modify its requested deadline and send a new request. For example, if the re-
questor is a system such as a mobile robot, it can reduce its velocity and send
an updated request with a new relaxed deadline. The significance of such a
feedback mechanism becomes even more apparent when DAL cannot access
any of the on-demand processors.
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10.6 Evaluation

We conducted simulations in various scenarios to evaluate the performance of
DAL. The assessment criteria were missed deadlines, dropped jobs, slowdown
ratio, and the number of processors utilized during the simulation period. A
job is deemed to have missed its deadline if the sum of its waiting time and
executed time exceeds the deadline, including jobs deleted before receiving any
processing time. We consider a job to be dropped if the dispatcher anticipates
that it cannot meet its deadline on any processor in its processor pool upon
arrival. We define slowdown as the ratio of a job’s actual execution time to its
response time, considering only jobs that meet their deadlines. The percentage
of missed deadlines and dropped jobs was evaluated as the ratio of the number
of jobs that missed their deadlines or were dropped over the total number of
jobs released during the simulation time. For the evaluation, we assume that
all on-demand processors are always available. This assumption enables us
to compare the best possible result achievable against the scenario where only
reserved processors are utilized.

10.6.1 Simulation Methodology

To generate job execution times, we utilized the exponential distribution class
template of the C++ library. The generated float values were rounded off to
the nearest largest integer using the CEIL function of the C++ standard library.
The release times of the jobs were generated following a Poisson process. For
most experiments, we adjusted the arrival rate to 90 percent of the service rate,
i.e., the inverse of the expected value of the execution time distribution, for
different numbers of reserved processors. We set the mean of the execution time
distribution to 40 and set α to 1, resulting in all pending requests being treated
as those with shorter deadlines. We also let β equal 1, setting the estimated
execution time of each job equal to the mean of its execution time distribution.
We assigned deadlines to each job by multiplying its actual execution time
with a value from a uniform distribution in the range [2, 10]. We note that
this approach may not be practical since the actual execution time is typically
unknown. However, it avoids jobs with deadlines shorter than their execution
times. While we varied the number of reserved processors between one and
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Table 10.1: Performance of different on-arrival dispatch policies without on-
demand processors.

Dispatch Policy Missed Deadlines % Dropped Jobs%
JSQ, load =90 percent 19.6209 19.6047
FF, load =90 percent 63.2401 0.0133305
JSQ, load = 50 percent 3.52308 3.50832
FF , load = 50 percent 49.13 0

eight, we present the results only for the case where the number of reserved
processors was set to four, unless otherwise specified, as the results had similar
trends for different numbers of processors. The simulation proceeded step-
wise with a tick value of 1 for a duration of 1 million ticks and the execution
and arrival times were set as multiples of the tick value. We assumed that
the overhead of DAL’s implementation was zero, although this assumption
was ideal, allowing us to evaluate the approaches under consideration without
considering implementation-specific details.

10.6.2 Performance with Reserved Processors

We evaluated the performance of DAL’s dispatching and scheduling policy by
only considering the reserved processors with exponentially distributed execu-
tion times and four reserved processors. Using the dispatcher’s shortest queue
approach, we found that approximately 20 percent of the total released jobs
missed their deadline after being admitted, while an additional 20 percent of
the jobs were dropped on-arrival by the admission control policy when the sys-
tem was 90 percent loaded.

As an alternative dispatching solution, we considered a First-Fit (FF) dis-
patching approach that uses an arbitrary but static processor ordering and as-
signs jobs to the first processor on which an incoming job is deemed schedu-
lable. With the FF policy, we observed that only 0.01 percent of the jobs were
deemed unschedulable by the admission control policy, but about 63 percent of
the jobs missed their deadlines, as shown in Table 10.1. Although the JSQ dis-
patch policy is better than the FF approach, just over 60 percent of the released
jobs managed to complete before their deadlines.
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Table 10.2: Performance of DAL under low load conditions.

Dispatch Policy Missed Deadlines% Dropped Jobs%
JSQ with Release 0.181869 0
JSQ without Release 0.00184169 0

For lower loads, i.e., 50 percent load, about 92 percent of the requests man-
aged to meet their deadlines with JSQ policy, while the FF policy achieved
a success rate of less than 50 percent. These observations indicate that using
only reserved processors may not be sufficient for deploying microservices with
real-time requirements at higher load values.

10.6.3 Performance with On-Demand Processors

We evaluated the performance of DAL’s dispatching and scheduling policy
with on-demand processors for exponentially distributed execution times with
four reserved processors.

Low Load Scenario: With the system load set to 50 percent, we observe
that up to 99.92 percent of the jobs are able to meet their deadlines when idle
processors are released if they do not have any pending jobs. This is further
improved to 99.99 percent when on-demand processors are not released. Ta-
ble 10.2 shows the percentage of deadlines missed when on-demand processors
are released if they do not have any pending requests and when on-demand
processors are not released back to the processor pool. However, this improve-
ment comes at a cost of increased resource usage as more than four on-demand
processors are retained for 90 percent of the simulation duration, as seen in
Fig. 10.4. If idle processors are released, on-demand processors are used for
only 20 percent of the simulation time.

Based on these observations, we can conclude that releasing on-demand
processors as soon as they become idle can provide reasonable performance in
terms of slowdown as well as in successfully completing up to 99.92 percent of
the jobs before deadlines, with lower resource usage.
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Fig. 10.2: Comparison of processor usage and slowdown ratio when using ap-
proximated execution time values versus exact execution time values in a high
load scenario.
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Fig. 10.3: Comparison of processor usage and slowdown ratio when on-demand
processors are not released and when released as soon as they are idle in a high
load scenario.
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Fig. 10.4: Comparison of processor usage and slowdown ratio when on-demand
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Fig. 10.5: Comparison of processor usage and slowdown ratio when on-demand
processors are released with various periods in a high load scenario.
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Table 10.3: Performance of DAL with and without release of on-demand pro-
cessors under high load conditions.

Dispatch Policy Missed Deadlines% Dropped Jobs%
JSQ without Release 0.0028588 0
JSQ with Release Period = 1 0.00954372 0
JSQ with Release Period = 10 0.00475217 0
JSQ with Release Period = 100 0.00190391 0

Table 10.4: Performance of DAL with and without reserved processor provi-
sioning.

Available Processors Missed Deadlines% Dropped Jobs%
No reserved processors 0.0243591 0
Four reserved processors 0.00954372 0

High Load Scenario: Under high loads, up to 10 on-demand processors were
retained for 80 percent of the time in addition to the 4 reserved processors
without release. When processors are released, only 3 additional processors
are used for about 80 percent of the time. The slowdown ratio of the successful
requests is 1 for more than 50 percent of the requests even when processors are
released and can be seen in Fig. 10.3. Additionally, the percentage of deadlines
missed is highly reduced (see Table 10.3).

No Reserved Processors: We also considered the scenario where an appli-
cation is deployed only on-demand processors and no reserved processors are
provisioned when the system load is set to 90 percent. The percentage of missed
deadlines remains low while relatively higher compared to when 4 processors
are reserved (Table 10.4).

Impact of Delayed Release: We evaluated DAL’s performance by period-
ically releasing idle on-demand processors. We observed that releasing on-
demand processors as soon as they become idle provides similar performance
to not releasing them at all. Even with a delay in releasing them, the improve-
ment is insignificant. A success rate of almost 99.99 percent is achieved in all
cases, as shown in Table 10.3. We note that there is no statistically significant
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Table 10.5: Performance of DAL when using using exact and mean execution
time values to estimate response times.

Estimation Type Missed Deadlines% Dropped Jobs%
Distribution Mean with no on-demand Processors 19.6209 19.6047
Exact Value with no on-demand Processors 16.3863 16.3805
Distribution Mean with on-demand Processors 0.0058254 0
Exact Value with on-demand Processors 0.00232582 0

difference between JSQ with and without release, where the release period is
set to 100. In terms of resource usage, Fig. 10.5 shows the different number of
processors held by DAL during the simulation time. We observe that up to 13
processors are utilized for a relatively shorter duration of time even when pro-
cessors are released as soon as they become idle. However, the average number
of processors is significantly lower than the no release scenario while achieving
almost identical performance in terms of successful completions. With respect
to slowdown, we observe that the performance when processors are released pe-
riodically remains quite similar, with a slower release period having a slightly
better value.

Impact of Execution Time Approximation: We evaluated the performance
difference between using approximated execution times and exact execution
times for scenarios where only reserved processors are utilized and for scenar-
ios where on-demand processors are released as soon as they become idle. We
found that in the former scenario, using approximated execution times results
in approximately 6 percent higher deadline misses compared to using exact
execution times, as seen in the first two rows of Table 10.5. However, this dif-
ference is almost insignificant when on-demand processors are utilized, with
almost 99.99 percent of the jobs successfully meeting their deadlines.

Regarding processor usage, we observed that the use of approximation re-
sults in a slight increase in the average number of processors being used com-
pared to the usage of exact execution times, as shown in Fig. 10.2. We also
noticed an almost indiscernible difference in the slowdown ratio, with more
than 85 percent of the jobs having a slowdown ratio of one for both cases. Fur-
thermore, we found that using exact execution times of pending jobs to estimate
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response times only marginally improves performance.

10.7 Conclusion

We considered the problem of dispatching and scheduling jobs that have vari-
able execution times, arrival times as well as deadlines in an edge computing
architecture. By assuming the availability of on-demand processors, we showed
that DAL’s dispatch-on-arrival policy along with per processor EDF schedul-
ing policy, can achieve significantly better performance in terms of jobs that
complete by their deadlines when jobs that miss deadlines are deleted from the
queue. In terms of slowdown ratio, a significant percentage of the requests
have a minimum achievable slowdown of 1. When on-demand processors are
released periodically, both low and relatively high periods achieve similar per-
formance in terms of missed deadlines although the slower release periods hold
onto on-demand processors for a longer duration providing very little benefit.
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Abstract

The edge computing paradigm brings the capabilities of the cloud such as
on-demand resource availability to the edge for applications with low-latency
and real-time requirements. While cloud-native load balancing and scheduling
algorithms strive to improve performance metrics like mean response times,
real-time systems, that govern physical systems, must satisfy deadline require-
ments. This paper explores the potential of an edge computing architecture
that utilizes the on-demand availability of computational resources to satisfy
firm real-time requirements for applications with stochastic execution and inter-
arrival times. As it might be difficult to know precise execution times of indi-
vidual jobs prior to completion, we consider an admission policy that relies
on single-bit execution time predictions for dispatching. We evaluate its per-
formance in terms of the number of jobs that complete by their deadlines via
simulations. The results indicate that the prediction-based admission policy can
achieve reasonable performance for the considered settings.
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11.1 Introduction

Edge computing enables end-user applications to offload parts of their com-
putations to achieve better response times and reduce energy consumption on
local devices [1, 2, 3]. Some applications require the offloaded parts to be com-
pleted before a certain time for the results to be useful [4]. If the result has not
been generated within this time, the computations (or jobs) can be abandoned.
We refer to these types of applications as having firm real-time requirements
[5]. To satisfy firm real-time requirements, it may be necessary to ensure that
sufficient servers have been provisioned such that some performance metric,
such as the average number of missed deadlines or the number of completed
jobs, is below or above some threshold, respectively. In embedded settings,
such resource provisioning is based on worst-case conditions such as worst-
case execution times and minimum inter-arrival times [6]. While this approach
can satisfy the timing requirements, it comes at the cost of inefficient resource
usage. Provisioning based on average-case conditions, such as mean execution
times and inter-arrival times, can achieve better resource usage, but we cannot
guarantee performance deterministically [7, 8]. In this paper we investigate
a potential approach to manage the conflicting requirements of efficiency and
performance by considering an edge computing model where we provision a
set of servers based on average-case conditions, while on-demand servers are
provisioned to address transient and occasional worst-case conditions.

The scheduling strategies employed in such a computing model play a crit-
ical role in determining achievable performance. When aiming to minimize
mean response times in single-server settings, scheduling strategies that are
aware of the execution times of offloaded jobs, such as the shortest remain-
ing processing time (SRPT), outperform strategies like first-in-first-out (FIFO)
scheduling [9]. For multi-server settings where jobs are dispatched to specific
servers upon arrival, the combination of SRPT and dispatching policies like
join-shortest-queue (JSQ) are known to offer better performance [10]. How-
ever, in certain scenarios, execution times can only be known post-completion.
To address this, several studies have proposed using predicted execution times
in the absence of prior knowledge of true execution times [11, 12, 13, 14, 15].
Particularly in the context of queuing systems and aiming to improve the per-
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formance metric of mean response times, Mitzenmacher [15] investigated the
effectiveness of single-bit predictors that can determine whether a job’s execu-
tion time is above or below a certain threshold. The study demonstrated that
such predictors can offer benefits similar to those obtained with precise knowl-
edge of execution times.

In addition to scheduling, load balancing or dispatching strategies can also
affect performance. In terms of mean response times, load balancing techniques
such as JSQ outperform strategies such as Round-Robin (RR) [16]. This benefit
comes at the cost of increased overheads as JSQ policy requires the knowledge
of pending jobs in each of the servers to identify the server with the least num-
ber of pending requests. For applications with response times in a few tens of
milliseconds range, these overheads may be unacceptable and a low-complexity
dispatching policy such as RR may be preferable. For applications with firm
real-time requirements, in addition to removing jobs that can potentially miss
their deadlines when already in the queue [4], it may be beneficial to admit only
those jobs that can be estimated to finish by their deadlines while rejecting jobs
that are most likely to miss their deadlines given the current pending jobs at the
servers. This approach allows future jobs with possibly lower execution times
and encountering reduced pending workload to be completed within deadlines,
thereby improving the throughput.

Within this context, we consider applications with offloadable jobs whose
execution times are given by a probability distribution and should be completed
by a fixed relative deadline. Given the difficulty in knowing precise execution
times of individual jobs, we assume the presence of a single-bit predictor1 that
can indicate if a job is a short job or a long a job and investigate the perfor-
mance in terms of throughput, i.e, number of jobs that complete by their dead-
lines. The jobs are admitted or rejected on arrival based on an admission policy
that estimates response time of the incoming job using the information from the
single-bit predictor and dispatched following the JSQ or RR strategy with all
admitted jobs scheduled in FIFO order. Furthermore, due to strong impossibil-
ity results in terms of competitive analysis, jobs must contain some, (possibly
large) amount of slack [17, 18]. We include this in our work by setting the rel-

1Although single-bit prediction is coarse, it may be easier to realize them with better accuracy
compared to fine-grained predictions.
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ative deadline to be ten times the mean value of the execution time distribution.
We use the value ten as we target applications with similar characteristics where
the ratio between their worst-case execution times and the relative deadlines is
large.

Concretely, we investigate the performance via simulations by considering
exponential execution time distribution and Poisson arrivals. As we consider
only the edge layer, we limit our simulations to non-asymptotic conditions.
Additionally, we compare the performance of the prediction-based policy to a
clairvoyant policy that has complete knowledge of the execution time of each
pending as well as newly arriving job, as well as a policy that estimates the
execution time of each job as the mean of its distribution. Our findings suggest
that the prediction-based policy performs better than the mean-approximation
policy, while being only slightly inferior to the clairvoyant policy when on-
demand servers are available.
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11.2 Background & Related Work

11.2.1 Edge Computing and On-Demand Servers

Edge computing architectures extend the concepts and benefits of cloud com-
puting such as the provisioning of additional computing capabilities depend-
ing on the current workload for applications with latency and predictability
requirements. Several auto-scaling strategies have been proposed that include
vertical scaling where the amount of CPU time, (for example, in containerized
deployments where a server is sharing a single CPU with other servers) allo-
cated for a given application is increased or decreased, and horizontal scaling
where the number of allocated servers is increased or decreased depending on
average workload monitored over some time window [19]. In contrast, our
edge-computing model is designed to address instantaneous load changes and
assumes that all necessary setup for executing a job on on-demand servers is
done during an initialization stage. We note that auto-scaling for sustained
changes in workload can be easily incorporated into our model by changing the
number of reserved servers. Close to the work presented in this paper, Wang et
al. [20] provided a load balancer and core allocation strategy to minimize mean
response times for non-preemptive FIFO by considering heterogeneous servers
with reserved and on-demand servers within a cluster. Here the on-demand
servers are utilized when the queue is full or when the waiting time exceeds
the maximum waiting time. In our work, jobs are dispatched to on-demand
servers based on the estimated response times. A distinguishing and reason-
able assumption for edge computing is that the number of available computing
nodes is much less compared to those of large data centers that make up the
cloud infrastructure. As a consequence of this assumption, we restrict our anal-
ysis to small-sized clusters. In addition to this, we assume that the number of
on-demand servers is also limited and known in advance. Fig. 11.1 depicts an
example architecture with two reserved and two on-demand servers. Addition-
ally, we assume that not all of the on-demand servers are available at all times
for a specific application, as these on-demand servers may be shared among
multiple applications. The availability is explicitly considered, and we model
it as a Bernoulli distribution.
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11.2.2 Dispatching Policies

In multi-server environments, dispatching policies determine the server on
which an incoming job will be executed. In the online dispatching problem that
we are considering, the dispatching decision is made when the job arrives at the
dispatching server. Dispatching policies, such as joining the shortest queue and
its variants, such as the shortest queue among k randomly chosen servers, re-
quire knowledge of the exact number of pending jobs in each of the considered
servers [9]. Gathering this information may take a significant amount of time,
depending on the number of servers and the network traffic [16]. As an alter-
native, policies such as round-robin are agnostic to pending jobs on the servers
and dispatch incoming jobs to the servers in a repeating pattern. The advantage
of policies such as round-robin is that they do not have the overhead associated
with policies that require information about the pending workload. In most ex-
isting work, the objective of dispatching policies has been to minimize mean
response times. Several additional policies, such as join-the-idle-queue and
join-below-threshold, where servers notify the dispatchers when they are idle
or have pending jobs less than a predefined value, have been proposed to bal-
ance the trade-off between overheads and response times [6, 16]. In this paper,
we aim to evaluate the performance of the prediction-based admission policy
in terms of achievable throughput and consider JSQ and RR as representative
dispatching policies. We augment them with admission policies with the intu-
ition that rejecting jobs that are unlikely to meet their deadlines can reduce the
amount of time servers spend doing unuseful work.

11.2.3 Execution Time Predictions

Several works have investigated the possibility of improving the performance
of algorithms with machine-learned advice or predictions including classical
algorithms targeting problems such as online scheduling and load-balancing
[11]. The evaluation of these prediction augmented algorithms has been done
in terms of competitive analysis under accurate predictions and for possibly in-
correct predictions [15, 21, 22, 6]. For the online scheduling problem, some of
the authors have considered predicting parameters such as job execution times
[6, 13] and permutation ordering of jobs [22]. Mitzenmacher [15] studied the
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impact of single-bit predictors that can indicate if a job’s execution time is
above or below some threshold in the context of large-scale queuing systems
for the performance metric of mean response times and showed that such pre-
dictors can provide benefits similar to those achievable with the knowledge of
exact execution times for Poisson arrivals and certain execution time distribu-
tions. The analysis included the impact of incorrect predictions and highlighted
the improvements achieved even with such incorrect predictions against the
policy of choosing a queue with the least number of pending jobs. Similarly,
they extended their analysis in [21] for the case where individual execution
times were also predicted and showed via simulations that the benefits of the
supermarket model in large distributed systems were retained if the predictions
were reasonably precise. Based on the evaluations, they proposed the shortest
queue selection and predicted shorted processing job first policy for use in ac-
tual systems, as it performed well in a diverse range of scenarios. In a similar
context, Zhao et al.[23] extended the randomized multi-level feedback algo-
rithm (RMLF) that makes no assumption on job execution times with predicted
job execution times to minimize mean response times. Their experimental eval-
uation shows that the prediction-based algorithm achieves performance close to
that of SRPT when the prediction error is small. If the error is large, their al-
gorithm can achieve better performance than RMLF. An important requirement
for such prediction-based enhancements is that the predictions should be learn-
able in practice. Keeping this in mind, we limit our attention in this paper to
single-bit predictors that can identify jobs that can take a long time to execute
and those that take a shorter duration. We use this information in our admission
policy that estimates the response time of a new job and does a schedulability
test using this response time. The work in our paper is inspired by the find-
ings of these studies and is extended in the context of deadline constraints in
terms of performance criteria while being restricted to single-bit predictions,
FIFO order, and non-asymptotic conditions with probabilistic availability of
on-demand servers.

*: Scheduling Firm Real-time Tasks Gao et al. [4] proposed scheduling
strategies for firm semi-periodic real-time tasks in single-server settings, where
jobs are released periodically and have the same relative deadline, but execution
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times have an arbitrary probability distribution. They investigated several opti-
mization criteria, including the Deadline Miss Ratio (DMR). They introduced
three new control parameters to decide at run-time whether to interrupt a job
before its deadline. The parameters include (i) an upper bound on completion
times, based on which a job is dropped if it is not completed by this time. This
bound is a value between periodic inter-arrival time and relative deadline, (ii)
an upper bound on job execution times, based on which jobs with execution
times exceeding this value are rejected, and (iii) an upper bound on waiting
time based on which a job that has waited until this bound will be dropped. In
addition to this, they considered four admission policies which include (i) ad-
mitting all jobs, (ii) admitting jobs until a fixed number of jobs are in the queue,
(iii) admitting jobs with some fixed probability and (iv) admitting jobs follow-
ing a repeating pattern. Their evaluation shows that the key control parameter
is the upper bound on the waiting time of each job achieving the best DMR.
In comparison to this work, our work uses admission policies that estimate the
response times based on the job execution time distribution and the number of
pending jobs on a specific server while letting admitted jobs stay in the queue
until their completion or until their deadline.

11.3 System Model

We now describe our system model and our assumptions in detail.

Specifying System Load: In queuing systems, it is essential that job arrival
rates be less than departure rates to avoid queue build-up over time. For ap-
plications with execution time variability, a system designer has the option to
consider inter-arrival times proportional to worst-case execution time or some
value between the worst-case value and the mean of the execution time dis-
tribution. If the arrival times are proportional to worst-case values, the total
number of jobs released over a fixed duration of time can be much less than
when the arrival times are close to the mean values. Since we consider appli-
cations with firm real-time requirements, we define system load such that the
arrival times are proportional to mean execution times rather than worst-case
values. Our reasoning is based on the intuitive idea that even though executing
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a large number of jobs can result in more of the jobs missing their deadlines,
the number of jobs that complete by their deadlines can be larger than the num-
ber of jobs released when the arrival times are set to values proportional to
worst-case execution times. This higher number of completed jobs can provide
better functional performance than the scenario where no jobs miss their dead-
lines but only fewer jobs are released. Therefore, we model system load such
that the average arrival rate is proportional to the mean of the execution time
distribution and scales accordingly to the different number of reserved servers.
Because we define system load based on average case parameters, there may be
a situation where incoming jobs over a short duration of time take longer time
to execute resulting in temporary overload. To manage this temporary overload,
we consider the availability of on-demand computing resources within the edge
layer.

Job Model: We assume that jobs have an execution time distribution with
a known mean value µ. The exact execution time of a job remains unknown
until its completion. All arriving jobs have a fixed relative deadline D. The
jobs have a Poisson arrival process with a constant arrival rate λ. Whenever a
job arrives, a dispatcher should decide if the job will be admitted or rejected.
If admitted, each job remains in the server queue until completion or until its
deadline. We assume that the fixed relative deadline is such that there is some
amount of slack l with respect to the mean value µ. In this paper, we set l equal
to ten times the mean µ. We set the system load proportional to the number of
reserved servers. A job is said to be schedulable if its estimated response time
is less than or equal to its relative deadline and unschedulable otherwise.

Server Model: We assume a cluster of homogeneous servers divided into a
set of reserved servers R and a set of on-demand servers S. Each reserved
server has its own queue and executes the jobs of a single application. Each
admitted job is added to the queue of one of the servers on its arrival. Once as-
signed, the job stays in this queue until its completion. All admitted jobs are se-
quenced in FIFO order in each server queue and are executed non-preemptively.
For the on-demand servers, each server can execute jobs for multiple applica-
tions and has a separate queue for each application. The server is considered
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available for a specific application if it meets one of the following criteria: (i) it
is idle, (ii) it is executing jobs of the same application and has no pending jobs
from higher-priority applications, or (iii) it is executing jobs of a lower-priority
application. If the server does not meet any of these criteria, it is considered
unavailable for the application. In our simulations, we model the availability of
the on-demand servers using a Bernoulli distribution. Although this availabil-
ity model is simple, it enables a straight-forward quantitative comparison of the
different admission and dispatching policy combinations.

11.4 Admission Policies and Dispatching

In our on-arrival dispatching model, an admission policy determines whether
a job should be accepted or rejected. In this work, we consider three admis-
sion policies that estimate the response time of an incoming job by taking into
account the pending jobs on a given server (see Section 11.4.1). Admission
or rejection can be done in two steps. In the first step, the dispatcher looks
for a server within the set of reserved servers. If it fails to admit a job onto a
reserved server, it searches for an available on-demand server and checks for
schedulability. A job is admitted if the policy considers it to be schedulable on
a reserved server, and then it is sent to that server by the dispatcher. If a job is
unschedulable on a reserved server, the dispatcher tries to find an available on-
demand server and tests the schedulability of the job on this on-demand server.
It dispatches the job to it if it is schedulable. Otherwise, the job is rejected.
Algorithm 1 describes our dispatching process, which takes as input the identi-
fiers of the reserved servers and on-demand servers, the dispatching policy, the
relative deadline, and the specific admission policy.

If the configured dispatching policy is JSQ, the dispatcher selects the server
with the shortest queue among the reserved servers. If the dispatching policy is
RR it cyclically selects a server. When a new job arrives and a reserved server
has been identified, the dispatcher uses one of the response time estimators and
checks if the estimated response time is less than or equal to the relative dead-
line. If so, the job is sent to the identified server (lines 9-11). If the response
time estimate is not within the deadline, the dispatcher identifies the subset
of available on-demand servers and selects a server according to the configured
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Algorithm 1 Dispatcher
1: Input: Incoming job J , set of reserved servers R and set of on demand

servers S, dispatching policy P , deadline D, response time estimation pol-
icy A

2: Output: The id of server if job schedulable, NULL otherwise.
3: function GETBESTSERVER(J,R, S, P,D)
4: if P == JSQ then
5: id← get shortest queue server(R)
6: else if P == RR then
7: id← get next rr server(R)
8: end if
9: fi ← get estimated response time(id, J,A)

10: if fi ≤ D then
11: return id ▷ job deemed to be schedulable
12: else if fi > D then
13: Sx ← get available on demand servers(S)
14: if P == JSQ then
15: id← get shortest queue server(Sx)
16: else if P == RR then
17: id← get next rr server(Sx)
18: end if
19: fi ← get estimated response time(id, J,A)
20: if fi ≤ D then
21: return id ▷ job deemed to be schedulable
22: else
23: return NULL ▷ job deemed to be unschedulable
24: end if
25: end if
26: end function
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policy. The dispatcher then uses one of the response time estimators and checks
if the estimated response is less than or equal to the relative deadline. If so, the
job is sent to the identified on-demand server (lines 19-21). If the estimated
response time is not within the deadline, the job is rejected.

11.4.1 Response Time Estimation

We now describe the response time estimation policies used to admit or reject
the jobs. We consider three policies based on how the job execution times
are considered, (i) mean-approximation policy, (ii) clairvoyant policy, and (iii)
single-bit prediction policy.

Mean-approximation policy: In this policy, we use mean µ of the execution
time distribution to estimate the response time fi on the selected server i. If the
number of pending jobs on this server is given by Ni, the estimated response
time is given by

fi = (Ni + 1) · µ. (11.1)

We consider the mean-approximation policy because of its low computational
overhead.

Clairvoyant policy: In this policy, we assume the knowledge of exact execu-
tion times. The response time fi on any server i is given by

fi = xj +

Ni∑
k=0

xk, (11.2)

where xk is the exact execution time of each job k assigned to server i and xj
is the execution time of the newly arrived job.

Single-bit prediction policy : In this policy, we assume that there exists a
predictor which can indicate if a job is a short job or a long job. A job is said to
be a short job if its true execution time is less than µ and long otherwise. The
response time fi of a job on any server i where N s

i is the number of pending



140 Paper D

0.9 1 1.1 1.2
0

0.2

0.4

0.6

0.8

1

1.2

0.
99

0
.9

0
.8
3

0
.7
5

0
.9
9

0.
96

0.
92

0.
88

0.
99

0.
92

0
.8
4

0
.7
9

Load

T
hr

ou
gh

pu
t

Mean Actual Prediction

(a) JSQ

0.9 1 1.1 1.2
0

0.2

0.4

0.6

0.8

1

1.2

0.
98

0.
91

0
.8
5

0
.8
2

1 1 1 10
.9
9

0.
97

0.
96

0
.9
5

Load

T
hr

ou
gh

pu
t

Mean Actual Prediction

(b) RR

0.9 1 1.1 1.2
0

0.2

0.4

0.6

0.8

1

1.2

0.
95

0.
9

0
.8
2

0
.7
5

0
.9
7

0
.9
5

0
.9
2

0.
90
.9
6

0.
91

0.
86

0
.8

Load

T
hr

ou
gh

pu
t

Mean Actual Prediction

(c) JSQ with on-demand servers
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Fig. 11.2: Throughput of various admission tests and load for exponentially
distributed service times for (a) JSQ, (b) RR, (c) JSQ with on-demand servers,
and (d) RR with on-demand servers.

jobs classified as short and N l
i is the number of pending jobs classified as long

is given by

fi = (N s
i · µs) + (N l

i · µl) + (τ · µs + (1− τ) · µl), (11.3)

where µs and µl are specified by the designer and τ is the output of predictor
indicating if the new job is a short job or a long job. We assume that a server can
identify both N s

i and N l
i and make this information available to the dispatcher.

For all of the estimation methods, the admission test returns true if the
following condition is satisfied:

fi ≤ D. (11.4)

11.5 Evaluation

We use simulation to evaluate the performance of the prediction-based policy in
terms of throughput. We consider throughput as the ratio of jobs that completed
before or at their deadlines and the total number of jobs that arrived during the
simulation interval. We set the simulation interval to ten thousand time units
and take the average of the measured throughput for ten simulation runs. We
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Fig. 11.3: Throughput under various load conditions when using on-demand
servers in addition to reserved servers for admission policies with (a) mean (b)
exact execution time (c) Single-bit job type prediction

generated the inter-arrival times of the jobs and the execution time distributions
using the exponential distribution class of the C++ library. We set the mean of
execution time distribution µ equal to ten and the arrival rate as proportional to
the inverse of µ. Each generated job is assigned a deadline equal to ten times
the mean of the distribution. We set µs equal to five and µl equal to fifteen. The
number of reserved servers was varied between two, four, and eight but we only
present the results for the scenario where the number of servers was set to eight.
Similarly, we set the number of on-demand servers equal to the number of
reserved servers. We make the assumption that there are no overheads involved
in obtaining the state of the queues from the servers.

11.5.1 Performance of Prediction-Based Admission Policy

We compare the performance of the admission policy that uses the information
provided by the single-bit predictor against a baseline solution that uses the
exact execution time information and another solution that uses the mean of the
service time distribution to estimate the response times of newly arriving jobs
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Fig. 11.4: Throughput for varying availability probability of on-demand servers
when (a) Load = 0.9, (b) Load = 1, (c) Load = 1.1, and (d) Load =1.2
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before deciding to admit or reject the jobs. We evaluate this performance for
varying loads, dispatching policies, and availability of on-demand servers.

As seen in Fig. 11.2 when only using the reserved servers, the difference
between the throughput achieved by the prediction-based policy and the clair-
voyant policy becomes more apparent as the load is increased. This behavior
is observed for both dispatching policies. When on-demand servers are always
available, the observations remain consistent. The benefits of the prediction-
based policy are more evident when compared to the mean-approximation pol-
icy at higher loads and always available on-demand servers.

Prediction-based admission policy provides better throughput perfor-
mance compared to mean-approximation policy while the clairvoyant pol-
icy provides the best throughput among all the considered policies.

11.5.2 Performance of Dispatching Policies

Our evaluation indicates that both JSQ and RR have similar throughput perfor-
mance for loads greater than one when only using reserved servers for identical
admission policies. This indicates that the dispatching policy has very little im-
pact on the throughput compared to the impact of the response time estimation
policies. When on-demand servers are considered to be always available, the
performance difference remains negligible as seen in Fig. 11.2 and Fig. 11.3.

Both JSQ and RR have similar performance when using identical admis-
sion policies on reserved servers. When on-demand servers are always
available, RR achieves similar average throughput compared to JSQ.

11.5.3 Performance Impact of Availability of On-Demand Servers

We investigate the impact of the availability of on-demand servers on the
achievable throughput for different admission policies and dispatching com-
binations. As seen in Fig. 11.3 When the load is close to 0.9, the impact of on-
demand server availability is negligible for all the admission and dispatching
policies. However, when the load is increased, the availability of on-demand
servers provides considerable improvement in throughput. Clairvoyant policy
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dominates the performance for all of the availability values. Increasing avail-
ability results in improved performance for all of the admission policies as seen
in Fig. 11.4. Additionally, combining the prediction-based policy with either
of the dispatching policies outperforms the mean-approximation policy while
closely following the clairvoyant policy.

Increased availability of on-demand servers improves throughput signif-
icantly under overload conditions for all admission policies compared to
using only reserved servers.

11.6 Conclusion

We have studied the performance of a single-bit prediction based admission
policy for the problem of online dispatching and scheduling of jobs with
stochastic execution and inter-arrival times, along with deadline constraints
for firm real-time systems in a multi-server edge computing environment. Us-
ing simulations, we evaluated and compared the performance of the predic-
tion based policy against the mean-approximation and the clairvoyant admis-
sion policy with two well-known dispatching strategies, JSQ and RR. We have
also considered an architecture that provides access to on-demand servers in
addition to a set of reserved servers. Our results indicate that the achievable
throughput is primarily influenced by the estimation accuracy of the admission
policy and availability of on-demand servers, rather than the dispatching policy.
In addition, the single-bit prediction policy outperformed mean-approximation
policy while falling short of the performance of the clairvoyant policy.
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Abstract

We consider the problem of scheduling n jobs on m ≥ 2 parallel machines
in online settings with the objective of minimizing total tardiness. Since
no bounded competitive algorithms exist to minimize the general problem of
weighted total tardiness of the form

∑
wjTj , we consider an objective of the

form
∑

wj(Tj + dj), where wj , Tj , and dj are the weight, tardiness, and dead-
line of each job, respectively and develop competitive algorithms dependent on
jobs’ processing times.
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12.1 Introduction

We consider an online scheduling problem where n jobs arrive at arbitrary times
and should be completed before or close to their deadlines on a set of m par-
allel machines. At any given time, a job can be scheduled on at most one
machine. All jobs that arrive must run to completion. They cannot be aborted
or rejected. Preemption and possibly migration are allowed. A natural ob-
jective for this problem is to minimize tardiness (Tj), which is the difference
between the completion time of a job and its deadline if the job completes af-
ter its deadline, and zero otherwise. A generalization of this objective is to
minimize the weighted total tardiness. In this context, each job has a deadline
constraint and a weight. In Graham’s α|β|γ notation, where α is the machine
environment, β describes the job characteristics and constraints, and γ specifies
the objective function, these settings can be described as the online variants of
P |rj , pj , dj , pmtn|

∑
wjTj and R|rj , pj , dj , pmtn|

∑
wjTj where rj , pj and

dj denote release time, processing time and deadline of each job j. P and R
represent identical and unrelated machines’ settings, respectively.

This problem is well-known to be NP-hard even on a single machine. Due
to the inherent difficulty in developing competitive algorithms for this prob-
lem, we consider a modified tardiness objective of the form

∑
wj(Tj + dj).

This modified objective was introduced in the offline version of the problem
with unit weights in which all jobs have a common deadline by Kovalyov and
Werner [1]. Kolliopoulos and Steiner [2] considered the general version of
the problem with arbitrary weights and showed a reduction to the problem of
finding an approximate solution to the problem of weighted total completion
time. Their result showed that any ρ-approximation algorithm for the problem
of minimizing total weighted completion time was an (ρ + 1)-approximation
algorithm for the problem of minimizing weighted modified total tardiness. Liu
et al. [3] extended this idea to online settings in addition to an availability con-
straint on the machines. They provided O(1)-competitive algorithms for clair-
voyant scenarios. Specifically, for the single-machine version of the problem
with weights, they showed a 2-competitive lower bound and a 3-competitive al-
gorithm as an upper bound. For the multiple-machine version of the unit weight
problem, they provided a lower bound of 1.309 and a 3-competitive algorithm.
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Kolliopoulos and Steiner [2] considered a stochastic version of the problem
where the processing times of the jobs are assumed to be random variables
with known distributions.

As clairvoyant information is difficult to obtain in several practical applica-
tions, this paper examines semi-clairvoyant and prediction-clairvoyant scenar-
ios where the processing time information of a job is limited at its release time.
In this context, limited refers to the fact that a scheduling algorithm utilizes a
proxy that either depends on the knowledge of the range or on an estimation of
the job’s processing time instead of its true processing time. For these scenar-
ios, we develop competitive algorithms addressing the modified total tardiness
objective. Specifically, we make the following contributions.

• In prediction-clairvoyant settings: an O(µ log P̂ )-competitive algorithm
without migration for parallel identical machines with unit weights.

• In semi-clairvoyant settings: an O(logP )-competitive algorithm for par-
allel identical machines with unit weights.

• In speed-prediction settings: an O(µ)-competitive algorithm for paral-
lel unrelated machines with general weights and clairvoyant processing
times.

12.2 Preliminaries

Each job j arrives at a time rj and has a deadline dj such that rj ≤ dj . The job
has an actual processing time pj . Upon arrival, either an estimated processing
time p̃j or its job class lj is available. Let Cj denote the time at which a job
completes its execution. Reusing terminology and notation from [4], we let
µ1 = maxj

pj
p̃j

be maximum underestimation error among all the arriving jobs.

Similarly, we let µ2 = maxj
p̃j
pj

be maximum overestimation error among all
the arriving jobs and µ = µ1 · µ2 be the distortion parameter.

We let P be the ratio between the maximal actual processing time and the
minimal actual processing time among the jobs, i.e., P =

maxj pj
minj pj

. Addition-

ally, we let P̂ be the ratio between the maximal estimated processing time and
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the minimal estimated time among the jobs, i.e., P̂ =
maxj p̃j
minj p̃j

. Furthermore,
we use the following definitions.

Definition 4 (Predicted job class). We define the predicted class ℓ̃j of a job j,
as an integer k such that p̃j ∈ [2k, 2k+1].

Definition 5 (Job class). We define the class ℓj of a job j, as an integer k such
that pj ∈ [2k, 2k+1].

Definition 6 (Tardiness). We define tardiness Tj of a job j as max(Cj −dj , 0).

Definition 7 (Modified Tardiness). We define modified tardiness T̃j of a job j
as Tj + dj .

Definition 8 (Total Modified Tardiness). We define total modified tardiness as∑
T̃j .

Definition 9 (Total Completion Time). We define total completion time as∑
Cj .

Definition 10 (Total Flow Time). We define total flow time as
∑

Cj − rj .

12.3 Prediction-Clairvoyant Scheduling on Parallel
Machines

In this section, we focus on our first contribution, which addresses the problem
of minimizing the total modified tardiness on parallel identical machines uti-
lizing predicted job processing times. For this, we reuse the prediction-based
algorithm by Azar et al. [4] that was developed for the problem of minimizing
the total flow time with a competitive ratio of O(µ log P̂ ). This algorithm satis-
fies the consistency and robustness properties [5] desired from prediction-based
online algorithms. When the value of the distortion parameter is close to one
due to high-quality predictions, the algorithm has a competitive ratio O(log P̂ ),
which matches the lower bound for clairvoyant settings, satisfying the consis-
tency property. We prove that this algorithm has an identical competitive ratio
for the objective of modified total tardiness. Formally, we prove the following
result.
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Theorem 12.3.1. Algorithm 1 is O(µ log P̂ )-competitive for minimizing modi-
fied total tardiness on parallel identical machines with predicted job processing
times.

12.3.1 Algorithm

Algorithm 2 utilizes job classes based on the predicted processing time to pri-
oritize jobs. When a new job arrives, it is placed at the top of the stack of an
available machine or a machine currently processing a job of a higher class.
Otherwise, it is added to a central queue. It assigns higher priority to jobs with
lower classes. Higher-class jobs wait in the central queue until a machine be-
comes available or a lower-class job completes processing. Preempted jobs are
returned to the machine stack on which they were preempted and resumed later
on the same machine.

Algorithm 2 Distortion Oblivious Non-Migrative Scheduling Algorithm

1: function UPONJOBRELEASE(j)
2: if exists an idle machine or a machine that currently processes a job of

a class higher than ℓ̂j then
3: Insert j to the top of that machine stack.
4: else
5: Insert j to the pool.
6: end if
7: end function
8: function UPONJOBCOMPLETION(j)
9: Denote by mj the machine j was processed on.

10: Pop j from the stack of mj , and let j′ be the next job in that stack.
11: if the job with lowest class in the pool j′′ has class strictly less than that

of j′ or j′ does not exist then
12: Remove j′′ from the pool and insert it to the top of the stack of mj .
13: end if
14: end function
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12.3.2 Analysis

Algorithm 2 was originally developed to minimize total flow time, and we reuse
it without modifications for the objective of total modified tardiness. To show
that this algorithm indeed works for our objective, we use a proof method sim-
ilar to the one used in [2] and [3]. We first utilize the result that reducing the
problem of the total completion time minimization to the problem of total flow
time minimization increases the competitive ratio by a constant multiplicative
factor of 2. We then utilize the result that reducing the tardiness minimiza-
tion problem to the problem of total completion time minimization problem
increases the competitive ratio by an additive constant 1. Lastly, we plug in the
asymptotic bound of Algorithm 2. Formally, we need the following lemmas to
prove Theorem 12.3.1.

Lemma 12.3.2. (Theorem 1 from [2]) Consider a member α0|β0|
∑

j wjCj

of the family of scheduling problems α|β|
∑

j wjCj for which there is a γ-
approximation algorithm. Then the same algorithm achieves a (γ + 1)-
approximation for the problem α0|β0|

∑
j wj(Tj + dj).

Proof. See [2] for a comprehensive proof.

As two of the algorithms we consider in this paper address the problem
of total flow time, we use the results from [6] that provide a reduction from
the problem of minimizing total completion time to the problem of minimizing
total flow time. Combining Theorem 7.3 and lemma 7.6 from [6], we have the
following result.

Lemma 12.3.3. Consider the problem of minimizing the total weighted flow
time, for which a s-speed, c-competitive algorithm exists. The same algorithm
is 2cs-competitive for the problem of minimizing total weighted completion
time.

Proof. See chapter 7 in [6] for a comprehensive proof.

The next lemma states the competitiveness of Algorithm 2 for the objective
of total flow time.
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Lemma 12.3.4. (Theorem 2 from [4]) Algorithm 2 is O(µ log P̂ )-competitive
for inputs with distortion µ for the problem of minimizing total flow time on
parallel identical machines.

Proof. See [4] for a comprehensive proof.

Proof of Theorem 12.3.1 With the preceding lemmas in place, we are now
ready to prove Theorem 1. Let Cj(alg) and Tj(alg) be the completion times
and tardiness of n jobs, respectively, due to the scheduling policy of Algorithm
1. Let Cj(opt) and Tj(opt) be the completion times and tardiness due to an
optimal algorithm for the same instance of jobs.

By definition, we have the following equality.∑
(Tj + dj) =

∑
max(Cj , dj) (12.1)

The left-hand side of Eq. (12.1) represents the total modified tardiness as the
sum of tardiness of individual jobs and their respective deadlines. This is equiv-
alent to the sum of the maximum between the completion time Cj and the
deadline dj of each job j.

Splitting the sum of the right-hand side into two separate sums, we have the
following inequality.∑

max(Cj(alg), dj) ≤
∑

Cj(alg) +
∑

dj (12.2)

Similarly, we have the following lower bound.∑
max(Cj(opt), dj) ≤

∑
Cj(opt) +

∑
dj (12.3)

From the definition of competitive ratio, we have the following inequality
bounding the total completion time.∑

Cj(alg) +
∑

dj ≤ c ·
∑

Cj(opt) +
∑

dj (12.4)

Since Algorithm 2 minimizes total flow time, from Lemma 12.3.3, we know
that any algorithm that is c-competitive for minimizing total flow time bounds
the total completion time by a multiplicative factor of 2c of the optimal com-
pletion time. Using this fact, we have the following inequality.
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∑
max(Cj(alg), dj) ≤ 2 · c ·

∑
Cj(opt) +

∑
dj (12.5)

Dividing the above equation with the respective lower bounds, we get∑
max(Cj(alg), dj)∑
max(Cj(opt), dj)

≤ 2 · c ·
∑

Cj(opt) +
∑

dj∑
Cj(opt) +

∑
dj

(12.6)

Splitting the right-hand side of the above inequality into two separate terms, we
get

2 · c ·
∑

Cj(opt)∑
Cj(opt) +

∑
dj
≤ 2 · c (12.7)

Similarly, ∑
dj∑

Cj(opt) +
∑

dj
≤ 1 (12.8)

Combining Eq. (12.7) and Eq. (12.8) and rearranging the terms in equation
Eq. (12.6), we get

∑
max(Cj(alg), dj) ≤ (2 · c+ 1) ·

∑
max(Cj(opt), dj) (12.9)

From Lemma 12.3.4, we can replace the constant c with asymptotic bound
O(µ log P̂ ) of Algorithm 2. Ignoring the constant factors, we have the follow-
ing inequality.

∑
max(Cj(alg), dj) ≤ O(µ log P̂ ) ·

∑
max(Cj(opt), dj) (12.10)

Using the definition from Eq. (12.1) and rewriting the above equation, we
get

∑
(Tj(alg) + dj) ≤ O(µ log P̂ ) ·

∑
(Tj(opt) + dj) (12.11)

The claim follows. □
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12.4 Semi-Clairvoyant Scheduling on Parallel Machi-
nes

This section focuses on our contribution related to the semi-clairvoyant settings.
This is an alternative approach to address the problem of the unavailability of
precise processing times at the time of their release. Here, a scheduler utilizes
the approximate knowledge of the processing time of a job in terms of its class
to determine the order in which the jobs are processed instead of its actual pro-
cessing time. A job’s class is an integer value that identifies the processing time
range of the job. While one can assume that a job’s class is known precisely,
it is possible to consider the scenario in which a job’s class is also predicted.
For each of these scenarios, the lowest-class-first (LCF) algorithm developed
by Bechetti et al. [7] has been proven to be O(logP ) and O(µ log P̂ ) competi-
tive for the total flow time objective, respectively. These bounds match proven
lower bounds for the total flow time objective. We reuse this algorithm to min-
imize modified total tardiness. Formally, we prove the following results.

Theorem 12.4.1. Algorithm 3 is O(logP )-competitive for the problem of
minimizing modified total tardiness on parallel identical machines in semi-
clairvoyant settings.

Theorem 12.4.2. Algorithm 3 is O(µ log P̂ )-competitive for the problem of
minimizing modified total tardiness on parallel identical machines in semi-
clairvoyant settings with job class predictions.

12.4.1 Algorithm

Algorithm 3 assumes that each job reveals its actual (predicted) class on its
arrival. When a new job arrives, it is assigned to an available machine or a
machine currently processing a job of a higher class. Otherwise, it is added to a
central queue. This approach assigns higher priority to jobs with lower classes,
while higher-class jobs wait in the central queue until a machine becomes avail-
able or a lower-class job completes processing.
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Algorithm 3 Lowest Class First Scheduling Algorithm

1: function UPONJOBRELEASE(j)
2: if exists an idle machine or a machine that currently processes a job k

of a class higher than ℓj(ℓ̂j) then
3: Preempt k and insert it into the pool.
4: Run j.
5: else
6: Insert j into the pool.
7: end if
8: end function
9: function UPONJOBCOMPLETION(j)

10: Denote by mj the machine j was processed on.
11: if there exists a job in the pool j′′ then
12: Remove j′′ with the lowest class from the pool and run on mj .
13: end if
14: end function

12.4.2 Analysis

To show that Algorithm 3 is competitive for the objective of modified tardiness
minimization, our analysis follows an identical approach to our proof of Theo-
rem 12.3.1. Specifically, we utilize the reduction in Lemma 12.3.3 that bounds
the total completion time by a factor of 2c of the optimal total completion time
when using an algorithm designed to minimize total flow time. We then utilize
the reduction in Lemma 12.3.2 that bounds the total modified tardiness by a
factor of c + 1. Finally, we plug in the asymptotic upper bound for flow time
minimization. Formally, to prove Theorem 12.4.1, we need an additional result
stated in Lemma 12.4.3.

Lemma 12.4.3. (Theorem 15 from [7]) Algorithm 3 is O(logP )-competitive
for the problem of minimizing total flow time on parallel identical machines.

Proof. See [7] and [8] for a comprehensive proof.

Proof of Theorem 12.4.1 Let Cj(alg) and Tj(alg) be the completion times and
tardiness of n jobs, respectively, due to the scheduling policy of Algorithm 3.
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Let Cj(opt) and Tj(opt) be the completion times and tardiness due to an opti-
mal algorithm for the same instance of jobs.

The left-hand side of Eq. (12.1) represents the total modified tardiness as
the sum of tardiness of individual jobs and their respective deadlines. This is
equivalent to the sum of the maximum between the completion time Cj(alg)
and the deadline dj of each job j.

Splitting the sum of the right-hand side of Eq. (12.1) into two separate sums,
we have the following inequality.∑

max(Cj(alg), dj) ≤
∑

Cj(alg) +
∑

dj (12.12)

Similarly, we have the following lower bound.∑
max(Cj(opt), dj) ≤

∑
Cj(opt) +

∑
dj (12.13)

From the definition of competitive ratio, we have the following inequality
bounding the total completion time.∑

Cj(alg) +
∑

dj ≤ c ·
∑

Cj(opt) +
∑

dj (12.14)

Since Algorithm 3 minimizes total flow time, from Lemma 12.3.3, we know
that any algorithm that is c-competitive for minimizing total flow time bounds
the total completion time by a multiplicative factor of 2c of the optimal com-
pletion time. Using this fact, we have the following inequality.∑

max(Cj(alg), dj) ≤ 2 · c ·
∑

Cj(opt) +
∑

dj (12.15)

Dividing the above equation with the respective lower bounds, we get∑
max(Cj(alg), dj)∑
max(Cj(opt), dj)

≤ 2 · c ·
∑

Cj(opt) +
∑

dj∑
Cj(opt) +

∑
dj

(12.16)

Splitting the right-hand side of the above inequality into two separate terms, we
get

2 · c ·
∑

Cj(opt)∑
Cj(opt) +

∑
dj
≤ 2 · c (12.17)
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Similarly, ∑
dj∑

Cj(opt) +
∑

dj
≤ 1 (12.18)

Combining Eq. (12.17) and Eq. (12.18) and rearranging the terms in equation
Eq. (12.6), we get

∑
max(Cj(alg), dj) ≤ (2 · c+ 1) ·

∑
max(Cj(opt), dj) (12.19)

Using the result from Lemma 12.4.3 and ignoring the constant factors, we
have the following inequality.

∑
max(Cj(alg), dj) ≤ O(µ logP ) ·

∑
max(Cj(opt), dj) (12.20)

Using the definition from Eq. (12.1) and rewriting the above equation, we
get

∑
(Tj(alg) + dj) ≤ O(µ logP ) ·

∑
(Tj(opt) + dj) (12.21)

The claim follows. □
To prove Theorem 12.4.2, we need the following result.

Lemma 12.4.4. (Theorem 14 from [4]) Algorithm 3 is O(µ log P̂ )-competitive
for inputs with distortion µ for the problem of minimizing total flow time on
parallel identical machines with predicted job classes.

Proof. See [4] for a comprehensive proof.

Proof of Theorem 12.4.2 Our proof is identical to the proofs of Theorem 12.3.1
and Theorem 12.4.1. By plugging in the result of Lemma 12.4.4, the claim
follows. □



162 Paper E

12.5 Scheduling to Minimize Weighted Modified Tar-
diness on Unrelated Machines

We now consider a generalization that aims to minimize weighted modified
total tardiness on unrelated machines. Here, the processing speed of the jobs is
different on different machines. For this, we rely on the algorithm and analysis
by Megow et al. [9].

We consider the model where an algorithm can access a predicted process-
ing speed for each machine and job. We represent this as ŝij while sij is the
actual processing speed. Additionally, we assume a clairvoyant model, i.e.,
each job’s exact (normalized) processing time is known upon arrival. Similar
to the distortion parameter considered for the case of predicted job processing
times, we let µ1 = max

sij
ŝij

be the maximum underestimation error among all

the arriving jobs. Similarly, we let µ2 = max
ŝij
sij

be maximum overestima-
tion error among all the speed predictions and µ = µ1 · µ2 be the distortion
parameter.

In this section, we prove the following result.

Theorem 12.5.1. Algorithm 4 is O(µ)-competitive for the problem of minimiz-
ing weighted modified total tardiness on unrelated machines with speed predic-
tions.

12.5.1 Algorithm

The Maximum Density Scheduling Algorithm prioritizes jobs based on their
density. The density is calculated for each active job by considering its weight,
predicted speeds, and known processing times. The algorithm determines the
maximum number of jobs to run based on available machines and the number
of currently active jobs. It selects at most M jobs that maximize the sum of the
densities to run.

12.5.2 Analysis

To prove Theorem 12.5.1, we need the following result.
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Algorithm 4 Maximum Density Scheduling Algorithm

1: function UPONJOBRELEASE(j)
2: Compute density δ̂ij =

wj ŝij
pj

for all active jobs

3: Find k = min(M, |J(t)|) jobs that maximize (
∑

k δ̂ij)
4: Run k jobs
5: end function
6: function UPONJOBCOMPLETION(j)
7: Compute density δ̂ij =

wj ŝij
pj

for all active jobs

8: Find k = min(M, |J(t)|) jobs that maximize (
∑

k δ̂ij)
9: Run k jobs

10: end function

Lemma 12.5.2. (Theorem 2.2 from [9]) Algorithm 4 has a competitive ratio
of at most 8µ for minimizing the total weighted completion time on unrelated
machines with speed predictions.

Proof. See [9] for a comprehensive proof.

Proof of Theorem 12.5.1 Let Cj(alg) and Tj(alg) be the completion times
and tardiness of n jobs, respectively, due to the scheduling policy of Algorithm
1. Let Cj(opt) and Tj(opt) be the completion times and tardiness due to an
optimal algorithm for the same instance of jobs.

By definition, we have the following equality.∑
wj(Tj(alg) + dj) =

∑
wj max(Cj(alg), dj) (12.22)

Similarly,∑
wj(Tj(opt) + dj) =

∑
wj max(Cj(opt), dj) (12.23)

The left-hand side of Eq. (12.22) represents the total weighted modified
tardiness as the sum of weighted tardiness of individual jobs and their respective
deadlines. This is equivalent to the weighted sum of the maximum between the
completion time Cj(alg) and the deadline dj of each job j.
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We have the following inequality by splitting the sum of the right-hand side
into two separate sums.

∑
wj max(Cj(alg), dj) ≤

∑
wjCj(alg) +

∑
wjdj (12.24)

Similarly, we have the following lower bound.∑
wj max(Cj(opt), dj) ≤

∑
wjCj(opt) +

∑
wjdj (12.25)

From the definition of competitive ratio, we have the following inequality
bounding the total completion time.

∑
wj max(Cj(alg), dj) ≤ c ·

∑
wjCj(opt) +

∑
wjdj (12.26)

Dividing the above equation with the respective lower bounds, we get

∑
wj max(Cj(alg), dj)∑
wj max(Cj(opt), dj)

≤ c ·
∑

wjCj(opt) +
∑

wjdj∑
wjCj(opt) +

∑
wjdj

(12.27)

Splitting the right-hand side of the above inequality into two separate terms, we
get

c ·
∑

wjCj(opt)∑
wjCj(opt) +

∑
wjdj

≤ c (12.28)

Similarly, ∑
wjdj∑

wjCj(opt) +
∑

wjdj
≤ 1 (12.29)

Combining Eq. (12.28) and Eq. (12.29) and rearranging the terms in equation
Eq. (12.27), we get

∑
wj max(Cj(alg), dj) ≤ (c+ 1) ·

∑
wj max(Cj(opt), dj) (12.30)

Using the result from Lemma 12.5.2, we can replace the constant c with
asymptotic bound O(µ) of Algorithm 4. Ignoring the constant factors, we have
the following inequality.
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∑
wj max(Cj(alg), dj) ≤ O(µ)

∑
wj max(Cj(opt), dj) (12.31)

Using the definition of Eq. (12.22) and Eq. (12.23) and rewriting the above
equation, we get∑

wj(Tj(alg) + dj) ≤ O(µ)
∑

wj(Tj(opt) + dj) (12.32)

The claim follows. □

12.6 Conclusion

We considered the problem of minimizing modified total tardiness on parallel
machines with different levels of information about job processing times and
provided algorithms with competitive guarantees. One natural direction is to
address the generalized version of the problem by including weights on identi-
cal machines. Another direction is to relax the requirement of clairvoyance for
scheduling on unrelated machines.
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