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Abstract

In this thesis, probabilistic methods are explored for the analysis and schedul-
ing of real-time systems, where computation times vary significantly. The aim
is to enable sufficient timing-related performance while allowing for economic
resource provisioning or other average-case objectives. In one line of research,
Hidden Markov Models (HMMs) with continuous emission distributions are
used to model execution times of periodic tasks. A framework for the iden-
tification and validation of such models is presented. Methods are developed
for updating model parameters in systems where the execution time behav-
ior changes, and for bounding the deadline miss probability for such periodic
tasks in a reservation-based server. For scheduling parallel workload with vary-
ing computational demand, a mechanism is proposed for sharing a job queue
among several reservation-based servers. The mechanism guarantees executing
jobs a certain amount of computational resources prior to their deadline, by en-
abling job dismissal in overload situations. Another contribution regards paral-
lel synchronous tasks, and the problem of assigning a suitable number of cores
to the task, so that the deadline is met while optimizing towards a goal such
as minimizing energy consumption. A suitable core assignment is found using
a Multi-Armed Bandit (MAB) formulation of the problem, requiring only lim-
ited knowledge of the worst-case properties of the task structure. Using derived
response time bounds in the MAB formulation reduces the time to convergence
and the energy consumption.
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Sammanfattning

I den här avhandlingen utforskas probabilistiska metoder för analys och
schemaläggning av realtidssystem där beräkningstider varierar väsentligt.
Syftet är att möjliggöra tillräcklig tidsrelaterad prestanda och samtidigt tillåta
ekonomisk resursförsörjning eller genomsnittsrelaterade mål. I en forsknings-
gren används Hidden Markov Models (HMMs) med kontinuerliga emissions-
distributioner för att modellera exekveringstider hos periodiska uppgifter. Ett
ramverk för att identifiera och validera sådana modeller presenteras. Metoder
utvecklas för att uppdatera modellparametrar i system där exekveringstider-
nas beteende ändras, och för att begränsa sannolikheten att sådana periodiska
uppgifter i en reservationsserver missar deadlines. För att schemalägga paral-
lellt arbete med varierande beräkningsmässiga krav föreslås en mekanism för
att dela en jobbkö mellan flera reservationsservrar. Mekansimen garanterar ex-
ekverande jobb ett visst mått av beräkningsresurs innan sin deadline, genom
att avvisa jobb i överbelastningssituationer. För parallela synkrona uppgifter,
och problemet att tilldela ett lämpligt antal beräkningskärnor för en uppgift,
så att deadline möts och man optimerar mot ett mål såsom att minimera en-
ergikonsumtion. En lämplig kärntilldelning hittas genom att använda en Multi-
Armed Bandit (MAB) formulering av problemet, som endast kräver begränsad
kunskap om egenskaperna hos uppgiftens struktur i värsta fallet. Genom att
använda härledda gränser för responstiderna i MAB formuleringen minskar
tiden till konvergens och energikonsumtionen.
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Anna Friebe, Mikael Olsson, Maël Le Gallic, Jordan Less’ard-Springett, Kjell
Dahl, and Matias Waller. A Marine Research ASV Utilizing Wind and Solar
Power, In OCEANS 2017.

Jordan Less’ard-Springett , Anna Friebe, and Maël Le Gallic. Voter Based Con-
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Chapter 1

Introduction

In real-time systems, timing-related requirements need to be fulfilled in addi-
tion to functional requirements. The timing requirements may be related to
safety - car brakes need to be applied promptly when the pedal is pushed, and
radiation needs to be applied to tumor tissue for a precise amount of time to kill
the tumor but spare surrounding areas. Timing requirements may also relate to
non-safety-critical operations. For example, a video streaming application that
fails to meet timing requirements causes deterioration to the Quality of Service
(QoS) [1]. In process or robotic control, timing-related requirements are related
to Quality of Control (QoC) [2].

The functionality of a real-time system is implemented as components that
we refer to as tasks. A task may release several jobs, and a job may consist
of several threads that allow the work to be performed in parallel. In a hard
real-time system, every job’s deadline must be met. In soft and firm real-time
systems, some jobs may miss their deadlines. In a soft real-time system, the
result of a late job is still useful, but in a firm system, the result is of no use after
the deadline [3]. Conventional analysis of hard real-time systems estimates or
upper bounds the Worst-Case Execution Time (WCET) [4], and Worst-Case
Response Time (WCRT) to ensure that computational resources are sufficient
and deadlines are always met.

Today’s complex computing systems consist of interconnected compo-
nents. Computing hardware features include pipelines, branch prediction,
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4 Chapter 1. Introduction

out-of-order execution, and caches or scratchpads. Parallel computation
may use multiple cores or dedicated hardware such as Graphics Processing
Units (GPUs). Most hardware acceleration features significantly improve the
average timing behavior but affect the worst-case behavior to a much smaller
extent, contributing to variability in the execution times. For these complex
computing systems, it becomes difficult to find tight bounds on WCET and
WCRT using conventional analysis techniques [5, 6, 7, 8]. Systems may have
components with computational demands that change due to interaction with
the environment or other components. Components may have different criti-
cality levels, that is, different degrees of assurance against failures [7]. Com-
ponents may run locally or remotely. Decisions to run components remotely or
on special hardware may be taken dynamically during system operation.

In most real-time systems, some jobs can miss their deadline, even jobs
of the most critical task [9]. For these systems, the conventional requirement
that every job must meet its deadline is too restrictive, and an alternative quan-
tification of the timing-related requirement is more useful. This can be in the
form of maximum data age or reaction time [10], weakly-hard [11] or prob-
abilistic guarantees [12, 13, 14], or other timing-related performance guaran-
tees [15, 16].

Instead of only considering the worst-case execution time that occurs very
rarely, a probabilistic analysis [17, 18] considers the likelihood of different ex-
ecution times. A useful requirement may be that the probability of missing a
deadline is sufficiently low. To ensure this, most jobs must receive computa-
tional resources at the time they need them. Suppose a long computation time
value is often followed by more computation times longer than average. In that
case, more computational resources are required, compared to the case where
long computation times are equally likely over time. When a computation time
value affects the probability of computation time values of successive jobs,
we say that computation times are dependent or correlated. With a stochastic
execution time model, assuming independence simplifies the analysis greatly.
Unfortunately, this assumption often does not hold; in reality, longer execution
times often tend to cluster in time.

Computers with multiple processors increase the computational resources
available at a single point in time. If work can be performed in parallel,
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the chances of meeting timing requirements increase. When job computation
times vary significantly, static job-to-processor assignments may lead to dead-
line misses due to queued jobs on one processor, although another processor is
idle. Scheduling of computation time varying jobs carries a risk of not meeting
timing requirements due to overload situations. The risk can be decreased by
assigning additional computational resources, with most processors idle for a
large part of the time.

The main challenges this thesis addresses are in two lines of research, both
focused on tasks with varying job computation times. The first regards captur-
ing the execution time behavior of a task, including dependencies, in a model
that generates data with similar characteristics to the task’s execution times.
This model is used to bound the deadline miss probability of the task. The
second regards scheduling parallel workloads on multiprocessor systems. For
a soft real-time task that may experience periods when the resource demand
exceeds the supply, we address the problem of ensuring scheduled jobs have
a given probability of meeting their deadlines at the price of dismissing some
jobs. For a task with hard timing constraints and overprovisioned resources, the
challenge of optimizing the resource assignment towards a goal such as energy
minimization is addressed.

1.1 Thesis Overview

The background for the thesis, for example, task models, scheduling, and prob-
ability theory, is provided in Chapter 2. Chapter 3 presents related work with
a focus on execution time dependencies, parallel workload scheduling, and
energy-aware scheduling. The overarching research goal and the research ques-
tions are outlined in Chapter 4. Research methodology is discussed in Chap-
ter 5, along with an introduction to threats to validity. Contributions are de-
scribed in Chapter 6, and threats to validity are discussed in relation to the
contributions. Conclusions and future directions are presented in Chapter 7.





Chapter 2

Background

This section provides background on task models and scheduling, probability
theory, Hidden Markov Models (HMMs), and Multi-Armed Bandits (MABs).

2.1 Task Models

The tasks implementing system components have computational requirements
at different points in time. We describe this with task models, where a task’s
computations are performed in one or more jobs. A job arrives at a scheduler at
an arrival time. In this thesis, no release jitter is assumed - a job is ready to be
processed at arrival. The scheduler determines when the job is processed. The
time when the job completes processing is the finishing time. The time from
arrival to finishing time is the job’s response time. The task models used in this
thesis are briefly outlined in this section.

2.1.1 Periodic Task Model

In a periodic task model, a task τ consists of a sequence of jobs. Job arrivals
are separated by a period T . Job Ji has the arrival time ai, and finishing time
fi. Assuming no jitter in arrival times, we have ai+1 = ai + T .

7
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Start J2 J5 End

J1

J3

J4

J6

J7

Fig. 2.1: An illustration of a DAG task, where the jobs have precedence con-
straints. Jj cannot start executing until all jobs with edges directed to Jj have
completed.

2.1.2 Task Model with Simultaneous Job Arrival

To better accommodate parallel workload, a more general task model is pre-
sented, where at each arrival instant, at most κ jobs from the task τ arrive.
Arrival instants are separated by at least p.

2.1.3 Task Models with Precedence Constraints

Precedence constraints imply restrictions on the execution order of computa-
tional components - processing one computational component can only start
when some other computations are completed. These constraints are often
modeled as Directed Acyclic Graphs (DAGs). Such constraints may exist be-
tween different tasks [19] or within a single task [20, 21]. Fig. 2.1 illustrates a
task with precedence constraints between jobs, as described in [20]. The com-
putations of a job are performed sequentially. The span of a DAG task is the
sum of the job computation times on the longest path from start to end, and the
work of the task is the sum of all the job computation times.

The parallel synchronous task model [21] describes a task with jobs that
consist of sequential segments, as illustrated in Fig. 2.2. Each segment contains
threads that can run in parallel. A segment ends at a synchronization point, so
threads in one segment need to be completed before the computation of the next
segment can begin.
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Start ej,1 ej,2 End

ej,1

ej,1

ej,2

ej,2

ej,2

ej,2

ej,2

ej,2

Fig. 2.2: An illustration of a parallel synchronous task τj , where the threads in
each segment k have a worst case computation time ej,k.

Richer DAG-based models include the conditional parallel DAG task
model [22] and the multi-DAG model [23]. In the conditional parallel DAG
task model, parallel nodes are combined with nodes representing if-then-else
clauses. In the multi-DAG model, different execution flows are modeled as
separate DAGs.

2.2 Scheduling

Scheduling is the assignment of resources to tasks. Although scheduling may
apply to different kinds of resources, in the context of this thesis, we refer to
the assignment of computational resources or processor time. A scheduling
algorithm determines which jobs or threads to run on a certain processor at a
specific time. The jobs that have arrived are ready and can be scheduled.

Fixed-priority scheduling is a scheduling algorithm in which each task has
a priority. If several jobs are ready, the scheduler selects them in priority or-
der. In Earliest Deadline First (EDF) scheduling, the job with the closest dead-
line is selected for scheduling - the priority of a job increases as the deadline
approaches. A preemptive scheduling algorithm suspends a running job if a
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ai

P

fi

Q

ai+1 fi+1

Task computation

Unused part of server
reservation

Computation of the other
reservations

Edges of the server periods

Fig. 2.3: Illustration of a reservation-based server.

higher priority job arrives, to schedule the new job instead.
An important scheduling policy or algorithm property is sustainability [24].

If every change in the scheduled task set that is “better” - a computation time is
shorter or an interarrival time between jobs is longer - leads to response times
that are the same or shorter than prior to the change, then the scheduling policy
is sustainable.

The scheduling algorithms used in the thesis are described in the following.

2.2.1 Reservation-Based Scheduling and the Constant Bandwidth
Server (CBS)

In reservation-based scheduling, a certain amount of computational resources
is reserved for a server within a specific time frame. The server provides the
resource to a task or group of tasks. For example, let a server have Q amount
of computational resource in each server period P . If a task τ is the only task
served by this server, the task will be guaranteed Q amount of computational
resource in every time interval of length P , as illustrated in Fig. 2.3.

The advantage of reservation-based scheduling is the timing isolation prop-
erty. A task served by a reservation-based server is guaranteed its budgeted
computational resource. If a job in another reservation-based server misbe-
haves and attempts to use more resources than budgeted, it will not get access
to the first task’s reservation. In fixed-priority or EDF scheduling, a job that
overruns its budget may delay other jobs.
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The CBS [25, 26] is a reservation-based server, guaranteeing Q amount of
computational resource to a task in every server period of length P , a bandwidth
of Q

P . A CBS instance tracks the remaining reservation budget q over time and
a server deadline d, as illustrated in Fig. 2.4.

When a CBS instance executes on a processor, the remaining budget de-
creases with the execution time ∆t. If the budget reaches 0, the processing is
stopped (the server is ”throttled”) until the server deadline. At this point, the
budget is replenished to Q, and the server deadline is increased by P .

Linux provides an implementation of CBS, SCHED DEADLINE[27], al-
lowing for straightforward evaluation of CBS applications.

2.2.2 Graham’s List Scheduling

When scheduling jobs or threads with precedence constraints on multiprocessor
platforms, Graham’s list scheduling [19] is a common and simple algorithm.
A priority order (list) is given for the components to schedule. Each time a
processor is available, the list is scanned, and the first ready component with
fulfilled precedence constraints is selected for processing.

2.3 Probability Theory

To quantify and reason about uncertainty, we apply tools from probability the-
ory. This section introduces necessary concepts without going into the full
mathematical formalization. Some inspiration is taken from [28].

Example 2.3.1. We have two bowls containing red and blue balls. The first
bowl has four balls, three red and one blue. The second bowl contains five
balls, three blue and two red.

First, we imagine picking a ball at random from the first bowl, with equal
probability of picking each ball. The color of the (imagined) picked ball is a
random variable that we denote by X . The outcome of X is one of the values
in the sample set {b, r} for blue and red. The probability of picking the blue
ball is denoted by P [X = b] and is 1

4 .
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Time t, start server:{Q,P},
q ← Q, d ← t + T

State: Idle

q ≥ (d− aj) · Q
P

?

q ← Q, d ← aj + P

Job Jj arrives at aj = t

Yes

State: Active

No

q ← q − ∆t

Server executes in ∆t

q = 0? State: Recharging

d ← d + P, q ← Q

t = d

Job completed?

Yes

No

No

Add job to queue
Job arrives

Add job to queue

Job arrives

Job in job queue?

Yes

Yes No

Fig. 2.4: Flowchart of CBS update at runtime.



Chapter 2. Background 13

Second, imagine that we first pick a bowl at random (with equal probability
of the bowls), and from that bowl, a ball is randomly picked. The picked bowl
is a random variable denoted by B, with the outcome in the sample set {1,
2}, for the first and second bowl. Let the color of the picked ball in our two-
bowl system be the random variable Y . Probability theory allows us to answer
questions such as “What is the probability that the selection procedure gives a
blue ball?” or “If we picked a blue ball, what is the probability that it came
from the second bowl?”

We denote the joint probability of a picked ball being blue and coming from
bowl 2 as P [Y = b,B = 2]. This probability is 1

2 ·
3
5 = 3

10 , the probability of
selecting the second bowl times the probability of a ball being blue in that bowl.

The first question above relates to a marginal probability, where we
marginalize (sum out) the random variable B. We can obtain this by the sum
rule: P [Y = b] =

∑2
i=1 P [Y = b,B = i] = 3

10 + 1
8 = 17

40 = 0.425.
The second question relates to a conditional probability, that we can for-

malize as P [B = 2|Y = b], the probability that B equals 2, given that Y is b.
The probability of a ball being blue in the second bowl can be denoted as the
conditional probability P [Y = b|B = 2]. The product rule was used above for
the joint probability: P [Y = b,B = 2] = P [Y = b|B = 2] · P [B = 2]. It also
holds that P [Y = b,B = 2] = P [B = 2|Y = b] · P [Y = b], which gives us the
answer to the second question as P [B = 2|Y = b] = P[Y=b,B=2]

P[Y=b] = 3
10/

17
40 =

12
17 ≈ 0.706.

2.3.1 Discrete and Continuous Random Variables

In Example 2.3.1, the random variables are discrete, the balls have a countable
number of colors, and there is a countable number of bowls. There are also
continuous random variables, such as the height of a randomly selected person.
In this case, the sample space is an interval of real numbers. In such a case, a
choice can be made to divide the interval into a countable number of smaller in-
tervals and use a discrete random variable to represent the interval the person’s
height falls into.

A Probability Mass Function (PMF) specifies the probabilities of events in
the sample space for a discrete random variable. For example, when picking a



14 Chapter 2. Background

ball from the first bowl above, the PMF is defined by:(
pX(b) = P [X = b] =

1

4
, pX(r) = P [X = r] =

3

4

)
The probabilities of all outcomes in the sample space are non-negative and sum
to 1.

A probability density function (PDF) fX(x) specifies for a continuous ran-
dom variable X the probabilities of events, such that:

P [a ≤ X ≤ b] =

∫ b

a
fX(x)dx

The density fX(x) ≥ 0, ∀x, and integrates to 1 over the sample space.

2.3.2 Expected Value

The expected value of a random variable with real-valued outcomes is the
weighted mean of the possible outcomes, where the weights are the outcome
probabilities. Denote the sample space of X by Ω. The expected value of X is
denoted E[X ], and defined as:

E[X ] =
∑
x∈Ω

x · P [X = x]

For a continuous random variable, the expected value is defined as:

E[X ] =
∫
x∈Ω

x · fX(x)

2.3.3 Cumulative Distribution Function (CDF) and the Usual
Stochastic Order

The CDF FX(x) of a discrete or continuous random variable X with real-
valued outcome is a function that, for each x, determines the probability that
the random variable takes a value lower than or equal to x:

Fx(x) = P [X ≤ x]
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In this thesis, when two random variables X and Y are compared, the ex-
pressions X ≥ Y or “X upper bounds Y” refer to the usual stochastic order,
according to Definition 2.3.1 restated here from Paper C.

Definition 2.3.1 (cf. [29, 17, 30]). Let X and Y be two random variables.
We say that X is greater than or equal to Y (i.e., X upper bounds Y) if the
Cumulative Distribution Function (CDF) of X is never above that of Y . We
denote this relation by X ≥ Y .

2.3.4 Independent Random Variables

Two events are independent if the joint probability of the events equals the
product of the probabilities of each event. In Example 2.3.1, we may con-
sider the two events: “The two-bowl selection procedure gives a blue ball.”
(Y = b) and “The first bowl is picked.” (B = 1). Intuitively, these are
not independent events since the color distribution differs in the two bowls.
P [Y = b] = 0.425, as we have seen above, and P [B = 1] = 0.5, so the prod-
uct P [Y = b] ·P [B = 1] = 0.2125. However, the joint probability of the events
is P [Y = b,B = 1] = 0.5 · 0.25 = 0.125, as one of the four balls in the first
bowl is blue. As they are not equal, the events are dependent.

Two random variables X and Y with real-valued outcomes are independent
if the joint CDF P [X ≤ x,Y ≤ y] = P [X ≤ x] · P [Y ≤ y] ,∀x, y.

In the discussion above on Example 2.3.1, the random variable Y takes
the values {b, r}. Map b to 0 and r to 1, so that Y instead takes the values
{0, 1} and is real-valued. P [Y ≤ 0] = 0.425 and P [B ≤ 1] = 0.5, and the
product P [Y ≤ 0] · P [B ≤ 1] = 0.2125. The joint CDF at the same point
P [Y ≤ 0,B ≤ 1] = 0.125 ̸= 0.2125, so the random variables are dependent.

2.4 Hidden Markov Models

A Markov Model describes a system alternating between different states. This
model is memoryless - this means that if the system is in state S1 at time t− 1,
the probability that it is in state S2 at time t is determined by the transition
probability from state S1 to S2. A three-state Markov Model is illustrated in
Fig. 2.5, and a possible state sequence for the model is illustrated in Fig. 2.6.
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S2 S3

S1

0.2

0.5

0.3

0.2

0.6

0.20.1

0.3

0.6

Fig. 2.5: A three-state Markov Model with transition probabilities.

State S1

State S2

State S3

Time 1 2 3 4 5 6 7 8 9 10

Fig. 2.6: A possible state sequence from the Markov Model in Fig. 2.5.

In a Hidden Markov Model (HMM), the states are not directly observable,
but some property related to the states is observed. In papers A-C, task execu-
tion times are modeled as an HMM, where different states are associated with
different probability distributions over execution times. For example, a peri-
odic task τ is described by the model in Fig. 2.5. Between each job release,
the state changes according to the transition probabilities. Different states are
characterized by different job execution times, described by probability distri-
butions and referred to as emission distributions. In our example task, let the
states be associated with Gaussian probability distributions of execution times.
The mean and standard deviation for S1 are 20 and 2, for S2 they are 30 and
3, and for S3 they are 40 and 4. One possible execution time realization of the
state sequence in Fig. 2.6 is shown in Fig. 2.7.

The tutorial [31] explains the basics of HMMs and some applications to
speech recognition.
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Fig. 2.7: A possible execution time sequence from the state sequence in
Fig. 2.6.

2.5 Multi-Armed Bandits

Paper E exploits a Multi-Arm Bandit (MAB) problem formulation to allocate
a suitable number of cores to a task. In an MAB problem, an agent repeatedly
selects one of k possible actions over T rounds. In each round, the agent re-
ceives a reward, and the goal is to maximize the total reward over the T rounds
or over the horizon. In the standard MAB problem, the k actions or arms are
associated with fixed probability distributions of rewards unknown to the agent.
MAB algorithms make decisions over time under uncertainty and balance ex-
ploration of arms the agent knows little about with exploitation of arms that are
likely the best based on observed rewards in previous rounds.

MAB algorithms are often evaluated in terms of regret, where the perfor-
mance of the algorithm is compared to an algorithm that always selects the arm
with the highest expected reward. Denote the highest expected reward of an
arm by ρ↑, and the reward of an action ai at round i by ρ(ai). The regret R(T )
of the algorithm selecting the actions ai, restated here from Paper E, is:

R(T ) = ρ↑ · T −
T∑
i=1

ρ(ai)

Different types of feedback are used in MAB problem formulations. With
bandit feedback, the agent only observes the reward from the chosen arm. With
complete feedback, the agent can retrospectively observe the reward from all
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arms. With partial feedback, the agent receives some additional information
beyond the reward of the selected arm.

The agent selects an arm at round i from the information on expected re-
wards of each arm, often based on the confidence intervals of the expected
rewards. For example, an agent using Successive Elimination will remove an
arm from the set of possible choices if the upper bound on the confidence in-
terval is below the lower bound on the confidence interval of another arm. An
agent using UCB1 will always select the arm with the highest upper confidence
bound. This will be either an arm with a high expected reward based on ear-
lier observations, or an arm that has not been explored much, and has a large
confidence interval.

The concepts of Bayesian statistics are used in Bayesian bandits. Here, a
belief model of the expected arm rewards is maintained. In Thompson sam-
pling, at each round, an arm is selected with the probability that it has the
highest expected reward given the belief model. The belief model is updated
when feedback is received.

Contextual Multi-Armed Bandit (CMAB) problems include a context.
Here, the agent observes some context or feature vector before making the de-
cision, and arms have different reward distributions in different contexts.

In a restless bandit problem [32], the arm reward distributions may change
between rounds. In these problems, an infinite horizon is considered, with the
objective to maximize the average reward.

Slivkins provides a comprehensive introduction to MABs in [33].
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Related Work

There are several options for quantifying timing-related guarantees in more nu-
anced ways than the hard real-time guarantee, where every job must meet its
deadline. Weakly hard real-time systems [11] allow for expressing a minimum
required number of met deadlines or consecutively met deadlines in any time
window of a determined length, or a maximum number of consecutive deadline
misses. The Maximum Reaction Time or Maximum Data Age [10] allows for
specifying the maximum time required to complete a cause-effect chain. Con-
trol performance and robustness depend on the deadline miss pattern and the
control strategy applied at deadline miss, as evaluated in [15, 16]. A Mixed
Criticality system [7] has different criticality modes, and tasks in such systems
have different criticality levels. The most critical tasks have hard timing con-
straints. Robustness of Mixed Criticality systems relates to the ability to pro-
vide full functionality in the presence of bounded temporal faults, and resilience
relates to graceful degradation when temporal faults exceed this bound [7, 34].

In the probabilistic approach, probabilities of events are estimated or
bounded. The events may be related to computation times or response times.
Specifically, the probability of a job’s response time exceeding the relative
deadline is the probability of the job missing its deadline [12, 13]. However,
more complex events can be considered, such as, for example, the reaction time
exceeding some threshold [14]. The surveys by Cucu-Grosjean and Davis on
probabilistic timing analysis [17] and schedulability analysis [18] for real-time

19
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systems provide a thorough overview of the field until 2019. Three interpreta-
tions of the deadline miss probability concept are outlined in [18]:

1. ”As a probability with a long-run frequency interpretation equating to
the expected number of missed deadlines divided by the total number of
deadlines in a long (tending to infinite) time interval.

2. As the probability that a randomly selected job will miss its deadline,
which is broadly equivalent to the long-run frequency interpretation.

3. As a bound on the probability that any specific job will miss its deadline.”

Interpretations 1 and 2 are broadly equivalent, and in [35] the same concept
is referred to as the deadline miss rate, answering the question: ”What is the
ratio of jobs missing their deadlines in the long run?”. Interpretation 3 is often
referred to as the Worst-Case Deadline Failure Probability (WCDFP) [36, 37,
38].

3.1 Execution Time Dependencies

Erroneously assuming independent execution time random variables in schedu-
lability analysis can cause optimistic results, as noted by Tia et al. [12]. Diaz et
al. [39] first recognized the importance of independence also among job execu-
tion times of the same task for their stochastic response time analysis, and noted
that the independence assumption is often violated in real-world cases. In [29],
the fundamental concept of stochastic pessimism to upper bound distributions
according to Definition 2.3.1 was explored.

The pWCET is an upper bound on the job execution time distribution that
can be used safely in stochastic response time analysis with independence-
assuming tools such as convolution despite potential dependencies [40, 17].
Davis et al. [41] highlighted the different interpretations of the uncertainty
about the timing behavior of a system. Aleatoric uncertainty stems from the
randomness in the system and its environment, while epistemic uncertainty
is the lack of complete knowledge about the system in operation. Bozhko et
al. [42] provided an axiomatic definition of pWCET. This requires conditional
independence of jobs’ computation times, given a partitioning of the space of
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system evolutions, and a probabilistic response time (pRT)-monotonic schedul-
ing policy [42]. A sustainable scheduling policy [24] is pRT-monotonic. The
scheduling requirement emphasizes that the pWCET is not a standalone prop-
erty of a task.

In the literature, several approaches consider probabilistic schedulability
analysis with independence assumption for fixed priority, preemptive schedul-
ing, relying on the critical-instant assumption later refuted [43]. Approxima-
tions were derived based on queueing theory in [44], and on the Berry-Esseen
theorem in [45].

Günzel et al. [14] considered probabilistic reaction time analysis for a
backlog-free system with partitioned Time-Division Multiple Access (TDMA)
scheduling of tasks with independent execution times.

Considering tasks with dependence, copulas were introduced to timing
analysis in [46]. Dependencies between random variables were modeled with
copulas, transforming the marginal distributions of random variables into a joint
distribution. Probabilistic response time bounds were derived for fixed prior-
ity preemptive scheduling using known probability distributions, copulas, and
Frechet bounds [47].

Extreme Value Theory (EVT) has been applied to address dependence in
the areas of measurement-based analysis of execution times [48, 49, 50] and
response times [51, 52, 53]. Application of EVT requires that statistical limit
laws hold for the sample set [54], and that certain conditions, such as sta-
tionarity [55] or extremal independence [56], are fulfilled. As holds for all
measurement-based analyses, execution time data used in analysis needs to be
representative of execution times in operation [57] to some degree.

The WCDFP for EDF-scheduled tasks considering dependence in bounded
intervals was approximated in [36]. Correlation Tolerant Analysis (CTA) using
Cantinelli’s inequality was presented in [37] to bound WCDFP for fixed prior-
ity preemptive scheduled tasks with known bounds on mean and standard devi-
ations of the execution time distributions. In [38], a correlation-aware analysis
included bounds on the inter-task and intra-task covariance to derive a tighter
bound on the WCDFP compared to CTA.

Mills and Anderson [58] analyzed tasks with stochastic execution times
scheduled in servers in a multiprocessor system. Response times and tardiness
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were bounded, considering dependence within bounded time windows. Further
work [59] provided response time analysis under the assumption that depen-
dence is limited to jobs with execution times below a certain threshold.

Tasks with independent stochastic computation or interarrival times, sched-
uled in CBS have been analyzed to provide QoS guarantees by deriving the
probability of missing the deadline [13], based on the observation that the
amount of work waiting to be processed is a Markov chain. In [60], the anal-
ysis was extended to stochastic computation and interarrival times. An analyt-
ical bound and efficient numerical computation of the probability of deadline
miss for periodic tasks were provided in [61]. Dependencies were accounted
for by modeling execution times as a Markov chain in [62, 63], deriving the
steady state response time distribution and the deadline miss probability with
the long-run frequency interpretation.

3.2 Computational Demand Exceeding the Supply

The average available provided resource must exceed the requirement for the
system to be stable, that is, response times do not diverge to infinity [25, 39, 44].
Stability is clearly necessary to meet timing requirements. However, it is not
sufficient - response times may still be unacceptable if computational demand
exceeds the supply in shorter time frames. A system with computational de-
mands exceeding the provided resources may become stable by rejecting jobs
entirely or by dismissing jobs, for example, at their deadline, at the cost of
some requested work never being performed. A later dismissal point increases
the deadline miss rate, as was shown for a uniprocessor system with sufficient
average resource provision, and execution times as independent random vari-
ables [35]. Schedulability analysis for task graphs with a maximum number
of concurrently active graph instantiations was explored in [64]. Rejecting a
newly arrived task graph rather than dismissing the oldest instance resulted in
a lower number of states and shorter analysis time.

The decision to reject, dismiss, or queue jobs also affects the performance
of control systems, as was investigated by Pazzaglia et al. [65]. They showed
that dismissing jobs at their deadline or rejecting a new job both lead to better
control robustness compared to queueing jobs in overload situations.
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Mixed Criticality system strategies to ensure that HI-criticality meet their
deadlines include abortion or dismissal of LO-criticality jobs [7, 66, 67]. For
example, the bailout protocol [68] allows HI-criticality jobs to overrun their
normal-mode WCET, and the overrun is compensated for by not starting LO-
criticality jobs, and accounting for unused capacity. [69] considered a mul-
tiprocessor system with monitoring of HI-criticality jobs. LO-criticality jobs
were suspended if a concurrently running HI-criticality job risked overrunning
its isolation-based WCET. System engineers have criticized the assumptions of
Mixed Criticality systems and argued that LO-criticality tasks should receive
some computational resource if at all possible [7, 68]. A robust task can safely
drop a non-started job in any extended interval [34]. One of the techniques to
achieve resilience is to let any started job run to completion [7].

The Robust Earliest Deadline (RED) algorithm monitors the job queue for
a unicore system. Tasks have criticality levels and values, and are scheduled
by EDF. A job arrival that leads to a WCET-based overload causes rejection
of non-critical jobs based on their values. If processed jobs complete early,
rejected jobs may be recovered. Aperiodic tasks in a Total Bandwidth Server
(TBS) were scheduled by RED in [70]. To provide QoS guarantees to individ-
ual tasks, each task needs to be assigned a separate server [71]. DAG tasks were
scheduled holistically in [72]. Instead of dropping the entire DAG when a sin-
gle node overruns, the node continues to run with slack from nodes completing
early or budget from nodes that cannot start due to the overrun.

In the queueing theory literature, different types of dismissal or reneging
are analyzed, as surveyed by Ward [73]. It is common to model the probabil-
ity of clients (jobs) abandoning the queue as a function of the waiting time.
Other models include dismissal at a deadline or when a queue is full. Kruk et
al. [74] analyzed EDF-scheduling in heavy traffic, with jobs dismissed at their
deadline. Stochastic knowledge about job deadlines and a finite buffer size was
considered in [75]. At buffer overflow, it is at least as good to remove the job
stochastically closest to its deadline as an arbitrary job. Different abandonment
time and service time distributions at overload were examined in [76]. Mean
waiting time and queue length are significantly affected by the abandonment
time distribution. Controlling the service rate with a time-varying arrival rate
was explored in [77]. Asymptotically stabilizing mean queue lengths and mean
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waiting times cannot be achieved simultaneously.
To reduce congestion and waiting time in networking applications, Active

Queue Management implies dropping packets before a buffer is full. Random
Early Detection [78] uses a probabilistic approach to drop packets, while the
more recent CoDel algorithm [79] tracks the minimum waiting time over a time
interval. If this exceeds a target value, packets are dropped at an increasing rate
until the target waiting time is met.

3.3 Energy-Aware Scheduling

When execution times vary, a real-time system that fulfills needed timing-
related guarantees will most likely have a significant amount of unused pro-
cessor capacity, even if some amount of deadline misses is accepted. The sys-
tem designer may use such slack to improve the performance (QoS or QoC)
by, for example, increasing the frequency or resolution of some computations,
or improving the robustness by, for example, adding redundancy. Energy con-
sumption and cost can be reduced by applying dynamic energy management ap-
proaches. That is, we optimize towards higher QoS, higher robustness, or lower
energy consumption, under the constraints given by the timing-related guaran-
tees. This section focuses on lowering energy consumption, which presents a
conflicting objective that is likely bounded by the timing constraints.

The two main technologies to dynamically control energy consumption in
modern processors are Dynamic Voltage Frequency Scaling (DVFS) and Dy-
namic Power Management (DPM). In DVFS, the CPU frequency and voltage
are reduced, leading to slower computation at lower power consumption. In
DPM, idle processor states are used to reduce power consumption. Deeper idle
states turn off more components in the CPU, leading to greater power savings
at the cost of longer wake-up latencies.

Energy-aware scheduling surveys are provided in [80, 81, 82]. The focus
of [81, 82] is on multicore systems, in [82] mainly DVFS techniques.

Eq. (3.1) describes the power Pgate of a single active gate [81], with α as
the gate switching probability, CL the loading capacity, V the supply voltage,
f the clock frequency, Isc and Ileak the short circuit and leakage currents.
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Pgate = α · CL · V 2 · f + V · Isc + V · Ileak (3.1)

The clock frequency reduction enables a reduced supply voltage, which is
an important factor in the energy savings from DVFS [83]. The dynamic power
component is modeled as P (f) = β · f δ, with β as a constant, and 2 ≤ δ ≤ 3
in for example [84, 85]. The voltage scaling window is decreasing in today’s
low-voltage cores, leading to reduced benefit of DVFS [83]. Additionally, re-
duced transistor sizes lead to a larger proportion of leakage currents, as these
result from a quantum phenomenon [80]. These are two reasons why the energy
saving potential of DVFS is decreasing according to [83]. Despite this, DVFS
and hybrid techniques remain common in the literature. Recent work in this di-
rection includes [86], where the Adaptive Partitioned EDF scheduler from [87]
was extended. Real-time tasks served by CBS were placed on the CPU with
the best energy performance on a big.LITTLE architecture, considering tim-
ing guarantees, potential frequency changes, and the effect on the whole CPU
socket. In [88], the approach was extended for DAG tasks.

The idle states in DPM are often referred to as C-states. C0 is the opera-
tional state executing instructions, C1 is a low wake-up latency standby state,
and higher numbers refer to sleep states with increasing wake-up latencies and
power savings. The C-states of x86 processors were described in [89], along
with Package C-states. If all cores on a CPU socket are in a sleep state, a Pack-
age C-state is entered, bringing further power savings by partially disabling pe-
ripherals. The architecture proposed in [90] retains most of the C-state power
savings with significantly lower wake-up latencies.

C-state power management arbiters are considered for energy savings in
data centers while meeting service level agreements. In [91], a feedback-based
controller determined the minimum number of cores needed to have sufficiently
short response times at a given request rate. Idle state residency and network
request rate were predicted in [92], and combined with a load balancer, avoiding
waking up idle cores if operating cores could accommodate an incoming task.
C-states were selected and exited based on the predictions. In [93], the use of
C-states was combined with DVFS. When a core was idle, it was always sent
to the deepest sleep state. Request tail service time and latency were predicted
at request arrivals, to determine a suitable wake-up time and core frequency.
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Without explicitly modeling energy consumption, Papadopoulos et al. [94]
scheduled a DAG task with known worst-case work and span on M identical
processors. Initially, the task was assigned m ≤ M processors. Based on
the worst-case work and span, as well as the number of assigned processors, a
virtual deadline was computed. If a job did not finish by the virtual deadline,
M processors were assigned at this time. It was shown in [94] that the jobs
always meet a hard deadline with this policy. Algorithms were developed to
find the lowest m that results in response times below the corresponding virtual
deadline. This ensures that the assigned processors are efficiently used, within
the hard deadline constraint. The remaining processors can be used for other
purposes or put to sleep until the virtual deadline.



Chapter 4

Research Goal and Research
Questions

Overarching research goal: To provide tools for analyzing and scheduling
real-time systems, where tasks’ job execution times vary significantly.

The thesis covers two main lines of research. The first considers a periodic
task with dependency between execution times of successive jobs, scheduled
on a single processor. The second line of research considers the scheduling of
parallel workload on multiple processors.

4.1 Periodic Tasks where Execution Times of Succes-
sive Jobs Exhibit Dependence

For periodic tasks with varying computation times and dependency between ex-
ecution times of successive jobs, the research questions below are investigated.
A model capturing the execution time behavior with dependencies allows for
a less pessimistic schedulability analysis compared to using the WCET or up-
per bounding pWCET distribution. RQ1 relates to identifying an appropriate
model and validating it against the observations of the execution time. RQ2
relates to updating HMM emission distribution parameters if the runtime ob-
servations change and become inconsistent with the model.
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RQ1: How can we find a model of a task’s execution time behavior, including
dependencies between successive jobs, so that data generated from the model
is consistent with observations?
RQ2: Given an execution time HMM, how can emission distribution param-
eters be updated at runtime, if observations are no longer consistent with the
model?
RQ3: How can we derive a bound on the deadline miss probability of an exe-
cution time HMM task in a reservation-based server?

4.2 Scheduling Parallel Workload

Scheduling parallel workload with varying computation times on multiple pro-
cessors entails additional questions about the number of processors to use and
which jobs or threads to execute on which processor. In RQ4, a task’s jobs
may be run in parallel, and the timing requirements are soft - some jobs may
miss their deadlines or be discarded. The challenge is to ensure that scheduled
jobs are provided with computational resources in time, so that they have a
sufficiently high probability of meeting their deadline. In RQ5, a parallel syn-
chronous task is considered, with varying thread computation times. A number
of processors are reserved for a task, and the challenge is to assign a smaller
number of these processors to arriving jobs, which optimizes for an objective
such as minimizing the energy consumption. All the reserved processors are
assigned at a later point in time if needed to ensure all jobs meet their dead-
lines.
RQ4: For a task with jobs that may run in parallel, how can started jobs be
ensured a determined probability of meeting their deadlines, even if computa-
tional demand exceeds the supply?
RQ5: For a parallel synchronous task, how can we learn the number of pro-
cessors to assign initially, that optimizes for an objective such as energy mini-
mization, while still meeting hard deadlines?



Chapter 5

Research Methodology

The overarching research goal of this thesis is to provide tools for analysis and
scheduling of real-time systems, where tasks’ job execution times vary sig-
nificantly. Fig. 5.1 illustrates the research process, reflecting the hypothetico-
deductive method [95]. Dashed lines reflect the iterative nature of the process.

Starting from the overarching research goal, the State Of The Art (SOTA)
in the literature is reviewed to find interesting research directions to explore
further and identify gaps in existing knowledge. Based on the literature review,
more concrete problems are formulated to contribute to the overarching goal.

Given the problem formulation, assumptions, and the system model are
specified. If applicable, the assumptions and system model are used to derive
proofs to address part of the problem. A solution is proposed and implemented,
potentially relying on the theoretical results. If there are SOTA solutions suit-
able for comparison, these are obtained or implemented. Data is collected,
applying the different solutions to real and/ or simulated use cases.

In the evaluation, the results from the solutions are compared, and other
features of the solutions are discussed. The contributions of the process in-
clude published papers with theoretical and empirical results and implemented
software used to derive the results.
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5.1 Threats to Validity

We consider the validity types discussed in Wohlin et al. [96], namely conclu-
sion validity, internal validity, construct validity, and external validity.

Conclusion validity concerns the relation between an intervention and the
outcome. Can we be sufficiently sure that differences in results are due to differ-
ences in the methods used? Threats to conclusion validity include, for example,
small sample sizes, random effects, violation of assumptions of statistical tests,
”fishing” for certain results, and reliability of measures and interventions.

Internal validity concerns issues with experiments where the relation be-
tween the intervention and result may be questioned, for example, due to the
selection of use cases, tasks, or task sets. The main internal validity issues are
related to experiments with subjects such as humans. With human subjects, you
cannot apply two different interventions to the exact same subject at the same
time and observe the results. Human subjects may be affected by their beliefs
about the treatment. These issues do not apply to the research in this thesis, as
our subjects are use cases, tasks, and task sets.

Construct validity concerns the generalization of results from an experi-
ment to a concept or theory. One threat to construct validity is insufficiently
defined concepts. For example, what does it mean that an intervention is ”bet-
ter” than another? Other threats to construct validity are related to investigating
a single independent variable, a single subject, a single intervention, a single
type of measure, or observation. Information loss if a continuous measure is
converted to a discrete or binary measure may also be a threat to construct va-
lidity.

External validity relates to the generalization of results to, for example,
industry practice.

Threats to validity regarding the thesis contributions will be discussed fur-
ther in Chapter 6.
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research goal

Literature review
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Contributions If applicable

Fig. 5.1: The main steps of the research process.





Chapter 6

Thesis Contributions

In this section, the contributions are outlined, relating to the overarching re-
search goal and the research questions in Chapter 4. Threats to validity are
discussed in relation to the different contributions, and the papers included in
the thesis are listed.

6.1 Contributions for Periodic Tasks with Execution
Time Dependence Between Successive Jobs

In this section, Contributions C1 through C3 relating to research questions RQ1
through RQ3 are outlined.
C1: A framework for identification and validation of continuous-emission
execution time HMMs.

This contribution results from RQ1, and is presented in Paper A. An execu-
tion time HMM with Gaussian emission distributions is proposed to model the
execution time behavior of a task with dependence between successive jobs.
A framework is developed for two purposes. The first is to identify such an
HMM from execution time traces. The identification process includes automat-
ically determining the number of states, utilizing a tree-based cross-validation
approach [97]. The second framework purpose is to validate that execution
times generated from the model resemble experimentally obtained execution
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times. This is performed using a data consistency approach to model valida-
tion [98], comparing data generated from the model with experimental data
using a dispersion-based statistic.

The proposed HMM representation is evaluated in two use cases: a simple
test program with a known Markov Model structure and a video compression
use case. Source code and data are available1. The identified HMMs are valid
models with respect to the timing trace observations, reinforcing conclusions
in previous work [63, 62] that HMMs are useful representations of execution
time behavior for some tasks, and extend this to HMMs with Gaussian emis-
sion distributions. Preliminary tests show that the identified model in the video
decompression test case is invalid for different video inputs. This is consis-
tent with results from [63, 62] that indicate that different inputs correspond to
different HMMs and tasks with different resource requirements.
C2: A method for online adaptation of execution time HMM emission dis-
tributions.

C2 results from RQ2, and is presented in Paper B. In Paper A and in pre-
vious work [63, 60], it is shown that different inputs may result in different
HMMs. Identification methods for HMMs, as presented in Paper A, are too
computationally demanding to perform at runtime. Therefore, in C2, adapta-
tion of the emission distributions is explored. In this work, we assume that the
number of states and transition probabilities do not change, and that emission
distributions change at some instants and remain constant in segments between
those instants. In a preprocessing step, the number of states, the transition
probabilities, and the emission distribution configurations are identified. The
emission distribution configurations are referred to as clusters, and the belief
about distribution means and variances is described with a Bayesian approach.
The Bayesian cluster description is used to derive a Generalized Likelihood Ra-
tio (GLR) measure, providing a probability that observations in different out-
put segments are generated from the same HMM. At runtime, points of change
are detected using the GLR measure. The measure is also used to determine
whether a segment is part of an existing cluster, if a new cluster needs to be
created, or if two clusters are similar enough to be merged into one cluster. The
Bayesian belief about the clusters is updated in the adaptive process. The full

1https://github.com/annafriebe/MarkovChainETFramework
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adaptive algorithm is compared with two more restrictive versions. In the first,
clusters are not created or merged. In the second, clusters are neither created,
merged, nor updated after the preprocessing step, so the adaptive process only
switches between clusters identified in the preprocessing stage.

Synthetically generated data is used in the evaluation, guaranteeing that as-
sumptions are fulfilled and allowing for comparison to ground truth. Source
code and data are available2. The Kullback-Leibler (KL) divergence from the
predicted Bayesian distribution to the ground truth distribution is calculated
to assess the method’s performance. When the execution times are generated
from an HMM configuration observed during preprocessing, the switching-
only adaptive algorithm gives the best result, but for HMM configurations not
observed in the preprocessing, the more adaptive algorithms perform better in
terms of KL-divergence to the ground truth distribution.
C3: An efficient method for bounding the deadline miss probability of
Markov Chain real-time tasks.

C3 addresses RQ3, and is presented in Paper C. A task with execution
times described by an HMM, scheduled by a reservation-based server, is an-
alyzed. The expected deadline miss probability of a randomly selected job is
bounded. The method is based on workload accumulation sequences. Each job
arrival results in a specific workload accumulation sequence - the sequence of
execution time states since the last idle point. The probabilities of job arrivals
resulting in workload accumulation sequences are bounded, starting with short
sequences, jobs arriving soon after an idle point. The deadline miss probabili-
ties associated with these workload accumulation sequences are also bounded.
The probability of a job arrival resulting in a longer workload accumulation se-
quence than those accounted for is also bounded. These results are combined,
resulting in a bound on the expected deadline miss probability. The bound
is updated iteratively by including successively longer workload accumulation
sequences. The time required for the bound computation is reduced by com-
bining workload accumulation sequences into order-independent accumulation
vectors and by applying a state merging technique.

In the evaluation, a Furuta pendulum [16] control task is analyzed. Empiri-
cal deadline miss rates when running the task under the Linux CBS implemen-

2https://github.com/annafriebe/AdaptiveETBayes
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tation [27] are compared to the discrete-emission distribution HMM deadline
miss probability from [63, 99], estimates from simulation, and obtained bounds
with and without the state merging technique. Source code and data are avail-
able3. The proposed method adds some pessimism compared to the discrete-
distribution approach. The time required for the bound computation does not
depend on the computation time range or the choice of scaling factor, as in the
discrete case.

6.2 Contributions for Scheduling Parallel Workload

In this section, contributions C4 and C5 addressing research questions RQ4
and RQ5 are described.
C4: Job queue sharing by several CBS, along with a job acceptance test.

Paper D presents C4 resulting from RQ4. We consider a task that releases
execution time-varying jobs that may run sequentially or in parallel. The num-
ber of jobs released at each instant is upper bounded, and there is a minimum
separation time between job release instants. In the proposed Job Acceptance
Multi-Server (JAMS), several CBSs share a common job queue, enabling flex-
ible dispatching of a task’s jobs to ready servers. The servers in JAMS incor-
porate an acceptance test, ensuring that only jobs with a guaranteed sufficient
computation time prior to their deadline are dispatched. In an overload situa-
tion, this leads to JAMS dismissing jobs with unacceptable queue times.

The evaluation is performed for two types of workload: synthetically gen-
erated computation times from lognormal distributions, and computation times
collected from a Model Predictive Control (MPC) task. Code and data are
available4. The experiments show that JAMS successfully maintains the dead-
line miss rates of scheduled jobs below specified levels, at the cost of dismissing
jobs during overload situations.
C5: An MAB application to improve average behavior while ensuring hard
real-time guarantees.

C5 addresses research question RQ5, and is presented in Paper E. The task
model is a Stochastic Parallel Synchronous Task, a special case of a DAG task

3https://github.com/annafriebe/ContMM RT BoundDMP
4https://github.com/annafriebe/RTAS 25 JAMS AE
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but a generalization of the Parallel Synchronous Task [21]. Each arm represents
a choice of initial core allocation. The MAB is implemented as a bootstrap/
bag approximation [100] of Thompson sampling [33]. Response time bounds
are derived for counterfactual reasoning. Given a response time observation
with one initial core allocation, response time bounds are derived for other core
allocations of the same job. In the proposed partial-feedback MAB, information
about unexplored arms is derived from arms that have been explored, using the
response time bounds.

In the evaluation, the proposed partial feedback MAB approach is com-
pared to a Binary-Exponential Search approach presented in [94], a greedy
method, and an MAB approach without the use of response time bounds. An
energy model based on Dynamic Power Management (DPM) with sleep states
for cores and CPU sockets is used to construct a reward function. Both MAB
approaches reliably learn energy-efficient choices for core allocation, but using
the response time bounds lowers the energy consumption.

6.3 Threats to Validity

In this section, threats to validity regarding the contributions are discussed.
When it comes to use case selection, there is a tradeoff between conclusion

and internal validity on one hand and external validity on the other hand. Con-
clusion and internal validity are strengthened with a large variety of randomly
configured task sets, while external validity is strengthened with realistic use
cases. In the contributions of this thesis, a number of use cases are selected for
the evaluation. In C1, C3, and C4, realistic use cases such as a video decom-
pression task, a Furuta pendulum control task, and an MPC task are evaluated,
and results from real systems are presented, increasing the external validity of
these contributions. In C4, these results are complemented with results from
a synthetic task, for greater conclusion and internal validity. In C1 and C2,
known Markov chain tasks are used in the evaluation, and C2, C3, and C5 use
simulation results in the evaluation. All these ensure that assumptions hold and
increase conclusion validity. The results in C2 and C5 are from simulation
only, which potentially is a threat to external validity. Therefore, generalization
to more realistic use cases needs to be done with caution.
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The data consistency approach to model validation used in C1 produces a
PFAu measure – the probability of false alarm due to underdispersion. The
cutoff value for when to reject an inconsistent model has not been determined in
a systematic manner as outlined in [98]. This could be a threat to construct and
conclusion validity. However, except for one macro state of the video decom-
pression use case, all PFAu values are based on several thousand observations.
In such cases, a misspecified model should produce PFAu values very close
to 0 or 1.

In a few of the contributions, the baseline for comparison is relatively
simple, or a comparison is performed between different versions of the same
method, resulting in a threat to construct validity from a single intervention.
The heuristic splitting step in the identification process of C1 is also used in C2
and C3 and is not compared to alternative approaches. Although the results in
the contributions confirm that the identification process results in models con-
sistent with observations for the evaluated use cases, alternative splitting steps
or identification procedures may produce even more consistent models. In C2,
different versions of the adaptive procedure are compared, and in C4, a com-
parison is made with a simple baseline without dismissal. For both C2 and C4,
obvious alternatives for comparison have not been identified in the literature,
but the lack of appropriate baselines makes it difficult to judge the performance
of the contributions.

There are many potential use cases where the assumptions in C2 do not
hold, particularly the assumption that only emission distribution parameters
change and not transition probabilities. This is a threat to the external validity
of the approach.

Contributions C3 and C4 provide deductive proofs that ensure bounds on
the deadline miss probability and dismissal probability, under the given as-
sumptions. This implies that if we can ensure that the assumptions hold, then
we know that the bounds hold irrespective of experimental results.

Providing publicly available code and data makes it easier for other re-
searchers to build upon, reproduce results from, and find flaws in the contribu-
tions, strengthening the validity of research in general.
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6.4 Included Papers

Paper A
Title: Identification and Validation of Markov Models with Continuous Emis-
sion Distributions for Execution Times.
Authors: Anna Friebe, Alessandro V. Papadopoulos, and Thomas Nolte.
Status: Published at IEEE International Conference on Embedded and Real-
Time Computing Systems and Applications (RTCSA), 2020.
Abstract: It has been shown that in some robotic applications, where the exe-
cution times cannot be assumed to be independent and identically distributed,
a Markov Chain with discrete emission distributions can be an appropriate
model. In this paper, we investigate whether execution times can be modeled
as a Markov Chain with continuous Gaussian emission distributions. The main
advantage of this approach is that the concept of distance is naturally incor-
porated. We propose a framework based on Hidden Markov Model (HMM)
methods that 1) identifies the number of states in the Markov Model from ob-
servations and fits the Markov Model to observations, and 2) validates the pro-
posed model with respect to observations. Specifically, we apply a tree-based
cross-validation approach to automatically find a suitable number of states in
the Markov model. The estimated models are validated against observations,
using a data consistency approach based on log likelihood distributions under
the proposed model. The framework is evaluated using two test cases executed
on a Raspberry Pi Model 3B+ single-board computer running Arch Linux ARM
patched with PREEMPT RT. The first is a simple test program where execu-
tion times intentionally vary according to a Markov model, and the second is
a video decompression using the ffmpeg program. The results show that in
these cases, the framework identifies Markov Chains with Gaussian emission
distributions that are valid models with respect to the observations.
Author’s contributions: I was the main driver of this work, under the super-
vision of the co-authors. I have collected the timing traces, developed the code
for the framework, and written a draft of the manuscript that was improved in
collaboration with the co-authors.
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Paper B
Title: Adaptive Runtime Estimate of Task Execution Times Using Bayesian
Modeling.
Authors: Anna Friebe, Alessandro V. Papadopoulos, Filip Marković, and
Thomas Nolte.
Status: Published at IEEE International Conference on Embedded and Real-
Time Computing Systems and Applications (RTCSA) 2021.
Abstract:In the recent works that analyzed execution-time variation of real-
time tasks, it was shown that such variation may conform to regular behavior.
This regularity may arise from multiple sources, e.g., due to periodic changes in
hardware or program state, program structure, inter-task dependence, or inter-
task interference. Such complexity can be better captured by a Markov Model,
compared to the common approach of assuming independent and identically
distributed random variables. However, despite the regularity that may be de-
scribed with a Markov model, over time, the execution times may change due
to irregular changes in input, hardware state, or program state. In this paper, we
propose a Bayesian approach to adapt the emission distributions of the Markov
Model at runtime, in order to account for such irregular variation. A preprocess-
ing step determines the number of states and the transition matrix of the Markov
Model from a portion of the execution time sequence. In the preprocessing
step, segments of the execution time trace with similar properties are identi-
fied and combined into clusters. At runtime, the proposed method switches
between these clusters based on a Generalized Likelihood Ratio (GLR). Using
a Bayesian approach, clusters are updated, and emission distributions are esti-
mated. New clusters can be identified, and clusters can be merged at runtime.
The time complexity of the online step is O(Nˆ2 + NC), where N is the number
of states in the Hidden Markov Model (HMM) that is fixed after the prepro-
cessing step, and C is the number of clusters.
Author’s contributions: I have been the main author and driver of the work.
Planning of the paper and evaluation has been performed with the co-authors. I
have developed the software, performed the experiments, and written the draft
of the paper that has been improved in collaboration with the co-authors.
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Paper C
Title: Efficiently Bounding Deadline Miss Probabilities of Markov Chain Real-
Time Tasks.
Authors: Anna Friebe, Filip Marković, Alessandro V. Papadopoulos, and
Thomas Nolte.
Status: Published in Real-Time Systems Special Issue: Resource Partitioning
for Modern Multicore Systems in Oct 2024.
Abstract: In real-time systems analysis, probabilistic models, particularly
Markov chains, have proven effective for tasks with dependent executions. This
paper improves upon an approach utilizing Gaussian emission distributions
within a Markov task execution model that analyzes bounds on deadline miss
probabilities for tasks in a reservation-based server. Our method distinctly ad-
dresses the issue of runtime complexity, prevalent in existing methods, by em-
ploying a state merging technique. This not only maintains computational effi-
ciency but also retains the accuracy of the deadline-miss probability estimations
to a significant degree. The efficacy of this approach is demonstrated through
the timing behavior analysis of a Kalman filter controlling a Furuta pendulum,
comparing the derived deadline miss probability bounds against various bench-
marks, including real-time Linux server metrics. Our results confirm that the
proposed method effectively upper-bounds the actual deadline miss probabili-
ties, showcasing a significant improvement in computational efficiency without
significantly sacrificing accuracy.
Author’s contributions: I am the main driver of the work. Planning of the pa-
per has been performed jointly with the co-authors. I have provided the proofs,
developed the software, performed the evaluation, and written the draft of the
paper that has been improved in collaboration with the co-authors.
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Paper D
Title: Nip It In the Bud: Job Acceptance Multi-Server.
Authors: Anna Friebe, Tommaso Cucinotta, Filip Marković, Alessandro V.
Papadopoulos, and Thomas Nolte.
Status: Accepted at 31st IEEE Real-Time and Embedded Technology and Ap-
plications Symposium (RTAS) 2025.
Abstract: Computationally demanding tasks with highly variable execution
times may require parallel processing. Scheduling such tasks with low dead-
line miss rates but without significant overprovisioning is challenging. This
issue arises in applications like nonlinear optimization for Model Predictive
Control (MPC). The Constant Bandwidth Server (CBS) provides timing isola-
tion, supporting both hard and soft real-time tasks. However, scheduling par-
allel, time-varying jobs across multiple CBS instances requires static job-to-
server assignments, which can lead to resource underutilization due to queued
jobs awaiting specific servers. This paper introduces the Job Acceptance Multi-
Server (JAMS), a mechanism in which multiple CBS instances share a common
job queue, enabling flexible job dispatching for parallel workloads. JAMS in-
corporates a job dismissal mechanism to address overloads, ensuring that only
jobs with guaranteed resource availability are accepted. Each CBS instance
checks if it can complete a job by its deadline, given probabilistic knowledge
on its execution times, dismissing unfeasible jobs to avoid excessive tardiness
across queued tasks. Implemented in Linux, JAMS is evaluated with compu-
tation times drawn from an MPC task and synthetic datasets. The extensive
experimental results we provide demonstrate that JAMS effectively controls
the deadline miss rate, maintaining it below a specified design threshold.
Author’s contributions: I am the main driver of the work. Planning of the pa-
per has been performed jointly with the co-authors. I have provided the proofs,
collected MPC traces for the evaluation, and written the draft of the paper that
has been improved in collaboration with the co-authors. Tommaso Cucinotta
has contributed the JAMS Linux implementation and performed most of the
evaluation.
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Paper E
Title: Resource Management For Stochastic Parallel Synchronous Tasks: Ban-
dits To The Rescue.
Authors: Anna Friebe, Alberto Marchetti-Spaccamela, Tommaso Cucinotta,
Alessandro V. Papadopoulos, Thomas Nolte, and Sanjoy Baruah.
Status: Under review.
Abstract: In scheduling real-time tasks, we face the challenge of meeting hard
deadlines while optimizing for some other objective, such as minimizing energy
consumption. Formulating the optimization as a Multi-Armed Bandit (MAB)
problem allows us to use MAB strategies to balance the exploitation of good
choices based on observed data with the exploration of potentially better op-
tions. In this paper, we integrate hard real-time constraints with MAB strategies
for resource management of a Stochastic Parallel Synchronous Task. On a plat-
form with M cores available for the task, m ≤ M cores are initially assigned.
Prior work has shown how to compute a virtual deadline such that assigning all
M cores to the task if it has not completed by this virtual deadline guarantees
that the deadline will be met. An MAB strategy is used to select the value of
m. A Dynamic Power Management (DPM) energy model considering CPU
sockets and sleep states is described. Experimental evaluation shows that MAB
strategies learn consistently suitable m, and perform well compared to binary
exponential search and greedy methods.
Author’s contributions: The idea to use a MAB formulation of this problem
originated from Sanjoy Baruah. I am the main driver of the work. Planning
of the paper has been performed jointly with the co-authors. I have developed
the software, performed the evaluation, and written the draft of the paper that
has been improved in collaboration with the co-authors. Alberto Marchetti-
Spaccamela has contributed significantly to the final formulation of several of
the proofs.





Chapter 7

Conclusion and Future
Directions

7.1 Conclusion

In this thesis, real-time systems with highly varying computation times have
been considered, and probabilistic methods for analysis and scheduling of such
systems have been explored.

A first line of research explored periodic tasks, with dependence between
successive job computation times. The first research question related to mod-
eling the execution time behavior of such tasks. For evaluated use cases, it
was shown that an Hidden Markov Model (HMM) with continuous emission
distributions generates data consistent with observations. A framework was
presented that identifies such an HMM from computation time traces and val-
idates if the model output is consistent with observations using a dispersion-
based statistic.

In the second research question, we consider such a task with runtime
changes to emission distribution parameters. A method was presented for run-
time adaptation of the HMM, assuming that emission distribution parameters
change instantaneously but remain constant in segments between the change
points.

The third research question regards the deadline miss probability of a
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continuous-emission execution time HMM task in a reservation-based server.
An efficient method was presented for bounding the expected deadline miss
probability at steady state for such a task. The time required for the bound
computation does not depend on the job execution time range, and there is no
need to select a scaling factor. A state merging technique further reduces the
bound computation time.

Further, we have explored the scheduling of parallel workload with varying
computation times.

Research question four relates to ensuring a determined probability of
meeting the deadline for started jobs. With the Job Acceptance Multi-
Server (JAMS) mechanism, several Constand Bandwidth Servers (CBS) share
a single job queue, enabling flexible job dispatching and implementing a
guaranteed-capacity thread pool. Furthermore, the JAMS acceptance test en-
sures that started jobs have a specified probability of meeting the deadline, at
the cost of dismissing jobs in overload situations.

In the fifth research question, we consider parallel synchronous tasks and
optimize towards an average-case objective while meeting hard deadlines. Jobs
of a stochastic parallel synchronous task scheduled on multiple processors are
guaranteed to meet hard deadlines when assigned a maximum number of pro-
cessors at a virtual deadline, based on previous work. A Multi-Armed Ban-
dit (MAB) formulation of the problem enables learning an initial number of
processors to assign to the task that minimizes the energy consumption. Us-
ing derived response time bounds in the MAB algorithm further decreases the
energy consumption.

7.2 Future Directions

The validation procedure in Paper A performs an offline validation that data
generated from the model is similar to empirical execution time traces, using a
dispersion-based statistic. It would be interesting to pursue an online validation
that the model is pessimistic in a stochastic sense compared to observed data.

The assumptions in the adaptive approach of Paper B are rather restrictive.
In particular is assumed that only emission distribution parameters change, and
that transition probabilities remain the same. There are many use cases where
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this assumption does not hold. It would be interesting to explore adaptive ap-
proaches that allow for changes to the transition probabilities. Potentially, it
could be feasible to consider a state-merged HMM as described in Paper C and
estimate the highest-mean state, an upper bound on the remaining states, and
transition probabilities to and from the highest-mean state.

For the JAMS in Paper D, there are several potential future directions to
explore. The analysis could be provided for a general reservation-based server,
not restricted to CBS. A natural step on the implementation side is to provide
JAMS as a library with an interface for submitting work, checking status, and
retrieving results. Extending JAMS with a dismissal probability estimate at the
time of arrival would allow for the caller to manage overload situations in alter-
native ways. A kernel implementation would have some advantages in terms of
overhead and could potentially allow for a tighter analysis by aligning task and
server deadlines. Further experimental evaluation for different architectures
and with bandwidth reclamation would be of interest.

In relation to the MAB approach in Paper E, Contextual Multi-Armed Ban-
dit (CMAB) or restless bandit approaches could be explored to better adapt to
a dynamic system. Validation of the energy model is necessary to ensure that
the estimated energy savings translate to lower energy consumption in real life.

Seen in a wider perspective, analysis and scheduling of more complex real-
time systems where the proposed contributions of this thesis constitute compo-
nents is a natural future research direction. Distributed or edge/cloud systems
could be considered, as well as analysis of more complex task models. In this
thesis, the focus has been on computational requirements. Exploring the effects
of memory access in relation to the contributions of this thesis is an important
future direction.
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Regnell, and Anders. Wesslén. Experimentation in Software Engineer-
ing. Springer Berlin Heidelberg, Berlin, Heidelberg, 2nd ed. 2024. edi-
tion, 2024.



[97] Takahiro Shinozaki. HMM state clustering based on efficient cross-
validation. In 2006 IEEE International Conference on Acoustics Speech
and Signal Processing Proceedings, volume 1, pages 1157–1160, 2006.

[98] Andreas Lindholm, Dave Zachariah, Peter Stoica, and Thomas B Schön.
Data consistency approach to model validation. IEEE Access, 7:59788–
59796, 2019.

[99] Bernardo Villalba Frı́as, Luigi Palopoli, Luca Abeni, and Daniele
Fontanelli. The prosit tool: Toward the optimal design of proba-
bilistic soft real-time systems. Software: Practice and Experience,
48(11):1940–1967, 2018.

[100] Nikunj C. Oza and Stuart J. Russell. Online bagging and boosting. In
Thomas S. Richardson and Tommi S. Jaakkola, editors, Proceedings of
the Eighth International Workshop on Artificial Intelligence and Statis-
tics, volume R3 of Proceedings of Machine Learning Research, pages
229–236. PMLR, 04–07 Jan 2001. Reissued by PMLR on 31 March
2021.





II

Included Papers

63





Chapter 8

Paper A
Identification and Validation of
Markov Models with
Continuous Emission
Distributions for Execution
Times.

Anna Friebe, Alessandro V. Papadopoulos, and Thomas Nolte.
In IEEE International Conference on Embedded and Real-Time Computing
Systems and Applications (RTCSA), 2020.

65



Abstract

It has been shown that in some robotic applications, where the execution times
cannot be assumed to be independent and identically distributed, a Markov
Chain with discrete emission distributions can be an appropriate model. In
this paper we investigate whether execution times can be modeled as a Markov
Chain with continuous Gaussian emission distributions. The main advantage
of this approach is that the concept of distance is naturally incorporated. We
propose a framework based on Hidden Markov Model (HMM) methods that 1)
identifies the number of states in the Markov Model from observations and fits
the Markov Model to observations, and 2) validates the proposed model with
respect to observations. Specifically, we apply a tree-based cross-validation ap-
proach to automatically find a suitable number of states in the Markov model.
The estimated models are validated against observations, using a data consis-
tency approach based on log likelihood distributions under the proposed model.
The framework is evaluated using two test cases executed on a Raspberry Pi
Model 3B+ single-board computer running Arch Linux ARM patched with
PREEMPT RT. The first is a simple test program where execution times in-
tentionally vary according to a Markov model, and the second is a video de-
compression using the ffmpeg program. The results show that in these cases
the framework identifies Markov Chains with Gaussian emission distributions
that are valid models with respect to the observations.
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8.1 Introduction

In real-time systems requirements on timing properties must be considered, in
addition to functional requirements, i.e., it is of importance to have the correct
behavior at the appropriate time. Real-time requirements range from safety
critical timing requirements of hard real-time systems found in applications of
aeronautics, automotive and medical device systems to soft real-time systems,
e.g., common in multimedia applications. Failure to meet hard real-time re-
quirements may result in a disaster and/or loss of human life whereas failure
to meet a soft real-time requirement can cause a deterioration of the Quality of
Service (QoS) [11] such as in a video playback or affect the Quality of Control
(QoC) [34] of a robot’s motion planning.

It is a challenge to enable sufficiently accurate timing analysis of to-
day’s complex systems. Multicore processors [28] and mixed-criticality sys-
tems [7, 43], as well as fog and edge computing capabilities [41, 40, 12], re-
quire new methods for ensuring sound timing estimates along with functional
integrity and limited over-provisioning of computational resources and band-
width for communication. Practical timing analysis methods that consider the
entire timing distribution, as opposed to only the tail of the distribution, can
allow for system design without excessive over-provisioning. Taking the entire
distribution into account is of particular interest primarily in the case of soft
real-time applications where requirements on QoS or QoC are considered.

Frı́as et al. have shown that computation times of a computer vision appli-
cation in a robotic system can be described as a Markov Model [20, 4]. Inspired
by the work of Frı́as et al., in this paper we investigate the following research
question: How can the execution time distribution of a task be faithfully mod-
eled in a probabilistic framework? In particular:

1. Can execution time distributions be suitably modeled as a Markov Chain,
where each state is associated with a Gaussian emission distribution?

2. How can one estimate the model parameters from timing measurements
of the task’s jobs?

Our main motivation for exploring continuous emission distributions is that
they naturally include a concept of distance. Two execution time measure-
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ments that are similar are more likely to originate from the same state, com-
pared to measurements of different magnitude. In the standard methods for
Markov models with discrete emission distributions, each execution time value
is treated as a label and the distance information is lost. By using continuous
distributions, a model likely to provide a reasonable estimate from a smaller
amount of observations. Although each execution time is a discrete number of
clock cycles, realistic tasks on today’s processors often result in a large number
of possible values, that can be closely approximated by a continuous distribu-
tion. In order to develop methods that can be of practical use in schedulability
analysis, we estimate model parameters from observations.

In this paper, we present an automated framework that estimates and val-
idates an execution time distribution model from observations. The proposed
model is a Markov Model with a Gaussian emission distribution associated with
each state. More precisely, we propose an HMM, as we observe the execution
times, but the states cannot be directly observed. Firstly, in step 1 we identify
the number of states for the HMM, and fit the model to the observations. A
tree-based cross-validation approach [39] is adopted for identifying the num-
ber of states. We estimate the parameters for the Gaussian distributions and
the transition matrix by applying the Expectation-Maximization algorithm [35],
initialized with values resulting from the tree-based cross-validation. In step 2
we validate the estimated model using observations. Here, we adopt a data
consistency approach [27], and derive methods for application of this approach
to Markov Chains using outputs from the Forward-backward algorithm.

A set of probabilistic techniques are selected and combined in the frame-
work, to enable identification and validation of the HMM. The methods are
applied to two test cases, a test program with a known Markov Chain behavior,
and a video decompression program treated as a black box. The results are
presented and discussed. Further investigation is needed to evaluate the appli-
cations where the framework and the specific techniques of each step are most
suitable, and for what applications other techniques are better for one or several
of the proposed steps.

The rest of the paper is structured as follows. Section 8.2 presents the
related work, followed by Section 8.3 that presents the task model. Section 8.4
presents the proposed framework. Sections 8.5 and 8.6 discuss the experimental
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results, Finally, Section 8.7 concludes the paper and highlight directions for
future work.

8.2 Related Work

Cucu-Grosjean and Davis have recently provided thorough surveys of the lit-
erature on probabilistic methods in Timing Analysis [15], Response Time
Analysis, analysis of server-based systems, Real-Time Queuing Theory, sys-
tem analysis with fault modeling and Mixed Criticality Systems [14]. Cazorla
et al. provide a taxonomy and a survey on the methods used in Probabilistic
Worst-Case Execution Time Analysis [9]. The authors also emphasize the fact
that while measurement-based approaches may allow analysis of a black-box
system, the results are only reliable if the analysis data are representative with
respect to the operational environment. That is, all sources of variation in exe-
cution times or latencies that are relevant for the result need to be contributing
to the variation in the data. Otherwise their effects need to be upper-bounded
or accounted for in other ways.

In the area of static probabilistic timing analysis, many works consider
models for set-associative or fully associative caches. Quinones et al. [37]
showed that for some cases with programs displaying a cache risk pattern, ran-
dom replacement gives better results and lower variability compared to Least
Recently Used (LRU) replacement. Altmeyer et al. [6] provide analysis consid-
ering reuse distance, associativity and contention. Analysis using random re-
placement caches has been extended to the multi-path case [26, 25]. Chen and
Beltrame [10] perform timing analysis for single-path programs on systems
with evict-on-miss random replacement caches by using an adaptive Markov
model.

Measurement-Based Probabilistic Timing Analysis methods estimate the
pWCET by applying statistical techniques to observations of execution time
measurements. While WCET is a scalar value – the upper bound of the worst
case execution time of runs – the pWCET is a probability distribution repre-
senting the upper bound on the probability of exceeding each execution time
value in valid scenarios of repeated runs of the program. The theoretical ba-
sis is in Extreme Value Theory (EVT). The first work in this direction was by
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Burns, Edgar and Griffin [8, 19, 21]. Measurement-Based Probabilistic Timing
Analysis was then introduced by Cucu-Grosjean et al. [13] in 2012.

Probabilistic Response Time Analysis is used to calculate the response time
distribution of jobs, and in this manner estimate the probability of a deadline
miss. Diaz et al. [16] presented response time analysis for a system with peri-
odic tasks where random variables describe execution times. Here, the worst-
case processor utilisation can exceed 1, since a backlog is considered at the end
of the hyperperiod. They show that the backlog is a Markov chain. In [17] they
also provided properties needed to achieve a safe over-approximation. More
recent, the system model was extended by Kaczynski et al. [22] to also allow
for systems with aperiodic tasks.

Similarly as in Measurement-Based Probabilistic Timing Analysis for
pWCET estimates, EVT has also been applied in order to estimate response
time distributions. The majority of the work in this line of research, Statistical
Response Time Analysis, has been performed by Lu et al. [32, 31, 29, 30].

Real-Time Queueing Theory is an area where queue lengths and waiting
times are analyzed mathematically. Lehozcky [24] introduced the concept in
1996, building upon work on queuing theory that started in the 1950s. Doytchi-
nov provided a mathematical formalization in [18].

Probabilistic analysis has also been applied in analysis of server-based
systems. Buttazzo and Abeni introduced the Constant Bandwidth Server
(CBS) [1], and probabilistic deadlines for Quality of Service guarantees [2].
The same group has considered execution times [3, 36] and interarrival
times [5, 33, 36] modeled with probability distributions.

Frı́as et al. [20, 4] have published work regarding execution time models
for tasks where execution times display dependencies due to slowly changing
input data. They have shown that for a robotic image processing task in line fol-
lowing, modeling execution times as a Hidden Markov Model is appropriate. In
this work, discrete emission distributions for the different states are used. The
deadline miss probability under CBS/Earliest Deadline First (EDF) is estimated
for the Hidden Markov Model and compared to an assumption of independent
and identically distributed random variables. The calculated probabilities are
compared to experimental results with CBS/EDF as implemented in the Linux
SCHED DEADLINE scheduling policy. The experiments show that with an
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independent and identically distributed (i.i.d.) assumption of execution times,
the probability of respecting the deadline is overestimated, i.e., the estimate is
optimistic. The estimates based on the identified Hidden Markov Model, on the
other hand, are very close to the experimental results.

8.3 Task Model

In this paper, we consider a periodic task τ consisting of a sequence of periodic
jobs Ji, i ∈ N, with period T . Each job has an execution time ci ∈ R.

We model the execution time distribution of the task according to an
adapted version of the Markov Computation Time Model (MCTM) in Frı́as
et al. [20]. The model is described by the set {M,P, C}, where

• M = {m1,m2, . . . ,mN} is the set of N states, mn, n ∈ N.

• P is the N ×N state transition matrix, where the element pa,b represents
the conditional probability P(Xi+1 = mb|Xi = ma) of being in state
mb at round i+ 1, given that at round i the state is ma.

• C = {C1, C2, . . . , CN} is the set of execution time distributions, or
emission distributions related to respective state. In this paper, these are
modelled as Gaussian distributions with mean µn, and variance σ2

n, i.e.,
Cn ∼ N (µn, σ

2
n).

8.4 Framework

In this section, we present and describe the framework that we have developed
for the identification and validation of the probabilistic model. Specifically, the
framework consists of the following steps:

1. Firstly, we apply the tree-based cross-validation approach [39] described
in Section 8.4.1 to identify the number of states in the HMM from the
observations. An HMM with the identified number of states is fitted to
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the observations, according to the Expectation-Maximization [35] algo-
rithm, using the likelihoods obtained with the Forward-backward algo-
rithm [38]. The Gaussian distribution parameters and the transition ma-
trix used as a starting point for the optimization is given by the outputs
of the tree-based cross-validation.

2. Secondly, the obtained model is validated using a data consistency ap-
proach [27] described in Section 8.4.2. Here we derive expressions using
outputs from the Forward-backward algorithm for application of the data
consistency model validation.

In the following subsections we describe these steps on model identification
and validation in more detail.

8.4.1 Tree-Based Cross-Validation

In general, the number of states N is not known a priori, and must be identi-
fied, for example based on logged data. In order to identify a number of states
Nopt that allows for capturing the execution sequence properties without over-
fitting, a tree-based cross-validation approach is applied, as described in Shi-
nozaki [39]. The execution time sequence cs = {c1, c2, . . . , cNS} consisting
of execution times from NS ∈ N jobs, is split into M non-overlapping folds
csf with index f .

cs = ∪Mf=1csf

csf ∩ csg = ∅, f ̸= g

For each fold with index f , we also define the complement cscf , the remaining
folds:

cscf = ∪f ̸=gcsg

For each fold an MCTM with N > Nopt states is fitted to the remaining
folds cscf . The initial values of means and standard deviations for the emission
distributions are given by k-means clustering with k = N .

The occupancy probability γni is the probability of being in state n at round
i, given the observation sequence csf , where ci ∈ csf and the model parameters
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retrieved from fitting to cscf . The occupancy probabilities for each state index
n and observation round i are calculated with the Viterbi algorithm [38].

Statistics containing all information from the sample needed for parame-
ter value estimates for a statistical model are sufficient for the parameter. By
calculating the sufficient statistics we can store the needed information from
a sample in a compact manner. Sufficient statistics for likelihood estimates
of a Markov chain model with Gaussian emission distribution are a0, a1 and
a2 [39]. These are calculated for each fold index f and state index n:

a0fn =
∑

i,ci∈csf

γni

a1fn =
∑

i,ci∈csf

ciγni

a2fn =
∑

i,ci∈csf

c2i γni

For a set or cluster s of states, the maximum likelihood mean µ and vari-
ance ν for a fold index f can be calculated from the sufficient statistics from
remaining folds:

µfs =

∑
g ̸=f

∑
mn∈s a1gn∑

g ̸=f

∑
mn∈s a0gn

(8.1)

νfs =

∑
g ̸=f

∑
mn∈s a2gn∑

g ̸=f

∑
mn∈s a0gn

− µ2
fs (8.2)

These are then used to calculate a likelihood per fold index f and cluster s:

Lfs = −
1

2
×∑

mn∈s

(
ln(2πνfs)a0fn +

a2fn − 2µfsa1fn + µ2
fsa0fn

νfs

)
(8.3)

The likelihood for a cluster is then calculated by summation of the likeli-
hoods of each fold index.

Ls =

M∑
f=1

Lfs (8.4)
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A tree is created, and initially all states are placed in a cluster in the root
node. The cross validated likelihood is calculated for the tree consisting of
only this cluster. Attempts are made to split the leaf nodes of the tree, so that
the node’s cluster is split into two clusters. The possible ways of splitting the
states in a tree node are:

1. 2-means clustering of 2D data points of mean and standard deviation of
each state is performed, and the resulting split is evaluated.

2. The states are ordered with respect to increasing mean, and each possible
split along the ordered states is evaluated.

3. The modes are ordered with respect to increasing standard deviation, and
each possible split along the ordered states is evaluated.

The split that gives the greatest increase in likelihood is selected. Nodes are
split as long as the cross validated likelihood of the subtree is increased by
the split, or until there is only one state in the tree node. The node splitting
process is a greedy algorithm that may lead to a local maximum. Pseudo code
is provided in Algorithm 8.1.

When a suitable number of states has been found, an MCTM with this
number of states is fitted to the execution time samples, starting from initial
values taken from the node clusters.

8.4.2 Data Consistency Model Validation

We evaluate whether the fitted model as described in Section 8.4.1,is valid,
with respect to observations. Thus, we generate samples from the model and
using a data consistency approach [27] we compare the generated samples to
observations. If the observed data is consistent with data generated from the
model, the model can be used in schedulability analysis.

The model validation can be performed with the same observations used for
the model estimate, to evaluate whether the model can capture the properties of
the observations. The evaluation can also be performed with observations from
other runs of the program, to evaluate whether the model and parameters are
valid in these cases, for different inputs or different hardware states.
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Algorithm 8.1: Pseudo code describing the tree cluster splitting pro-
cess. The likelihood increase for possible splits of a cluster are calcu-
lated using the pre-computed sufficient statistics.

Input: suffStats, N
Output: tree

1 Function TreeClusterSplitting(suffStats, N):
2 tree← createNode()

/* Add all states to the root cluster */
3 tree.states← [1 : N ]

/* Find the best split */
4 tree.[leftStates, rightStates, advantage]←

CalcSplitAdvantage(tree, suffStats)
/* While the likelihood increases, and we can

split leaves */
5 while (tree.advantage > 0) and (nLeafNodes(tree) ≤ N) do
6 for node ∈ leaves(tree) do
7 if node.advantage > 0 then

/* Add new leaf nodes and split the
state cluster */

8 node.leftChild← CreateNode()
9 node.leftChild.states← node.leftStates

10 node.rightChild← CreateNode()
11 node.rightChild.states← node.rightStates
12 node.states← ∅

13 for node ∈ leaves(tree) do
/* Find the best split of the leaf */

14 node.[leftStates, rightStates, advantage]←
CalcSplitAdvantage(node, suffStats)

15 for node ∈ tree; post− order do
/* Move the highest likelihood increase to

the root */
16 node.advantage← MaxAdvantageChildren(node)

/* Return the tree with Nopt leaf clusters */
17 return tree
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The data consistency approach we apply is described by Lindholm et
al. [27]. The log-likelihood under the proposed model is estimated for samples
generated from the model and for the observed samples. Using a log-likelihood
based statistic, an estimate is calculated of the probability of generating the ob-
served sample or a sample with higher dispersion, from the evaluated model.
This is equivalent to the probability that we reject the model on the basis of the
observed data being overdispersed, assuming that the data is generated from
the model. Another way of describing it is that the model is underdispersed
compared with the observations. This probability of falsely rejecting the model
or Probability of False Alarm due to underdispersion (PFAu) is similar to the
p-value concept in hypothesis evaluation. While the p-value is the probability
of obtaining the test results or more extreme values assuming the null hypoth-
esis is correct, the PFAu is the probability of obtaining data with at least the
observed variability, assuming they are generated from the proposed model.

We denote the observed execution times with an underline, as c. In our case,
we evaluate a single model with a probability distribution p(c|M∗,P∗, C∗),
whereM∗,P∗, C∗ are the parameters of the fitted MCTM.

Using the model, we generate trajectories denoted with tilde c̃ ∼
p(c|M∗,P∗, C∗). Using c1:t to denote the samples at rounds 1 to t from the
trajectory, the conditional likelihood of an execution time measurement in a
trajectory under the model is:

pt = p(ct|c1:t−1,M∗,P∗, C∗) =
p(c1:t|M∗,P∗, C∗)
p(c1:t−1|M∗,P∗, C∗)

This can be calculated from the scaling factors resulting from the Forward-
backward algorithm. We denote these as scai. From Rabiner [38] we have the
probability of the observations expressed in terms of the scaling factors:

p(c1:t|M∗,P∗, C∗) =
1∏t

i=1 scai

From this it is clear that the conditional probability can be written as:

pt = p(ct|c1:t−1,M∗,P∗, C∗) =
1

scat
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The conditional log-likelihood of a data point is:

zt ≜ ln p(ct|c1:t−1,M∗,P∗, C∗) = − ln scat (8.5)

Conditional probabilities of outputs for each state separately can be esti-
mated using the transition matrix and the scaled forward variables α̂:

p(ct, Xt = j|c1:t−1,M∗,P∗, C∗)

= p(ct|Xt = j)
N∑
k=1

pk,jp(Xt−1 = k|c1:t−1,M∗,P∗, C∗)

=
1

σj
√
2π

e−
(ct−µj)

2

2σ2

N∑
k=1

pk,jα̂k,t−1

From Rabiner [38] we have that:

αk,t = p(c1:t, Xt = k|M∗,P∗, C∗)

α̂k,t = αk,t

t∏
i=1

scai =
p(c1:t, Xt = k|M∗,P∗, C∗)

p(c1:t|M∗,P∗, C∗)

= p(Xt = k|c1:t,M∗,P∗, C∗)

The conditional log-likelihood of each state and data point is:

zt,j ≜ ln p(ct|Xt = j, c1:t−1,M∗,P∗, C∗)

= − lnσj −
ln 2π

2
− (ct − µj)

2

2σ2
+ ln

N∑
k=1

pk,jα̂k,t−1 (8.6)

We denote the mean of the log-likelihood of data points in generated trajectories
as E[z̃t] and the variance as Var[z̃t]. The test statistic T for a trajectory is
defined:

T (c;M∗,P∗, C∗) =
1

n

n∑
t=1

zt − E[z̃t]
Var[z̃t]

(8.7)
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T statistics are defined similarly for each state by replacing zt with zt,j . S
is defined as the random event of a generated sample resulting in a higher T -
statistic than the observed one:

S(c̃, c) : T (c̃;M∗,P∗, C∗) > T (c;M∗,P∗, C∗)

When the probability of S, Pc̃|M∗,P∗,C∗(S(c̃, c)) is close to 0 or close to 1, it
indicates that the observed data is inconsistent with the proposed model.

Lindholm et al. define PFAu, the probability of falsely rejecting a model
due to under-dispersion of the generated log likelihoods as:

PFAu ≜ Pc̃|M∗,P∗,C∗(S(c̃, c)) (8.8)

Lindholm et al. also define the probability of falsely rejecting the model due to
under- or overdispersion as:

PFA = min(PFAu, 1− PFAu)

However, in our work, we use PFAu, as an under-dispersion of data gener-
ated from the proposed model indicates that the model is optimistic with regard
to tail estimates. We note that values of PFAu that are close to 1 also indicate
model inconsistency, but that this relates to over-dispersion of data generated
from the model.

Pseudo code for the data consistency approach is given in Algorithm 8.2.

8.5 Evaluation

8.5.1 Test Setup

A Raspberry Pi 3B+ single board computer with quad-core 1.4 GHz
BCM2837B0 is utilized in the tests. Arch Linux ARM kernel 4.14.87 with
PREEMPT RT patch 4.14.87-49 is configured with fully preemptible kernel
and timer frequency of 100Hz. The SD card low latency mode and dwc otg
FIQ are disabled. A test program is pinned to a core that is isolated from
load-balancing and scheduling algorithms. The scaling governor is set to per-
formance for all cores and USB is disabled during the run. The program is
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run in user space with FIFO scheduling and maximum priority. The ftrace
utility trace-cmd is used to log release (sched wakeup) and scheduling
(sched switch) events, and to generate trace reports with nanosecond pre-
cision from the trace logs.

The model identification and validation framework is applied offline using
the recorded traces.

8.5.2 Implementation

The tree-based cross validation approach described in Section 8.4.1 and the
data consistency criterion model validation described in Section 8.4.2 are im-
plemented in R1, utilizing the R packages depmixS4 [42] and data.tree.
Evaluation code as well as test programs and scripts are available online 2.

Four folds are used for the cross validation. As described in Section 8.4.1,
the MCTM is fitted to three folds, and the sufficient statistics using the fitted
model are calculated for the remaining fold. The occupancy probabilities are
determined by application of the Viterbi algorithm. A new MCTM with the
number of states given by the tree-based cross validation is created, and ini-
tialized with the means and variances from the clusters, as given in Eqs. (8.1)
and (8.2) averaged over all folds. This model is then fitted to the entire training
set, and the fitted model is validated with the data consistency criterion.

Values of the probability of false alarm due to underdispersion, PFAu, are
estimated for the entire model using zt as in Eq. (8.5), and for each state in
the model using zt,j as in Eq. (8.6). First, 100 trajectories are generated for
estimation of the mean and variance of the log likelihood. The trajectories are
generated using the simulate function in depmixS4, and log likelihoods are
retrieved from depmixS4’s forward and scaling variable resulting from the
Forward-backward algorithm. Second, 100 new trajectories are generated for
calculation of T values as given by Eq. (8.7). Referring to Algorithm 8.2, both
M ′ and M are set to 100.

1https://www.r-project.org/
2https://github.com/annafriebe/MarkovChainETFramework
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8.5.3 Markov Chain Test Program

In a first test, a program with a known Markov Chain behavior is evaluated.
The test program contains a state machine with three states. The program keeps
an array of 100 integers, initialized from a random uniform distribution in the
range [0, 4711]. It executes a job periodically at a 5ms interval. In the job, a
state transition is performed, given the following transition matrix:

P =

0.7 0.1 0.2
0.5 0.1 0.4
0.5 0.2 0.3

 (8.9)

Depending on the current state, elements in the array are increased with
43 and a modulo operation with 4711 is performed. The first state has the
shortest average execution time, the second state the middle and the third state
the longest average execution time.

Logs are created from 21 runs of the program, one is used for model param-
eter estimation, and 20 in the model evaluation. In each run, the task releases
10 000 jobs. A python script is used to calculate the execution time for each
job. The steady state is considered, so the logs from the first 250 jobs and the
last executed job instance are excluded. The execution times of the first 250 are
slightly lower, due to the program always starting in state 1 and possibly due to
the system state. The last job’s execution time is much longer due to produced
status output before termination.

The execution time sequence used for estimating models is displayed in
Fig. 8.1.

The tree based cross-validation approach is applied with 8 initial states to
the training execution time sequence. The fitted model has six remaining states.
The means and standard deviations of the states and PFAu values are displayed
in Table 8.1, and the estimated transition matrix is given by:

P =



0.51 0.18 0.08 0.02 0.19 0.007
0.45 0.27 0.05 0.04 0.18 0.005
0.36 0.14 0.07 0.047 0.38 0.005
0.31 0.18 0.07 3.7× 10−5 0.43 0.012
0.34 0.15 0.15 0.06 0.30 0.008
0.12 0.45 0.02 0.18 0.12 0.11

 (8.10)
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Fig. 8.1: The execution time sequence from the Markov Chain Test program
used for estimating models. Times are given in nanoseconds.
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Based on the means and standard deviations from Table 8.1, we can see that
states 1 and 2 represent the program state with the lowest mean execution time,
states 3 and 4 represent the middle program state and states 5 and 6 represent
the highest program state and state 6 also some outliers. If we sum the values
of columns 1-2, 3-4 and 5-6 for each row in Eq. (8.10), we see that for rows
1-5 they sum up to values similar to the corresponding transition probabilities
in 8.9.

We see in Table 8.1 that the model is valid for all but one of the test se-
quences (test 8).

8.5.4 Video Decompression

A video is generated with images from the Tears of Steel open movie
project3. The video is created with ffmpeg from frames 5000–8999 of the
1080bis-png images4. The frame rate is set to 25 fps.

A trace is logged during decoding of the video with ffmpeg in native
frame rate. The sequence of execution times from the decoding is displayed in
Fig. 8.2. We consider the steady state, therefore the first 250 and the last 50 ex-
ecution time measurements have been discarded, as outliers are seen on visual
inspection. From the figures it is clear that the execution times are separated
in distinct groups, the lower with execution times below 0.15 ms, accounting
for approximately 57% of the samples, a slightly higher with execution times
below 1 ms and a peak at around 0.45 ms, accounting for about 22% of the
samples, a higher and more varying 10 ms accounting for approximately 19%
of the samples, and the high with execution times above 22.5 ms accounting
for less than 2% of the samples. These groups are considered as macrostates,
and the transition probabilities between the states are displayed in Fig. 8.3. The
execution time sequence has been separated outside of the framework and the
transition probabilities in Fig. 8.3 are estimated directly from the sequence. The
framework analysis is applied to each of these groups separately. The PFAu

values are with respect to the sequence used for model estimation.

3https://mango.blender.org/
4https://media.xiph.org/tearsofsteel/tearsofsteel-1080bis-png/
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Fig. 8.2: The execution time sequence from the video decompression process.
Times are given in naonseconds, log scale.

Macro state 1: Execution times below 0.15 ms

The execution times ci < 0.15 ms are extracted from the video decompression
log, resulting in a log of 10 538 samples. A Markov chain model is identified in
the first two steps of the framework - the tree based cross validation approach
described in Section 8.4.1, and fitting to the observations. The initial number of
states is 20, and the resulting Markov model has 13 states. The data consistency
criterion PFAu for each state and for the entire model is calculated for the
observations. The features and PFAu values for the model is given in Table
8.2.

Macro state 2: Execution times in the range between 0.15 and 1 ms

The execution times 0.15 ≤ ci < 1 ms consist of 4165 samples. The tree-
based cross validation with 20 states in the initial Markov Model is applied and
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Fig. 8.3: Estimated transition probabilities between the macro states.

the resulting Markov Chain has 13 states. The state means and standard devi-
ations of the estimated model, and the associated PFAu values, are displayed
in Table 8.3.

Macro state 3: Execution times in the range between 1 and 22.5 ms

The execution times 1 ≤ ci < 22.5 ms are 3598 samples. The tree-based cross
validation does not generally find a solution in this case - for many starting
values the depmixS4 fit function is unable to complete the expectation maxi-
mization step. Starting from 24 initial states, a solution with 14 states is found.
The state means and standard deviations and corresponding PFAu values for
the model are listed in Table 8.4.

Macro state 4: Execution times above 22.5 ms

346 observations from the execution time sequence belong in macro state 4,
ci ≥ 22.5 ms. The tree-based cross validation starting with 15 states identifies
a model with 8 states. The state means and standard deviations and correspond-
ing PFAu values for the model estimated from the execution time sequence are
shown in Table 8.5.
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8.6 Discussion

The evaluation allows us to conclude that a Hidden Markov Model with Gaus-
sian emission distributions can be appropriate to model execution time se-
quence data, and that the proposed framework can be used to identify and vali-
date such a model.

The analysis of the Markov Chain test program shows that the methods
can be used to estimate the number of modes, the transition matrix, means and
standard deviations to fit the model. While the test program is constructed to
display Markov Chain properties, we show that the execution time distributions
in each state can be modeled by a combination of modes with Gaussian emis-
sion distributions. Compared to the video decompression test, the program has
a simple structure and a small memory footprint.

We also note that a Hidden Markov Model with Gaussian emission distri-
butions appears to be valid in relation to the execution time sequences in the
video decompression test.

The depmixS4 methods used in the tree-based cross validation step are
somewhat sensitive to the initial number of states, and the step may fail if
this number is too large or too small. These methods can also fail if there
are significant gaps between the execution time values, which is why the video
decompression sequence is separated into macrostates. The framework could
be expanded to manage separation into macrostates and find a suitable initial
number of states.

We also note that in some cases the number of states in the final models vary
significantly. The heuristic algorithm for splitting the nodes could be adapted
to evaluate a more exhaustive selection of possible splits, or replaced by an
optimization algorithm such as for example simulated annealing [23].

Due to randomization utilized in many of the methods within the frame-
work, different random seeds cause varying results. This is illustrated in
Fig. 8.4, where the Gaussian distributions of two models are visualized on
top of a normalized histogram of the sequence they are estimated from. The
Gaussian distributions are scaled with their respective stationary distribution
probabilities.

We have conducted preliminary tests with the validation step performed
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Fig. 8.4: Normalized histograms of execution times (in nanoseconds) of the
execution time sequence of the Markov chain test program. Two different es-
timated models from different random seeds are visualized with the Gaussian
distributions of the states scaled with their respective stationary distribution
probability, and their means displayed as vertical lines. In (a) we see the six
state model from Section 8.5.3, and in (b) a five state model estimated with
the framework applied to the same execution time sequence but initialized with
another random seed.
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with observations from running video decompression on another part of the
“Tears of Steel” movie, that indicate that the identified model is not valid in
this case. This may be due to input dependencies or cache related effects that
cause the Gaussian distribution parameters and transition matrix to change over
time and between runs.

Chen and Beltrame [10] show that effects of a random replacement cache
can be described by an adaptive Markov Chain, and the ARM processor on the
Raspberry Pi applies a pseudo-random cache replacement policy. Our methods
derive a homogeneous Markov Chain, and if the model changes significantly
during the sequence used for model parameter estimation, the model will not
be valid, and this will be reflected in the resulting PFAu values.

Finally, we note that cache-related jitter in our evaluations may be exagger-
ated by the ftrace process running simultaneously.

8.7 Conclusion and Future Work

This work proposed a measurement-based framework for probabilistic mod-
eling of execution times of real-time applications. It presented an end-to-end
workflow that first identifies the structure of a Markov Chain model and fits
the probabilistic distributions to the collected execution time data, and finally
validates the obtained model on the collected data based on a data consistency
approach.

As with all measurement-based approaches, the application of this frame-
work requires that the observations used at analysis are representative of the
observations at runtime.

In order for the models to be useful in cases where full representativity of
the observations at analysis time is not realistic to achieve, the methods de-
scribed in this paper need to be complemented with (i) a method for providing
a safe over-approximation of the execution time distribution, and (ii) a method
for dynamically updating the model to reflect the effects on execution time pat-
terns due to changes in input, program state or hardware state.

It is worth noticing that the proposed framework presents a consistent com-
bination of different probabilistic tools, but it can include other techniques as
alternatives. For example, the approach proposed in [20] for the identification
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of the Markov model can be used in the first step of the proposed framework,
as an alternative method. Further investigation on the tradeoffs among different
techniques is needed, and it is deferred to future work.

The framework could be further extended and automated, e.g., by specify-
ing required limits on the PFAu values. If these are too close to 0 or 1, one can
reject the model. Attempts can be made to identify new models in an iterative
manner, until we find a model that is not rejected, or we reach an iteration limit
and deem the proposed model not consistent with the observations.

Finally, this paper focused on the single use case of video decompression.
Other use cases will be analyzed in the future to better understand and investi-
gate benefits and drawbacks of different probabilistic tools that can be included
in this framework.
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Algorithm 8.2: Pseudo code describing the data consistency valida-
tion process.

Input:M∗,P∗, C∗, cM∗,P∗, C∗, c
Output: PFAu

1 Function DataConsistencyValidation(M∗,P∗, C∗, c):
2 for i ∈ 1 : M ′ do

/* Generate M ′ trajectories of the same
length as observations. */

3 traj1← GenerateTraj(M∗,P∗, C∗,M ′, length(c)))
/* Calculate log likelihoods zt and N zt,j for

the samples as in Eqs. (8.5) and (8.6). */
4 simZ1[i]← CalcZ(traj1,M∗,P∗, C∗)

/* Estimate E[zt] and N E[zt,j ] across M ′ values for
each round t. */

5 EZ ← Mean(simZ1)
/* Estimate E[zt] and N E[zt,j ] across M ′ values for

each round t. */
6 V arZ ← Var(simZ1)
7 for i ∈ 1 : M do

/* Generate M trajectories of the same length
as observations. */

8 traj2← GenerateTraj(M∗,P∗, C∗,M, length(c)))
/* Calculate log likelihoods zt and N zt,j for

the samples as in Eqs. (8.5) and (8.6). */
9 simZ2[i]← CalcZ(traj2,M∗,P∗, C∗)

/* Calculate M × (N + 1) Ts for zt and zt,j as in
Eq. (8.7) from simulated trajectories. */

10 Tsim[i]← CalcT(simZ2, EZ, V arZ)

/* Calculate log likelihoods zt and N zt,j for the
samples as in Eqs. (8.5) and (8.6). */

11 obsZ ← CalcZ(c,M∗,P∗, C∗)
/* Estimate the probability of S for the entire

model and per state. */
12 PFAu ← count(Tsim > Tobs)/M
13 return PFAu
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Table 8.1: State means and standard deviations (in nanoseconds) and corre-
sponding PFAu values for the model estimated from the training sequence.

State 1 2 3 4 5 6 All
mean 22240 22859 29652 30248 42185 41203 NA
stddev 222 420 221 409 383 9 190 NA
PFAu

test 1 0.22 0.21 0.18 0.18 0.94 0.44 0.31
test 2 0.52 0.49 0.33 0.33 0.14 0.56 0.87
test 3 0.38 0.37 0.24 0.24 0.43 0.05 0.02
test 4 0.28 0.27 0.19 0.18 0.53 0.20 0.19
test 5 0.36 0.36 0.22 0.22 0.42 0.22 0.24
test 6 0.14 0.14 0.12 0.14 0.75 0.10 0.06
test 7 0.26 0.26 0.18 0.18 0.67 0.38 0.19
test 8 0.00 0.00 0.01 0.01 0.58 0.00 0.00
test 9 0.58 0.58 0.43 0.39 0.01 0.44 0.89
test 10 0.55 0.53 0.42 0.40 0.02 0.62 0.92
test 11 0.27 0.26 0.19 0.20 0.76 0.24 0.17
test 12 0.43 0.43 0.29 0.26 0.04 0.31 0.41
test 13 0.48 0.47 0.25 0.23 0.03 0.31 0.50
test 14 0.74 0.73 0.50 0.46 0.01 0.69 0.99
test 15 0.28 0.28 0.19 0.20 0.58 0.31 0.14
test 16 0.29 0.28 0.21 0.21 0.41 0.14 0.56
test 17 0.37 0.37 0.21 0.21 0.09 0.13 0.76
test 18 0.36 0.36 0.24 0.23 0.37 0.12 0.41
test 19 0.28 0.28 0.21 0.21 0.53 0.59 0.61
test 20 0.19 0.20 0.18 0.19 0.81 0.16 0.11
train 0.40 0.39 0.28 0.26 0.45 0.48 0.94
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Table 8.2: State means and standard deviations (in nanoseconds) and corre-
sponding PFAu values with the estimated model for macrostate 1.

State 1 2 3 4 5 6 7
mean 70 662 76 370 10 082 10 671 10 920 15 954 43 703
stddev 15 236 2 360 230 640 578 2 585 1 069
PFAu 0.51 0.45 0.24 0.24 0.24 0.22 0.06

Table 8.2: State means and standard deviations (in nanoseconds) and corre-
sponding PFAu values with the estimated model for macrostate 1 (continued).

State 8 9 10 11 12 13 All
mean 54 343 28 470 12 927 31 295 62 083 39 794 NA
stddev 4 095 1 908 1 034 3 024 2 159 2 065 NA
PFAu 0.22 0.17 0.24 0.23 0.47 0.10 0.02

Table 8.3: State means and standard deviations (in nanoseconds) and corre-
sponding PFAu values with the estimated model for macrostate 2.

State 1 2 3 4 5 6 7
mean 465 766 418 676 252 165 446 819 552 131 530 612 399 345
stddev 9 790 9 832 13 083 4 442 33 902 5 549 3 868
PFAu 0.35 0.45 0.46 0.39 0.18 0.20 0.48

Table 8.3: State means and standard deviations (in nanoseconds) and corre-
sponding PFAu values with the estimated model for macrostate 2 (continued).

State 8 9 10 11 12 13 All
mean 773 326 681 703 481 032 301 732 586 839 452 460 NA
stddev 37 217 9 397 13 513 13 543 13 245 4 530 NA
PFAu 0.24 0.20 0.31 0.46 0.17 0.37 0.37
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Table 8.4: State means and standard deviations (in nanoseconds) and corre-
sponding PFAu values with the estimated model for macrostate 3.

State 1 2 3 4 5 6 7
mean 12 146 116 9 907 489 9 408 568 11 763 973 8 753 004 13 172 000 13 071 808
stddev 237 788 253 316 284 388 481 965 306 717 328 076 636 583
PFAu 0.07 0.16 0.17 0.08 0.17 0.03 0.07

Table 8.4: State means and standard deviations (in nanoseconds) and corre-
sponding PFAu values with the estimated model for macrostate 3 (continued).

State 8 9 10 11 12 13 14 All
mean 11 726 350 15 321 999 10 722 598 10 652 123 8 223 196 10 074 260 11 246 543 NA
stddev 276 281 2 759 114 288 845 456 994 332 875 286 002 314 261 NA
PFAu 0.08 0.45 0.14 0.18 0.00 0.16 0.07 0.80

Table 8.5: State means and standard deviations (in nanoseconds) and corre-
sponding PFAu values with the estimated model for macrostate 4.

State 1 2 3 4 5 6 7 8 All
mean 22 979 652 22 881 488 23 863 163 22 786 818 22 733 574 23 365 667 23 094 934 23 198 326 NA
stddev 57 727 682 112 197 495 36 255 66 411 140 413 54 839 110 609 NA
PFAu 0.39 0.36 0.37 0.36 0.35 0.32 0.30 0.38 0.57
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Abstract

In the recent works that analyzed execution-time variation of real-time tasks, it
was shown that such variation may conform to regular behavior. This regularity
may arise from multiple sources, e.g., due to periodic changes in hardware or
program state, program structure, inter-task dependence or inter-task interfer-
ence. Such complexity can be better captured by a Markov Model, compared
to the common approach of assuming independent and identically distributed
random variables. However, despite the regularity that may be described with
a Markov model, over time, the execution times may change, due to irregular
changes in input, hardware state, or program state. In this paper, we propose
a Bayesian approach to adapt the emission distributions of the Markov Model
at runtime, in order to account for such irregular variation. A preprocessing
step determines the number of states and the transition matrix of the Markov
Model from a portion of the execution time sequence. In the preprocessing
step, segments of the execution time trace with similar properties are identi-
fied and combined into clusters. At runtime, the proposed method switches
between these clusters based on a Generalized Likelihood Ratio (GLR). Using
a Bayesian approach, clusters are updated and emission distributions estimated.
New clusters can be identified and clusters can be merged at runtime. The time
complexity of the online step is O(Nˆ2 + NC) where N is the number of states
in the Hidden Markov Model (HMM) that is fixed after the preprocessing step,
and C is the number of clusters.
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9.1 Introduction

The characterization of the execution time of a real-time task is an impor-
tant step towards analyzing the schedulability of a real-time system. The
execution-time characterization usually focuses on the Worst-Case Execution
Time (WCET), allowing for the analysis of hard real-time guarantees (for more
details see [33, 17]). On the other hand, hardware acceleration features, multi-
core systems [20] and complex, interacting tasks, e.g., in mixed criticality sys-
tems [3, 32], pose several challenges in achieving tight bounds on the WCET
and Worst-Case Response-Time (WCRT) [17].

In the recent decades, probabilistic approaches have been proposed in re-
lation to execution time estimates. The main purpose of the probabilistic ap-
proaches is to derive a more realistic distribution of the execution-time values,
lowering upon the over-provisioning when one considers the worst-case val-
ues, while still considering Quality of Service (QoS) [6] or Quality of Control
(QoC) [26]. The majority of this work considers estimating the probabilistic
WCET (pWCET) distribution, that upper-bounds the execution time distribu-
tions of all valid scenarios and feasible sequences of repeated program execu-
tion [9, 10, 5]. Measurement-based techniques based on Extreme Value Theory
(EVT) [4, 12, 15] require that extreme values of the execution time distribution
are independent and that the measurements contain samples from the worst
case distribution [30, 18]. As an upper bound, the pWCET may still be very
pessimistic compared to the average execution time, and compared to the upper
bound of the execution time distributions of scenarios that are valid in a more
limited context of task execution that involves hardware and software state as
well as input.

In some cases the entire distribution may be relevant, and not only the up-
per bound based on the distribution’s tail. One such case is where QoS/ QoC
adaptation can be utilized. Tasks can allow for different QoS/ QoC levels as
proposed by Lu et al.[21]. In a robotic application, the robot’s speed can be ad-
justed to allow for a lower frequency control loop. In these cases, the deadline
miss probability can be kept sufficiently low with task adaptation. This can also
relax the requirement to capture samples from the most extreme conditions in
the analysis stage, provided the adaptation options are satisfactory.



100 Paper B

In this paper, we address the problem of runtime estimation of execution-
time distribution, analyzing the execution trace of a task at runtime. More
specifically, in a preprocessing step, the number of states and the transition ma-
trix of the Hidden Markov Model (HMM) are derived from a portion of the
execution time sequence. Segments within this sequence that are similar are
identified. Here we use the Generalized Likelihood Ratio (GLR), a measure
for the likelihood that the segments are generated from the same HMM. Sim-
ilar segments are combined into clusters, to form HMMs with differing emis-
sion distributions. At runtime, the algorithm switches between these HMMs
depending on similarity with the current segment of the execution time trace.
New HMMs can be created and the emission distributions updated. The com-
plexity of the proposed runtime adaptive algorithm for the estimation of task
distributions is O(N2 + NC) where N is the number of states in the HMM
that is fixed after the preprocessing step, and C is the number of clusters. The
proposed approach has the potential for being used for the assessment of sev-
eral real-time system properties, but such an investigation is beyond the scope
of this work.

The remainder of this paper is organized as follows. Related work is out-
lined in Section 9.2. In Section 9.3, we describe the system-model assumptions,
along with definitions and mathematical background used in the paper. Then,
in Section 9.4 we describe the derivation of the initial HMM in the preprocess-
ing step, which is followed by Section 9.5, the description of the method for
online model-parameter adaptation. The evaluation is described in Section 9.6,
and the paper is concluded in Section 9.7.

9.2 Related Work

Two major surveys on the Probabilistic Timing Analysis [9] and the Probabilis-
tic Schedulability Analysis [8] of real-time systems have been conducted by
Davis and Cucu-Grosjean, while a taxonomy and survey on pWCET analysis
and associated methods was provided by Cazorla et al. [5]. We further describe
the state-of the art in measurement-based methods, where the contributions of
this paper fall into.

Measurement-Based Probabilistic Timing Analysis was introduced by
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Cucu-Grosjean [7], based on previous work related to the use of Extreme Value
Theory (EVT) [4, 12, 15]. EVT is applied to find the pWCET, an upper bound
on the probability of exceeding each possible execution time value. Methods
based on EVT require that extreme values of the execution time distribution are
independent [30, 18]. EVT-based techniques have also been applied in order to
estimate upper bounds on response time distributions [25, 24, 22, 23].

Moving from extreme values, and focusing on estimates of the full execu-
tion time distribution, the distribution of a visual task in a robotic application
has been modeled as a HMM with discrete emission distributions by Frı́as et al.
[1, 13]. HMMs can capture the regularity and dependability in the task execu-
tion, that may arise from different sources, e.g., sensed input, periodic nature
of task interactions, or the algorithms being used in the tasks.

Friebe et al. [14] proposed an approach to estimate the execution time dis-
tribution using HMMs with Gaussian emission distributions, and proposed an
automatic way of estimating the number of states in HMM from the execution
trace. The methods from [14] are utilized for HMM fitting in the preprocessing
step.

In all these approaches, the structure of the HMM and the emission distri-
butions are learned in an offline phase, based on existing logged data. How-
ever, although in the base case the execution times may be characterized with
a Markov Model, throughout the task’s life cycle the model accuracy may de-
teriorate due to different irregularities such as changes in input, hardware, or
program state. If the observations used for fitting the HMM are not fully rep-
resentative of the runtime observations, the model may also be inaccurate. In
Frı́as et al. [13], two separate experiments are performed, for a clean and a
noisy track respectively, and these give rise to two different Markov Models,
with notably different bandwidth requirements. In order to apply these meth-
ods for tasks where the context affecting the execution time distribution may
change, an adaptive approach is necessary. In this work, we assume that a
preprocessing phase is conducted where the HMM fitting is performed as in
previous work [14], but we propose a runtime Bayesian adaptation method to
continuously refine the execution time model based on the new observations.

Lu et al. [21] propose a Feedback Control Real-Time Scheduling (FCS) ar-
chitecture, including a Monitor, a Controller and a QoS Actuator. An adaptive
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estimate of the execution time distribution could allow for the Monitor to pre-
dict the deadline miss probability rather than measuring the past deadline miss
ratio. To the best of our knowledge, no adaptive runtime estimates of execution
time distributions have previously been proposed.

In the proposed method, segments of the execution time trace are consid-
ered, and the similarity measure is defined considering the HMM as a whole.
An alternative could have been to consider each execution time sample sepa-
rately, and adapt and add states to a single HMM while updating the transition
matrix. This could be be achieved by considering novelty detection such as in
Gruhl et al. [16] in combination with a HMM update mechanism. We hypoth-
esize that the context affecting a task’s execution time distribution can change
suddenly, and that the task can be affected in a similar way in several segments
during the execution. Therefore we have chosen to consider execution time
segments, and to enable switching betweeen clusters. In the proposed Bayesian
model, the emission distributions are Gaussian with unknown mean and pre-
cision. An alternative could have been to model the emission distributions as
Gaussian with unknown mean but fix the precision estimates in the preprocess-
ing step. Due to the risk of underestimating the variance and thus the tail width,
this option was not chosen.

9.3 System Model and Definitions

In this section, a task model with irregular execution-time variability is out-
lined. A Bayesian model for estimating the execution-time distribution from
observations is described. A measure of similarity, Generalized Likelihood Ra-
tio (GLR), for the Bayesian models is presented. This measure is used in the
preprocessing and adaptive steps to determine points where the execution-time
distribution changes, and to find similar segments of the execution-time trace.

Notation. We denote sequences with parentheses, (), and sets with braces,
{}. The estimate of a quantity x is indicated in the following as x̂. Table 9.1
lists the main symbols used in the paper.
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Notation Description
cs = (c1, c2, . . . , ct) Execution-time sequence

N Number of states in the Markov Model
M = {m1,m2, . . . ,mN} Set of Markov states

P N ×N state transition matrix
C = {C1, C2, . . . , CN} Set of execution-time distributions

sj Contiguous segment of cs
{µnj , σ

2
nj} Mean and variance of state mn in segment sj

Sk = {sj , . . .} Cluster, set of segments
γni Occupancy probability of state mn in segment si

â[0]jn Estimated number of observations in state mn and segment sj
â[1]jn Estimated sum of observations in state mn and segment sj
â[2]jn Estimated sum of squared observations in state mn and segment sj
µ̂nk Estimated mean of state n and cluster Sk

ν̂nk Estimated variance of state n and cluster Sk

NG(µ, λ) Normal-Gamma distribution
µ0, κ0, α0, β0 Prior hyperparameters of NG

µL, κL, αL, βL Posterior hyperparameters of NG

D = (x1, . . . , xL) Observation sequence of length L

GLR(Sk, Sl) Generalized Likelihood Ratio between clusters Sk and Sl

ℓk Log-likelihood of cluster Sk

nPseudoObs Number of pseudo observations in prior construction
GP(m(x), k(x, x′)) Gaussian process with mean m and kernel k

Table 9.1: Important notation used in this work.

9.3.1 Task Model

We consider a periodic task, that generates a sequence of jobs. The sequence
of execution times of the jobs is cs = (c1, c2, . . . , ct). We assume that the
execution-time sequence cs can be characterized by a Markov model, described
by the set {M,P, C}, where

• M = {m1,m2, . . . ,mN} is the set of N states, with mn, n ∈ N.

• P is the N ×N state transition matrix, where the element pa,b represents
the conditional probability P(Xi+1 = mb|Xi = ma) of being in state
mb at round i+ 1, given that at round i the state is ma.

• C = {C1, C2, . . . , CN} is the set of execution-time distributions, or



104 Paper B

emission distributions related to respective state. In this paper, these are
modeled as Gaussian distributions with mean µn, and variance σ2

n, i.e.,
Cn ∼ N (µn, σ

2
n).

In the sequence cs, we assume that N and P remain unchanged, but at a
finite number of points in the sequence, referred to as points of cluster change,
the parameters {µn, σ

2
n} may take new (different) values. For this purpose we

introduce another index, j, to explicitly indicate the dependency on time. The
parts of the sequence where {µn, σ

2
n} remain constant are referred to as seg-

ments sj . In each segment sj , the mean and variance are denoted {µnj , σ
2
nj}. A

set Sk = {sj , . . .} of non-adjacent segments with the same values of {µnj , σ
2
nj}

are referred to as a cluster. An illustration is shown in Fig. 9.1.
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Fig. 9.1: An execution time sequence separated into six segments
(s1, s2, s3, s4, s5, s6) and four clusters (S1, S2, S3, S4), where S1 = {s1, s3},
S2 = {s2, s5}, S3 = {s4}, and S4 = {s6}.

9.3.2 Estimating Sufficient Statistics

The Markov Model {M,P, C} can be estimated by the use of the Forward-
Backward algorithm [29] in combination with the Expectation Maximization
algorithm [27]. The number of states N can be determined as described in
Section 9.4. Given this information and an execution time sequence or seg-
ment, the state occupancy probabilities γni can be obtained for each state mn

and execution time observation csi using the Forward-Backward algorithm.
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The occupancy probabilities are used to calculate sufficient statistics (presented
in [14, 31]) for each segment sj and state n. Sufficient statistics are a compact
way of storing the information needed to estimate the Gaussian emission dis-
tribution of each state within the segment, and are also used when updating the
Bayesian model. The sufficient statistics for a Gaussian distribution are: (i)
â[0], an estimate of the number of observations in the state, (ii) â[1], an esti-
mate of the sum of the observations in the state, and (iii) â[2], an estimate of
the sum of the squared observations in the state.

â[0]jn =
∑

i,ci∈sj

γni, (9.1)

â[1]jn =
∑

i,ci∈sj

ciγni, (9.2)

â[2]jn =
∑

i,ci∈sj

c2i γni. (9.3)

9.3.3 Bayesian Model

In a Bayesian approach, a conjugate distribution is a distribution where the pos-
terior probability p(Θ|D) of the parameter Θ given observations D, takes the
same functional form as the prior distribution p(Θ) [2]. For a Gaussian proba-
bility distribution with unknown mean µ and precision λ = 1/σ2, the conjugate
distribution is a Normal-Gamma distribution [28], denoted as NG(µ, λ). When
we have a prior distribution of µ and λ as given by

p(µ, λ) = NG(µ, λ|µ0, κ0, α0, β0) ≜

N (µ|µ0, (κ0λ)
−1)Ga(λ|α0, rate = β0),

(9.4)

and observations D = (x1, . . . , xL), the posterior probability distribution can
be computed as:

p(µ, λ|D) = NG(µ, λ|µL, κL, αL, βL), (9.5)

µL =
κ0µ0 +

∑L
i=1 xi

κ0 + L
, (9.6)



106 Paper B

κL = κ0 + L, (9.7)

αL = α0 + L/2, (9.8)

βL = β0 +
1

2

(
L∑
i=1

(xi − x̄)2 +
κ0L(x̄− µ0)

2

(κ0 + L)

)
. (9.9)

Given that we are not certain of which state each observation ci belongs to,
we rewrite Eqs. (9.6) to (9.9), using the sufficient statistics in Eqs. (9.1) to (9.3),
yielding:

µL =
κ0µ0 + â[1]

κ0 + â[0]
, (9.10)

κL = κ0 + â[0], (9.11)

αL = α0 + â[0]/2, (9.12)

βL = β0 +
1

2

â[2]− â[1]2

â[0]
+

κ0â[0](
â[1]
â[0] − µ0)

2

(κ0 + â[0])

 , (9.13)

where we excluded the indices j, n for readability, and we used â[0]jn to esti-
mate L, â[1]jn to estimate Lx̄ and â[2]jn to estimate Lx̄2. Eqs. (9.10) to (9.13)
describe the Normal Gamma parameters for a state and segment.

The initial hyperparameters can be conceptualized as derived from a num-
ber of pseudo-observations, with the mean µ0 derived from κ0 observations
and the precision λ0 derived from 2α0 observations with mean µ0 and sum of
squared deviations 2β0.

Since the Normal-Gamma distribution is the conjugate distribution, seg-
ments can be added and the posterior hyperparameters updated incrementally
by substituting the existing posterior hyperparameters with the prior hyperpa-
rameters. In this way the posterior Normal-Gamma distribution for a cluster is
constructed by incrementally updating the hyperparameters for each segment in
the cluster. Similarly, segments can be removed from the estimate by updating
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the hyperparameters according to:

µL =
κ0µ0 − â[1]

κ0 − â[0]
, (9.14)

κL = κ0 − â[0], (9.15)

αL = α0 − â[0]/2, (9.16)

βL = β0 −
1

2

â[2]− â[1]2

â[0]
+

κ0â[0](
â[1]
â[0] − µ0)

2

(κ0 − â[0])

 . (9.17)

Note that the posterior predictive distribution for a single point prediction
is the Student’s t-distribution as described by Murphy [28]:

p(x|D) = t2αL

(
βL(κl + 1)

αLκL

)
. (9.18)

9.3.4 GLR Between Sets of Segments

The GLR of two sets of observations can be used to determine whether the sets
are likely to belong to a joint distribution or if it is more likely that they belong
to distinct distributions. This is done by calculating the ratio of the probability
of the observations under the joint model and the product of the probabilities
of the observations under distinct models. The GLR measure is central to the
proposed approach and used in the preprocessing as well as the adaptive step.

The GLR between two execution time segment sets Sk and Sl, and the
union of the sets given as Sk∪l, using log-likelihoods (indicated with ℓ), is [19]:

GLR(Sk, Sl) = ℓk∪l − (ℓk + ℓl). (9.19)

The posterior predictive distribution for m new observations given the
Normal-Gamma prior is given in Murphy [28] as

p(Dnew|D) =
Γ(αn+m)

Γ(αn)

βαn
n

β
αn+m
n+m

√
κn

κn+m
(2π)m/2. (9.20)

were Γ represents the gamma function.
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We use the same prior distribution for the two segment sets and for the
union of the sets. Evaluating the posterior probability of the observations in
a state of a segment set Sk under the posterior predictive distribution calcu-
lated from the same observations gives the log-likelihood using estimates from
Eqs. (9.11) to (9.13) as:

ℓk = log Γ(α2k)− log Γ(αk) + αk log βk−

α2k log β2k +
1

2
(κk − κ2k) +

â[0]k
2

2π.
(9.21)

The last terms cancel out in the GLR, and the resulting equation for two
segment sets and a state is:

GLR(Sk, Sl) = log Γ(α2(k∪l))− log Γ(α(k∪l) + αk∪l log βk∪l

− α2(k∪l) log β2(k∪l) +
1

2
(κk∪l − κ2(k∪l))

− log Γ(α2k) + log Γ(αk)− αk log βk

+ α2k log β2k −
1

2
(κk − κ2k)

− log Γ(α2l) + log Γ(αl)− αl log βl

+ α2l log β2l −
1

2
(κl − κ2l)

(9.22)

The GLR of two segment sets is estimated as the sum of the GLRs over the
states. We use GLRs based on log-likelihoods, so this is equivalent to multipli-
cation of the GLR measure as described by Liu and Kubala [19].

9.4 Preprocessing Step

The preprocessing step is performed on an execution time sequence where we
expect to capture the regular variation of execution times. The preprocessing
step identifies:

1. The number of states N and transition matrix P of the cluster HMMs.

2. The segments and clusters within this execution time sequence.
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3. The sufficient statistics for the HMM states of each cluster.

A HMM is fitted to the execution time sequence, using the tree-based cross
validation approach described in [14]. This fitting process provides the number
of states and transision matrix.

The normal distribution parameters µ, σ in the HMM from the prepro-
cessing step are used in combination with a number of pseudo observations,
nPseudoObs, to create initial prior Normal-Gamma distributions as:

µ0 = µ, (9.23)

κ0 = nPseudoObs, (9.24)

α0 =
nPseudoObs

2
, (9.25)

β0 = α0 · σ2. (9.26)

The number nPseudoObs is chosen for each state in relation to the stationary
probability of the state.

9.4.1 Finding Points of Cluster Change

For a sequence of execution time observations, we want to find the set of points
where the model parameters change.

Finding One Point of Model Change

Initially, we consider the simpler problem of finding one point of model change
in a sequence. Given a starting index xstart and a stopping index xstop within
the sequence, we aim to find the index xsplit that minimizes the GLR(x), de-
fined as

GLR(x) = GLR({sx−}, {sx+}) (9.27)

sx− = (cxstart , cxstart+1, . . . , cx) (9.28)

sx+ = (cx+1, cxsplit+1, . . . , cxstop) (9.29)

xsplit = argmin
x

GLR(x) (9.30)
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where the segments sx− and sx+ indicate the segments before and after x.
The optimization is performed Bayesian Optimization as implemented in the
Python library GpyOpt1, where BayesianOptimization is configured with a Ra-
dial Basis Function kernel and Expected Improvement as acquisition function.
Posterior predictive Student’s t-distributions are derived for sx−, sx− and for
their union. The log-likelihoods for these segments are calculated by apply-
ing the Forward-Backward algorithm. The transition matrix P in taken from
the fitted HMM, but the posterior predictive distributions are used as emission
distributions.

If the resulting GLR(xsplit) is lower than a given GLRlimit, xsplit is con-
sidered to be a point of model change.

Finding Several Points of Model Change

In order to find several points of model change within an execution time se-
quence cs, we apply the method described in Section 9.4.1 for the entire se-
quence, xstart = 1, xstop = t. Recursively, the method is applied for the
sequences with xstart = 1, xstop = xsplit and xstart = xsplit + 1, xstop = t,
and further, similarly to a binary search approach, until one of the following
stopping criteria are met:

1. The resulting GLR(xsplit) is above the given GLRlimit;

2. The length of the subsequence is below a minimum length between split-
ting points.

9.4.2 Segment Clustering

The segments are clustered into sets using an approach similar to the Leader-
Follower Clustering described by Duda et al. [11]. The longest segment is
added as the first cluster. For each segment, in order of decreasing segment
length, the cluster that gives the maximum GLR is found as outlined in Sec-
tion 9.3.4. If the GLR between the segment and the closest cluster is large

1https://sheffieldml.github.io/GPyOpt/



Paper B 111

enough, the segment is merged into the cluster, otherwise a new cluster is cre-
ated. The threshold has been set to 10 times the threshold used in finding the
points of model change.

9.5 Online Model Adaptation

In the runtime process, a sliding window is considered. A simplified flowchart
of the algorithm is available in Fig. 9.2.

The sliding window has a length of T = a · step. Here, a and step are
integers, and step is the size of the sliding window movement at each step.
We assume that a starting cluster at the beginning of the window is known.
The sliding window hyperparameters are estimated by calculating the posterior
distribution using Eqs. (9.10) to (9.13) with the initial prior distribution. Suf-
ficient statistics â[0], â[1] and â[2] are derived using the Forward-Backward
algorithm [29]. The emission distributions for the states are generalized Stu-
dent’s t-distributions, the posterior predictive distributions of the cluster at the
start of the window as given in Eq. (9.18). The prior distribution is chosen as
outlined in Section 9.4, Eqs. (9.23) to (9.26).

A number of GLR thresholds are used in the process, to determine whether
a cluster change shall be made, if a new cluster shall be created, or if the current
cluster shall be merged with another. In addition we use different thresholds for
preprocessing clusters compared to newly created clusters, where we require
a closer match with newly created clusters. One reason for this is that new
clusters can be dominated by the prior distribution, and for this reason are more
likely to have a high GLR when compared to each other. We base all thresholds
on the threshold used for finding points of model change in the preprocessing
step. Different multiplicative factors are applied, according to Table 9.2.

9.5.1 Determining if there is a Cluster Change in the Window

The GLR is estimated of the sliding window and the starting cluster distribu-
tions. If this is below a threshold slidingLimit, we move into the right column
of Fig. 9.2. A segment clusterF indSegment of length T around the endpoint
of the sliding window is considered. A Normal-Gamma distribution for this
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Threshold Purpose Factor

slidingLimit
Check if cluster change

in slidingwindow
1

newClusterLimit Create new cluster 2
changePreLimit Change to a preprocessing cluster 1

mergeClusterPreLimit
Merge current with

preprocessing cluster
1.5

mergeClusterLimit Merge current with closest cluster 1

Table 9.2: Thresholds used in the adaptive process and the multiplicative factor
to the threshold used in finding points of model change in the preprocessing
step.

segment is calculated using Eqs. (9.10) to (9.13) and the initial prior distri-
bution. Sufficient statistics are derived with the Forward-Backward algorithm
using the generalized Student’s t-distribution as the posterior predictive of the
initial prior distribution. The point of cluster change and the cluster at the end
of the sliding window are determined as outlined in Algorithm 9.1.

Determining the Point of Cluster Change: The sliding window is divided
into chunks that are considered from the endpoints of the sliding window. The
GLR of the starting cluster with the first chunk is compared to the GLR of
closestClusterAll with the last chunk. Iteratively, the chunk with the highest
GLR is added to the start or end sections of the sliding window, and the next
chunk from the appropriate side is considered, until all chunks are added to
either side.

9.5.2 Updating the Sliding Window and Clusters

If a cluster change has taken place, we continue downwards in the right column
of Fig. 9.2. A new sliding window is created from the endpoint of the current,
using posterior student distributions of the new cluster to calculate the sufficient
statistics. Posterior distributions and sufficient statistics for the previous and
new clusters are updated with the sliding window segments prior and after the
cluster changing point.

If there is no need for cluster change, we proceed in the left column
of Fig. 9.2. The sliding window is advanced with the step size. The distribu-
tions are updated by removing the sufficient statistics for the step no longer in
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Algorithm 9.1: Pseudocode describing the process of finding the po-
tential point of change and the new cluster.

Input: Current cluster at the beginning of the sliding window, preprocessing
and adaptive clusters, sliding window and cluster finding segment
with Normal-Gamma distributions.

Output: Point of cluster change and current cluster at end of sliding window.
1 Function ClusterChange(clusters, preClusters, clusterFindSegment,

slidingWindow, currentCluster):
2 closestClusterAll← argmaxc∈clusters GLR(c, clusterFindSegment)
3 potentialChangePoint← FINDCHANGEPOINT(slidingWindow,

currentCluster, closestClusterAll)
4 testEndSegment← slidingWindow[potentialChangePoint:end]
5 testNGAll← POSTERIORNG(closestClusterAll, testEndSegmentNG)
6 testGLRAll← GLR(closestClusterAll, testNGAll)
7 if testGLRAll < newClusterLimit then
8 newCluster← CREATECLUSTER(testEndSegment)
9 return potentialChangePoint, newCluster

10 closestClusterPre← argmaxc∈preClusters GLR(c, clusterFindSegment)
11 testNGPre← POSTERIORNG(closestClusterPre, testEndSegmentNG)
12 testGLRPre← GLR(closestClusterPre, testNGPre)
13 if testGLRPre > changePreLimit then
14 return potentialChangePoint, closestClusterPre

15 return potentialChangePoint, closestClusterAll

the sliding window, and adding those for the new step, according to Eqs. (9.10)
to (9.13) and Eqs. (9.14) to (9.17). The updated cluster is compared with the
other existing clusters. If the GLR of the current cluster and the closest cluster
is large enough the clusters are merged.

9.5.3 Complexity Analysis

The computation of sufficient statistics with the Forward-Backward method has
a time complexity of O(N2L), where N is the number of states and L is the
length of the considered section. For each window, L is bounded by 2T , as we
may need to calculate sufficient statistics for the clusterF indSegment when
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a cluster change is considered and for a new sliding window in the event of
cluster change.

The GLR calculations are summed over the states, and we find the maxi-
mum GLR among all clusters, resulting in a total time complexity of O(NC),
where N is the number of states and C is the number of clusters.

The total time complexity of the adaptive step is O(N2 + NC), where N
is the number of states in the HMM, fixed after the preprocessing step, and C
is the number of clusters.

9.6 Evaluation

9.6.1 Goal of the Evaluation

In the following experiments2, we first generated the execution samples accord-
ing to the predefined ground truth model, and then we performed the proposed
method on the execution samples in order to estimate the posterior distribution.
The goal of the experiments was to investigate the accuracy of the estimated
posterior distribution having the ground truth model as the reference. By using
synthetic data in the evaluations we can make comparisons to the ground truth
distributions. Comparisons are made by calculating the Kullback-Leibler (KL)
divergence, as will be further outlined below.

In the experiments, we distinguish the two main steps, the preprocessing
step of the method – where the initial execution sample is analyzed in an of-
fline manner – and the adaptive process—where the estimated parameters, from
the preprocessing step, are adaptively modified online in order to account for
the changes in the ground truth model over time. For the preprocessing step,
we compared the estimated posterior distributions after the clustering process
to the ground truth distributions. For the adaptive process, we compared the
estimated posterior distributions during the adaptive process to the known gen-
erative distributions. Three versions of the adaptive process are evaluated.

1. The full algorithm with clusters created, adapted and merged. We refer
to this version as EST FP.

2Code and data are available online https://github.com/annafriebe/AdaptiveETBayes.
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2. The online algorithm with cluster adaptation, but without creation and
merging of clusters. We refer to this version as EST NCM.

3. The online algorithm without creating, adapting or merging clusters, only
switching between the clusters resulting from the preprocessing stage.
We refer to this version as EST SP.

To evaluate the similarity between the posterior estimates and the ground truth
distributions, the KL divergence is calculated. The KL divergence is an asym-
metric measure of the difference from a distribution Q to another reference
distribution P , with continuous probability density functions q(x) and p(x)
respectively, defined as

DKL(P ||Q) =

∫ ∞
−∞

p(x) log
p(x)

q(x)
dx. (9.31)

The KL divergence was chosen as it quantifies the information lost when mov-
ing from the ground truth distribution to the estimated distribution. The GLR
is not suitable for this evaluation because it is based on likelihoods of observa-
tions.

The KL divergence is numerically approximated from the estimated pos-
terior distribution to the ground truth distribution in the range [0, 150]. The
posterior distribution is constructed by weighting the generalized student’s t
distributions of each state with the stationary probabilities of the states in the
fitted HMM. The ground truth normal distributions are similarly weighted with
the known stationary probabilities of states.

9.6.2 Generation of Sequences from the Ground Truth Model

Execution sequences are generated from the ground truth model defined as a
three state Markov model, where transition probabilities between states are in
the range 0.1-0.8. Each sequence is constructed from five clusters, and each
cluster is constructed from the segments of length within interval [50, 300].
One of the clusters does not appear until after the first 1000 job indices, which
means it is not in the preprocessing section. The execution time samples for
each cluster and its respective segments, are generated according to a three state
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Sequence 1 2 3 4
Cluster 1 0.111 0.054 0.158 0.109
Cluster 2 0.149 1.663 0.045 0.036
Cluster 3 0.051 0.323 0.081 0.580
Cluster 4 0.151 0.067 0.116 0.174

All clusters 0.107 0.156 0.085 0.107

Table 9.3: KL divergence measures for the preprocessing process.

Markov Model, such that each state is characterized by a Gaussian emission
distribution with a mean randomly generated from one of the three following
uniform ranges [25, 50], [65, 80] and [95, 120] respectively and standard devia-
tions within the range [2, 6]. The cluster means are ordered, so that if the mean
of a state in cluster A is lower than the mean of the same state in cluster B,
µnA < µnB , then the same relation applies to the other states’ means in these
clusters. The reason for this is that points of model change are not as accurately
found when the state means of two clusters move in opposite directions. This
is likely due to the construction of the GLR of segments as the sum over the
states.

9.6.3 Results

Preprocessing Step

In Fig. 9.3 we show means and standard deviation of the estimate, i.e. the
posterior generalized student’s t distributions of the resulting clusters as black
lines. We also show the means and standard deviations of the ground truth
clusters as red lines. For sequence 2, four states are identified, and the state
with the lowest stationary probability is displayed in cyan. In Fig. 9.3, points
of model change are also visible. KL divergence measures along the sequences
are displayed, in black for the preprocessing section. Mean KL divergence
measures for each cluster and for the preprocessing section are displayed in
Table 9.3.
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Online Adaptive Process

The means and standard deviations of the posterior generalized student’s t dis-
tributions during the adaptive process are displayed in blue in Fig. 9.3 for four
sequences. These are shown in relation to the known means and standard devi-
ations of the normal distributions in the true clusters in red. For sequence 2, the
HMM identification finds four states, and the state with the lowest stationary
probability is displayed in cyan. In Fig. 9.3 the points of model change are also
visible.

The left column displays the result when applying EST FP, the full process,
to four test sequences. Creation of new clusters is indicated with black verti-
cal lines, and merging of clusters is marked with red vertical lines. The middle
column shows the result when applying EST NCM, without creation and merg-
ing of clusters, but with adaptive cluster updates for the same sequences. The
right column displays the result when applying EST SP, with only switching
between the preprocessing clusters.

The KL divergence from the distribution constructed from the posterior
generalized student’s t distributions to the distribution constructed from ground
truth Gaussian distributions is calculated. When constructing the distributions,
the emission distributions are weighted with the estimated and known station-
ary probabilities respectively. The KL divergence is calculated for each job
index in each sequence for the three versions of the adaptive process. Results
are displayed in Fig. 9.3. Means are calculated for each ground truth cluster
and for the entire adaptive part of the sequence, and presented in Table 9.4. In
sequences 1, 3 and 4, EST SP has a better average fit (lower average KL diver-
gence measure), as can be seen in the ”All clusters” row of the tables. We also
look at the average KL divergence of clusters not appearing in the preprocess-
ing portion, that is Cluster 5 for all sequences, and for sequence 2 additionally
Cluster 2. Here we see that EST FP has lower KL divergence measures than
EST SP in four out of the five new clusters. For the EST NCM, the KL di-
vergence is lower for all five new clusters. EST FP and EST NCM appear to
be roughly equivalent for new clusters, with the EST NCM having lower KL
divergence scores in three out of five new clusters.
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Sequence no. Cluster no. EST FP EST NCM EST SP

1

1 0.347 0.248 0.277
2 0.276 0.276 0.310
3 N/A N/A N/A
4 0.770 0.786 0.442
5 0.411 0.266 0.359

All clusters 0.459 0.401 0.346

2

1 0.173 0.173 0.217
2 0.263 0.261 0.681
3 0.493 0.493 0.539
4 0.340 0.342 0.110
5 0.355 0.362 0.400

All clusters 0.297 0.297 0.392

3

1 0.460 0.608 0.478
2 0.506 0.257 0.139
3 1.142 1.180 0.808
4 0.285 0.282 0.159
5 0.270 0.503 0.512

All clusters 0.688 0.739 0.536

4

1 0.241 0.242 0.215
2 0.347 0.281 0.046
3 0.498 0.502 0.620
4 0.414 0.417 0.171
5 0.631 0.627 0.760

All clusters 0.418 0.405 0.373

Table 9.4: KL divergence measures for different sequences and clusters.

9.6.4 Discussion

The KL divergence in the adaptive section is in the range of 2-10 times larger
than in the preprocessing section in our experiments, for all three versions of
the adaptive process. A larger KL divergence is expected from a less computa-
tionally expensive approach.

The fact that EST SP performs better than the versions with cluster updates
for clusters available at the preprocessing step indicates that there is some dete-
rioration of the estimates, possibly due to erroneous estimates of the points of
cluster change.

It can be noted that in some segments, the estimated means of the states with
the highest and lowest means tend to move towards the middle state in the three
state HMM, coinciding with a higher standard deviation. This is likely due
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to samples generated by the middle state distribution resulting in occupancy
probabilities significantly higher than zero for an additional state. When these
samples are weighted into the sufficient statistics of the lower or higher state,
the posterior distribution is affected in this manner.

The choice of prior distribution has a similar influence on the posterior
estimates. In the proposed method, the prior distribution is based on the HMM
fitted to the preprocessing section. For portions of the execution time trace
that deviate significantly from the preprocessing section, the posterior estimates
will have a mean that is drawn towards the prior mean, and a variance that is
overestimated due to the prior pseudo observations acting as outliers.

9.6.5 Limitations and Future Evaluation Goals

The main limitation of the evaluation is that it has been performed with syn-
thetic data, where the execution time samples are generated from ground-truth
distributions with instantaneous cluster changes at specified points in time. The
main reason for this choice was the controllable experiment setup where the
ground truth model is known. One of the sensitive design choices of the ex-
periment is evident in the generation of the ordered means within the clusters,
which should be generalised in the future evaluations. Also, at the moment we
cannot be certain that the results are valid for more realistic use cases and this
will be addressed in the future work.

9.7 Conclusion and Future Work

In this paper, we proposed a method to adjust at runtime an HMM aimed at
characterizing the execution time of a task, with a limited time complexity. The
posterior execution-time distributions obtained through the proposed approach
could be used to assess several real-time properties of a system, e.g., estimat-
ing the deadline miss probabilities, but further investigations are needed, and
devoted to future work.

The results from the evaluated synthetic test cases indicate that the pro-
posed method is capable of adapting the estimates at runtime, such that the
estimated distribution tracks the ground truth distribution used to generate the
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execution time samples. The similarity between the estimated and ground truth
distributions are evaluated by calculating the Kullback-Leibler divergence. In
some cases we can see biased means and increasing standard deviations in the
posterior distribution. Future work will investigate the possibility of introduc-
ing regularization to limit the increase in the standard deviation. Furthermore,
a more extensive evaluation will be performed on real applications, e.g., com-
puter vision, robotics, or control use cases, to better assess the ability of the
proposed approach to provide meaningful information on the execution time
distributions of complex real-time applications.
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Initialize current clus-
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Fig. 9.2: Simplified flowchart of the adaptive process. The process continues
until the task is terminated and there are no more observations to process.
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Fig. 9.3: True and predicted distributions for four sequences, with the three
different versions of the process. KL divergence measures along the sequences
are displayed.



Bibliography

[1] Luca Abeni, Daniele Fontanelli, Luigi Palopoli, and Bernardo Villalba
Frı́as. A Markovian model for the computation time of real-time applica-
tions. In IEEE international instrumentation and measurement technol-
ogy conference (I2MTC), pages 1–6, 2017.

[2] Christopher M. Bishop. Pattern recognition and machine learning.
springer, 2006.

[3] Alan Burns and Robert I. Davis. A survey of research into Mixed Criti-
cality Systems. ACM Computing Surveys (CSUR), 50(6), 2017.

[4] Alan Burns and Stewart Edgar. Predicting computation time for ad-
vanced processor architectures. In Euromicro Conf. on Real-Time Systems
(ECRTS), pages 89–96, 2000.

[5] Francisco J. Cazorla, Leonidas Kosmidis, Enrico Mezzetti, Carles Her-
nandez, Jaume Abella, and Tullio Vardanega. Probabilistic worst-case
timing analysis: Taxonomy and comprehensive survey. ACM Computing
Surveys (CSUR), 52(1), 2019.

[6] David D. Clark, Scott Shenker, and Lixia Zhang. Supporting real-time
applications in an integrated services packet network: Architecture and
mechanism. SIGCOMM Comput. Commun. Rev., 22(4):14–26, 1992.

[7] Liliana Cucu-Grosjean, Luca Santinelli, Michael Houston, Code Lo, Tul-
lio Vardanega, Leonidas Kosmidis, Jaume Abella, Enrico Mezzetti, Ed-
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Abstract

In real-time systems analysis, probabilistic models, particularly Markov
chains, have proven effective for tasks with dependent executions. This paper
improves upon an approach utilizing Gaussian emission distributions within a
Markov task execution model that analyzes bounds on deadline miss probabil-
ities for tasks in a reservation-based server. Our method distinctly addresses
the issue of runtime complexity, prevalent in existing methods, by employing
a state merging technique. This not only maintains computational efficiency
but also retains the accuracy of the deadline-miss probability estimations to
a significant degree. The efficacy of this approach is demonstrated through
the timing behavior analysis of a Kalman filter controlling a Furuta pendulum,
comparing the derived deadline miss probability bounds against various bench-
marks, including real-time Linux server metrics. Our results confirm that the
proposed method effectively upper-bounds the actual deadline miss probabili-
ties, showcasing a significant improvement in computational efficiency without
significantly sacrificing accuracy.
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10.1 Introduction

Soft real-time systems permit limited deadline misses, impacting the Quality of
Service (QoS) [14] or Quality of Control (QoC) [47] to a tolerable degree. The
tolerance is often modeled as a constraint on the number of deadline misses
to maintain an acceptable level of QoS or QoC [10]. Findings from a recent
survey by Åkesson et al. [6] indicate a predominant presence of soft real-time
systems in the industry, underscoring the significance of their analytical study.

Hidden Markov Models (HMMs) have been effectively utilized to model
execution times in systems with dependencies that exhibit regular variations.
An introduction to the HMM concept can be found in [51]. Studies like [4, 25]
have employed Markov models with discrete emission distributions, particu-
larly in estimating the probability of missing deadlines under a Constant Band-
width Server (CBS). Additionally, continuous-emission distributions have been
explored by Friebe et al. [29, 27, 28].

While HMMs with continuous emission distributions have been applied
in execution time estimation [29, 27], the extension to workload distribution
inference and deadline-miss probabilities has been a recent development [28].
As in previous work [4, 25], this analysis is done with a reservation-based
scheduling approach, that allows for analysis of each server separately, due to
the timing isolation property. This newer exploration has shown potential but
highlighted challenges in computational efficiency when dealing with complex
systems.

Building upon these recent findings, our paper specifically targets the com-
putational efficiency issue identified by Friebe et al. [28]. We propose an en-
hanced method for bounding the deadline-miss probability of real-time tasks
using HMMs with continuous emission distributions. A key contribution of
this work is developing a state-merging technique that enhances computational
efficiency in terms of time and space complexity, where traditional methods are
computationally intensive or even infeasible (Section 10.6).

The evaluation, presented in Section 10.7, employs a task managing a
Furuta pendulum [57]. It compares the derived bounds with real-time dead-
line miss ratios under Linux’s CBS implementation, SCHED DEADLINE [34],
alongside estimates from a discrete-emission Markov Model [25, 26], and
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simulation-based estimates.
The paper’s organization is as follows: Related work is reviewed in Sec-

tion 10.2. Section 10.3 defines the notation and system model. The execu-
tion time model and methodology for deriving and analyzing the deadline miss
probability bounds are presented in Section 10.4. The iterative update pro-
cess for the bounds is detailed in Section 10.5. State reduction techniques and
their impact on time complexity are discussed in Section 10.6. Section 10.7
showcases evaluations and results, and Section 10.8 concludes the paper with a
discussion on future work.

10.2 Related Work

The surveys by Davis and Cucu-Grosjean [20, 19] offer a detailed overview
of the field of probabilistic schedulability and timing analysis in real-time sys-
tems. Two of the many challenges highlighted in their surveys are the prob-
abilistic analysis of dependent tasks and the safe estimation of deadline-miss
probabilities (DMP) for such tasks.

The issue of dependence in execution-time distributions and its impact on
the potential unsound estimation of DMP when independence is assumed was
initially identified by Tia et al. [54]. The importance of assuming independence
among jobs of the same task for deriving sound response time distribution was
first recognized by Diaz et al. [22], while in the concluding remarks of their pa-
per, they restated the fact that many systems do not adhere to the independence
assumption. For this reason, a fundamental concept of stochastic pessimism
for proper upper-bounding of the execution-time distributions was explored by
Diaz et al. [23]. Over the years, several research directions have evolved to
address the above-mentioned issues.

One of the most used approaches was the one based on the probabilistic
Worst-Case Execution Time (pWCET), which is supposed to upper-bound the
ground-truth execution-time distribution of a job such that it can be safely used
with convolution and independence-assuming analytical approaches in spite of
possible dependence with other jobs. In this line of research, Cucu-Grosjean et
al. [16] established the relation between the ground-truth execution-time distri-
butions and pWCET, while Davis et al. [18] clarified the difference between the
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confidence-based pWCET and the upper-bounding one. The surveys [20, 19]
also provide extensive investigation on the definition and use of pWCETs.
More recently, Bozhko et al. [8] formalized a rigorous, axiomatic definition
of pWCET, using the Coq proof assistant.

Many probabilistic schedulability analyses have been proposed over the
years using pWCET and similar independence-assuming distributions for fixed-
priority fully-preemptive scheduling. Von der Brüggen et al. [55] used the Ho-
effding and Bernstein inequalities for the estimation of DMP, while Chen et
al. [13] used Chernoff bound. Marković et al. [44] contributed an optimal re-
sampling strategy and an efficient circular-convolution algorithm. Bozhko et
al. [9] introduced a method based on Monte-Carlo sampling. In contrast,
von der Brüggen et al. [56] suggested a method to approximate the DMP un-
der Earliest Deadline First (EDF) scheduling, accommodating dependencies
across a limited number of consecutive jobs. More recent work by Chenet
al. [12] corrected an error in the critical-instant assumption commonly found
in various independence-based methods. Zagalo et al. [58] have devel-
oped queuing theory-based approximations for the response-time distributions,
while Marković et al. [46] utilized the Berry-Esseen theorem to approximate
response-time distributions. In the context of other scheduler assumptions,
Marković et al. [43] provided probabilistic analysis for limited-preemptive
scheduling, which is a generalization over fully and non-preemptive schedul-
ing. Most recently, Günzel et al. [30] proposed a probabilistic reaction time
analysis for cause-effect chains based on sporadic tasks.

The issue of dependence has also been addressed within the framework of
Extreme Value Theory (EVT), particularly in its application to measurement-
based statistical analysis for both execution times [17, 36, 35] and response
times [40, 41, 39].

Despite the widespread adoption of EVT in both academic research and
practical applications, it is not without certain limitations [21]. EVT relies
on the premise that statistical limit laws are applicable to the sample set at
hand [15]. EVT necessitates certain conditions like the assumption of station-
arity [33] or extremal independence in the distribution under consideration [52].

Regarding the works that do not consider independence-assuming distri-
butions, Bernat et al. [7] introduced the concept of copulas in timing analy-
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sis. Copulas model dependencies between random variables, a copula trans-
forms marginal distributions of random variables into a joint probability distri-
bution. Ivers and Ernst[32] developed an approach for fixed-priority preemp-
tive scheduling systems, utilizing completely known ground-truth probability
distribution for each task. Their method, incorporating copulas and Frechet
bounds, facilitated the derivation of probabilistic response-time bounds. Re-
cently, Marković et al. [45] introduced a correlation-tolerant analysis for DMP
estimation, leveraging upper bounds on both the expected values and standard
deviations of job execution-time distributions. Their analysis improves upon
Cantelli’s inequality to derive sound probabilistic response times in the pres-
ence of possibly correlated distributions.

More in line with this work, in the context of server-based schedulers,
Mills et al. [49] derived bounds for response time and tardiness for soft real-
time tasks with stochastic execution times, focusing on execution time depen-
dence within distinct time windows. In a related development Liu et al. [37]
proposed the concept of independence thresholds, positing that execution times
above a certain threshold can be treated as independent. One major advan-
tage of server-based scheduling is that it provides timing isolation, allowing for
analysis of each server separately.

The Constant-Bandwith Server (CBS), was originally introduced by
Abeni et al. [1] and later used for deriving probabilistic deadlines to ensure
Quality of Service (QoS) guarantees [2]. In later works, it has also been an-
alyzed with probabilistic execution times[3, 50] and probabilistic interarrival
times [5, 42].

In one of the seminal papers for probabilistic analysis of real-time systems,
Diaz et al. [22] conducted a response time analysis for periodic tasks character-
ized by independent random execution times, demonstrating that the backlog
in this context can be modeled as a Markov chain.

Recent studies, diverging from the worst-case DMP that has been prevalent
in the previously cited works, have embraced the long-run frequency interpre-
tation of DMP. In this vein, [25, 4] utilized Markov chain models with discrete
emission distributions under CBS. Their work concentrated on analyzing the
steady-state response time distribution and included comparisons with results
obtained under Linux’s SCHED DEADLINE. They noted that the analysis dura-
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tion is influenced by factors such as the range of execution times, the number of
states, and the scaling factor used for resampling [24], which can significantly
affect the analysis time and space complexity.

Furthermore, the estimation of the execution times modeled as continuous
Gaussian distributions within Markov chains have been explored by Friebe et
al. [29, 27], while the analysis in terms of deadline miss probabilities was con-
ducted recently [28]. Friebe et al. [28] addressed the DMP estimation, apply-
ing Hidden Markov Models (HMMs) with Gaussian emission distributions for
schedulability analysis. This approach, akin to the work of Frı́as et al. [25] and
Abeni et al. [4], explicitly incorporates dependencies within the HMM frame-
work, with the CBS providing task isolation, thereby focusing the workload
analysis on the specific task rather than the entire system. Although the analy-
sis by Friebe et al. [28] offered improvements due to utilizing the continuous-
based HMM model of execution times, they showed that the analysis still may
suffer from time and space complexity.

In Section 10.6 of this paper, we introduce state-merging techniques de-
signed to enhance the time and space efficiency of the methods presented by
Friebe et al. [28]. These techniques are developed to maintain high accuracy in
DMP estimations. In Table 10.1 the HMM approaches with continuous and dis-
crete emission distributions are compared, and the contributions of this paper
are outlined.

10.3 System Model and Notation

Table 10.2 contains the notation used in the paper. Superscript ∗ indicates true
values, ↑, and ↓ indicate upper and lower bounds.

We use the concept of upper bounding random variables according to Def-
inition 10.3.1. This is also referred to as the usual stochastic order [53] or
first-order statistical dominance [23]. This paper uses the term upper bound as
in [19].

Definition 10.3.1 (cf. [23, 19, 53]). Let X and Y be two random variables.
We say that X is greater than or equal to Y (i.e., X upper bounds Y) if the
Cumulative Distribution Function (CDF) of X is never above that of Y . We
denote this relation by X ≥ Y .
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Table 10.1: Contribution overview.

Discrete Emission Continuous Emission

Overview of the theoretical contributions

Timing Analysis (TA) [25] [4] [29]
DMP analysis [25] [4] [28] as described in this paper

Comparison of the models and their analysis properties

State No. identification – [29]
Adaptive TA – [27]

Time and space
complexity
(DMP analysis)

[25]
[4]

Dependent on:
- resampling scale
- execution time range

Requires full steady-
state distribution
[25].

[28] as described
in this paper

Independent of:
- resampling scale
- execution time range

Iterative procedure with
an adjustable complexity.

State number reduction
procedure (Section 10.6).

We define a partial Gaussian distribution in Definition 10.3.2, that is used
to upper bound workload distributions. Consider a Gaussian N (µ, σ2) with
probability density function f(x|µ, σ2). Let Φ(x) be the cumulative density
function of the standard normal distribution.

Definition 10.3.2. A partial Gaussian distribution N tail(µ, σ2, α), originated
from a Gaussian distribution N (µ, σ2), is defined by the probability density
function:

f tail(x|µ, σ2, α) =

{
0, x ≤ α

1
Φ(µ−α

σ
)
· f(x|µ, σ2) x > α

. (10.1)
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The probability of values lower than α is set to zero in the partial Gaussian
distribution. The probability density of the remaining values are normalized,
so that the distribution integrates to one.

We use convolutions, as defined in Definition 10.3.3, in the derivation of
workload distributions.

Definition 10.3.3. The convolution of f and g, denoted with the ∗ operator is:

[f ∗ g] (z) =
∫ ∞
−∞

f(z − x) · g(x) dx.

10.3.1 Task Model

Let the real-time task τ consist of a sequence of jobs Ji, i ∈ N. Each job Ji has
the arrival time ai, execution time ci and finishing time fi. The task is periodic
and jitter-free, i.e., ai+1 = ai + T , a0 is the arrival time of the first job. Jobs
can be preempted, fi ≥ ai + ci. The execution time is modeled as a random
variable. The random variable R models the response time, the duration from
activation time to finish time of a job.

A job Ji has the deadline di determined by a relative deadline D such that
di = ai +D. Jobs are executed until completion, even if deadlines are missed.
The relative deadline may be longer than the task period. The probability that
a randomly selected job finishes after the deadline, pdm = P(R > D) is the
main concern of this paper.

10.3.2 Scheduling Algorithm

The task is served as the sole task of a reservation-based server, and guaranteed
to receive Q units of processing time within each server period. The bandwidth
B = Q/P is the fraction of the processing time dedicated to the task. T = n·P ,
that is the task period is an integer multiple of the server period. The relative
deadline is also an integer multiple of the server period, D = k · P . In the
evaluation a CBS is used, a CBS with a properly selected server period fulfills
the necessary requirements.
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Fig. 10.1: An illustration of the task model and the reservation-based server.

The task model and reservation-based server are illustrated in Fig. 10.1.
Here, we have n = 3, T = 3 · P . In the illustration the relative deadline is
longer than the period. With a deadline longer than the period, a longer job
may steal computation time from the next job of the task. If the next job is
short, they may both meet their deadlines.

10.4 Execution Time Model and Analysis

10.4.1 Markov Chain Execution Times

The execution times of the task we consider are described by a Markov model
defined by a set of S states S, a S×S state transition matrix M and a set C of S
execution time distributions or emission distributions related to the respective
state, S ∈ N. We have S = {1, 2, . . . , S}. In M the element ma,b represents
the probability of the task being in state b at task period i + 1, given that it is
in state a at task period i. C = {C1, C2, . . . , CS} where each Cs is modeled as
Gaussian distributions with mean µs, and variance σ2

s , i.e., Cs ∼ N (µs, σ
2
s).

The Markov Chain is irreducible, that is a chain where from any state you
can reach any other state in a sequence of steps. For an irreducible finite-state
Markov Chain, stationary probabilities of the different states [31] exist and are
unique. The stationary probabilities represent the long-run proportion of jobs
with execution times described by the different Gaussian distributions.

Example 10.4.1. When introducing the ideas and analysis, we will use an ex-
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ample execution time Markov Model and reservation-based server. The pa-
rameters are chosen mainly for illustration, and to arrive at simple numerical
answers in some of the applications of the example. The Markov Model is de-
fined by:

S = 2, M =

(
0.9 0.1
0.7 0.3

)
, C = {N (1, 0.25),N (2, 1)}.

In this example all transition probabilities are strictly positive, so the Markov
Chain is clearly irreducible and we can calculate the stationary probabilities.
These are 0.875 for state 1 and 0.125 for state 2. In our example, the CBS is
defined as n = 2 and Q = 1. The deadline is defined by k = 4.

The representation of Gaussian emission distributions requires only a few
distribution parameters, for example, the emission distribution associated with
state 1 in Example 10.4.1 is fully specified by the mean 1 and the variance
0.25. With discrete distributions probabilities for each execution time value
need to be stored, with respect to a chosen scaling factor. For Example 10.4.1
we might choose to represent execution times with a resolution of 0.01. For
state 1 we could list execution times from 0.01 to 4.01, where each of these
is associated with a probability. The probability associated with 2.01 would
be the probability of execution times et, 2 < et ≤ 2.01. Gaussian emission
Markov models are shown to be applicable, in Friebe et al. [29] for a video de-
compression use case, and in Friebe et al. [27] in a dynamic setting with model
adaptation. The Gaussian distribution may appear simplistic. However, gen-
eral distribution shapes can be approximated by a combination of Gaussians.
The assumption of independent execution times within each state implies that
more states may be necessary in the model to capture dependencies in the tran-
sition matrix. A close to discrete model can be envisioned with states where
the emission-distribution variance is near zero. The fact that a representation
with Gaussian emission distributions may require more states is a disadvantage
of this approach. With discrete representation, pessimism is introduced with
the scaling factor and if downsampling is needed. With continuous represen-
tation, pessimism is introduced at other points, for example in our case when
upper bounding the workload distributions. Further, there are other options for
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continuous representations, for example Zagalo et al. [58] use inverse Gaus-
sian mixture distributions for response times. In our approach we rely on the
simplicity of convolution of Gaussian distributions.

10.4.2 Problem Formulation

We bound the expected deadline miss probability of a randomly selected job of
a task. Task execution times are defined as in Section 10.4.1, and the task is
served by a reservation-based server as described in Section 10.3.2.

In the survey on schedulability analysis by Davis and Cucu-Grojean [20]
three interpretations of the probability of a deadline miss are listed:

1. ”As a probability with a long-run frequency interpretation equating to
the expected number of missed deadlines divided by the total number of
deadlines in a long (tending to infinite) time interval.

2. As the probability that a randomly selected job will miss its deadline,
which is broadly equivalent to the long-run frequency interpretation.

3. As a bound on the probability that any specific job will miss its deadline.”

Chen et al. [11] refer to the same concept as the deadline miss rate, and for-
mulate the question: ”What is the ratio of jobs missing their deadlines in the
long run?” We agree with Davis and Cucu-Grosjean that interpretations 1 and 2
are broadly equivalent. Extending interpretation 2 to include the average com-
ponent that is in focus in interpretation 1, we focus on the expected deadline
miss probability of a randomly selected job. The intention is to remove any
ambiguity with interpretation 3 or the Worst Case Deadline Failure Probability,
an upper bound on the probability that any single job of a task misses its dead-
line [20]. We find the term deadline miss probability more natural compared
to deadline miss rate in our context with states with different execution time
distributions. .

10.4.3 Overview of the Proposed Approach

We will obtain an upper bound on the expected deadline miss probability of a
randomly selected job of the task in a reservation-based server.
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The proposed method is based on a workload accumulation scheme. The
main idea is outlined below, followed by the details in the remaining subsec-
tions. The starting point of the approach is that the deadline miss probability of
a job depends on the execution time of the job, and on the amount of remaining
work from previous jobs that have not been completed yet. We categorize jobs
into different classes with different deadline miss probabilities. By calculating
or bounding the deadline miss probabilities of jobs belonging to each class,
and the probability of randomly selecting a job from each class, we bound the
expected deadline miss probability of a randomly selected job.

In each task period, task τ is guaranteed nQ units of processing time. The
pending workload at the i-th task period is denoted as vi and defined as in
Abeni et al. [2]:

vi = max(0, vi−1 − nQ)︸ ︷︷ ︸
carry-in workload

+ci. (10.2)

where the first term accounts for the previous workload, that is 0 for the first
period, and for task periods where all work from previous jobs has been com-
pleted before the new job arrival. In these periods, jobs arrive at idle points
with 0 carry-in workload and vi = ci, in particular v1 = c1.

Observation 10.4.1. The pending workload at a job arrival is affected by the
execution time requirements of jobs arriving since the last idle point.

In our proposed method, the job classes are related to the state sequence
since the last idle point. In Example 10.4.1, let the jobs arriving at an idle point
when the task is in the first state of the Markov Model belong to one specific
class. When selecting a job at random, there is a probability of about 0.78 that
the job belongs to this class. The deadline miss probability for this class of
jobs only depends on the execution time distribution for the first state and the
server properties. It is the survival function or 1-CDF ofN (1, 0.25) at 4, about
9.8 · 10−10.

Observation 10.4.2. The deadline miss probability for a class of jobs is at most
1.
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Fig. 10.2: Illustration of workload accumulation sequences of the example.

In the proposed method, we will derive more precise bounds for several
classes. For the remaining, we will use Observation 10.4.2 to upper bound the
deadline miss probability. We construct an approximate bound of the expected
deadline miss probability of a randomly selected job from Example 10.4.1 to
illustrate the idea:

DMP ⪅ 0.78 · 0.98 · 10−10 + 0.22 · 1 (10.3)

To model a state sequence from the latest idle point, we introduce the con-
cept of workload accumulation sequences. Illustrations of workload accumula-
tion sequences for some classes in Example 10.4.1 are displayed in Fig. 10.2.

The class where, at a job arrival, the task is in state 1, and there is no carry-
in workload, is displayed as the black node at task period 1. The workload
accumulation sequence is h = (1). The gray node and arrow represent the
class of jobs where jobs arrive in state 1 and in the second task period after
an idle point, with the first period in state 2. The accumulation sequence h =
(2, 1). The black node and dashed arrows represent the class of jobs arriving
at the fifth task period after the latest idle point, with h = (2, 2, 1, 2, 2). The
accumulation sequence is modeled as a random variable H that can take the
values of any possible workload accumulation path. In Fig. 10.2, with the gray
path we illustrate one possible value h = (2, 1), taken byH.

Definition 10.4.1. Each arrival of a job Ji results in an accumulation sequence
h(Ji). Let b denote the task state at the arrival of Ji. If there is an idle point
directly prior to the arrival, the resulting h(Ji) = (b). If there is carry-over
workload from the previous job, let h(Ji−1) = (. . . , a) denote the accumula-
tion sequence resulting from the prior job arrival. Then h(Ji) = (. . . , a, b).
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In this way, each job that arrives is related to one specific h that describes
the accumulated workload since the last idle point, and the task’s state at the
arrival of this job is always in the last component of the corresponding h.

The evolution of H is described by an infinite-state Discrete-Time Markov
Chain, and each workload accumulation sequence represents one job class and
one state in this chain. State transitions occur at job arrivals. The possible
transitions from a state h = (. . . , a) are:

1. A transition from h to (. . . , a, b) has strictly positive probability if
ma,b > 0.

2. A transition from h to (b) has strictly positive probability if ma,b > 0.

3. No other transitions from h are possible.

The probability of randomly selecting a job resulting in a certain accumulation
sequence is the stationary probability of the state in the Markov Chain. This sta-
tionary probability exists for an infinite-state Discrete-Time Markov if the chain
is ergodic [31] - that is when the chain is irreducible, aperiodic and recurrent.
The accumulation sequence Markov Chain is irreducible if the execution time
Markov Chain is irreducible. If all states can be reached from all states in the
execution time Markov Chain, the same is true for the accumulation sequence
Markov Chain. The accumulation sequence Markov Chain is also aperiodic,
which means that the greatest common divisor of the set of integers n, such
that you can get from one state to the same state in n steps, is 1 for all states. In
an infinite-state Markov Chain, either all states are recurrent, and the chain is
recurrent, or all states are transient. A state is recurrent if when we start in that
state, the probability is 1 that we ever return to the same state. The workload
in the server can be seen as a queue, and a queue is in steady-state if the aver-
age arrival rate is lower than the average service rate [48]. This is equivalent
to the average utilization of the task being lower than the server’s bandwidth.
Under this condition the accumulation sequence Markov Chain is recurrent.
Returning to Example 10.4.1, the average computation requirement over a task
period is 0.875 · 1 + 0.125 · 2 = 1.125, resulting in an average utilization of
1.125
2·P = 0.5625

P . Since the server’s bandwidth is 1
P , the task’s computational

requirement is met over time, and the accumulation sequence Markov Chain is
ergodic.
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Definition 10.4.2. The probability pin(h) of randomly selecting a job resulting
in the accumulation sequence h is the stationary probability of this state in the
accumulation sequence Markov Chain.

Definition 10.4.3. The conditional probability that a job resulting in h misses
its deadline is defined as pdm(h) = P(R > D|H = h).

Definition 10.4.4. The Deadline Miss Probability DMP(j) for the j-th job
since the last depletion point is defined as

DMP(j) =
1∑

∀h∈H(j) pin(h)

∑
∀h∈H(j)

pin(h) · pdm(h) (10.4)

where the set H(j) represents accumulation sequences resulting from job ar-
rivals at the j-th task period from the last idle point.

Returning to Example 10.4.1, there are two accumulation sequences in
H(1), arriving at an idle point. We already discussed h = (1). The sec-
ond is h = (2), and the probability of randomly selecting a job resulting in
h = (2) is about pin((2)) ≈ 0.099. The deadline miss probability pdm((2)) is
the survival function ofN (2, 1) at 4, about pdm((2)) ≈ 0.023. In our example,
DMP(1) ≈ (7.6 · 10−10 + 0.099 · 0.023)/(0.78 + 0.099) ≈ 2.6 · 10−3.

Definition 10.4.5. The Deadline Miss Probability DMP is the expected dead-
line miss probability of a randomly selected job from the task. Given a task
with execution times described by the model in Section 10.4.1, and served by a
reservation-based server with a bandwidth exceeding the average task utiliza-
tion, DMP is obtained as

DMP =

∞∑
i=1

DMP(i)
∑
∀h∈H(i)

pin(h). (10.5)

Since pin(h) are the stationary probabilities of the accumulation sequence
Markov Chain (Definition 10.4.2), the sum of pin(h) over all h equals 1.
Problem: The sum of Eq. (10.5) has a countably infinite number of terms. This
paper investigates finding a bound for DMP with a finite number of terms.
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Observation 10.4.3. Consider a job that arrives with a carry-in workload, i.e.,
it does not arrive directly after an idle point. Then this job arrives j + 1 task
periods after the last idle point, and it succeeds a job arriving j task periods
after the last idle point. The probability of randomly selecting a job with work-
load accumulation from j + 1 periods is never higher than the probability of
randomly selecting a job arriving with workload accumulation from j periods.

The main idea is to find tighter bounds DMP(i) for the first terms in
Eq. (10.5), since due to Observation 10.4.3 the weighting sums over pin are
highest for the first terms. For larger i, when the sums over pin are small, we
let DMP(i) = 1.

Returning to Example 10.4.1, using the information from the first task pe-
riod, we have:

DMP =
∞∑
i=1

DMP(i)
∑
∀h∈H(i)

≈ 2.3 · 10−4 +
∞∑
i=2

DMP(i)
∑
∀h∈H(i)

pin(h)

≤ 2.3 · 10−4 +
∞∑
i=2

∑
∀h∈H(i)

pin(h) ≈ 0.12

(10.6)
The bound is still very pessimistic. However, going from one accumulation

sequence h = (1) in Eq. (10.3) to two h = (1) and h = (2) reduces the bound
from 0.22 to 0.12.
Outline of the remainder of this section

An upper bound on DMP is obtained by deriving upper bounds on pin and
pdm. The probability pin(h) of randomly selecting a job with the accumulation
sequence h depends on the execution time distributions along h, the transition
probabilities, and the probability of workload depletion in each state. The con-
ditional deadline miss probability pdm(h) for jobs where the arrival results in
h depend on the execution time distributions in h. We divide the workload ac-
cumulation process in two steps. We first compute upper bounds on pin and
pdm up until N task periods from the latest idle point. As N grows, the sum
of the products of pin(h) and pdm(h) approaches the true deadline miss proba-
bility. Second, the sum of pin values in the remaining accumulation sequences
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of length N + 1 to infinity, is upper bounded. We refer to this sum as β. We
assume that the pdm is 1 for jobs that result in these accumulation sequences,
and this gives a safe upper bound on DMP in Eq. (10.39).
The steps for deriving a safe bound on DMP are outlined in the following
sections:

Section 10.4.4: Upper bounding pdm and pin for the terms in Eq. (10.5) re-
quires upper bounding the pending workload distributions associated with each
accumulation sequence. In this section we describe how to derive the parame-
ters of an upper bounding partial Gaussian distribution as given in Eqs. (10.18)
to (10.20). The bounds on pin also rely on a lower bound on the pending work-
load distributions. The parameters for a lower bounding Gaussian distribution
are derived as Eqs. (10.18) and (10.19).

Section 10.4.5: For jobs arriving at an idle point, pin depends on the proba-
bility of workload depletion pwd for each state, the stationary state probabilities
and the transition probabilities ma,b. Upper and lower bounds are provided in
Eqs. (10.22) and (10.23). Jobs arriving with carry-in workload have pin de-
pending on transition probabilities, and the probability of jobs with shorter ac-
cumulation sequences resulting in carry-over workload. We find that all pin
bounds are linear combinations of pwd for the different states, and given in in
Eqs. (10.26) and (10.27).

Section 10.4.6: Bounds on pwd are derived, relying on stationary probabil-
ities and the sum of pin in accumulation periods after N , denoted as β.

Section 10.4.7: A bound on β is derived and given in Eq. (10.36). This
bound is utilized for computing the lower bounds on pin, pco, and finally pwd.

Section 10.4.8: An upper bound on pdm is presented, using the bounds
on workload distributions, pin and β. The pdm for a state is upper bounded
in Eq. (10.38). Each job’s deadline miss probability is accounted for with the
accumulation sequence resulting from the job’s arrival. This is the case even
with long relative deadlines, when actual deadlines are not missed until after
the arrivals of subsequent jobs.

The iterative workload accumulation process connects all these different
parts, and is presented in Section 10.5 with an example. An illustration of
the process with references to relevant sections is provided in Fig. 10.3. The
workload distribution bounds from Section 10.4.4 are used in all remaining
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Fig. 10.3: The workload accumulation process.

sections and are not specifically referenced in the figure.

10.4.4 Bounding the Conditional Pending Workload Distribution
Associated with a Workload Accumulation Sequence

Upper and lower bounds of pending workload distributions conditioned on the
job arrival resulting in a given accumulation sequence since the last idle point
are derived. To derive upper bounds on pdm we require the upper bounds on the
workload distributions. To derive upper and lower bounds on pin, pco, β and
pwd we require upper and lower bounds on the workload distributions. With
an example from Fig. 10.2, we consider the pending workload distribution for
jobs arriving in state 1, in the second task period from the last idle point, given
that the first job after the idle point arrived in state 2, that is the path marked as
gray, h = (2, 1).

Definition 10.4.6. The conditional pending workload distribution Vh for jobs
resulting in a given accumulation sequence h has the probability density func-
tion P(v|H = h).

We will derive bounds for this conditional pending workload distribution
that are independent of the order of the state visits in the accumulation se-
quence, and only dependent on the number of visits in each state. For this
purpose we define the random variable H̃ that takes S-dimensional vector val-
ues, where each element denotes the number of visits in the corresponding
state since the last idle point. As an example, the dashed line in Fig. 10.2 show-
ing h = (2, 2, 1, 2, 2) and another accumulation sequence h = (2, 2, 2, 1, 2)



146 Paper C

State 1

State 2

Task period 1 2 3 4 5

Fig. 10.4: Illustration of a workload accumulation sequence that contributes to
the same workload accumulation vector as the dashed sequence in Fig. 10.2

illustrated in Fig. 10.4 contribute to the same accumulation vector. Both se-
quences result from jobs arriving 5 task periods after the latest idle point, and
they have the same number of visits in each state, h̃ = [1, 4]. Let h̃[s] denote
taking the s-th element of h̃, and h̃+s is the accumulation vector with elements:
h̃+s[i] = h̃[i], i ̸= s, h̃+s[s] = h̃[s] + 1. This simplifies the notation of the
workload distribution of jobs arriving in state s with carry-in workload from h̃.

In a system with S states, the number of accumulation vectors of length
N is

(
N+S−1

N

)
= (N+S−1)!

N !(S−1)! . If we take ordering into account, there are SN

accumulation sequences of length N . The number of accumulation vectors
increases with the length N as O(NS−1) for a fixed number of states S.

We derive an upper bounding pending workload distribution V↑
h̃
≥ Vh,

recalling Definition 10.3.1.
We show that a partial Gaussian distribution (see Definition 10.3.2) is an

upper bound to the conditional pending workload distribution. An illustration
based on Example 10.4.1 is shown in Fig. 10.5. The dashed curve illustrates
the exact convolution result of the workload of the gray accumulation sequence
from Fig. 10.2. The carry-in workload is the partial Gaussian distribution of
N tail(2 − n · Q, 1, 0), that is the normalized part of the computation time dis-
tribution in the second state that remains after the budget of n ·Q = 2 has been
exhausted. The carry-in distribution is convolved with the computation time
distribution of the first state, N (1, 0.25), resulting in the dashed curve. When
we replace it with the partial Gaussian distribution shown in Fig. 10.5 as the
black curve and line, the probabilities of lower workloads (the light gray area)
are moved to higher workloads (the dark gray area), providing an upper bound.
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Fig. 10.5: Illustration of a convolution result with an upper bounding partial
Gaussian distribution.

Theorem 10.4.1. N tail
(
µ(h̃), σ2(h̃), α(h̃, s)

)
upper bounds the conditional

pending workload distribution Vh̃ associated with each state s and accumula-
tion vector h̃.

The proof is by induction. We state Lemma 10.4.2 for the base case and
further Lemma 10.4.3 combined with Lemma 10.4.4 for the inductive step.

Lemma 10.4.2. The partial Gaussian distribution N tail
(
µs, σ

2
s , 0
)
≥ Vh̃ in

state s at a job arrival immediately after a point of workload depletion, with
Vh̃ being the conditional pending workload distribution.

Proof. At the first job arrival after a point of workload depletion, the condi-
tional pending workload distribution Vh is the execution time distribution of
the entered state s. N tail

(
µs, σ

2
s , 0
)

excludes the negative workload values
from N

(
µs, σ

2
s

)
. Normalization increases the probability of positive values.

The probability density is moved from lower workload values to higher, pro-
viding an upper bound.

In the following, we consider the case with non-zero carry-over work-
load when a job arrives in state s transitioning from state sp. In sp the
accumulation vector is h̃, and N tail(µ(h̃), σ2(h̃), α(h̃, sp)) upper bounds
the workload distribution. We show that the partial Gaussian distribution
N tail(µ(h̃+s), σ

2(h̃+s), α(h̃+s, s)) is an upper bound on the conditional pend-
ing workload distribution. In Eqs. (10.7) and (10.8) below we define µ(h̃+s)
and σ2(h̃+s). To simplify the starting value α(h̃+s, s) of the upper bound on
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the pending workload distribution defined in Eq. (10.11), we define Eqs. (10.9)
and (10.10). sf -1(q, µ, σ2) in Eq. (10.11) denotes the inverse survival function
at quantile q of a Gaussian distribution with mean µ, and variance σ2. The
work value at which the survival function takes the value q. Eq. (10.10) de-
fines K(h̃, sp), the normalization factor needed for the conditional probability
calculation. A convolution Definition 10.3.3 of the execution time distribution
Cs and an upper bound of the carry-over workload gives a bound on the pend-
ing workload distribution. The part extending past the task period of the upper
bounding workload distribution in sp with h̃ constitutes an upper bound of the
carry-over workload. K(h̃, sp)

−1 is the integral of this part used for normaliza-
tion.

µ(h̃+s) = µs +

S∑
i=1

h̃[i] · (µi − n ·Q) (10.7)

σ2(h̃+s) = σ2
s +

S∑
i=1

h̃[i] · σ2
i (10.8)

α∆(h̃, sp) = max(0, α(h̃, sp)− n ·Q) (10.9)

K(h̃, sp) =

[
Φ

(
µ(h̃)− n ·Q− α∆(h̃, sp)

σ(h̃)

)]−1
(10.10)

α(h̃+s, s) =

{
0 h̃ = 0

sf -1( 1
K(h̃,sp)

, µ(h̃+s), σ
2(h̃+s)) h̃ ̸= 0

. (10.11)

Lemma 10.4.3. When a job arrives in state s with non-zero carry-
over workload from state sp with accumulation vector h̃, and the pre-
vious task period upper bound on the workload distribution V↑ as
N tail(µ(h̃), σ2(h̃), α(h̃, sp)), the conditional pending workload distribution is
upper bounded by N tail(µ(h̃+s), σ

2(h̃+s), α(h̃+s, s)).

Proof. The normalized workload tail beyond the task period time is the
strictly positive carry-over workload distribution. We formally express this as
N tail

(
µ(h̃)− n ·Q , σ2(h̃) , max(0, α(h̃, sp)− n ·Q)

)
.

N (µs, σ
2
s) describes the execution time distribution in state s. By convolv-

ing Definition 10.3.3 the probability density functions of the execution time
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and the upper bound on the positive carry-over workload, we derive an upper
bound on the conditional workload distribution V↑

h̃+s
in state s with accumula-

tion vector h̃+s. This holds because execution times are independent random
variables, and the dependence of the Markov model is restricted to the transition
probabilities.

We introduce µR(z), σ2
R, µΣ∆ and σ2

Σ below to simplify the notation in the
convolution expansion:

µR(z) =
(z − µs) · σ2(h̃) + (µ(h̃)− n ·Q) · σ2

s

σ2
s + σ2(h̃)

(10.12)

σ2
R =

σ2
s · σ2(h̃)

σ2
s + σ2(h̃)

(10.13)

µΣ∆ = µs + µ(h̃)− n ·Q (10.14)

σ2
Σ = σ2

s + σ2(h̃). (10.15)

We expand the convolution for V↑
h̃+s

:∫ ∞
−∞

f
(
z − x|µs, σ

2
s

)
· f tail

(
x|µ(h̃)− n ·Q, σ2(h̃), α∆

)
dx

= K(h̃, sp)

∫ ∞
α∆

f(z − x|µs, σ
2
s) · f(x|µ(h̃)− nQ, σ2(h̃))dx

= K(h̃, sp) · f
(
z|µΣ∆, σ

2
Σ

)
·
∫ ∞
α∆

f
(
x|µR(z), σ

2
R

)
dx, (10.16)

where we isolate the part of the expression independent of x in the last step. The
integral in the last row of Eq. (10.16) is the survival function or 1-CDF at α∆ of
N (µR(z), σ

2
R). The survival function is monotonically increasing with respect

to z and goes to 0 as z goes to −∞, and to 1 as z goes to ∞. This implies
that there is a point α(h̃+s, s) where the area under the curve of the exact con-
volution of the pending workload distribution up to α(h̃+s, s) equals the area
between the curves of the exact pending workload distribution and the partial
Gaussian distribution,N tail(µΣ∆, σ

2
Σ, α(h̃+s, s)) from α(h̃+s, s). This is illus-

trated in Fig. 10.5. Normalizing the partial Gaussian distribution with K(h̃, sp)
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as in Eq. (10.17) means that we derive the lowest possible α(h̃+s, s) that upper
bounds the full convolution. As the integral in the last row of Eq. (10.16) goes
to 1 as z goes to infinity, the tail of the upper bound approaches the tail of the
full convolution asymptotically.

K(h̃, sp) ·
∫ ∞
α(h̃+s,s)

f
(
x|µΣ∆, σ

2
Σ

)
dx = 1. (10.17)

The convolution result integrates to one, and so does the partial Gaussian dis-
tribution from Definition 10.3.2. The two regions described and illustrated in
Fig. 10.5 have the same area. Replacing the exact convolution with the par-
tial Gaussian is equivalent to moving probability weight from lower pending
workload values to higher, leading to an overestimate. We have:

µ(h̃+s) = µΣ∆ (10.18)

σ2(h̃+s) = σ2
Σ (10.19)

α(h̃+s, s) = sf-1

(
1

K(h̃, sp)
, µΣ∆, σ

2
Σ

)
. (10.20)

This concludes our proof.

The values of α and K depend on the order in the accumulation sequence,
as Eq. (10.9) depends on the previous state. Returning to Example 10.4.1,
consider a job arriving in the third task period after an idle point. Two accu-
mulation sequences determine the carry-in workload of visiting both state 1
and state 2 since the idle point; those are h = (2, 1) and h(1, 2). The first
is the gray sequence in Fig. 10.2, and the upper bounding workload distribu-
tion is shown in Fig. 10.5. The tail extending past the period’s budget is the
carry-in to the next period, illustrated as the dashed curve in Fig. 10.6. Since
α = 1 < n · Q = 2, α∆ = 0 for the sequence (2, 1). For the order (1, 2)
however, the resulting α ≈ 3.236 > n · Q = 2. The upper bounding carry-in
work will have α∆ ≈ 1.236 and is the solid curve illustrated in Fig. 10.6.

We state this formally in Lemma 10.4.4. We show that shifting the starting
point α to a higher value while keeping the mean and variance unchanged gives
an upper bounding distribution. This is illustrated in Fig. 10.7.
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Fig. 10.6: Illustration of upper bounding partial Gaussian distributions for the
carry-in workload of two accumulation sequences with the same vector.
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Fig. 10.7: CDFs of two partial Gaussian distributions as in Lemma 10.4.4. In
this figure µ = 1, σ2 = 1, α1 = 1 and α2 = 0.

Lemma 10.4.4. The partial Gaussian distribution N tail(µ, σ2, α1) ≥
N tail(µ, σ2, α2) if α1 ≥ α2.

Proof. The CDF is 0, x < α2 for both N tail(µ, σ2, α1) and N tail(µ, σ2, α2).
The CDF of N tail(µ, σ2, α2) > 0 for α2 ≤ x ≤ α1, but the CDF of
N tail(µ, σ2, α1) = 0 in this range. For x > α1, we have from Definition 10.3.2
that the PDFs of the two distributions only differ in the scaling factor. This
means that the CDF ofN tail(µ, σ2, α1) is the CDF ofN tail(µ, σ2, α2) past α1

shifted to start at 0 and scaled to go to 1 at infinity. Therefore the CDF of
N tail(µ, σ2, α1) is always below the CDF of N tail(µ, σ2, α2)

We remove the dependency on the state order by taking the maximum
α(h̃, sp), sp ∈ h̃ to determine α∆(h̃). This is illustrated by selecting the black
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curve in Fig. 10.6 as carry-in from h̃ = [1, 1], and formalized as:

α∆(h̃) = max(0,max
∀sp

α(h̃, sp)− n ·Q). (10.21)

We use this instead of Eq. (10.9) in Eqs. (10.10) and (10.11). Let us proceed to
the proof of Theorem 10.4.1, restated here for convenience:

Theorem 10.4.1. N tail
(
µ(h̃), σ2(h̃), α(h̃, s)

)
upper bounds the conditional

pending workload distribution Vh̃ associated with each state s and accumula-
tion vector h̃.

Proof. We prove this by induction.
Base case: For the first job arrival after workload depletion, this follows by
Lemma 10.4.2.
Inductive hypothesis: If we have such a workload distribution upper bound for
all states and accumulation vectors in one task period, it also holds for a job
that arrives with a carry-in workload from a previous period.
Inductive step: This follows from Lemma 10.4.3 and by taking the maximum
α in Eq. (10.21) due to Lemma 10.4.4.

Analogously, a Gaussian distribution is a lower bound of the pending work-
load distribution V↓

h̃
≤ Vh. This is illustrated in Fig. 10.8 for the accumulation

sequence example drawn in gray in Fig. 10.2. From Eq. (10.16), we see that
K(h̃, sp) > 1, implying a heavier tail on the convolution result compared to the
Gaussian distribution. The area under the Gaussian PDF curve with mean µΣ∆

and variance σ2
Σ is one, and so is the area under the result of the convolution.

Replacing the workload distribution with the Gaussian implies moving prob-
ability weight from higher workload values to lower, thus providing a lower
bound.

10.4.5 Bounds on the Joint Probability of a Job Arriving in a State
with an Accumulation Vector

A job arriving in state s N task periods after the last workload depletion can
result in one or more accumulation vectors, h̃, of length N . We refer to this set



Paper C 153

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.2

0.4

0.6

0.8

Pending workload

P
ro

b
a
b
il
it
y
d
e
n
si
ty

Exact convolution

N lower bound

Fig. 10.8: An illustration of a convolution result and the Gaussian distribution
that forms a lower bound.

of accumulation vectors as being in state s at task period N . Each accumulation
vector in a state is associated with the joint probability of randomly selecting
a job that arrives in state s and results in the accumulation vector h̃. p↓in(s, h̃)
denotes a lower bound on this joint probability and p↑in(s, h̃) an upper bound.
Each accumulation vector in a state is also associated with a probability of the
workload contributing to carry-over into the next period. p↓co(s, h̃) denotes a
lower bound on this probability and p↑co(s, h̃) an upper bound.

For jobs arriving at a point of workload depletion with no carry-in work-
load, each state is associated with a single accumulation vector containing zeros
except for the current state, which is set to 1. The probability of a job arriving
in a certain state s at a point of workload depletion depends on

• the stationary probabilities ξ(sp) of all states sp,

• the workload depletion probabilities pwd(sp) of all states sp,

• the state transition probabilities ξsp,s from all states sp into s.

The stationary probabilities and the transition matrix are known from the execu-
tion time model described in Section 10.4.1. In Section 10.4.6, we will describe
how to derive the workload depletion probabilities of all states. Let us assume
that we have lower and upper bounds on the workload depletion probabilities,
p↓wd(s) and p↑wd(s). Then, lower and upper bounds on the probability of ran-
domly selecting a job arriving in each state s at a point of workload depletion



154 Paper C

are given as:

p↓in(s, h̃) =
S∑

sp=1

ξ(sp) · p↓wd(sp) ·msp,s (10.22)

p↑in(s, h̃) =

S∑
sp=1

ξ(sp) · p↑wd(sp) ·msp,s. (10.23)

There is only one accumulation vector in each state for jobs arriving at an idle
point, and there is no dependency on h̃. We introduce it in the expression to
have the common notation pin(s, h̃) for all accumulation periods.

Relating this to Example 10.4.1, the lower bound on the probability of a job
arriving in state 2 after an idle point is p↓in(2, [0, 1]) = ξ(1) ·m1,2 · p↓wd(1) +

ξ(2) · m2,2 · p↓wd(2) = 0.875 · 0.1 · p↓wd(1) + 0.125 · 0.3 · p↓wd(2), a linear
combination of the lower bounds on workload depletion probability for the
states. The upper bound is the same linear combination of the upper bounds on
workload depletion.

We further consider jobs arriving with a carry-in workload. Step by step,
we add jobs that arrive one more task period after the last idle point, resulting in
accumulation vectors containing one more state. We copy each accumulation
vector from the states in the previous task period for these accumulation periods
and increment the current state element by 1. Such an accumulation vector
copied from h̃ with a job that arrives in state s is denoted h̃+s. When h̃ exists
in different states in the previous accumulation period, they all lead to h̃+s in s.
The joint probability of randomly selecting a job arriving in s and resulting in
h̃+s depends on the probabilities pco(sp, h̃) of a randomly selected job arriving
with unfinished workload from h̃ in each state sp, and transition probabilities
msp,s.

The probability that a job arrives with a carry-in workload from sp, h̃ is
the probability of being in sp with this h̃ multiplied by the probability that the
conditional pending workload of sp, h̃ exceeds the available processor time in
a task period. Let random variables X ∼ V↓

h̃
and Y ∼ V↑

h̃
. Then we have lower

p↓co(s, h̃) and upper p↑co(s, h̃) bounds on the probability of a job arriving with
the carry-in workload from h̃ and where the previous task period state was s as:
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p↓co(s, h̃) and p↑co(s, h̃), further calculated as:

p↓co(s, h̃) = p↓in(s, h̃) · P(X > n ·Q) (10.24)

p↑co(s, h̃) = p↑in(s, h̃) · P(Y > n ·Q) (10.25)

with V↓
h̃

given as N (µ(h̃), σ2(h̃)), and V↑
h̃

as N tail(µ(h̃), σ2(h̃), α(h̃)).
In Example 10.4.1 we find the lower bound of the probability of work-

load carry-over from state 2 and h̃ = [0, 1] as p↓co(2, [0, 1]) = p↓in(2, [0, 1]) ·
P(N (2, 1) > 2) = 0.5 · p↓in(2, [0, 1]). The upper bound is p↑co(2, [0, 1]) =

p↑in(2, [0, 1]) · P(N tail(2, 1, 0) > 2) ≈ 0.51 · p↑in(2, [0, 1]).
The lower p↓in(s, h̃+s) and upper p↑in(s, h̃+s) bounds on the joint probability

a job arriving in s resulting in h̃+s are:

p↓in(s, h̃+s) =
S∑

sp=1

p↓co(sp, h̃) ·msp,s (10.26)

p↑in(s, h̃+s) =

S∑
sp=1

p↑co(sp, h̃) ·msp,s. (10.27)

Returning to Example 10.4.1 and the gray accumulation sequence in
Fig. 10.2, we have the probability of a job arriving in state 1 with carry-
in from one task period in state 2. The lower bound on this probability is
p↓in(1, [1, 1]) = p↓co(2, [0, 1]) · m2,1 = 0.7 · p↓co(2, [0, 1]). In this case, the
sum has only one term since only h̃ = [0, 1] in the first period can lead to
h̃ = [1, 1] and s = 1 in the second period. The upper bound is derived in
the same manner as p↑in(1, [1, 1]) = 0.7 · p↑co(2, [0, 1]). The derivations from
Eqs. (10.22), (10.24) and (10.26) can be combined, giving p↓in(1, [1, 1]) ≈
0.0306p↓wd(1) + 0.0131p↓wd(2). Combining Eqs. (10.23), (10.25) and (10.27)
gives p↑in(2, [1, 1]) ≈ 0.0313p↑wd(1) + 0.0134p↑wd(2).

10.4.6 Bounds on the Probability of Workload Depletion

The probability of having no work remaining at the end of the task period pwd

for each state are used in Eqs. (10.22) and (10.23) to derive pin bounds for jobs
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arriving at idle points. These state-wise workload depletion probabilities pwd

are propagated to all pin in the workload accumulation process via Eqs. (10.24)
to (10.27).

We do not know the true value of the probability of workload depletion
p∗wd. This section outlines how to derive bounds for pwd by observing bounds
of state-wise sums on pin.

Let h̃ ∈ (s, i) denote the set of accumulation vectors in state s at task period
i from the last idle point. We now define p↓Σin (s,N, pwd), the sum of the lower
bounds on pin associated with all accounted accumulation vectors in s up until
task period N from the last idle point. In other words, this is a lower bound
on the joint probability of a randomly selected job arriving in s and at most N
from the last idle point.

p↓Σin (s,N, pwd) =
N∑
i=1

∑
h̃∈(s,i)

p↓in(s, h̃) (10.28)

Observation 10.4.4. Assume the exact p∗wd is known and used as p↓wd in
Eq. (10.22). Then p↓Σin (s,N, pwd) ≤ ξ(s),∀s, ∀N .

We denote the error in p↓Σin resulting from using the Gaussian V↓ lower
workload distribution bounds instead of the true workload distributions as
e(p↓Σin ).

We introduce β(s)N as the joint probability of a job arriving in s more than
N task periods after the last idle point.

β(s)N =

∞∑
i=N+1

∑
h̃∈(s,i)

pin(s, h̃) (10.29)

Observation 10.4.4 is illustrated in Fig. 10.9, where the valid region of p↓Σin
is displayed assuming p∗wd is input in Eq. (10.22).

We define an upper bound on the joint probability of a randomly selected
job arriving in s and at most N from the last idle point as p↑Σin (s,N, pwd) in
Eq. (10.30).



Paper C 157

ξ(1)

ξ(2)

β(1)e(p
↓Σ
in )(1)

β(2)

e(p↓Σin )(2)

p↓Σin (1)

p↓Σin (2)
p∗wd valid region

p↑wd search region

1-dim p↑wd region limit

Fig. 10.9: An illustration of the possible valid region of p↓Σin for two states, if the
true probabilities of workload depletion would be used as p↓wd in Eq. (10.22).

p↑Σin (s,N, pwd) =

N∑
i=1

∑
h̃∈(s,i)

p↑in(s, h̃) (10.30)

Observation 10.4.5. Assume the true probability of workload depletion p∗wd is
known. Using this value in Eq. (10.23), we have p↑Σin (s,N, pwd) ≥ ξ(s)−β(N).

Let e(p↑Σin ) denote the error introduced by replacing the true workload dis-
tribution with the upper bounding partial Gaussian distribution. The valid re-
gion of p↑Σin given from observation 10.4.5 is displayed in Fig. 10.10.

Observations 10.4.4 and 10.4.5 imply that the true probability of workload
depletion must lead to p↓Σin in the region marked in Fig. 10.9 and p↑Σin in the
region marked in Fig. 10.10. The state-wise maxima of pwd leading to any
point along the lines illustrated as the upper and right lines in Fig. 10.9 upper
bounds p∗wd.

Theorem 10.4.5. An upper bound p↑wd on the probability of workload depletion
is derived by taking the state-wise maxima of pwd leading to p↓Σin (s) ≤ ξ(s),∀s,
and where there is inequality in at most one s.
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Fig. 10.10: An illustration of the possible valid region of p↑Σin for two states,
if the true probabilities of workload depletion would be used as p↑wd in
Eq. (10.23).

Proof. From Eqs. (10.22), (10.24) and (10.26) it follows that p↓in(s, h̃) is a
linear combination of pwd(s). As is clear from Eq. (10.28), p↓Σin (s) is also a
linear combination of pwd(s), and it holds for some positive Ai,s that:

p↓Σin (s, pwd) =

S∑
i=1

Ai,s · pwd(i) (10.31)

Starting from the true workload depletion probability p∗wd we increase an arbi-
trary state dimension j of pwd(j) by an amount δs,j until p↓Σin (s, pwd) reaches a
hyperplane defined by ξ:

p↓Σin (s, pwd) = Aj,s(p
∗
wd(j) + δs,j) +

S∑
i=1,i ̸=j

Ai,sp
∗
wd(i) = ξ(s)

At the first hyperplane we encounter min(δs,j)∀s, which gives p↓Σin (i) ≤
ξ(i), ∀i ̸= s.

The true p∗wd results in p↓Σin (s) ≤ ξ(s). Therefore, all pwd resulting in the
point with equality for all s upper bounds p∗wd in at least one state dimension
due to the linear combination. Assume that pwd resulting in this point does not
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upper bound p∗wd for state dimension i, pwd(i) < p∗wd(i). In this case, an upper
bound of p∗wd(i) results in a point on one of the hyperplanes. The hyperplane
separating the region resulting from upper bounds in this dimension from the
region resulting from underestimates in this dimension crosses at least one of
the hyperplanes described by p↓Σin (s) ≤ ξ(s),∀s, with inequality in at most one
s. Illustrating in Fig. 10.9 the result from the upper bound in this dimension as
the black dot, two possible hyperplanes that separate the regions are displayed
with dotted lines. This concludes our proof.

Analogously, we derive a lower bound on the workload depletion probabil-
ity pwd. The state-wise minima of pwd resulting in p↑Σin on the lower and left
lines illustrated in Fig. 10.10 lower bound p∗wd.

The endpoints are adjusted if the pwd for a state is lower than 0 or higher
than 1. As p↓Σin (s) and p↑Σin (s) are linear combinations of pwd(s) we only need
to consider the endpoints.

Relating to Example 10.4.1, we have seen that the probability of a job ar-
rival in state 2 after an idle point at least p↓in(2, [0, 1]) = 0.0875 · p↓wd(1) +

0.0375 · p↓wd(2). The same derivation for a job arrival in state 1 after an idle
point gives p↓in(1, [1, 0]) = 0.7875 ·p↓wd(1)+0.0875 ·p↓wd(2). From simulation
we have the probability of jobs arriving with h̃ longer than 1 as β(1)1 ≈ 0.093
for state 1 and β(2)1 ≈ 0.026 for state 2. We solve the linear equation systems
below for (i, j) = (0, 0), (1, 0) and (0, 1) to get candidates for p↑wd.

0.7875 · pwd(1) + 0.0875 · pwd(2) = 0.875− i · 0.093 (10.32)

0.0875 · pwd(1) + 0.0375 · pwd(2) = 0.125− j · 0.026 (10.33)

In this case, with only the jobs arriving at idle points, the equation system
for (i, j) = (0, 0), the upper right corner in Fig. 10.9, gives the solution
p↑wd(1) = p↑wd(2) = 1 that is the highest possible bound. For the lower
bound of pwd, we have the same linear equation system in the special case
when we only consider the accumulation vectors after an idle point. This is
because Eqs. (10.22) and (10.23) only differ in the workload depletion proba-
bility bounds. We now solve the system for (i, j) = (1, 1), (1, 0) and (0, 1).
For (i, j) = (1, 1), the lower left corner in Fig. 10.10, we get the candidates



160 Paper C

pwd(1) ≈ 0.94 and pwd(2) ≈ 0.44. For (i, j) = (1, 0) we get pwd(1) ≈ 0.84
and pwd(2) ≈ 1.4. This point is invalid since pwd(2) > 1. We find the
j, 0 < j < 1 where (i, j) = (1, j) gives pwd(2) = 1, and at this point we have
pwd(1) ≈ 0.88. For (i, j) = (0, 1) we get pwd(1) ≈ 1.1 and pwd(2) ≈ 0.064.
This point is also invalid, and we search along the line i, 0 < i < 1, j = 1 for
the point where pwd(1) = 1. We have pwd(2) ≈ 0.31. We can now assign the
state-wise minima for the lower bound: p↓wd(1) ≈ 0.88 and p↓wd(2) ≈ 0.31.

10.4.7 Bounds on the Probability of Longer Workload Accumula-
tion

In Equation (10.29), we defined β(s)N as the joint probability of a job arriving
in s with at least N elapsed since the last idle point. The values of β(s)N were
used in obtaining the bounds of workload depletion for the different states.
In this section we outline how to find bounds for β(s)N , given safe bounds
β(s)N−1. As all pin are non-negative, β(s)N decreases monotonically with
N . For each period, β(s)N is at most β(s)N−1 minus the lower bound on the
probability of a job arriving in s N task periods after an idle point, i.e.

β(s)N ≤ β(s)N−1 −
∑

h̃∈(s,N)

p↓in(s, h̃) = β(s)↑aN (10.34)

Further, β(s)N is at most the stationary probability ξ(s) minus the lower bound
on the probability of a job arriving within N task periods after an idle point, i.e.

β(s)N ≤ ξ(s)−
N∑
i=1

∑
h̃∈(s,i)

p↓in(s, h̃) = β(s)↑bN (10.35)

Safe bounds β(s)N are obtained by taking the minimum of right-hand sides of
Inequalities 10.34, and 10.35.

β(s)↑N = min(β(s)↑aN , β(s)↑bN ) (10.36)

We return to Example 10.4.1 and consider the probability of jobs arriving
in state 1 with accumulation vectors past 2 task periods, that is β(1)2. We have
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β(1)1 ≈ 0.093 from simulation, the lower bound on the probability of a job
arriving in state 1 with accumulation vector [1, 1] as p↓in(1, [1, 1]) ≈ 0.031 ·
p↓wd(1) + 0.013 · p↓wd(2) and with accumulation vector[2, 0] p↓in(1, [2, 0]) ≈
0.016 · p↓wd(1) + 0.0018 · p↓wd(2). Entering these values in Eq. (10.34) we get
β(1)2 ⪅ 0.047. Using Eq. (10.35) gives β(1)2 ⪅ 0.11, so we use β(1)↑2 ≈
0.047 in the search for bounds on pwd in the next accumulation period.

10.4.8 Upper Bounding the Deadline Miss Probability

Finally, we derive an upper bound on a randomly selected job’s expected dead-
line miss probability as defined in Eq. (10.5). We derive an upper bound
p↑dm(s, h̃) on the deadline miss probability pdm(s, h̃) of a job arriving in state
s with the job arrival resulting in the accumulation vector h̃. This bounds the
deadline miss probability of all jobs, resulting in accumulation sequences h cor-
responding to h̃ where the sequence ends in s. The random variable Y ∼ V↑

h̃

upper bounds the pending work distribution of these jobs. p↑dm(s, h̃) is the
probability that this work exceeds the available computation time for the job
until the deadline k ·Q, i.e.:

p↑dm(s, h̃) = P(Y > k ·Q) (10.37)

The distribution V↑
h̃

is the upper bounding distribution

N tail(µ(h̃), σ2(h̃), α(h̃, s)), as shown in Theorem 10.4.1.
The probability of randomly selecting a job arriving in state s with work-

load accumulation captured by h̃ is the joint probability pin(s, h̃). The upper
bound of this probability, p↑in(s, h̃) was derived in Section 10.4.5. We derive a
bound of the expected deadline miss probability conditioned on being in a state
s by considering all job arrivals in s within N task periods from the last idle
point, that is with h̃ of length up to N . The deadline miss probability of jobs ar-
riving more than N task periods from the last idle point is upper bounded by 1.
The probability of randomly selecting a job arriving more than N task periods
from the last idle point is upper bounded by β↑(s)nPeriods. The probability
of randomly selecting a job arriving in s is the stationary probability ξ(s). We
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upper bound the expected deadline miss probability in s by:

p↑dm(s) =
β(s)↑N
ξ(s)

+

∑N
i=1

∑
h̃∈(s,i) p

↑
in(s, h̃)p

↑
dm(s, h̃)

ξ(s)
. (10.38)

In our example, we derive for state 1 the first term β(1)↑2
ξ(1) ≈

0.047
0.875 ≈ 0.054 and the second term

∑
h̃∈([1,0],[1,1],[2,0]) p

↑
in(1,h)·p

↑
dm(1,h)

ξ(1) ≈
0.875·10−9+0.018·3.4·10−7+0.045·0.0073

0.875 ≈ 3.7 · 10−4.

Theorem 10.4.6. The expected deadline miss probability DMP of a randomly
selected job is upper-bounded by p↑dm, i.e., DMP ≤ p↑dm, where

p↑dm =
∑
∀s

(
β(s)↑N +

N∑
i=1

∑
h̃∈(s,i)

p↑in(s, h̃)p
↑
dm(s, h̃)

)
. (10.39)

Proof. The deadline miss probability Eq. (10.37) is an upper bound on the
deadline miss probability of a job arriving in s and resulting in h̃, because
N tail(µ(h̃), σ2(h̃), α(h̃, s)) upper bound on the workload distribution as shown
in per Theorem 10.4.1.

The expected deadline miss probability of a randomly selected job arriving
in s is upper bounded by p↑dm(s) as in Eq. (10.38). For jobs arriving in s within
N since the last idle point, Eq. (10.37) upper bounds pdm(s, h̃), and pin(s, h̃)
is an upper bound on the probability of randomly selecting a job arriving in
state s and resulting in h̃. The probability of randomly selecting a job arriving
in s more than N from the last idle point is upper bounded by β(s)↑N , and 1
upper bounds pdm(s, h̃) for these jobs. We divide by ξ(s) as per the definition
of conditional probability.

We apply the law of total probability on Eq. (10.38) over all the states s to
obtain Eq. (10.39).

In our example we have β(1)↑2 ≈ 0.047 and β(2)↑2 ≈ 0.011, resulting in
the first term of Eq. (10.39) as 0.058. In the second term we have for state 2∑

h̃∈([0,1],[1,1],[0,2]) p
↑
in(2, h) ·p

↑
dm(2, h) ≈ 0.125 ·0.024+0.045 ·0.16+0.019 ·

0.16. Summing with the terms of state one, the resulting sum is approximately
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0.0066. With only two accumulation periods accounted for, the largest part of
the bound stems from the first term, where the deadline miss probability is set
to 1 for longer accumulation vectors.

10.5 Iterative Workload Accumulation

As illustrated in Fig. 10.3, the steps described in Section 10.4 are applied itera-
tively, successively including jobs arriving with a longer time from the last idle
point in the analysis. The process ends when one of the following conditions is
met:

1. For each state both of the following hold:

(a) The upper bound on the probability of workload depletion has stopped
decreasing and started increasing.

(b) The lower bound on the probability of workload depletion has stopped
increasing and started decreasing.

2. The process has reached a maximum number of accumulated periods.

If the bounds on the workload depletion probability converge for each state,
or if the region within the bounds starts to grow, the first condition is met.
Instead of performing the convolution in each accumulation period, the upper
and lower bounds on the workload distribution are used, introducing an error.
The white space between the valid region and the lines to use in searching
for bounds in Figs. 10.9 and 10.10 illustrate these errors. When these errors
increase, the distance between the search region for our bounds and the region
resulting from the true workload depletion probabilities grows. For the upper
bounds, illustrated in Fig. 10.9, the distance between the search region and the
valid region may still decrease if the increase due to this error is compensated
by a decrease in β. In the case of the lower bounds, illustrated in Fig. 10.10,
a larger error leads to a smaller value for the lower bound. The lower bounds
are used in the calculations of β↑ in the next accumulation period, Eq. (10.36).
Smaller lower bounds lead to a larger β↑. This further increasing the distance
between the valid region and the bound search region, as β↑ is used to determine
the search region. This may cause p↓wd and β↑ to diverge.
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It may be the case that the workload depletion probability bounds diverge
from the beginning. This may be caused by insufficient computational re-
sources allocated to the task or too large errors introduced in the bound calcu-
lations. It may also be the case that the workload depletion probability bounds
converge slowly or converge for one or more states while they diverge for oth-
ers. In these cases, the process stops when the second condition is fulfilled.

We apply the iterative process to the following example:

Example 10.5.1.

S = 2, M =

(
0.9 0.1
0.7 0.3

)
, C = {N (20, 9),N (40, 16)}.

The stationary probability for state 1 is 0.875, and for state 2 it is 0.125.
The transition matrix and stationary probabilities are identical to Exam-
ple 10.4.1. In the CBS of this example, there are n = 4 server periods in
one task period, and the task is guaranteed Q = 8 time units of computation
time in each server period. The deadline is defined by k = 8 server periods.

State 1 in Example 10.5.1 could imply normal operation, and state 2 an
exceptional mode. While in normal operation the task remains there with prob-
ability 0.9, but when the task is in the exceptional mode, there is a probability
of 0.3 that it remains there. The initial values of probability of a randomly
selected job arriving with carry-in workload from at least one task period, β1
are obtained from simulation. Execution times are generated from the Markov
Model and fed into a CBS simulator with the specified server reservation and
period ratio. This results in β1 = (0.1278, 0.0442) for states 1 and 2, re-
spectively. Figure 10.11 illustrated the evolution of βN during the workload
accumulation process compared to probabilities of jobs arriving in states 1 and
2 at least N from the last idle point resulting from simulation.

The bound regions for the probabilities of workload depletion of the two
states along the accumulation process are shown in Fig. 10.12. Estimates of
the probabilities of workload depletion obtained from simulation are also dis-
played. The workload accumulation continues until the maximum number of
task periods, set to 20 for this example.

The bounds on the deadline miss probabilities for the two states along the
accumulation process are shown in Fig. 10.13. The second terms of Eq. (10.38),
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Fig. 10.11: Bounds on β for the two states as solid lines, along with probability
estimates of longer accumulation histories obtained from simulation as dashed
lines. (Log scale.)
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Fig. 10.12: The region between the upper and lower bounds on the per-state
probability of workload depletion in the example, along with the estimates ob-
tained from simulation as a dashed line.

the parts of the bounds resulting from the weighted sum of the accumulation
vectors we have accounted for, are shown as dotted. In this example, the second
terms approach the pdm from simulation. The major part of the introduced pes-
simism originates in β, the first terms of Eq. (10.38). Estimates of the deadline
miss probabilities obtained from simulation are also displayed in Fig. 10.13.

10.5.1 Time Complexity of the Iterative Process

In Section 10.4.4, we have seen that the number of accumulation vectors with
length N in a S-state model grows as O(NS−1). In the iterative procedure,
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Fig. 10.13: The bounds on the deadline miss probabilities during the workload
accumulation process of the example, along with results from simulation. (Log
scale.)

all accumulation vectors up until length N have been considered at iteration
step N , so the time complexity of the entire iterative process is O(NS). In the
current implementation, all vectors up until length N are considered in the iter-
ation step N , giving a time complexity of O(NS+1). By storing intermediate
results from previous iterations, this can be reduced to O(NS). The number of
states is application dependent. In the robotic vision task of Frı́as et al. [25], 4
discrete-emission states are identified, and in the control task in our evaluation
6 discrete-emission or 8 Gaussian-emission states are found. In the video de-
compression task evaluated in Friebe et al. [29] almost 50 Gaussian-emission
states are identified.

10.6 Reducing the Number of States by Merging

As the time complexity of the iterative process up until the accumulation period
N with a S-state model is O(NS), it is clear that if the number of states can
be reduced, this would have a great effect on the bound computation time. This
section outlines how to reduce the number of states by merging while ensuring
a safe bound on the deadline miss probability.
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10.6.1 Modified Markov Chain Execution Times

In this section we define a modified execution time model, where an upper
bound on the execution time distribution is defined by ⟨S,M,C⟩. As in the
model defined in Section 10.4.1, S = {1, 2, . . . , S} is the set of S states, S ∈ N,
and M is the S × S state transition matrix. C = {C1, C2, . . . , CS} is the set of
upper bounding execution time distributions, or emission distributions, related
to the respective state. These are modeled as partial Gaussian distributions with
mean µs and variance σ2

s of the Gaussian distribution, and αs as the starting
point of the distribution, i.e. Cs ∼ N tail(µs, σ

2
s , αs). Setting αs = −∞,∀s,

gives the model as defined in Section 10.4.1.

10.6.2 Merging Distributions

Definition 10.6.1. We define a merged partial Gaussian distribu-
tion N tail

m (µ1, µ2, σ
2
1, σ

2
2, α1, α2), of two partial Gaussian distributions

N tail(µ1, σ
2
1, α1) and N tail(µ2, σ

2
2, α2), as:

N tail
m (µ1, µ2, σ

2
1, σ

2
2, α1, α2) =

N tail(max(µ1, µ2),max(σ2
1, σ

2
2),max(µ1, µ2) + max(0, α1 − µ1, α2 − µ2))

In the following, we show that the merged partial Gaussian distribution
is greater than each of the distributions used in the construction, as outlined
in Theorem 10.6.1. We show this step-by-step, upper bounding each of the
two partial Gaussian distributions until both reach the merged distribution. We
provide a lemma and illustration for each step below.

Theorem 10.6.1. The merged partial Gaussian distribution defined by
N tail

m (µ1, µ2, σ
2
1, σ

2
2, α1, α1) is an upper bound of each of the two distributions

N tail(µ1, σ
2
1, α1) and N tail(µ2, σ

2
2, α2).

In Lemma 10.6.2, we show that shifting the mean of a partial Gaussian
distribution to a higher value while keeping the distance between the mean and
the starting point α unchanged gives an upper bounding distribution. This is
illustrated in Fig. 10.14.



168 Paper C

−1 0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

Work

C
D
F

CDF with µ2

CDF with µ1

Fig. 10.14: CDFs of two partial Gaussian distributions as in Lemma 10.6.2. In
this figure µ1 = 2, µ2 = 1, σ2 = 1 and α∆ = −1.

Lemma 10.6.2. The partial Gaussian distribution N tail(µ1, σ
2, µ1 + α∆) ≥

N tail(µ2, σ
2, µ2 + α∆) if µ1 ≥ µ2.

Proof. From Definition 10.3.2, we know that the scaling factor of the partial
Gaussian distribution depends only on α∆ and σ2 that are equal for the two
distributions. From this we conclude that the CDF ofN tail(µ1, σ

2, µ1 +α∆) is
the CDF of N tail(µ2, σ

2, µ2 + α∆) translated µ1 − µ2 to the right. Therefore
the CDF of N tail(µ1, σ

2, µ1 + α∆) is always below that of N tail(µ2, σ
2, µ2 +

α∆).

In Lemma 10.6.3, we show that increasing the variance to a higher value
while keeping the mean and starting point unchanged gives an upper bounding
distribution if the starting point α is at the mean or higher. This is illustrated in
Fig. 10.15.
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Fig. 10.15: CDFs of two partial Gaussian distributions as in Lemma 10.6.3. In
this figure µ = 1, σ2

1 = 4, σ2
2 = 1 and α = 1.
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Lemma 10.6.3. The partial Gaussian distribution N tail(µ, σ2
1, α) ≥

N tail(µ, σ2
2, α) if σ2

1 ≥ σ2
2 and α ≥ µ.

Proof. Let σ2
1 = k · σ2

2, k ≥ 1. Since the partial Gaussian functions are nor-
malized to integrate to 1, the PDF ofN tail(µ, σ2

2, α) at x ≥ α can be written as
C2 · e− (x−µ)2

2σ2
2

, with C2 as the normalization factor. Analogously we have the

PDF of N tail(µ, σ2
1, α) as C1 · e− (x−µ)2

2k2·σ2
2

, with C1 as the normalization factor.
Let us evaluate the rate of decline in the PDFs between x and x+∆x, ∆x > 0.
Since α ≥ µ the PDF is declining. Dividing the PDF at x with the PDF at
x + ∆x results in exponential functions with the coefficients (∆x·(∆x+2(x−µ))

2σ2
2

and (∆x·(∆x+2(x−µ))
2k2·σ2

2
respectively. The PDF associated with σ2

1 = k · σ2
2 has a

lower rate of decrease than σ2
2 . This implies that the CDF associated with σ2

2

has a more rapid growth from 0 and remains above the CDF associated with
σ2
1 .

With these lemmas in place, we can prove Theorem 10.6.1, restated here
for convenience.

Theorem 10.6.7. The merged partial Gaussian distribution defined by
N tail

m (µ1, µ2, σ
2
1, σ

2
2, α1, α1) is an upper bound of each of the two distributions

N tail(µ1, σ
2
1, α1) and N tail(µ2, σ

2
2, α2).

Proof. In the first step, we apply Lemma 10.6.2 and upper bound the execution
times of the two distributions as:

N tail(µ1, σ
2
1, α1) ≤ N tail(max(µ1, µ2), σ

2
1,max(µ1, µ2) + α1 − µ1)

and:

N tail(µ2, σ
2
2, α2) ≤ N tail(max(µ1, µ2), σ

2
2,max(µ1, µ2) + α2 − µ2)

In a second step we apply Lemma 10.4.4 and derive upper bounds on the
distributions as:

N tail(max(µ1, µ2), σ
2
1,max(µ1, µ2) + α1 − µ1) ≤

N tail(max(µ1, µ2), σ
2
1,max(µ1, µ2) +max(0, α1 − µ1, α2 − µ2))
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and:

N tail(max(µ1, µ2), σ
2
2,max(µ1, µ2) + α2 − µ2) ≤

N tail(max(µ1, µ2), σ
2
2,max(µ1, µ2) +max(0, α1 − µ1, α2 − µ2)

In a third step, we apply Lemma 10.6.3 to upper bound:

N tail(max(µ1, µ2), σ
2
1,max(µ1, µ2) +max(0, α1 − µ1, α2 − µ2)) ≤

N tail(max(µ1, µ2),max(σ2
1, σ

2
2),max(µ1, µ2) +max(0, α1 − µ1, α2 − µ2))

and:

N tail(max(µ1, µ2), σ
2
2,max(µ1, µ2) +max(0, α1 − µ1, α2 − µ2)) ≤

N tail(max(µ1, µ2),max(σ2
1, σ

2
2),max(µ1, µ2) +max(0, α1 − µ1, α2 − µ2))

This concludes our proof.

10.6.3 Merging States in the Markov Model

Here, we describe how to merge two states in the modified execution time
model. Without loss of generality, we describe how to merge the last two states,
S − 1 and S, to reduce the number of states from S to S − 1. States can be
reordered to merge any two states, and the process can be repeated to merge
any number of states.

Recall that the M element ma,b represents the conditional probability of
being in state b at task period i+1, given that at task period i, the state is a. Let
ma,b represent an element in the transition matrix prior to merging and mm

a,b

an element in the transition matrix after merging. In the new (S − 1) × (S −
1), the element values are calculated according to Eq. (10.40). All mm

a,b, a <
S − 1, b < S − 1 remain the same as ma,b because these are the transition
probabilities of states unaffected by the merge. For mm

a,S−1, a < S − 1, that
is the probability of moving from an unchanged state into the merged state,
the transition probabilities into the merged states are summed. mm

S−1,b, b <
S − 1 is the probability of moving from the merged state into an unchanged
state. The transition probabilities from the merged state are weighted means of
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the transition probabilities for the original states, weighted with the stationary
probabilities. Finally, mm

S−1,S−1 is the probability of staying in the merged
state. For each of the merged states, we sum the probability of staying in the
state or moving to the other of the merged states. A weighted mean is calculated
for these sums with the stationary probabilities of the states.

mm
a,b =


ma,b a < S − 1, b < S − 1

ma,S−1 +ma,S a < S − 1, b = S − 1
ξ(S−1)·mS−1,b+ξ(S)·mS,b

ξ(S−1)+ξ(S) a = S − 1, b < S − 1
ξ(S−1)·(mS−1,S−1+mS−1,S)+ξ(S)·(mS,S−1+mS,S)

ξ(S−1)+ξ(S) a = S − 1, b = S − 1

(10.40)
In the merged Markov model, we have emission distributions

Cs ∼ N tail(µs, σ
2
s , αs), s < S − 1. For state S − 1 the emis-

sion distribution is the merged partial Gaussian distribution CS−1 ∼
N tail

m (µS−1, µS , σ
2
S−1, σ

2
S , αS−1, αS).

In the merged Markov Model, transition probabilities remain unchanged,
and emission distributions are unchanged or upper-bounded. The merged
model is more pessimistic, and a DMP bound derived with the proposed method
is safe. Probabilities of workload depletion are lower compared to the model
prior to the merge. For jobs associated with a certain accumulation vector, the
derived probability of deadline miss and the proportion of those jobs contribut-
ing carry-over into the next task period are the same or higher. The probability
of job arrivals resulting in longer accumulation vectors, β is higher for the
merged model compared to the original for the same number of accumulation
periods N .

10.7 Evaluation

10.7.1 Goal of the Evaluation

The goal of the evaluation is to compare the obtained bounds with empirical
deadline miss rates to verify that the method is applicable for a realistic use
case, to see how the bound evolves with the workload accumulation iterations,
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and to see how different server parameters and deadlines affect the pessimism.
We compare to state of the art deadline miss probability estimates [26]. We
also compare with simulation of the fitted Gaussian-emission Markov model, to
evaluate the validity of this model for the use case, and to see the pessimism for
a particular execution time state. Further, we show an estimate of the deadline
miss probability assuming independence to see the effect of dependence in the
use case.

10.7.2 Use Case and Test Setup

We evaluated the proposed deadline miss probability bound with a control
task for a Furuta pendulum, a rotary inverted pendulum [57]. The control
task implements a square root Kalman filter [38] estimating angles and an-
gular velocities near the pendulum upright position and a PD controller for
stabilizing the pendulum upright at angle 0 of the arm. A separate task simu-
lates the pendulum dynamics and provides an asynchronous TCP server. The
control task connects to the server to retrieve arm and pendulum angles and
send the control signal. The control task runs periodically with a frequency of
500Hz. Tests were performed on a Raspberry Pi 3B+ with a PREEMPT RT-
patched version of Raspberry Pi OS. The control task was pinned to a core set
up as an exclusive cpuset and scheduled with the Linux CBS implementa-
tion SCHED DEADLINE. The simulator task was pinned to another core using
cpuset. It runs periodically with the same frequency and was FIFO sched-
uled with the highest priority. The TCP server of the simulator runs in a separate
thread. All cores were run with scaling governor performance. USB Ether-
net and WiFi were disabled during the tests. The ftrace framework was used
to record sched events and collect nanosecond-precision timestamps. The
control task was scheduled with SCHED DEADLINE setup with high band-
width and a long server period, resulting in each job finishing within the server
period. The time from the sched switch event where the task is switched in
to the event where it is switched out was taken as the execution time of a job. In
some rare occasions there are several sched wakeup events recorded close
to each other in the same period. There are 50, 011 sched wakeup events in
the log from 50, 000 periods. One of these is due to an extra wake up when fin-
ishing the task after all periods, but 10 are due to preemptions by kernel space
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Fig. 10.16: The recorded execution time trace of the control task.
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Fig. 10.17: The density distribution of the execution times starting at job 2 000.

tasks. In these cases, the execution time is taken as the sum of the time frames
from switch in to switch out.

Recorded execution times from the control task running 50 000 periods are
shown in Fig. 10.16. There was a run-in period with a higher proportion of ex-
ecution times at 0.5ms at the beginning of the trace. The execution times of the
first 2 000 jobs were discarded before fitting the HMM to the trace. The reason
for this is that we want to perform the evaluation under the given assumptions.
One assumption is stationarity, and therefore we exclude this part that appears
to be a transient period. In Fig. 10.17, we display the density distribution of the
execution time trace starting at job 2 000. The autocorrelation of the trace from
job 2 000 is shown in Fig. 10.18.
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Fig. 10.18: The autocorrelation of the execution times sequence starting at job
2 000.

The evaluation was performed with three different configurations of server
budget and period ratios:

1. Q = 0.06 ms, n = 5, k1 = 8, k2 = 10,

2. Q = 0.07 ms, n = 4, k1 = 6, k2 = 8, and

3. Q = 0.08 ms, n = 4, k1 = 6, k2 = 8.

Two relative deadlines were evaluated for each of these configurations.
The control task was scheduled with SCHED DEADLINE configured with

the different server budgets and period ratios. The task was configured with the
relative deadline and logged the number of deadline misses in each 500-job-
interval. During these tests, sched events are also recorded with the ftrace
framework, to avoid that any introduced overhead by the tracing causes higher
bounds and estimates compared to the empirical results. These recorded traces
are not used further.

This small but realistic use case illustrates the method’s applicability. Code
and data related to the evaluation are available online1.

10.7.3 Markov Model

The method outlined in Friebe et al. [29] was started with 10 initial states and
identified an HMM with 8 states. The transition matrix is shown in Eq. (10.41),

1https://github.com/annafriebe/ContMM_RT_BoundDMP

https://github.com/annafriebe/ContMM_RT_BoundDMP
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and from this we conclude that the Markov Chain is irreducible. The result-
ing state means, standard deviations, and stationary probabilities are displayed
in Table 10.3. The average computational requirement over a task period is
about 0.164 ms, obtained from multiplying stationary probabilities with means
and summing the products. The servers providing the lowest computational
resource guarantee 0.28 ms computation time per task period, so all accumu-
lation sequence Markov Chains are ergodic and we will have idle points in the
server. The highest mean and standard deviation are observed in state 3. This
state has a low stationary probability, only 0.7%, but the transition probability
m3,3 of staying in state 3 from one round to the next is as high as 63%. This
dependence increases the DMP in state 3 and overall.

.739 .051 .002 .003 .162 .001 .041 .001

.056 .350 .012 .000 .523 .008 .051 .000

.000 .310 .633 .003 .000 .044 .010 .000

.006 .000 .002 .408 .004 .054 .000 .526

.000 .038 .002 .003 .834 .001 .121 .000

.000 .000 .004 .681 .063 .225 .000 .028

.377 .011 .001 .000 .500 .000 .107 .003

.009 .001 .002 .296 .000 .038 .001 .654


(10.41)

10.7.4 Evaluated Methods

Six different methods were compared:

• Linux-CBS : Empirical deadline-miss ratio. The control task was scheduled
with Linux SCHED DEADLINE configured with each setting of server bud-
get Q, task to server period ratio n and evaluated with the different relative
deadline to server period ratios k. The task period was 2ms for all config-
urations, resulting in different bandwidths. 10 runs of the 50 000-job task
were performed for each configuration. The empirical deadline miss ratio
was calculated from deadline misses after the 2 000-job run-in period.

• Sim-Cont: A deadline-miss probability derived by generating execution
times from the fitted HMM and feeding them into a CBS simulator with the
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different server reservations, period ratios, and deadline configurations. A se-
quence of 106 samples was generated from the continuous-emission Markov
model described by Table 10.3 and Eq. (10.41).

• Ind: A deadline-miss probability derived by assuming independent execu-
tion times, i.e., generating execution times by randomly sampling from the
recorded trace and feeding them into a CBS simulator with the different
server reservations, period ratios and deadline configurations. A sequence
of 106 samples was generated.

• PROSIT: A deadline-miss probability derived with PROSITool [26]. A 6-
state discrete-emission HMM is fitted to the execution time trace, using a 10
µs scaling factor for resampling. This HMM is evaluated with PROSIT’s
solver for steady-state deadline-miss probabilities with the different CBS
configurations.

• Bound-8: A deadline-miss probability bound derived from the fitted 8-state
continuous-emission Markov model and the methods in Section 10.4. The
HMM is characterized by Table 10.3 and Eq. (10.41). The maximum number
of accumulation periods was set to 10. The β(s)1 for the first accumulation
period were retrieved from the HMM simulation.

• Bound-2: A deadline-miss probability bound calculated according to Sec-
tion 10.4 with a 2-state continuous-emission Markov model. The 2-state
model was obtained from merging all states except State 3 from the 8-state
model used for Bound-8 as described in Section 10.6. The initial β values for
the first accumulation period were retrieved from simulation with the merged
2-state model, and the maximum number of accumulation periods was set to
10.

Bound-8 and Bound-2 are calculated as pdm for each state according to
Eq. (10.38), and the overall bound according to Eq. (10.39). The bounds for
the state with the highest pdm of Bound-8 and Bound-2 are compared to the
deadline miss ratio of this state from Sim-Cont, as the empirical DMR Linux-
CBS and PROSIT do not provide per-state estimates.
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10.7.5 Results and Discussion

The bounds on the deadline miss probability pdm derived along the work-
load accumulation for the 8-state model and the 2-state model are shown
in Fig. 10.19, together with the average DMRs of the executions under
SCHED DEADLINE, deadline miss probability estimates from HMM simula-
tion, assuming independence, and derived with PROSITool.

Deadline miss probabilities derived with HMM simulation and PROSITool
are higher than empirical DMRs, except for the CBS configuration 0.08/4/8.
In this case, we observe pdm of 0.021% derived with Sim-Cont and 0.020%
with PROSIT, compared to 0.058% for the empirical Linux-CBS. This may
be caused by a low probability state that is not captured in the fitting of the
Markov Models. It may also be due to chance. This configuration has the
lowest number of deadline misses, and a larger number of runs with Linux-
CBS may have been needed for a reliable DMR estimate.

We observe that HMM simulation Sim-Cont estimates are consistently
close to the PROSIT results, which indicates that the continuous emission dis-
tribution HMM is a valid approximation in the evaluated use case.

The resulting Bound-8 bounds for the overall deadline miss probabilities
are 1.76 to 10 times higher compared to HMM simulation Sim-Cont. The
bounds for the state with the highest deadline miss probability are 1.3 to 4.1
times higher. Higher utilization and shorter relative deadlines give tighter
bounds.

For the overall bounds of the merged model, Bound-2, they are 2.08 to 12.5
times higher than HMM simulation results Sim-Cont. Bounds for the state with
the highest pdm are 1.3 to 5.2 times higher compared to the simulation results.

The number of states and the scaling factor need to be provided when fitting
an HMM in PROSIT, and the number of states and the scaling factor need to be
provided. For this evaluation, several combinations of these parameters were
tested. For 6 states and scaling factor 10 µs, 4 out of 6 states passed the PROSIT
independence tests; this was the largest proportion found in the limited explo-
ration. Some pessimism is introduced with PROSITool’s resampling. Tighter
or optimistic results were obtained with some of the fitted PROSIT models
explored. The calculation time for PROSIT is greatly affected by the range
of execution time values in the input trace and the scaling factor. For exam-
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ple, taking the 6-state model and decreasing the scaling factor from 10 to 1 µs
causes the computation time to increase from less than 0.5s to about 20 minutes
on our platform, a factor of 3 000. The continuous approach has no resampling
concept, and the calculation time is independent of the range of execution time
values. A direct comparison between the proposed bound and PROSIT has not
been performed. The proposed bound is implemented in Python and PROSIT
in C++. PROSITool’s computation time also varies a lot with the choice of
scaling factor, and therefore, we assess that a direct comparison would not add
much value to the evaluation.

In the different configurations, the time for the Bound-2 and Bound-8
calculations are logged for 5 and 10 accumulation periods, respectively. The
means and standard deviations are shown in Table 10.4. The Python implemen-
tation of the Bound-8 calculation for the 8-state model runs the first 5 accumu-
lation periods in about one second and 10 accumulation periods in around one
minute. With the 2-state bound Bound-2, the time required for an optimized
implementation grows with the number of accumulation periods as O(N2) in-
stead of O(N8) for 8 states. The non-optimized Python implementation of the
bound calculation for the merged model runs in about 55 milliseconds for 10
accumulation periods.

In the evaluated use case, the tightest bound is already reached at 3-4 ac-
cumulation periods. Already at accumulation over 5 periods, the 2-state model
is about 65 times faster than the 8-state model. At 10 accumulation periods,
the 2-state model is more than 1000 times faster. Combining a low number of
states with the use of accumulation vectors instead of accumulation sequences
with ordering information provides a strong computational advantage.

Simulations and bounds of the state with the highest pdm show results 50-
100 times higher than the overall pdm. While this should not be conflated with
the Worst-Case Deadline Failure Probability, we believe that the concept of
workload distribution per state is useful. In future work, we aim to develop
the accumulation sequence approach relating to the probability of consecutive
deadline misses.

In the evaluated use case, one state is identified with a much higher mean
and variance than the others. It may be the case that this use case is especially
well suited for state reduction into two states. Keeping the state with the highest
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mean and merging the others may add pessimism in cases where states are more
similar to the state with the highest mean.

10.8 Conclusions and Future Work

We have proposed a workload accumulation scheme starting from idle points
to upper bound the deadline miss probability of a task. The task’s computation
times are described by a Markov Model with Gaussian emission distributions,
and it is running on a reservation-based server.

A Markov model with Gaussian emission distributions allows for higher fit-
ting process automation than discrete emission distributions, where the number
of states and a scaling factor must be provided. Contrary to the discrete case,
the time required to obtain the bound is independent of the range of execution
times in the analyzed sequence, and no scaling factor is needed.

Further, we proposed a method for state merging. The bound computa-
tion time is reduced by reducing the number of states by merging. The time
complexity for obtaining a bound for a model with S states considering N ac-
cumulation periods after an idle point is O(NS). A bound is obtained early in
the process and is updated successively.

The evaluation use case is a control task of a Furuta pendulum. The task is
run with the Linux kernel implementation of CBS. The ratio of the number of
missed deadlines to the total number of jobs is compared to the obtained bounds
on the deadline miss probability. Bounds are derived from the fitted 8-state
model and from a merged 2-state model obtained from the 8-state model. Fur-
thermore, deadline miss probabilities for comparison are derived with a discrete
emission-HMM [26, 25, 4], by simulation with the fitted HMM, and simulation
assuming independence.

All bounds in the evaluation are higher than the simulation results. The
overall bounds for the 8-state model are 1.76 to 10 times higher, and in the
state with the highest deadline miss probability, the bounds are 1.3 to 4.1 times
higher. The overall bounds obtained with the merged 2-state model are 2.08
to 12.5 times higher, and the bounds for the state with the highest deadline
miss probability are 1.3 to 5.2 higher. All bounds are also safe compared to
experimental deadline miss ratios. In the evaluation, the bound over 10 accu-



180 Paper C

mulation periods takes about 0.06 seconds to calculate for the 2-state model,
but a minute for the 8-state model, an improvement of a factor 1000. Combin-
ing the workload accumulation method with state number reduction by merging
gives a strong computational benefit.

In future work, it would be interesting to develop the workload accumu-
lation approach to evaluate the probability of consecutive deadline misses, or
extend the approach to support DAG-based tasks. The bounds could potentially
be evaluated for use in an adaptive setting to monitor changes in the deadline
miss probability to adapt the Quality-of-Service (QoS) level.
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Table 10.2: Overview of notation used in this paper.

Symbol Description

Basic notation

T Task period
Ji Job at task period i
ai Arrival time of Ji
di Absolute deadline of Ji
D Relative deadline
P Server period
Q Server budget
n Number of server periods in a task period
k Number of server periods in a relative deadline
S Number of Markov states
M State transition matrix
N Number of task periods in workload accumulation

Values of random variables

ci Execution time of Ji
fi Finishing time of Ji
vi Workload at task period i

h
Accumulation sequence of state visits in Markov chain since
workload depletion

h̃
Accumulation vector of the number of visits in each Markov
state since workload depletion

Probability distributions and probabilities

C Execution time distribution

Vh,Vh̃
Workload distribution associated with an accumulation sequence
or vector

mi,j Transition probability from state i to state j
ξ(s) Stationary probability of being in s

pin(s, h̃) Probability of entering s with h̃

pco(s, h̃) Probability that h̃ in s carries workload to the next task period
pwd(s) Probability of workload depletion in s
pdm Deadline miss probability
β(s)N Probability of being in state s with h longer than N .
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Table 10.3: Means, standard deviation, and stationary probabilities of the fitted
HMM states.

State number 1 2 3 4 5 6 7 8

Mean (ms)
0.178 0.178 0.323 0.158 0.159 0.169 0.181 0.153

Standard deviation
(ms) 0.002 0.012 0.091 0.003 0.002 0.007 0.003 0.002

Stationary probability
0.128 0.045 0.007 0.086 0.509 0.014 0.078 0.133

Table 10.4: Time of the bound calculations with the 2-state and 8-state models
for the 6 configurations over 5 and 10 accumulation periods.

Bound calculation time Mean (s) Standard deviation (s)

Bound-2, 5 Accum. periods 0.0153 4.88 · 10−4
Bound-2, 10 Accum. periods 0.0552 4.10 · 10−3
Bound-8, 5 Accum. periods 1.00 0.0129
Bound-8, 10 Accum. periods 60.66 4.35
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Fig. 10.19: Evolution over 10 accumulation periods of the Bound-8 and
Bound-2 according to Eq. (10.38) for the worst state, and according to
Eq. (10.39) for the task overall, compared to the other methods listed in Sec-
tion 10.7.4.
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uardo Quiñones, and Francisco J Cazorla. Measurement-Based Proba-
bilistic Timing Analysis for multi-path programs. In Euromicro Conf. on
Real-Time Systems (ECRTS), pages 91–101, 2012.

[18] Robert I Davis, Alan Burns, and David Griffin. On the meaning of
pWCET distributions and their use in schedulability analysis. In In Pro-
ceedings Real-Time Scheduling Open Problems Seminar at (ECRTS’17),
2017.

[19] Robert I Davis and Liliana Cucu-Grosjean. A survey of probabilistic tim-
ing analysis techniques for Real-Time systems. Leibniz Trans. Emb. Syst.,
6(1):03–1–03:60, 2019.

[20] Robert Ian Davis and Liliana Cucu-Grosjean. A survey of probabilistic
schedulability analysis techniques for Real-Time systems. LITES: Leibniz
Transactions on Embedded Systems, pages 1–53, 2019.

[21] Jamile de Barros Vasconcelos and George Lima. Possible risks with EVT-
based timing analysis: an experimental study on a multi-core platform.
In 2022 XII Brazilian Symposium on Computing Systems Engineering
(SBESC), pages 1–8. IEEE, 2022.
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Abstract

Computationally demanding tasks with highly variable execution times
may require parallel processing. Scheduling such tasks with low deadline
miss rates but without significant overprovisioning is challenging. This issue
arises in applications like nonlinear optimization for Model Predictive Con-
trol (MPC). The Constant Bandwidth Server (CBS) provides timing isolation,
supporting both hard and soft real-time tasks. However, scheduling parallel,
time-varying jobs across multiple CBS instances requires static job-to-server
assignments, which can lead to resource underutilization due to queued jobs
awaiting specific servers. This paper introduces the Job Acceptance Multi-
Server (JAMS), a mechanism in which multiple CBS instances share a common
job queue, enabling flexible job dispatching for parallel workloads. JAMS in-
corporates a job dismissal mechanism to address overloads, ensuring that only
jobs with guaranteed resource availability are accepted. Each CBS instance
checks if it can complete a job by its deadline, given probabilistic knowledge
on its execution times, dismissing unfeasible jobs to avoid excessive tardiness
across queued tasks. Implemented in Linux, JAMS is evaluated with compu-
tation times drawn from an MPC task and synthetic datasets. The extensive
experimental results we provide, demonstrate that JAMS effectively controls
the deadline miss rate, maintaining it below a specified design threshold.
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11.1 Introduction

In real-time systems, computational workloads can often be decomposed into
smaller tasks that execute either in parallel or sequentially. Certain computa-
tions require strict sequential execution, but multiple such computations may
be active concurrently, operating on different data. For instance, in Model-
Predictive Control (MPC), an optimization problem is solved to determine a
state trajectory and control commands over a defined horizon, with a time-
varying convergence, particularly in nonlinear systems. As shown in [54],
such tasks for different time windows can be processed in parallel on predicted
states, updating results when states become available. Methods based on par-
ticle filters such as FastSLAM are often parallelized [5, 26] and may use an
adaptive number of particles, resulting in varying computation times [22]. A
state estimate can be obtained from a smaller number of particles although it
may be less accurate [22]. Allocating computational resources to a collective
group of tasks with a unified objective rather than to individual tasks enables
efficient resource utilization..

The Constant Bandwidth Server (CBS) [2] provides timing isolation and
supports integration of both soft and hard real-time tasks. In multicore systems,
CBS instances may be allowed to migrate across cores, although each instance’s
utilization is capped at 1 [9]. Thus, CBS alone is not sufficient for resource
assignment to a group of parallel tasks working toward a combined outcome,
i.e. a thread pool.

To address this limitation, we introduce the Job Acceptance Multi-Server
(JAMS), where multiple CBS instances share a global job queue, and queued
jobs are dispatched when a server becomes available.

If a task in a server misbehaves and requires more computation resources
than assumed at design time, the server guarantees that tasks outside the server
still receive the required resources. However, job tardiness within the server
may grow unboundedly, potentially disrupting the system functionality even
when other tasks have sufficient computational resources. In such cases, JAMS
utilizes a job dismissal mechanism to prioritize jobs with a high likelihood
of meeting their deadlines, mitigating overload situations and allowing for
smoother system recovery.
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Job dismissal, used in some schedulability and response time analysis of
real-time systems [32, 35], assumes that jobs are dismissed upon deadline
misses or at another specified dismissal point, enhancing analytical tractabil-
ity and mitigating adverse effects from misbehaving tasks or inaccuracies in
execution time estimates. For instance, if the analysis relies on a Worst Case
Execution Time (WCET) that was erroneously estimated, dismissing a job once
it consumed its erroneously considered WCET at analysis and admission time,
ensures that the analysis still holds for the jobs that behave correctly.

Despite these advantages of job dismissals, many real-time schedulers do
not provide such a feature. One alternative is to implement in-task job abor-
tion [37], or through dedicated programming abstractions, such as the deadline
exception introduced in [18]. While this is often a suitable alternative that al-
lows for tailor-made abortion points and can be implemented in addition to the
proposed JAMS mechanism, it requires that the tasks are bug-free and non-
compromised. Tasks cannot consider the total load of the system in the dis-
missal decision. Furthermore, dismissing a job at the time when it is about to
start execution, rather than at a dismissal point during execution, frees resources
for other jobs. To address these challenges, JAMS ensures that jobs dispatched
to a server are guaranteed a certain amount of computation time prior to their
deadline, by dismissing tardy jobs if needed..

Contribution: The contribution of this paper is twofold:

1. The JAMS framework, which enables a group of CBS servers to pick
jobs from a global shared queue, facilitating flexible dispatching of jobs
with varying computation times and a joint goal.

2. A job acceptance policy that dispatches jobs for processing only if there
are resources guaranteeing a high probability for them to meet their dead-
lines, dismissing jobs queued beyond acceptable queue times.

11.2 Related Work

Task models for parallel workloads include the fork-join model [33], where a
main thread executes sequentially up until a point where it forks into a number
of threads that execute a parallel part of the computation. This is followed by a
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synchronization where the parallel threads are terminated and the main thread
continues. An extension is the parallel synchronous task model [43], where
parallel computational segments may be consecutive, and two segments may
have different number of threads. Lupu and Goossens [34] presented a multi-
thread periodic task model, where each task periodically generates a number
of subprograms (threads). Hard real-time fixed-priority schedulability tests for
constrained deadlines are provided. In the parallel MPC example from [54],
optimizations start periodically, but they overlap, so there are no points when
threads simultaneously synchronize and join.

Another common parallel task model is the gang task model, where a
number of threads are required to run concurrently because they interact.
Coscheduling of such processing working sets was introduced by Ouster-
hout [39]. A one-gang-at-a-time policy [7] has been proposed to reduce
interference and turn the multicore parallel scheduling into an equivalent of
uniprocessor scheduling. Recently, soft real-time scheduling of gang tasks has
been considered [6], including presenting server-based scheduling policies and
schedulability tests. For the tasks in this paper, we consider functionality that
may be run in parallel, but there is no interaction or need for coscheduling, so
the gang task model is unnecessarily restrictive.

Scheduling of a set of tasks with multiprocessor bandwidth reservations has
been implemented to support hierarchical scheduling with bounded delay [40].
A similar approach has been taken to support real-time containers [1]. Both
these approaches use control groups to separate task sets and modify the Linux
CBS implementation SCHED DEADLINE to schedule the root level of a hi-
erarchical schedule, while the lower level is scheduled with fixed priority. In
JAMS, CBS is used for the low-level scheduling.

For systems without job dismissal, it is clear that the average requested
computational resources must be lower than the average provided resource for
these systems to be stable [20]. In such a stable system, there exist points in
time when the job queue is empty [55]. In a system where jobs are discarded,
stability can be achieved without this requirement, but some of the requested
computational resources may be rejected due to the discarding policy. Jobs
may also be delayed or discarded before they start due to a lack of resources,
scheduling priorities, and discarding policy. Chen et al. [16] compared the ef-
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fect on the deadline miss rate of varying the dismiss point after the deadline for
a uniprocessor system where task computation times were independent discrete
random variables and the average resource demand was lower than the supply.
While not directly applicable to our multiprocessor use case, potentially with
overload and correlated computation times, a later dismiss point resulted in a
higher deadline miss rate, but the rate converged. Manolache et al. [35] ana-
lyzed task graphs with stochastic computation times with an upper bound on
the number of concurrently active instantiations of each task graph. They con-
cluded that denying service to a newly arrived task graph considerably reduces
the number of states and schedulability analysis time compared to rejecting the
oldest instantiation in the system. Pazzaglia et al. [41] compared the effect on
control robustness of different strategies of handling deadline misses, includ-
ing different dismissal policies. For these control applications, killing a job at
the deadline or skipping the next job if a deadline has been missed were both
preferable to queueing jobs.

In the area of mixed criticality systems, LO-criticality jobs are aborted or
dismissed to ensure that HI-criticality jobs meet their deadlines [14, 10, 27].
One of the criticisms from system engineers discussed in [14, 11] of the as-
sumptions of Mixed-criticality systems is that LO-criticality jobs should receive
some service if at all possible. In a resilient system [14] started jobs run to com-
pletion, and a task is considered robust if it can safely drop one non-started job
in any extended time interval [13]. In the bailout protocol [11], HI-criticality
jobs that overrun their budget continue their execution. The overrun is compen-
sated for by not starting LO-criticality jobs, and by accounting for jobs that use
less resources than budgeted until the system has returned to normal execution
mode. In [31] HI-criticality jobs were monitored in a multiprocessor system,
and if one such job risked exceeding its isolation-based WCET, concurrently
running LO-criticality jobs were suspended to ensure they didn’t interfere.

In the Robust Earliest Deadline algorithm [15] EDF-scheduled tasks in a
uniprocessor system are associated with values, deadline tolerances and a crit-
icality level. If a job arrival leads to a WCET-based overload situation, non-
critical jobs with low value are rejected from the ready queue. Rejected jobs
may be recovered if jobs complete early. Due to the preemptive scheduling,
partly computed jobs may be aborted. In [45], this approach was applied to
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aperiodic jobs in a Total Bandwidth Server (TBS). It has been pointed out that
QoS guarantees for individual tasks cannot be provided in such a case, but a
separate server for each task is required [3].

In [12] weakly hard real-time systems were introduced, enabling specifi-
cation of a minimum number of met or consecutively met deadlines in every
window of a specified number of task invocations, or a maximum number of
consecutive deadline misses. These are alternative or complementary to the
probabilistic approach.

Tong et al. [47] proposed holistic budgeting of Directed Acyclic Graph
(DAG) tasks to decrease DAG drop rates. The slack from nodes that complete
early and from nodes that cannot start due to overruns in predecessor nodes
is used to complete overrunning nodes. This leads to a lower drop rate than
dropping the DAG when one node overruns, showing the advantages of holis-
tic budgeting and scheduling of potentially parallel work. In queuing theory, a
significant amount of work analyzes queues with reneging or customer aban-
donment. Kruk et al. [32] analyzed EDF queues where jobs are dismissed at
their deadline. Ward [49] surveyed results for queues with reneging. Reneging
can refer to client abandonment, where a client (job) leaves the queue according
to a probability distribution over the waiting time or reneging when a deadline
is met, or a buffer is full. Ward concludes that for the overloaded many-server
case, the story is complete. Towsley and Panwar [48] introduced Stochastic
Earliest Deadline policies in the case where deadlines are not known to the
scheduler, and analyzed the finite buffer case. If a job arrives at a full buffer,
the policy of removing the job stochastically closest to its deadline is at least
as good as the arbitrary policy. Whitt [50] investigates overloaded queues with
different abandonment time and service time distributions. Abandonment time
distributions significantly affect the mean queue length and waiting time. Most
work considers abandonment distributions that depend on job waiting times, but
there is also admission control or buffer overflow management that takes into
account the state of the queue as a whole. More recently, Whitt has reviewed
work on time-varying queues [52]. In [51] Whitt studied service rate controls to
stabilize queue performance with time-varying arrival rate. Performance mea-
sures were mean queue lengths and mean waiting times. It was shown that any
control that asymptotically stabilizes mean queue lengths cannot also stabilize
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mean waiting times.
In networking, packets sometimes need to be dropped due to full buffers. In

Active Queue Management, packets are dropped preemptively before the buffer
is full, to reduce congestion and waiting times. Random Early Detection [21]
has been proposed for congestion avoidance, where packets are dropped with
a probabilistic approach. More recently, CoDel has been proposed [38], that is
based on the minimum waiting time in the queue over a specified time inter-
val. If this minimum waiting time exceeds a target value, packets start to be
dismissed. The time between successive dismissals is decreased until the target
waiting time is met.

11.3 System Model and Notation

11.3.1 Task Model

We consider a task τ that releases at most κ jobs at the same instant. Job release
instants are separated by at least a minimum separation time p. Each job Jj has
the arrival time aj . A job computation time cj is an outcome of the random
variable C; thus, the job’s finishing time fj and response time are outcomes of
random variables as well. We denote the response time random variable R.
The task has a relative deadline D, so each job has the deadline aj + D. The
job computation times are upper bounded by the WCET c↑.

The computation time quantile cϕ is defined as:

cϕ := inf {x : P [C ≤ x] ≥ ϕ} (11.1)

The random variable W is the waiting time of an arriving job. The random
variable B is the remaining work of serviced jobs, and the random variable L is
the work of all queued jobs. The work arriving in an interval of length ∆ is a
random variable denoted by Υ(∆). L and Υ(∆) are sums of computation time
random variables, and B is upper bounded by such a sum.

The notation used in the paper is outlined in Table 11.1.
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11.3.2 CBS Background

We recall the CBS [4] operation. A real-time task τ is scheduled by an asso-
ciated CBS Si, described by its static parameters: maximum budget Qi and
period Ti, resulting in a utilization or bandwidth of Ui = Qi

Ti
. Si also keeps

track at run-time of the remaining budget qi and the absolute deadline di, two
dynamic quantities that change with the current time t ∈ N. Let δt denote the
length of a generic time interval in which (a job of) a server has been executed
on a CPU. Si is idle at time t, if τ has no pending jobs at t, that is if at time t,
there exists no job Jj such that aj < t < fj . If Si is not idle at time t, it is active
if it has remaining budget (qi > 0). If the budget is depleted, it is recharging.
A flowchart of the runtime changes of the server is shown in Fig. 11.1. For the
purpose of this paper, each server runs on a specified processor. The total uti-
lization of the processor of Si is denoted by UiΣ. We assume partitioned EDF
scheduling of servers, flanked with a per-CPU utilization-based test, which en-
sures each CBS gets its reserved budget within its deadline

11.3.3 Scheduling Parallel Workload with a Group of CBS

The task τ is scheduled by a JAMS to support a potentially parallel workload.
n CBS instances, each with server period T and maximum budget Q, are set
up to share the same job queue, as illustrated in Fig. 11.2. Essentially JAMS
implements a thread pool of n worker threads with guaranteed processing ca-
pacity, along with an interface to submit work to be processed, and retrieve
information about the work’s status and the result if it is ready. The operation
of JAMS is described in Section 11.5.

11.3.4 Definition and Assumptions

We define the concept of JAMS overload in a time interval:

Definition 11.3.1. A JAMS is overloaded in the interval [t0, t1] if the total com-
putation times of arriving jobs in the interval exceeds the expected provided
resource by the servers, that is if n·Q·(t1−t0)

T <
∑

j|t0≤aj≤t1 cj .
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Time t, start Si : {Qi, Ti},
qi ← Qi, di ← t + Ti

State: Idle

qi ≥ (di − aj) · Qi
Ti

?

qi ← Qi, di ← aj + Ti

Job Jj arrives at aj = t

Yes

State: Active

No

qi ← qi − δt

Si executes in δt

qi = 0? State: Recharging

di ← di + Ti, qi ← Qi

t = di

Job completed?

Yes

No

No

Add job to queue
Job arrives

Add job to queue

Job arrives

Job in job queue?

Yes

Yes No

Fig. 11.1: Flowchart of the CBS update at runtime. The job handling to be
updated by the JAMS is marked in red.
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Job queue
Job arrives

Jobs pulled
by servers

S1 : {Q, T}

S2 : {Q, T}

Sn : {Q, T}

Fig. 11.2: Overview of JAMS.

In the remainder of the paper, we make the assumptions outlined below.
Asm. 11.3.1 indicates that for intervals longer than ∆B , individual job compu-
tation times become negligible relative to the total workload, and the amount
of arriving work in the interval is characterized by a work arrival rate bound
ρ. Asm. 11.3.2 implies that a job arriving when an idle server has maximum
budget must be accepted.

Assumption 11.3.1. For time intervals longer than ∆B , the amount of arriving
work Υ(∆) is bounded by a work arrival rate bound ρ and a probability ϵ, such
that P [Υ(∆) > ρ ·∆] < ϵ,∆ > ∆B .

Assumption 11.3.2. The server configuration allows for completing a job with
the computation time quantile within the task’s deadline, that is cϕ ≤ Q ·

⌊
D
T

⌋
.

11.4 Motivating Examples and Problem Formulation

Example 11.4.1. A task τ releases one job Jj every p = 20. The result of Jj is
expected at latest at aj +60, we have D = 60. There is a fallback option in the
case of occasional deadline misses. The computation time of a job Jj is a ran-
dom variable, that takes the value of 20 with probability 0.9 and 38 with prob-
ability 0.1, the probability mass function is (P [C = 20] = 0.9,P [C = 38] =
0.1). The computation time random variables are independent and identically
distributed (i.i.d.).

For this example, an average of 21.8 units of work arrive every 20 time
units. Assuming that each processor provides 20 computational units in each
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period, the task in Example 11.4.1 cannot be scheduled on a single processor
or in a single CBS.

When scheduling τ , we have some options. We may split τ into s tasks
τ1, τ2, . . ., τs with p = 20 · s, where τ1 releases J1, J1+s, J1+2·s, · · · , and τ2
releases J2, J2+s, J2+2·s, · · · and so on. These different tasks can be scheduled
as exclusive tasks on isolated processors or in separate CBS instances. For this
example, the task is divided into two tasks (s = 2), each task scheduled in
a CBS with maximum budget Q = 15 and period T = 20. An illustration is
provided in Fig. 11.3. On average, a job requires 21.8 units of computation, and
the server provides 30 units for each job arrival. Due to the varying computation
times, some jobs will not start at their arrival time. For instance, if a job Jj with
computation time 38 starts at its arrival time, the next job in the same server,
Jj+2 will begin the latest 13 time units after its arrival, at aj+2 + 13. This job
will be waiting even if other servers are idle at this time. If the computation
time of Jj+2 is also 38, it may finish at aj+2 + 66, and miss its deadline as
illustrated in the separate queues case of Fig. 11.3. From simulation with the
reservation of competing servers positioned at the beginning of each period, we
see that the deadline miss rate is approximately 1%. A server is idle and not
throttled for about 21% of the time.

Using a joint job queue and starting a waiting job as soon as any server
is available reduces the risk of missing a deadline. Simulating the same task
served by the same CBS instances sharing a joint job queue, the proportion of
time where at least one server is idle and not throttled is about 41%, and the
deadline miss rate reduces to approximately 0.19%. Jj+2 is delayed as a direct
effect of the long job Jj , but if Jj+1 has a short computation time, Jj+2 starts
latest at aj+2 + 10. Jj+2 will still meet its deadline if it has long computation
time as illustrated in the joint queue case of Fig. 11.3. Using a joint queue for
time-varying jobs, such as an MPC-task, decreases the deadline miss rate.

Example 11.4.2. We use the task in Example 11.4.1, but with a different com-
putation time probability mass function where long computation times are more
common. In this example, (P [C = 20] = 0.4,P [C = 38] = 0.6).

The task in Example 11.4.2 has an average computation demand of 30.8
units per job, higher than the computational resource of 30 that is provided by
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Joint queue

Other servers’ reservations.
Job with computation time 38.
Job with computation time 20.
Job delayed by the long job.
Unaffected.
Time when job is queued.
Deadline of delayed job.

Fig. 11.3: Illustrations of jobs with delayed start due to a long computation
time in Example 1. Arrows indicate the time with a non-empty queue.

the servers. This means that the queues will soon start growing, and all jobs
will miss their deadlines.

Although job dismissal often is not explicitly implemented in sched-
ulers, it may be implicit. Consider a single-thread task scheduled with
SCHED DEADLINE in Linux. If a job overruns and the task is implemented
to self-suspend until the time for the next job activation, it will immediately
continue with the next job. In a sequential task where jobs retrieve the most
up-to-date data, this implicitly implements the skip-next policy [41] if the next
job starts once new data has arrived. However, with the need for parallel jobs
comes a need to specify the data connected to each job. The most straightfor-
ward way to handle this is to put the data or jobs in a queue, leading to the risk
of unbounded queue length and tardiness in an overload situation. Support for
dismissal of items from the queue is a remedy to this problem.

Problem Formulation
Devise a job acceptance policy with low overhead for JAMS, with the fol-

lowing properties when applied to a task as outlined in Section 11.3:

1. Out of jobs that are accepted, a configured proportion ϕ meet their dead-
line.
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2. If the JAMS is in a long overload interval, the proportion of dismissed
work approaches the proportion of computation requirement that exceeds
the computation resource provided by the servers.

3. Given computational resource that exceeds the average requirement, a
bound on the worst case job dismissal probability is derived, based on
the arriving work in each possible interval.

11.5 JAMS and Job Acceptance Test

In this section, we outline the operation of the proposed JAMS, and provide an
analysis of its properties.

11.5.1 JAMS Operation

Jobs arrive at the JAMS, which can access the states of its CBS. The JAMS is
configured with the task relative deadline D, a quantile ϕ of jobs that shall meet
their deadline if they are not dismissed, an estimate of this computation time
quantile cϕ, and the task’s WCET c↑. To ensure that resources are provided to
jobs with a reasonable chance of meeting their deadline, a job Jj is transferred
to a server Si only if the server can guarantee sufficient resources prior to the
deadline of Jj . The runtime operation of a JAMS and one of its CBS servers is
illustrated in Fig. 11.4.

When a job arrives to the JAMS, and there exist CBS in state Idle, the
arriving job is offered to these CBS in arbitrary order. If there is no such CBS
that accepts the offer, the job is added to the FIFO job queue with its arrival
time. A CBS with more suitable q and d may pull the job from the queue
later. When a job is pushed to the queue, any jobs at the front of the queue that
cannot be provided sufficient computational resources prior to their deadline by
any server are dismissed. Then the arriving job (with its arrival time) is added
to the job queue.

When a CBS Si is offered an arriving job or tries to find a job on the queue
to pull, it considers the amount of computation time it can guarantee prior to the
job’s deadline. For a job Jj with deadline aj +D, the guaranteed computation



Paper D 207

time till the job deadline is denoted as gi,j . A job is accepted if at least cϕ
computation time can be guaranteed prior to the deadline, i.e.:

gi,j ≥ cϕ. (11.2)

When a server attempts to pull a job from the queue, it first considers the job
at the front of the queue. If this is not accepted, it continues with the next job
until a job is accepted or the end of the queue is reached.

Race conditions may occur that are not included in the illustration Fig. 11.4.
We note that multiple servers may simultaneously access the job queue. Two
versions of the JAMS are considered and evaluated. One uses the computa-
tion time quantile configured from the start. The other estimates the quantile
from the computation times of completed jobs. In this case, cϕ of the JAMS
is updated according to the P 2 algorithm [28] when jobs are completed in the
servers. The quantile estimate will be the computation time value where the
proportion ϕ of observed computation times are below cϕ.

Example 11.5.1. Let us consider Example 11.4.1, scheduled by a JAMS with
Q = 15, T = 20 and n = 2 as illustrated in Fig. 11.3. Let c↑ = 40 and require
ϕ = 0.95 of started jobs to meet their deadlines.

For this example, the computation time quantile is cϕ = 38. If the guaran-
teed computation time prior to a job’s deadline is at least 38 it will be accepted,
otherwise it will be left on the queue.

Example 11.5.2. Let us again consider Example 11.4.1, scheduled by a JAMS
with Q = 15, T = 20 and n = 2 as illustrated in Fig. 11.3. Let c↑ = 40 and
require ϕ = 0.8 of started jobs to meet their deadlines.

For this example, the computation time quantile is cϕ = 20. If the guaran-
teed computation time prior to a job’s deadline is at least 20, it will be started.
Otherwise, it will be left in the queue.

11.5.2 Maximum Job Queue Length

Since jobs at the front of the queue that cannot be provided sufficient computa-
tional resources prior to their deadline by any server are dismissed when a new
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job arrives, the maximum number of queued jobs can never exceed the num-
ber of jobs arriving during the task’s relative deadline D. With the maximum
number of jobs arriving instantaneously κ, and the minimum separation time
of subsequent job arrival instants p, this means that the maximum job queue
length is bounded by κ ·

⌈
D
p

⌉
.

11.5.3 Job Queue Waiting Time

We want to bound the waiting time of a job J∗ that arrives at the JAMS. De-
note the remaining work of the at most n jobs executing in the servers at the
arrival of J∗ with the random variable B, and the work of all queued jobs at
the arrival with the random variable L. The waiting time of J∗ is bounded in
Theorem 11.5.1.

Theorem 11.5.1. The waiting timeW of a job J∗ that arrives at a JAMS where
B is the remaining work of currently running jobs, and L is the total work of
jobs on the queue at the arrival of J∗ is bounded by Eq. (11.3).

W ≤ T ·
⌈
B + L
n ·Q

⌉
(11.3)

Proof. The mean work to complete in a server before starting J∗ is B+Ln , and

this is completed latest at T ·
⌈
B+L
n·Q

⌉
. At the latest at this point at least one

server is available to start executing the work of J∗.

11.5.4 Guaranteed Computation Time

When a server Si requests to pull a job from the queue at time t, the guaranteed
computation time gi,j provided by Si prior to the deadline of Jj at the front of
the queue is calculated. To simplify these expressions we denote the difference
between Jj’s deadline and the server’s current deadline by δi,j = aj+D−di. If
δi,j < 0, then a part of the leftover budget qi of the current server activation can
be guaranteed. The server’s execution ends latest at t+UiΣ·(di−t), considering
the total utilization UiΣ on the processor. If δi,j ≥ 0, the full leftover budget qi
of the current activation is guaranteed, plus Q units for each full server period
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after di before Jj’s deadline, and possibly a part of the budget in the last server
period before the job’s deadline. The guaranteed computation time gi,j can be
computed as:

gi,j =


[
qi − [UiΣ · (di − t)− (aj +D − t)]+

]+
, δi,j < 0,

qi +Q ·
⌊
δi,j
T

⌋
+

+
[
Q− [UiΣ · T − δi,j mod T ]+

]+
, δi,j ≥ 0,

(11.4)

where [x]+ := max(x, 0).
For analysis purposes, we bound G in Theorem 11.5.2.

Theorem 11.5.2. A job J∗ that arrives to a JAMS with remaining work on
the servers B and queued work L will be guaranteed at least G computation
resource prior to its deadline as outlined in Eq. (11.5)

G ≥ Q ·
⌊
D

T

⌋
−Q ·

⌈
B + L
n ·Q

⌉
(11.5)

Proof. The waiting timeW of J∗ is bounded in Eq. (11.3). The time remaining
until the deadline when the job is pulled by a CBS is D −W . The guaranteed
computation time of a server within this time is at least Q times the number of
full server periods in D −W , giving:

G ≥ Q ·
⌊
D −W

T

⌋
≥ Q ·

⌊
D

T

⌋
−Q ·

T ·
⌈
B+L
n·Q

⌉
T


= Q ·

⌊
D

T

⌋
−Q ·

⌈
B + L
n ·Q

⌉

11.5.5 Dismissal Probability

A job Jj will be dismissed if gi,j < cϕ,∀i. Therefore the probability of dis-
missing a job is bounded in Eq. (11.6), by inserting the bound on the guaran-
teed computation time in Eq. (11.5), and in the last step using the bound on the
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served work B ≤ n · c↑.

P [G < cϕ] ≤ P
[
Q ·
⌊
D

T

⌋
−Q ·

⌈
B + L
n ·Q

⌉
< cϕ

]
= P

[⌈
B + L
n ·Q

⌉
>

⌊
D

T

⌋
−

cϕ
Q

]
≤ P

[⌈
L

n ·Q

⌉
>

⌊
D

T

⌋
−

cϕ
Q
−
⌈
c↑

Q

⌉] (11.6)

Dismissals in an Overload Scenario

Consider a scenario where the total work on the queue remains high for a suf-
ficient amount of time so that all servers are running at full capacity, and some
jobs are being dismissed because of insufficient guaranteed computation time
prior to their deadline. At this point, the average work completion rate by the
servers is n · QT . Let the average work arrival rate during the overload scenario
be γ · n · QT , γ > 1. This implies that the proportion of dismissed work is
1 − γ−1, consistent with steady-state queuing theory analysis of an overload
system with abandonment [50]. The dismissal decision for a job is independent
of the computation time of the specific job. If computation times are indepen-
dent random variables, the proportion of dismissed jobs is also 1 − γ−1. The
dismissal probability of a specific job may be higher or lower due to variations
in the work arrival rate and is bounded by Eq. (11.6).

We consider Example 11.4.2. In this case, computation times are i.i.d. and
the required average computational requirement is 30.8 per job arrival, and the
provided resource is 30. This gives γ = 30.8

30 ≈ 1.027 and a dismissal rate of
about 2.6%.

Dismissals With Sufficient Average Capacity

For a system with sufficient average capacity, a bound on the dismissal proba-
bility of a job in JAMS is outlined in Theorem 11.5.3.
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Theorem 11.5.3. For a JAMS that is not overloaded in any intervals longer
than ∆L, the probability pd that a job is dismissed is bounded by Eq. (11.7).

pd ≤ max
∆

(
P
[⌈

Υ(∆) + B
n ·Q

⌉
>

∆+D

T
−
⌈
cϕ
Q

⌉])
(11.7)

Proof. A system that is not overloaded in any long interval has some points in
time when the queue is empty, and at least one server is ready to start executing
an arriving job immediately. Denote a time when the last remaining idle server
goes to active state with t0. Now we consider a job J∗ arriving at t0+∆,∆ > 0,
assuming that all servers are busy in the interval [t0, t0+∆]. J∗ will start at the
latest when one server is no longer processing the remaining work of at most
n − 1 jobs that were running at t0 or work that arrived in the interval except
for the work of J∗. If J∗ starts before t0 + ∆ + D − T ·

⌈
cϕ
Q

⌉
, it will not be

dismissed.
Denote the remaining work of jobs running at t0 as B and the work arriving

in this interval except for the work of J∗ as Υ(∆). J∗ will not be dismissed if:

t0 + T ·
⌈
Υ(∆) + B

n ·Q

⌉
≤ t0 +∆+D − T ·

⌈
cϕ
Q

⌉
(11.8)

Restructuring of this condition gives an upper bound on the probability that J∗

is dismissed as:

P
[⌈

Υ(∆) + B
n ·Q

⌉
>

∆+D

T
−
⌈
cϕ
Q

⌉]
(11.9)

For an arbitrary job Jj , if it arrives to a JAMS with at least one server idle, it
will not be dismissed due to Assumption 11.3.2, and the bound is trivial. If it
arrives to a JAMS with all servers active, there exists a ∆ to the most recent
point when the last server went to active state. Then Eq. (11.9) bounds the
dismissal probability of Jj with this ∆. Eq. (11.7) is greater than or equal to
Eq. (11.9), so it bounds the dismissal probability of Jj .

A task with average computation time requirement below that provided by
the servers will experience no dismissals if for each interval length ∆, the ar-
riving work Υ(∆) and the work B remaining to be served at the start of the
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interval when the last server goes to active are bounded by Eq. (11.8). For a
system where D > T ·

(⌈
c↑

Q

⌉
+
⌈
cϕ
Q

⌉)
and work arrival rate bound ρ ≤ n·Q

T

we have dismissal probability at most ϵ in Eq. (11.9) for all ∆ ≥ ∆B from
Assumption 11.3.1.

As ∆ grows, Eq. (11.8) goes toward the condition that the provided com-
putational resource needs to be higher than the average demand. Υ(∆) + B in
Eqs. (11.7) to (11.9) is a sum of computation time random variables. If com-
putation times are independent random variables, the sum can be calculated by
convolution. If computation times are correlated, convolution of upper bound-
ing probabilistic WCET (pWCET) distributions can be applied [19], or a bound
can be derived in other ways [36, 17]. If computation times are described by
Markov Models, these can be utilized to calculate the sum [23, 24].

Let us go back to Example 11.5.1. We need to consider ∆ as multiples of
20, as jobs are released with p = 20. For ∆ = 20, we have a bound on the dis-
missal probability as P

[⌈
Υ(20)+B

2·15

⌉
> 20+60

20 −
⌈
38
15

⌉]
= P

[⌈
Υ(20)+B

30

⌉
> 1
]
.

In this case B may contain almost the full work of 1 job, if the queue was
empty just a short time prior to t0. Υ(20) contains 1 job, that arrived at t0.
It is clear that with this task and configuration, we cannot guarantee that a
job arriving one period after the start of a queue is not dismissed. With com-
putation times 20 or 38, two jobs will not fit in the total budget of 30. For
∆ = 40 and D = 60, Υ(40) contains two jobs and the dismissal probabil-
ity bound is P

[⌈
Υ(40)+B

30

⌉
> 2
]
. All three jobs in B + Υ(40) need to have

computation time 20 to ensure no dismissal, and the probability of this is 0.93.
The dismissal probability bound for jobs arriving within two periods from t0
is 1 − 0.93 = 0.271. For ∆ = 60, we need to consider a total of 4 jobs in
B + Υ(60). For D = 60, we have P

[⌈
Υ(60)+B

30

⌉
> 3
]
, and all four jobs need

to have computation time 20 to ensure no dismissal, the probability of this is
about 0.34.

Considering the lower computation time quantile in Example 11.5.2, this
will lead to lower dismissal probability bounds, as the term

⌈
38
15

⌉
is replaced by⌈

20
15

⌉
.

Example 11.5.3. Let us consider Example 11.5.1, but now with a longer rela-
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tive deadline of 100.

With the relative deadline of 100, we would instead have the dismissal
probability bound for ∆ = 20 as P

[⌈
Υ(20)+B

2·15

⌉
> 20+100

20 −
⌈
38
15

⌉]
=

P
[⌈

Υ(20)+B
30

⌉
> 3
]
. We see that even in the worst case where both jobs con-

tributing work to Υ(20) + B have computation time 38, we can guarantee that
there is no dismissal at this point.

With ∆ = 40, we have P
[⌈

Υ(40)+B
30

⌉
> 4
]
, and the dismissal probability

is 0.
With ∆ = 60, P

[⌈
Υ(60)+B

30

⌉
> 5
]

at least one of the jobs needs to be short
to avoid a dismissal, so the dismissal probability bound equals the probability
of all jobs being long, 0.14.

11.5.6 Probability of Meeting the Deadline

We show that for a job that is accepted by a server, the deadline will be met with
at least probability ϕ, provided the probability is at least ϕ that the job’s com-
putation times is below cϕ. For independent computation times, ϕ represents a
bound on the probability that C < cϕ for each job that is run. For correlated
computation times, individual jobs may have higher or lower probability of ex-
ceeding the quantile. In this case the average ratio of started jobs that meet their
deadline to started jobs is at least ϕ.

Theorem 11.5.4. Assuming i.i.d. computation times, a job Jj that is accepted
by a CBS in JAMS has at least probability ϕ of meeting its deadline.

Proof. A job that is accepted is guaranteed at least cϕ computation time prior
to its deadline. From this if follows that P [R ≤ D] ≥ P [C ≤ cϕ] ≥ ϕ.

Theorem 11.5.5. The rate of jobs accepted by a CBS in JAMS that meet their
deadline is at least ϕ.

Proof. A job Jj that is accepted is guaranteed at least cϕ computation time
prior to its deadline. The outcome of the acceptance test is independent of the
computation time of Jj . Therefore, the rate of accepted jobs that meet their
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deadlines is at least the rate of jobs with computation time below cϕ, that is
ϕ.

We note that using a precomputed computation time quantile derived from
a pWCET distribution that upper bounds the computation time distribution en-
sures that the probability bound on meeting the deadline holds for each accepted
job even with correlation.

A general bound on the probability of meeting the deadline, that holds even
for jobs with computation time cj > cϕ is derived in Eq. (11.10).

P [C ≤ G] ≥P
[
C ≤ Q ·

⌊
D

T

⌋
−Q ·

⌈
B + L
n ·Q

⌉]
= P

[⌈
B + L
n ·Q

⌉
+
C
Q
≤
⌊
D

T

⌋] (11.10)

We return to the comparison of Examples 11.5.1 and 11.5.2. We have seen
that a lower computation time quantile leads to lower dismissal probability, but
this comes at the price of a higher probability of deadline miss for started jobs.

Finally, we note that an upper bound on the dismissal probability pd, and
a lower bound on the probability that an accepted job meets its deadline ϕ,
imply a lower bound on the probability of meeting the deadline for every job as
(1− pd) · ϕ.

11.6 Implementation and Overheads

The mechanism described in Section 11.5 has been implemented as a multi-
threaded C program on the Linux Operating System, managing a limited-size
shared queue that exposes special blocking operations to push jobs into the
queue and pull admitted jobs out of it, alongside performing the actual dis-
missal operations described in Section 11.5. Our JAMS implementation may
optionally use a kernel module we realized for faster and more accurate access
to the SCHED DEADLINE state parameters at runtime, as described below.
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11.6.1 JAMS Push and Pull Operations

The push operation is a simple blocking operation that pushes jobs into a FIFO-
ordered queue, managed through a classical circular buffer. In the JAMS de-
sign, jobs are pushed all with the same relative deadline; thus, their submission
order corresponds to a deadline-based order. In the experimentation described
below, we configured the queue size never to hit the size limit in a push oper-
ation. After enqueuing a job for processing, the push operation notifies other
threads possibly waiting on a pull through a condition variable. The pull oper-
ation is more involved and contains the majority of our JAMS implementation:
we retrieve the runtime left and absolute deadline of the CBS server (see be-
low), then we scan the jobs waiting in the queue, starting from the earliest sub-
mitted job, checking whether the budget available till the deadline is sufficient
for the estimated percentile of the job computation time, using Eq. (11.2): in
such a case, the job is pulled out of the queue and returned to the caller for pro-
cessing, otherwise we move forward to check the next job in the queue. In the
latter case, the job is not immediately dismissed but left for the other threads in
the JAMS CBS group, which will, in turn, evaluate the job based on their own
CBS instantaneous parameters. A job that is not picked up by any server is
eventually dismissed. Whenever the pull operation cannot find admissible jobs
to process in the queue, it blocks on a condition variable, waiting for a push
operation.

11.6.2 Reading SCHED DEADLINE Parameters

The SCHED DEADLINE scheduler available on Linux has a direct API to read
the statically configured maximum runtime, relative deadline, and period of a
CBS server (through the sched getattr() syscall), but it lacks an API to
retrieve the leftover runtime and absolute deadline. However, these parameters
can be accessed through the /proc filesystem, reading the per-task sched
special file, where the dl.runtime and dl.deadline parameters can be
found for tasks under the SCHED DEADLINE policy. The runtime value ac-
cessible this way is only guaranteed to be updated at each periodic system tick,
with a frequency of HZ. Reconfiguring the kernel with a 1ms HZ results in a
more accurate reading. However, the /proc interface is designed for debug-
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ging rather than for production use, so it suffers from inherent inefficiency. For
example, all quantities are wastefully formatted in decimal notation from the
kernel space and have to be converted back into user space. Therefore, we real-
ized a kernel module that allows for accurately reading the SCHED DEADLINE
parameters directly in binary format, with much greater efficiency. On the
Raspberry Pi 4 board used for our experimentation, reading the current param-
eters using the /proc interface resulted in a 228±35µs per-reading overhead,
while with our kernel module, this was reduced to a 10.8 ± 2.4µs per-reading
overhead. Note that, in JAMS, worker threads need to retrieve this informa-
tion each time a job is evaluated for processing to apply the acceptance policy
properly.

11.6.3 JAMS Overheads

This subsection discusses the computational and memory overheads due to us-
ing JAMS, in its current implementation. The time required for JAMS push
and pull operations is bounded by a constant time per call. The most signif-
icant overhead is observed during ‘pull‘ when reading the server parameters,
for which a significant improvement is discussed in Section 11.6.2 (reducing it
from 228µs down to 10.8µs). Regarding how often we pull, in a case where
JAMS is mainly idle, nearly every server will wake up and attempt a pull at
each job arrival. When JAMS servers are mainly busy, each server will perform
a pull per processed job, roughly with a rate equal to the arrival rate divided
by the number of servers. With our implementation and evaluation set-up, the
average pull time with the improvement discussed in Section 11.6.2 is 49µs,
and the average push time is 9µs. In our evaluation scenarios, job computation
times are 10−300ms, making those overheads quite negligible from a practical
standpoint. Regarding the memory overhead, arrival times must be stored for
all queued jobs.
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11.7 Experimental Evaluation

In this section, we provide results from the experimental evaluation1 of our pro-
posed JAMS mechanism, implemented as detailed in Section 11.6. The behav-
ior of the proposed JAMS and dismissal mechanism is evaluated in the presence
of both synthetic and realistic workload scenarios. We compare the deadline
miss rate and job dismissal rate for different configurations and workloads. We
also show how application of the JAMS acceptance policy affects the response
times throughout an execution sequence. A comparison is performed between
applying the JAMS dismissal policy with a statically precomputed quantile of
the computation times versus using an online estimated quantile. Comparisons
are performed against a baseline with multiple servers that always pull the first
available job from the queue without applying any dismissal policy.

Two types of workload are considered in the evaluation: synthetically gen-
erated computation times with a lognormal distribution and recorded computa-
tion times from an MPC task.

11.7.1 Computation Time Data

The MPC task is based on the Unmanned Ground Vehicle (UGV) path planning
with obstacles example of the libmpc++ library [42]. The Sequential Quadratic
Programming algorithm SLSQP [30] from the NLopt library [29] is used for
the optimization. Predictions and control are computed over a 6-step horizon.
A list of waypoints is used, and when a waypoint is reached, the next is ob-
tained from the list in a circular manner. The simulated UGV is run in two
environments, with smaller or larger obstacles, resulting in lighter or heavier
computational load. The starting point, waypoint list, and configuration of the
optimization are the same. The libmpc++ optimization time logging is modi-
fied to use the clock gettime(CLOCK THREAD CPUTIME ID) syscall,
and log the computation time of the optimization rather than the response time.

10 runs of 5000 optimization steps are performed in each environment. The
computation time data collection is performed on a Raspberry Pi 3B+ with

1Code and data for the artifact evaluation are available at
https://github.com/annafriebe/RTAS 25 JAMS AE.
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PREEMPT RT where frequency scaling and USB have been disabled. The task
is scheduled with the highest priority FIFO scheduling and pinned to a core
with the cpuset utility. Computation times are retrieved from the libmpc++
log files. The experimental Cumulative Distribution Function (CDF) of the
MPC computation times are reported in Fig. 11.5. There is a high degree of
correlation among the computation times, since they are affected by the UGV
state dynamics.

We also used synthetic computation times that have been generated with
lognormal distributions. These have been shown to be a good fit for com-
putation time distributions in some applications [44]. We have generated 10
lognormal traces, drawing the average randomly from the range [40, 60]ms and
the standard deviation from the range [30, 40]ms. The distribution is bounded
to the range [10, 160] by discarding samples outside this range. The syntheti-
cally generated computation time CDFs are reported in Fig. 11.6. Means and
standard deviations shown in the figure are empirical from the samples in the
bounded range, with the exception of the last dotted line. In this case these are
the mean and standard deviation of the lognormal distribution prior to bounding
the range.

11.7.2 Evaluation Program and Test-Bed Setup

The described JAMS mechanism has been used in the program we realized
for the experimental validation, where one thread was dedicated to submit-
ting jobs to JAMS via the push operation, while n worker threads used the
pull operation. Each thread was attached to a SCHED DEADLINE reservation
with configurable dl runtime and dl deadline = dl period param-
eters. Reservations were configured in partitioned EDF mode2. Job computa-
tion times were provided as trace files input to the program, produced according
to the workload scenarios described in Section 11.7.1. The thread submitting
jobs to the JAMS has been periodically activated, with a specified job inter-
arrival period. The worker threads have been using the special pull operation to

2This was obtained via disabling the in-kernel access control by writing -1 to
sched rt runtime us in /proc/sys/kernel, then setting the needed affinity masks
on SCHED DEADLINE threads.
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retrieve the admitted jobs and then process them by performing wasteful com-
putations for the amount of time of each job, as instructed by the trace file that
was read at the beginning of the program. Finally, they measured the response
time for the job, storing it in an in-memory array. At the end of the program,
all the stored response times have been dumped into an output file. In all ex-
periments, jobs are released periodically every 80ms, equal to the server period
T .

The experiments have been run on a Raspberry Pi 4 Model B board
equipped with an Arm Cortex-A72 quad-core CPU and 3.7GiB of RAM, with
the CPU frequency locked at the maximum value via cpufreq. The JAMS
was configured with 2 worker threads pinned down on cores 2 and 3, and the
thread submitting requests pinned down on core 1. The 3 cores have been iso-
lated from the general OS workload using the isolcpus boot parameter of
the kernel. Additionally, all experiments were carried out at runlevel 1 to avoid
starting unnecessary services on the platform.

11.7.3 Experiment 1 – MPC Traces

In the first experiment, we performed a program run using the 10 traces from
the MPC use-case whose distribution is reported in Fig. 11.5. We have re-
ported the obtained deadline miss percentage and dismissed jobs percentage in
Fig. 11.7. The relative task deadline is 480 ms, chosen from the MPC 6-step
horizon and the 80 ms period. The top plot shows the results obtained process-
ing the 10 more demanding traces, tagged “heavy”, using a per-CBS allocation
bandwidth of 60%. When using no dismissal, the system turns out to be quite
overloaded throughout the run, resulting in deadline miss rates between 30%
and 60%, as visible from the “No dismissal” violet dots cloud at the bottom
right of the plot. When enabling the JAMS acceptance policy configured stati-
cally with the known 95th percentile of the input traces, we obtain roughly 1%
of deadline misses at the expense of a 10% of job dismissals (green orthogo-
nal crosses cloud). The results are aligned with our deadline-miss theoretical
expectations in Theorem 11.5.5, as the system would be supposed to guarantee
at least a 95% of deadline hit rate under these conditions. Switching to using a
dynamic percentile estimator, we obtain the green oblique crosses cloud, hav-
ing a slightly lower dismissal rate at the expense of doubling the deadline miss
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ratio, which stays safely within the 5% design bound (highlighted as the green
vertical dashed bar in the plot).

Moving to the plot’s blue and brown dots cloud series, we can see a sim-
ilar behavior obtained by configuring JAMS with a different target percentile,
namely 90th and 85th (blue and brown series, respectively). In both cases, the
obtained results confirm what just discussed above, with the difference that,
when JAMS uses a lower computation time percentile in its configuration, it
tends to admit a higher number of jobs, obtaining a higher percentage of dead-
line misses, which keeps staying safely below the theoretical bounds (10% and
15% marked with a blue and brown dashed vertical bar in the two plots).

To mitigate the need to dismiss jobs with a heavy workload, we can assign
more computational resources to JAMS, increasing the per-CPU bandwidth
from 60% to 70%. The effects of such a change on the various configurations
are shown in the second plot of Fig. 11.7. In this case, the baseline runs exhibit
significantly fewer deadline misses (reduced from the previous 30%-60% down
to 15%-30%); however, they are still above the desirable threshold of 5%, for
example. The JAMS mechanism, in this case, also proves to be beneficial, man-
aging to keep the deadline-miss rate for the processed jobs within the design
bounds (the usual three percentiles are shown in the picture), applying a dis-
missal rate roughly equal to half the one of the previous case with the per-CPU
bandwidth of 60%.

The bottom plot in Fig. 11.7 shows the results obtained processing the 10
lighter traces, tagged “light”, using a per-CBS allocated bandwidth of 40%.
Under these conditions, our baseline without dismissals results in a deadline-
miss rate between 5% and 16%, visible in the “No dismissals” violet dots at the
bottom right of the plot. Enabling our JAMS dismissal policy, with a config-
ured 95% of target deadline-miss bound, we obtain deadline-miss rates between
0.5% and 1.5% (again safely below the design bound), at the expense of a dis-
missal rate between 1.5% and 3.5%.

In the collected experimental data, a final piece of information worth a look
at is the number of consecutive jobs that miss their deadline or are dismissed.
Fig. 11.8 reports the response times obtained for the first 1000 jobs in the exper-
iment using the MPC light trace 0, without any dismissal policy (blue dots), ver-
sus using JAMS with a statically configured 95% percentile (red dots), where
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job dismissals are highlighted by red crosses. It is clear that without a dismissal
policy, transient overloads lead to long periods with no jobs producing timely
results.

11.7.4 Experiment 2 - MPC Traces with Real-Time Load

We also experimented with the JAMS mechanism running alongside other real-
time workload on the platform. As JAMS is designed around using CBS and
partitioned EDF for temporal isolation among multiple real-time tasks, the ad-
ditional load on the platform was also run through CBS reservations. More
specifically, we performed a run of the heavy traces described above, served by
2 CBS servers occupying 60% of the CPUs 2 and 3, deploying on each of these
2 CPUs also additional 3 real-time tasks, attached to CBS reservations with
runtime and period=deadline of (3ms,60ms), (5ms,100ms) and (7ms,140ms),
for a total of additional 15% of real-time CPU workload.

JAMS was made aware of the total utilization of the CPUs where its CBS
servers were deployed, so to correctly compute the available budget to deadline
gi,j in Eq. (11.4). The obtained results are summarized in Fig. 11.9, where,
alongside the usual “No dismissal” points visible at the bottom right of the
plot, we can see the results from JAMS configured with 95th, 90th and 85th
percentiles of the computation times distributions (in green, blue and brown
dots, respectively). Results are reported with statically configured percentiles
(orthogonal crosses) and dynamically estimated ones (oblique crosses). The
expected percentile bounds on the deadline misses are represented with vertical
dashed lines with the same color as the points corresponding to that configured
percentile (green, blue, and brown for 95th, 90th, and 85th, respectively).

11.7.5 Experiment 3 - Lognormal I.I.D. Traces

We performed another experiment using the lognormal traces shown in
Fig. 11.6. In this case, we used JAMS configured with 2 threads, 30% of
per-CBS bandwidth, a relative task deadline of 480 ms, and the usual three
percentile configurations. The obtained results are shown in Fig. 11.10. In this
case, the lognormal traces were generated using different parameters drawn at
random, as described earlier. Therefore, with the configured CBS bandwidth
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assignment, we obtained a wide range of different results, evident from the
“No dismissal” violet dots scattered throughout the X axis, from 2.5% to 100%
of deadline miss rates. Interestingly, applying the JAMS mechanism to these
cases, we consistently obtain a deadline-miss ratio below the configured target
percentile (95th, 90th, and 85th, highlighted as dashed vertical lines as usual),
obtained at the cost of applying a dismissal rate that also varies greatly across
the cases, from 2% to nearly 50% of dismissals.

We also performed a run designed to validate the dismissal probability
bound in Theorem 11.5.3. This was done by running our experimentation using
the last trace shown as a dashed curve in Fig. 11.6, with JAMS configured as
usual with 2 CBS servers with a 60% bandwidth and a job deadline of 240ms.
Over the run, we experienced 0.04% of job dismissals. The theoretical dis-
missal rate bound from Eq. (11.6) is derived, calculating B+L as a convolution
of an increasing number of bounded lognormal distributions for several ∆ as
multiples of 80ms. The dismissal probability bound is 1.2%, observed for the
shortest ∆.

11.8 Conclusion and Future Work

This paper introduced the Job Acceptance Multi-Server (JAMS) mechanism as
an extension of the Constant Bandwidth Server (CBS) for efficient resource
allocation in real-time systems. By leveraging a shared job queue across multi-
ple CBS instances, JAMS enables dynamic resource sharing among tasks with
varying computational demands and deadlines. Its targeted job acceptance
and dismissal strategy prioritizes jobs with a high likelihood of meeting their
deadline, limiting the impact of job tardiness and overloading. Experimental
evaluation with synthetic and realistic workloads showed that JAMS signifi-
cantly reduces the deadline miss rate compared to a baseline system that lacks
a dismissal policy. More specifically, JAMS consistently meets design-bound
deadline-miss ratios while managing resource demands through adaptive dis-
missal rates, showing robust performance under several diverse workload con-
ditions.

In the future, we plan to extend the present work in various directions.
On the analysis side, the theoretical bounds on dismissal probability presented
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in the paper may be pessimistic in certain scenarios. Refining these bounds
to achieve tighter estimates would improve the applicability of the approach
in a broader set of scenarios. From an experimental perspective, more ex-
tensive experimentation is needed to assess possible scalability limitations of
the proposed technique in the presence of several CBS servers pulling from
the same shared queue. Albeit JAMS is proposed in the context of real-time
embedded platforms, where the number of available CPUs might be limited,
future embedded platforms seem to trend into featuring dozens of cores eas-
ily. Therefore, further testing on diverse architectures, including distributed
and cloud/edge-based real-time systems, would provide insights into JAMS’s
scalability and resilience in a wide range of use-cases, such as real-time cloud
computing [25, 53, 8, 46]. Finally, on the implementation side, our current
JAMS prototype can certainly be improved by moving the queue management
logic into kernel space. This would have the advantage of being able to easily
access the CBS scheduling parameters of the SCHED DEADLINE threads par-
ticipating in a JAMS queue, with the ability to wake them up only when jobs
can certainly be accepted.
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Table 11.1: Overview of notation.

Symbol Description

τ , Jj Task, job j of τ .
κ Maximum number of concurrently released jobs of τ .
p Minimum separation of job release instants of τ .
D Relative deadline of τ .

aj , fj Arrival and finishing time of Jj .
cj , c↑ Computation time of Jj and the WCET of τ .

C,R Computation time and response time random variables.
cωϕ The ϕ quantile of the computation times of τ for a given ω.

n Number of servers.
Si Server i.

Ti, Qi, Ui Period, maximum budget and utilization of Si.
UiΣ Total utilization on Si’s processor.
qi, di Remaining budget and deadline of Si.
t, δt Time, interval when a server is executed.
gi,j Guaranteed computation time from Si prior to Jj’s deadline.
δi,j Difference between the deadlines of Jj and Si.

W Random variable, queue wait time.
B Random variable, remaining work of served jobs.
L Random variable, work of queued jobs.
G Random variable, guaranteed computation time of a job.
∆ Time interval length.

Υ(∆) Random variable, work arriving in an interval of length ∆.
ρ Bound on the work arrival rate.
pd Dismissal probability.
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Time t, start Si : {Qi, Ti},
qi ← Qi, di ← t + Ti

State: Idle

q ≥ (di − aj) · Qi
Ti

?

qi ← Qi, di ← aj + Ti

Calculate gi,j (Eq. (11.4))

Job Jj with aj and D offered to Si.

Yes

gi,j ≥ cϕ?

State: Active

Yes, job pulled

No, job declined

No

qi ← qi − δt

Si executes in δt

qi = 0? State: Recharging

di ← di + Ti, qi ← Qi

t = di

Job completed?

Yes

No

Job in job queue?

Calculate gi,j (Eq. (11.4))

gi,j ≥ cϕ? Jj last job?

Yes

No, Jj ← next job on queue
Yes, Jj ← first job on queue

No

YesYes, Jj pulled No

No

Fig. 11.4: Flowchart of a JAMS CBS.
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Fig. 11.5: Experimental CDFs of computation times for the heavier (top) and
lighter (bottom) MPC traces.
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Fig. 11.7: Missed jobs (on the X axis) in % over the processed jobs, compared
to the dismissed jobs % (on the Y axis), obtained with no dismissals baseline
(violet dots), and JAMS with configurations of the percentile (various point
colors), both when statically configured and dynamically estimated (orthogonal
vs oblique crosses). Note that the X and Y axes are on a logarithmic scale,
broken close to the origin so that 0 values can also be visualized.



228 Paper D

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0  200  400  600  800  1000

short trace 0 exec times
short trace 0, baseline

short trace 0, JAMS
short trace 0, JAMS dismissals

deadline

Jo
b 

re
sp

on
se

 ti
m

e 
(m

s)

Job Id

Fig. 11.8: Excerpt of computation times for the MPC lightweight trace 0 (gray
line), and the per-job response times obtained using JAMS vs the baseline.

0

1

2

5

10

20

50

100

0 0.10 0.20 0.5 1 2 5 10 20 50 100
//

----

No dismissal
Static 95th percentile

Dynamic 95th percentile
Static 90th percentile

Dynamic 90th percentile
Static 85th percentile

Dynamic 85th percentile

D
is

m
is

se
d 

jo
bs

 (%
)

Missed jobs (%)

MPC heavy traces, 2x60% bandwidth

Fig. 11.9: Missed jobs (X axis) in % over the processed jobs, compared to the
dismissed jobs % (Y axis). The board was hosting an additional 15% of per-
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[9] Sanjoy Baruah, Joël Goossens, and Giuseppe Lipari. Implementing
constant-bandwidth servers upon multiprocessor platforms. In Proceed-
ings. Eighth IEEE Real-Time and Embedded Technology and Applications
Symposium, pages 154–163. IEEE, 2002.

[10] Sanjoy K Baruah, Alan Burns, and Robert I Davis. Response-time analy-
sis for mixed criticality systems. In 2011 IEEE 32nd Real-Time Systems
Symposium, pages 34–43. IEEE, 2011.

[11] Iain Bate, Alan Burns, and Robert I Davis. An enhanced bailout protocol
for mixed criticality embedded software. IEEE Transactions on Software
Engineering, 43(4):298–320, 2016.

[12] Guillem Bernat, Alan Burns, and Albert Liamosi. Weakly hard real-time
systems. IEEE transactions on Computers, 50(4):308–321, 2001.

[13] Alan Burns, Robert I Davis, Sanjoy Baruah, and Iain Bate. Robust mixed-
criticality systems. IEEE Transactions on Computers, 67(10):1478–1491,
2018.

[14] Alan Burns and Robert Ian Davis. Mixed criticality systems-a review.
Technical report, Department of Computer Science, University of York,
February 2022.

[15] Giorgio C Buttazzo, John A Stankovic, et al. RED: Robust earliest dead-
line scheduling. In Proc. of 3rd International Workshop on Resonsive
Computing Systems, 1993.

[16] Jian-Jia Chen, Mario Günzel, Peter Bella, Georg von der Brüggen, and
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[20] José Luis Dı́az, Daniel F Garcı́a, Kanghee Kim, Chang-Gun Lee, L Lo
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thread periodic tasks. In Sébastien Faucou, Alan Burns, and Laurent
George, editors, 19th International Conference on Real-Time and Net-
work Systems, RTNS ’11, Nantes, France, September 29-30, 2011. Pro-
ceedings, pages 35–44, 2011.

[35] Sorin Manolache, Petru Eles, and Zebo Peng. Schedulability analysis of
applications with stochastic task execution times. ACM Transactions on
Embedded Computing Systems (TECS), 3(4):706–735, 2004.
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Abstract

In scheduling real-time tasks, we face the challenge of meeting hard deadlines
while optimizing for some other objective, such as minimizing energy con-
sumption. Formulating the optimization as a Multi-Armed Bandit (MAB) prob-
lem allows us to use MAB strategies to balance the exploitation of good choices
based on observed data with the exploration of potentially better options. In this
paper, we integrate hard real-time constraints with MAB strategies for resource
management of a Stochastic Parallel Synchronous Task. On a platform with M
cores available for the task, m ≤ M cores are initially assigned. Prior work
has shown how to compute a virtual deadline such that assigning all M cores
to the task if it has not completed by this virtual deadline guarantees that the
deadline will be met. An MAB strategy is used to select the value of m. A Dy-
namic Power Management (DPM) energy model considering CPU sockets and
sleep states is described. Experimental evaluation shows that MAB strategies
learn consistently suitable m, and perform well compared to binary exponential
search and greedy methods.
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12.1 Introduction

When scheduling real-time tasks, we often want to manage the use of resources
to optimize some objective and also ensure that the tasks’ deadlines are met.
The objective may be, for example, minimizing energy consumption or max-
imizing the processor time available for other tasks in uninterrupted time pe-
riods. The problem can be modeled as a Multi-Armed Bandit (MAB) prob-
lem [30], where a decision maker repeatedly selects one of several fixed op-
tions, known as arms or actions; the impact of each action is not known a pri-
ori, and it is influenced by uncertainty. MAB strategies optimize for the average
case while balancing exploration and exploitation to achieve the best expected
result over a time period. The average behavior is often the main concern in
resource management beyond strict timing requirements. For example, mini-
mizing the energy consumption implies minimizing the integral of the power
consumption over time, essentially minimizing the average power consump-
tion. This paper gives an example of the integration of strict timing guarantees
with MAB strategies to minimize energy consumption.

A scheduler initially assigns m cores to a DAG task but can use M ≥ m
identical computing cores if needed. For a compute-bound task and a work-
conserving schedule, [21] have shown that the task’s deadline is met if it is
assigned all M cores at a virtual deadline V . V depends on the initial number
of cores m assigned and the worst-case properties of the DAG task. We rely
on these results to ensure that deadlines are met and outline an MAB approach
to select m over time, balancing exploration and exploitation. In [21], resource
management strategies are evaluated, selecting m based on response time and
m of the most recent task invocation. These strategies aim for the lowest possi-
ble m that keeps the response times below V (m). The MAB approach differs
in two important ways compared to these strategies. 1) Optimization is done
with respect to the expected reward over time instead of the most recent obser-
vation. 2) The reward function is decoupled from the arm selection, allowing
for optimizing the resource management towards any goal dependent on the
arm response times.

The reward function is constructed to minimize the energy consumption
under an energy model of a multicore system with CPU sockets and Dynamic
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Power Management (DPM) with sleep states. The energy model is based on
data from [27].

Contribution: The main contribution is the MAB application to improve
average behavior while ensuring hard real-time guarantees. For this applica-
tion, we define and use a Stochastic Parallel Synchronous Task, a special case
of a DAG task but a generalization of the Parallel Synchronous Task [26]. We
derive response time bounds for different initial core allocations. Each arm
represents a choice of initial core allocation. The MAB is implemented as a
bootstrap/ bag approximation [20] of Thompson sampling [30]. In the pro-
posed partial-feedback MAB, information about unexplored arms is derived
from arms that have been explored, using the response time bounds.

In the evaluation, the proposed MAB core allocation strategy is com-
pared with an MAB not using the derived response time bounds, the Binary-
Exponential Search (BES) strategy from [21] adapted to the energy model, and
a greedy strategy based on the energy model. The evaluation is performed for
several selected task structures with different computation time variances and
deadlines.

Outline of the paper: A background on Multi-Armed Bandits is given in
Section 12.2. In Section 12.3 related work regarding task models with prece-
dence constraints, bandit scheduling and energy-aware scheduling is outlined.
Notation, the task model, and scheduling along with definitions are presented
in Section 12.4. In Section 12.5 the resource management problem is formu-
lated (Section 12.5.1). Methods from [21] are introduced with an example
(Section 12.5.2). The proposed partial feedback MAB and the response time
bounds are presented in Section 12.5.3. The energy model for the reward func-
tion is outlined in Section 12.6, and the evaluation in Section 12.7. In Sec-
tion 12.8 conclusions and future work are discussed.

12.2 MAB Background

A MAB problem is a reinforcement learning problem in which an algorithm
makes decisions over time under uncertainty [30]. The algorithm selects one
out of K possible actions, called arms, in each of T rounds. Each action gen-
erates a reward according to a fixed but unknown probability distribution, and
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the goal is to maximize the total reward over the T rounds, the horizon. There
are many applications of MAB approaches, including healthcare, finance, dy-
namic pricing, recommender systems, anomaly detection, and telecommunica-
tions [8].

A standard approach to comparing different MAB algorithms is the concept
of regret. Here, the sum of rewards for an algorithm over a horizon of T rounds
is compared with the sum of expected rewards when consistently choosing the
arm with the highest possible expected reward. That is, with a fixed but un-
known reward distribution Dk of each arm k, the mean reward of an arm is
denoted µk = E[Dk]. The highest possible mean reward is ρ↑ = maxk µk. The
regret R(T ) over horizon T of an algorithm that at each round i takes an action
ai leading to reward ρ(ai) is defined as:

R(T ) = ρ↑ · T −
T∑
i=1

ρ(ai) (12.1)

Feedback from a chosen action can be structured into three types [30]. Ban-
dit feedback provides the reward for the chosen arm and no additional informa-
tion. In a complete feedback setting, the agent can retrospectively observe the
reward for all arms. Partial feedback implies that further information is pro-
vided beyond the reward of the chosen arm. In our case, an arm’s response
time provides information about the task’s properties that is useful for all arms.

The reward model can be i.i.d. (independent and identically distributed),
where the rewards of each arm are drawn from the same probability distribu-
tion, independent of the round and previous actions and rewards. Other reward
models include rewards chosen by an adversary or evolving according to a ran-
dom process [30]. In our case, we consider i.i.d. rewards.

The arm choice at a round i is based on the current estimates of the mean
rewards µk of each arm. Algorithms often consider confidence intervals of the
mean rewards. One common algorithm, Successive Elimination, removes an
arm a from consideration when the upper bound of the confidence interval for
µa is lower than the lower bound of the confidence interval for the mean reward
µb of some other arm b. Another common algorithm, UCB1, always selects the
arm with the highest upper confidence bound on the mean reward. The intuition
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is that upper confidence bound is high due to the arm being a good choice, or
due to the arm being unexplored and having a large confidence interval.

Bayesian bandits use the concepts in Bayesian statistics and assume that
an unknown quantity is sampled from a known distribution [30]. The expected
reward is maximized over the distribution, referred to as a belief model. Before
selecting an arm in round t, we refer to the prior distribution of the belief.
After obtaining the reward, the belief model is updated, and we refer to the
posterior distribution. The posterior can be used as a prior in the next round.
An algorithm for arm selection in a Bayesian bandit is Thompson sampling.
In each round, every arm is assigned a probability of selection equal to the
probability that the arm is optimal, given the history of previous rounds. An
equivalent formulation is the following: at each round, a reward is sampled
from the prior distribution over the expected reward of each arm. The arm
corresponding to the highest reward is selected.

In some cases, the posterior distribution can be derived as a closed-form ex-
pression from a conjugate prior of the same family. However, in many cases, the
posterior belief model is approximated [6]. One such approximation method is
Bagging or Online Bootstrap Thompson Sampling [6, 20]. In this approach,
several bags or replicates estimate the mean reward of the arms from obser-
vations in the past. Each replicate is updated with a new observation with a
certain probability, resulting in the bags having different histories and mean re-
ward estimates. In this way, the set of bags estimates the belief distribution of
the reward mean.

In Contextual Multi-Armed Bandit (CMAB) problems, some feature vector
or context is observed prior to the decision, and reward distributions are differ-
ent for different contexts. For example, in a recommender system, the context
could be user demographic information.

In a restless bandit setting [31], the reward distributions associated with the
arms, including non-selected arms, may change across rounds. The objective is
to maximize the average reward over an infinite horizon.

This paper considers the traditional MAB setting. There is no context in-
formation prior to the arm choice, and each arm’s reward distribution remains
fixed, but our knowledge about them evolves.
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12.3 Related Work

12.3.1 Task Models With Precedence Constraints

Modeling precedence constraints with DAGs is common, both for precedence
constraints between different tasks [15] and for precedence constraints within
the same task [5, 26]. In Graham’s list scheduling [15], a ready task is selected
for processing each time a processor is idle. A ready task is a task with no prece-
dence constraints or fulfilled precedence constraints. Graham’s list scheduling
does not produce a sustainable schedule [9], but bounds for the response time
differences are presented [15].

In the parallel synchronous task model [26], a task’s jobs consist of sequen-
tial segments, each containing threads that can run in parallel.

Even richer DAG-based models have been developed and studied. In the
conditional parallel DAG task model [19], parallel nodes are combined with
nodes representing if-then-else clauses. The multi-DAG model [14] models
different execution flows as separate DAGs.

Papadopoulos et al. [21] is the work most closely related to this paper, and
we describe the necessary content in Sections 12.4 and 12.5.2.

12.3.2 Bandit Scheduling

Yu et al. [33] have proposed using Restless Bandits for stochastic deadline
scheduling in a data center. Here, arms represent positions in the job queue, and
selecting an arm is equivalent to processing the job at that position in the queue
on one processor. The problem is shown to be indexable. Whittle’s index policy
is not optimal, but the gap-to-optimality is bounded. Chen et al. [11] used a
measure of information freshness in a restless bandit setting to determine which
states to update. In a network setting, Raghunathat et al. [23] selected packets
for broadcasting with a similar restless bandit approach. Borkar et al. [7]
have applied a restless bandit approach in which a queue is selected for packet
transmission on a channel, considering costs modeling the delay constraints
and transmission energy consumption. To the best of our knowledge, bandit
scheduling has not been applied to DAG or synchronous task models. Most
of the approaches in the literature use arms to represent packets or jobs. This
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requires a restless bandit approach as the states of all packets/ jobs evolve,
whether or not they are transmitted/ processed. In our work, an arm represents
the number of cores initially assigned to a task. This enables a more simplistic
MAB problem while the considered task model is more complex.

12.3.3 Energy-Aware Scheduling

In modern processors, the two main approaches to control energy consumption
are Dynamic Voltage and Frequency Scaling (DVFS), in which the voltage and
CPU frequency are lowered at times, and Dynamic Power Management (DPM),
in which a number of different processor idle states (C-states1) are used [4].
Deeper idle states save more power by turning off additional components in the
CPU, but they require higher wake-up latencies. As noted in [16], the potential
advantages of DVFS over DPM are decreasing. One reason is that reduced
transistor sizes lead to an increased proportion of leakage currents, as these are
a quantum phenomenon [4].

Bambagini et al. [4] survey and discuss work on energy-aware scheduling
for real-time systems. [29] presented a survey on energy-efficient multicore
scheduling for hard real-time systems. Xie et al. [32] surveyed low-energy
parallel scheduling algorithms focused on DVFS techniques. Additional works
that focused recently on the use of DVFS and big.LITTLE architectures for
real-time tasks can be found in [18]. The former work introduces BL-CBS, an
extension of the Adaptive Partitioned EDF scheduler in [1], where each real-
time task CBS server is dynamically placed on the most energy-convenient
CPU, chosen among big or LITTLE ones, considering the impact of possible
frequency changes, needed to preserve schedulability, on the power consump-
tion of the whole affected island. The technique is further extended in [17] to
schedule real-time DAG tasks.

The power Pgate of a single active gate is described as a function of the
probability of gate switching α, the loading capacitance CL, the supply voltage
V , the clock frequency f , the short circuit current Isc and the leakage current

1C0 is actually the name of the fully operational state of the CPU, when it is executing
instructions, C1 is the first software-only idle state, whereas C2, C3, etc... are the deep idle
states. For more details, see: https://doc.opensuse.org/documentation/leap/
archive/42.2/tuning/html/book.sle.tuning/cha.tuning.power.html.

https://doc.opensuse.org/documentation/leap/archive/42.2/tuning/html/book.sle.tuning/cha.tuning.power.html
https://doc.opensuse.org/documentation/leap/archive/42.2/tuning/html/book.sle.tuning/cha.tuning.power.html
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Ileak [4, 10, 29]2:

Pgate = α · CL · V 2 · f + V · Isc + V · Ileak (12.2)

An important part of the power savings of DVFS is the concurrent reduction
in the supply voltage enabled by a reduced clock frequency [16]. In some
work [22, 3, 4], the dynamic power component is assumed to be P (f) = β ·f δ,
2 ≤ δ ≤ 3. With today’s low core voltages, the voltage-scaling window is
reduced, resulting in a smaller benefit of the dynamic component [16]. A lower
clock frequency also implies a longer computation time, limiting when a low-
power idle state can be used.

Schone et al. [27] describe the per-core C-states of x86 processors, and
Package C-states that can be entered if all the cores in a socket are in a sleep
state. In these Package C-states, power demand is reduced further, for example,
by partially disabling the last-level cache. Recent work by Antoniou et al. [2]
have proposed an alternative architecture to significantly reduce the wake-up
latency of sleep states while retaining most of the power savings.

Sleep state arbiters have been developed to minimize data center response
times and latency while saving energy. Examples include feedback control [34]
and machine learning [28]. In [12], sleep states are coordinated with request
delays and voltage frequency scaling to reduce tail latency and energy con-
sumption. Request tail latency is estimated using random variables.

Despite the reduced gains in DVFS techniques, these and hybrid methods
combining DVFS and DPM are common in the literature. The energy model
presented in Section 12.6 uses DVFS only as a complement to DPM for cores
in sleep states. This model can be incorporated into the framework with virtual
deadlines for DAGs developed in [21] with minimal modification.

12.4 System Model and Notation

The main notation used in the paper is listed in Table 12.1.
U(a, b) denotes a uniform distribution on the range [a, b]. We use the same

notation for the continuous uniform distribution on [0, 1] and discrete uniform
distribution on an integer range.

2In [4] α also multiplies the second term.
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Fig. 12.1: A stochastic parallel synchronous task example.

12.4.1 Task Model

We consider a periodic task τ , generating a sequence of jobs Ji, i ∈ N. Job
arrivals are separated by the period p, and we refer to the arrival of Ji as round
i. The task, referred to as a stochastic parallel synchronous task, has the in-
ternal structure of a parallel synchronous task [26]. That is, τ is composed of
s sequential computation segments. There are uj threads in the j-th segment
of τ , and the total number of threads is U . The task structure is illustrated in
Fig. 12.1.

Each segment ends in a synchronization point, so all threads in one segment
must be completed before the next segment can begin its execution. In our task
model, the execution time eijk of the k-th thread in job i’s j-th segment is the
outcome of an i.i.d. random variable Ejk with bounded support. The work wi

of job i is the sum of the execution times of all threads.
The main difference with respect to the model in [26] is the specification of

thread execution times. In [26] the execution times of threads in a segment are
specified by the worst case execution requirement of the task segment. In our
model, execution times are outcomes of random variables. We assume that a
fixed but unknown probability distribution specifies the execution requirement
for a thread in a segment; different threads in the same segment may have
different probability distributions.
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The worst-case span L and work W of a DAG task are defined in [21], and
we define them here for the stochastic parallel synchronous task. The worst-
case span L of τ is a deterministic conservative estimate of the sum of the
longest thread execution times from each segment as formalized in Eq. (12.3)

L ≥
s∑

j=1

max
k=1,...,uj

eijk,∀i (12.3)

W is the worst-case work of τ , a deterministic conservative estimate of the
worst-case total computation time of all threads, as stated in Eq. (12.4).

W ≥
s∑

j=1

uj∑
k=1

eijk,∀i (12.4)

The assumption of bounded support for the execution time distribution of
the k-th thread of the j-th segment Ejk of τ is necessary to assume that τ has
deterministic worst-case work and span.

Let ri denote the response time of Ji. The response time for any job should
not exceed the relative deadline D. The deadline is implicit, D = p.

12.4.2 Scheduling

As in [21], jobs are scheduled on up to M identical cores. At the arrival, Ji is
assigned mi cores. Depending on m, a virtual deadline V is calculated accord-
ing to Eq. (12.5).

V (mi) =

⌊
M · (D − L)− (W − L)

M −mi

⌋
,mi < M (12.5)

If Ji is not completed at the time of V (mi), all M cores are assigned to Ji
at this point. As shown in [21] this guarantees that Ji will meet its deadline.

When a job Ji is completed, the resulting response time ri and total com-
putation time wi are reported, and this information is available to determine
subsequent core assignments.
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The guarantee that jobs meet their deadlines is based on the bound on the
response time r(m) of a DAG task job assigned m cores until completion in
Eq. (12.6).

r(m) ≤ L+
W − L

m
(12.6)

This relies on the fact that the mean work of one of the cores and not on the
critical path is at most W−L

m [19], assuming no interference from other tasks, a
constrained relative deadline (D ≤ p) and a work-conserving schedule. W−L

m
is the latest possible point when one core is available to process the work on
the critical path.

The threads within a task are scheduled according to list scheduling [15];
that is, the threads are ordered in a list. Threads ready to execute will be run
in the order they are listed. We assume that the list starts with the threads of
the first segment, followed by the threads of the second, third, and so on. This
is without loss of generality - assume that in a list ordering LO, thread a of
segment H precedes thread b of segment H ′, H ′ < H . Since thread a cannot
start execution until all threads of H ′ have completed execution, it follows that
moving thread a just after the last thread of segment H ′ in LO will give the
same schedule.

We provide the definitions below for the partial schedule, profile, and the
ahead relation of profiles of a stochastic parallel synchronous task with threads
scheduled according to list scheduling.

Definition 12.4.1. The partial schedule Si(t) of job Ji at time t, 0 ≤ t ≤ D,
specifies for each thread the total time the thread has been processed up to time
t.

The profile Qi(t) of a partial schedule Si(t) is the list Qi(t) =
(q1(t), q2(t), . . . , qU (t)) where ql(t), l = 1, 2, . . . , U , represents the remain-
ing processing time at time t after the job’s arrival of thread l from Ji, with
threads ordered according to the list scheduling priority.

Since the threads’ processing times are unknown, the remaining thread pro-
cessing times are unknown. Next, we introduce an ordering relation among
profiles that corresponds to different partial schedules of the job at different
points in time.



Paper E 249

Definition 12.4.2. The profile Q′′i (t
′′) = (q′′1(t

′′), q′′2(t
′′), . . . , q′′U (t

′′)) is ahead
of profile Q′i(t

′) = (q′1(t
′), q′2(t

′), . . . , q′U (t
′)) if q′′a(t

′′) ≤ q′a(t
′),∀a. We denote

this as Q′′i (t
′′) ≤ Q′i(t

′).

We note that the ahead relation is transitive. If Q′′i (t
′′) ≤ Q′i(t

′) and
Q′′′i (t

′′′) ≤ Q′′i (t
′′) then Q′′′i (t

′′′) ≤ Q′i(t
′).

We also note that if at time t′ the partial schedule S′i executes a thread
from segment H ′, and at time t′′ the partial schedule S′′i executes a thread from
segment H ′′ that follows H ′, then Q′′i (t

′′) is ahead of Q′i(t
′).

12.5 Resource Management

In this section, the problem formulation is outlined in Section 12.5.1. A moti-
vating example is presented in Section 12.5.2, along with description of meth-
ods from [21]. The proposed partial feedback MAB approach is outlined in
Section 12.5.3.

12.5.1 Problem Formulation

We want to choose the number of cores m to initially assign to a stochastic par-
allel synchronous task τ as described in Section 12.4, that minimizes a regret
related to the task’s response time distribution for the arms. In other words, we
want to choose the arm that maximizes the total reward over a specified time
horizon, where the reward of a job depends on the response time, execution re-
quirement, and core assignment. The exact structure of the task is unknown to
the scheduler, only the worst-case work W and span L are known. The sched-
uler observes the response time and total work of jobs after their execution. The
deadline is guaranteed to be met, given that M cores are assigned to the task at
the virtual deadline.

12.5.2 Motivating Example and Methods from Related Work

In [21], the objective was to find the ideal initial assignment of cores, resulting
in a response time as close as possible to the virtual deadline without exceeding
it. We can reformulate this to the probabilistic case - assume the objective is
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to find the initial assignment of cores, resulting in the average response time as
close as possible to the virtual deadline without exceeding it. Let us outline and
apply two of the methods evaluated in [21], namely the binary search and the
binary-exponential search, to a task as defined in Section 12.4. We will discuss
why these methods are unsuitable for the stochastic parallel synchronous task
model.

The general structure of the algorithms is outlined in Algorithm 12.1. After
some initialization, at each round a core allocation is selected. The next job is
run with the selected allocation, and the resulting response time and work are
observed. Some update is performed based on the observations and the selected
allocation.

Algorithm 12.1: General structure for core allocation over a horizon.
Input: Horizon T
Output: Allocations (m1, · · · ,mT ), response times (r1, · · · , rT ), work

(w1, · · · , wT )
1 Function CoreAllocatorHorizon(T):
2 Init()
3 for i ∈ 1 : T do
4 mi ← CoreAllocator()
5 ri, wi ← RunTask(mi)
6 Update(mi, ri, wi)

Example 12.5.1. Our example task has s = 2 segments, the first segment has
u1 = 8 threads, and the second has u2 = 4 threads. The number of cores m to
assign is in the range [1,M ],M = 10. The scheduler uses a relative deadline
D = 16, worst-case work W = 52, and span L = 8 to calculate the virtual
deadlines.

Example 12.5.2. In a deterministic version of Example 12.5.1, the threads
in the first and second segments have the lengths (2, 2, 2, 5, 5, 2, 2, 2) and
(1, 1, 3, 3) in scheduling order.

Example 12.5.3. In a stochastic version of Example 12.5.1, the threads in the
first segment have a length of 2 with 0.75 probability and 5 with 0.25 probabil-
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Algorithm 12.2: Binary search initialization.
Input: Maximum number of cores M
Output: (lo, hi ] interval

1 Function InitBS(M):
2 lo ← 0
3 hi ←M

ity. The threads in the second segment have a length of 1 with 0.5 probability
and 3 with 0.5 probability.

Binary Search For Selecting m

We recall the binary search algorithm from [21], intended for tasks with un-
known and constant typical workload. It maintains an interval (lo, hi ], lo < hi .
For a deterministic task, the interval contains the ideal m resulting in a response
time as close as possible to the virtual deadline without exceeding it. Initially
lo = 0 and hi = M - Algorithm 12.2 is the Init-function in Algorithm 12.1.
The core allocation-function is Algorithm 12.3, m1 =

⌈
lo+hi

2

⌉
. In the follow-

ing rounds, mi+1 is determined and the (lo, hi ] interval is updated from mi

and ri, where i represents the round when Ji arrives. The algorithm for updat-
ing the interval is outlined in Algorithm 12.4. Note that although lo starts at
0, mi > 0, ∀i because of the ceiling operation and that hi is only assigned to
previous values of m.

Algorithm 12.3: Binary search for selection of m at round i.
Input: (lo, hi ] interval
Output: Cores mi

1 Function CoreAllocatorBS(ri, mi, lo, hi):
2 mi ←

⌈
lo+hi

2

⌉
We apply the binary search allocation to the deterministic task in Exam-

ple 12.5.2. The allocation m and the interval are shown in Fig. 12.3, and the
scheduling for the different m are shown in the first row of Fig. 12.2. The bi-
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Algorithm 12.4: Binary search update of (lo, hi ] interval.
Input: Response time ri, cores mi, (lo, hi ] interval
Output: Updated (lo, hi ] interval

1 Function UpdateBS(ri, mi, lo, hi):
2 if ri > V (mi) then
3 lo ← mi

4 if ri < V (mi) then
5 hi ← mi
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Fig. 12.2: Scheduling in the motivating example.

nary search starts with the interval (lo = 0, hi = 10] and an initial m1 = 5
corresponding to V (5) = 7 calculated from Eq. (12.5). In the first segment,
three threads with length 2 and two with length 5 are scheduled, and the three
remaining threads are scheduled at time 2, resulting in the completion time of 5
for the first segment. The response time r1 = 8 is longer than the virtual dead-
line, and lo is updated to 5. The next m2 = ⌈(5 + 10)/2⌉ = 8, corresponding
to V (8) = 18. The response time is 10, below V (8), so hi is updated to 8, and
the next m3 = 7. Here we have V (7) = 12 and r3 = 8, and a new hi = 7.
This gives m4 = 6, r4 = 8, V (6) = 9, leading to hi = 6. From this stage, we
will remain at m = ⌈(5 + 6)/2⌉ = 6, the lowest m resulting in r < V (m).

Next, we apply the binary search allocation to the stochastic task in Exam-
ple 12.5.3. The evolution of the range and m selection is shown in Fig. 12.3
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Fig. 12.3: The [lo, hi ] interval and the core allocation m in the motivating
example task.

and the scheduling in the second row of Fig. 12.2. We first select m1 = 5.
At this time, the threads in the first segment have lengths (2, 2, 2, 5, 2, 2, 2, 2),
and in the second (1, 1, 3, 1). The first segment has a completion time of 5,
as all three threads in the first segment scheduled at 2 have length 2. The re-
sponse time is therefore 8, longer than V (5) = 7, so lo is replaced with 5,
and the new m2 = 8. In this job instantiation, the threads in the first seg-
ment have lengths (2, 2, 2, 2, 5, 2, 2, 2), , and the threads in the second seg-
ment have lengths (3, 1, 1, 3), resulting in r2 = 8. V (8) = 18 > 8, and
hi = 8. Next, m3 = 7 and the thread lengths of the first and second segment
are (2, 5, 2, 2, 2, 2, 2, 2) and (3, 3, 3, 1) respectively. This results in a response
time of r3 = 8 < V (7) = 12, and hi = 7. In the next round, m4 = 6,
and the threads in the first segment have the lengths (2, 2, 2, 2, 5, 2, 2, 5), and
in the second segment thread lengths are (3, 1, 3, 3). Now there is one thread
of length 5 starting at 2, so the first segment completes at 7 and the response
time is 10 > V (6) = 9. leading to lo = 6. From now on, we will always select
m = 7, although m = 6 is the lowest allocation where the average response
time is lower than the virtual deadline.
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Algorithm 12.5: Binary-exponential search initialization.
Input: Maximum number of cores M
Output: (lo, hi ] interval, inc, dec

1 Function InitBES(M):
2 lo ← 0
3 hi ←M
4 inc← 2
5 dec← 2

Binary-Exponential Search For Selecting m

The binary-exponential search(BES) from [21] enables adjustment of the inter-
val [lo, hi ] from changes to the response times. For example, if the algorithm
has converged, so that mi = hi , but the response time is longer than the virtual
deadline, ri > V (hi), it seems that we have converged to the wrong value. In
this case hi will be increased by 2. If the response time in the next round is
still longer than V (hi), hi is increased by 4, with an exponential increase of
hi or decrease of lo if response times are misaligned with the virtual deadlines
of the [lo, hi ] interval. In addition to the [lo, hi ] interval, the BES maintains
the variables inc and dec, initialized to 2 as outlined in Algorithm 12.5. These
are used to enable an exponential increase of hi or decrease of lo if response
times are misaligned with the virtual deadlines of the [lo, hi ] interval. The core
allocation part is the same as for the binary search (Algorithm 12.3), and the
modified update function is outlined in Algorithm 12.6.

Applying the BES algorithm to Example 12.5.3 leads to the interval being
updated frequently, as illustrated in Fig. 12.3. The algorithm will select m near
the ideal allocation, but the random variations in the response times will cause
repeated updates of the search interval.

12.5.3 Partial Feedback Bayesian MAB

An MAB algorithm selects the initial number of cores mi assigned to Ji. Each
m that is valid represents an arm. The task must be schedulable for each valid
arm, and a necessary schedulability condition is that the virtual deadline ac-



Paper E 255

Algorithm 12.6: Binary-exponential search update of (lo, hi ] inter-
val.

Input: Response time ri, cores mi, (lo, hi] interval, interval update terms
inc, dec

Output: Updated (lo, hi] interval and terms inc, dec
1 Function UpdateBES(ri, mi, lo, hi, inc, dec):
2 if ri > V (mi) then
3 if mi = hi or ri > V (hi) then
4 hi ← min(hi + inc,M)
5 inc← inc · 2
6 lo ← mi

7 if ri < V (mi) then
8 if ri < V (mi − 1) then
9 if mi = lo − 1 or ri < V (lo) then

10 lo ← max(lo − dec, 0)
11 dec← dec · 2

12 hi ← mi

13 if hi − lo ≤ 1 then
14 inc← 2
15 dec← 2

cording to Eq. (12.5) is non-negative. There may be further restrictions on
valid m; the energy model presented in Section 12.6 and used in the evaluation
is one such example.

The MAB models a current belief about each arm’s reward and response
time. The arms’ response time distributions all depend on the properties of the
parallel synchronous task. Generally, we expect a higher initial number of cores
to result in a shorter response time. However, this is not always the case, as was
already pointed out in [21]. In Line 9 we will discuss this further and provide
response time bounds for different initial core allocations. The response time
bounds are used in partial feedback to derive information about the reward of
one arm from observations of another arm.

The MAB maintains κ bags (bootstrap replicates), each estimating the
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mean reward for every arm. In Thompson sampling, an arm is selected with
a probability equal to the probability that it is the best arm (that it has the high-
est mean reward) based on the history. We have chosen a bag implementation
of the MAB, as it is applicable for general reward distributions and straight-
forward to implement and explain. There are many options for MAB imple-
mentations [30, 6], and many of these may perform better but may restrict the
reward model or require additional steps, for example optimization. There are
caveats [24, 25] with and benefits [13] of the bootstrap method. For example, a
low number of bags tends to make the algorithm greedy [13].

The overall MAB algorithm has the general structure as Algorithm 12.1. In
Algorithm 12.7, the initialization of the bags is performed. In each round, one
of the bags is selected at random, and the arm mi is chosen as the arm with the
highest mean reward according to this bag, as outlined in Algorithm 12.8. The
estimate of mean rewards in a bag is described in detail in Line 9. We schedule
Ji with mi core assignment, then retrieve the response time ri and total work
wi. In the update algorithm Algorithm 12.9 the reward ρi is calculated. For each
bag B, we generate nUpdatesBag as an outcome of Poisson(1), and update B
with nUpdatesBag copies of mi, ri, wi, and ρi. This means that the expected
number of observations in each bag after round i is i, but the bags will contain
different parts of the history. A bag used to select mi at round i is equally
likely as any other bag to be updated with the resulting observation in one or
more copies. Since the bags contain randomly selected parts of the history,
the proportion of bags where an arm has the highest mean reward estimate is
an approximation of the probability that the arm has the highest mean reward
given the history. In this way, selecting a bag at random and taking the best arm
given the bag’s observations is an approximation of selecting an arm with the
probability that it is the best given the history.

Response Time Bounds

In this section, we provide upper and lower response time bounds for a job
scheduled with different number of cores initially. These are used in the par-
tial feedback MAB, to obtain reward estimates for unexplored arms by using
observations in explored arms, as outlined in Line 9. This is done with a coun-
terfactual reasoning: for a job scheduled with ma assignment and observed
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Algorithm 12.7: MAB initialization.
Input: set of valid arms validArms, horizon, number of bags κ
Output: Initialized bags, valid arms.

1 Function InitMAB(validArms, κ):
2 bags← κ empty bags
3 minArm← min(validArms)
4 maxArm← max(validArms)

Algorithm 12.8: MAB core allocation at round i.
Input: set of κ bags bags, min and max valid arm minArm, maxArm.
Output: Core allocation mi

1 Function CoreAllocatorMAB(bags, minArm, maxArm):
2 B ← SampleFrom(bags))
3 if B.empty() then
4 mi ← SampleFrom(U(minArm,maxArm))

5 else
6 mi ← argmaxm∈minArm:maxArm EstMeanRew(B,m)

response time and work, what would the response time have been if it was in-
stead scheduled with mb assignment? In this way, we can avoid unnecessary
exploration of non-optimal arms.

First, we derive a bound for the response time difference due to a lower
initial number of cores having a smaller virtual deadline and M assignment
at an earlier point. Next, we derive a bound on the response time difference
resulting from different initial core allocations, based on [15]. We also provide
response time bounds based on the job’s work, since that does not change with
the choice of allocation.

For example, consider a parallel synchronous task with two segments with
four threads in each segment. For simplicity, we assume that the computation
time required for each thread is deterministic. From Eq. (12.5) we conclude that
V (2) < V (3). As illustrated in Fig. 12.4, this can lead to a longer response time
with a higher number of cores assigned initially. The response time difference
is bounded by the difference of the virtual deadlines.
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Algorithm 12.9: MAB update at round i.
Input: set of κ bags bags, arm mi, observed response time, work ri, wi

Output: Updated bags.
1 Function UpdateMAB(bags, mi, ri, wi):
2 ρi ← Reward(ri, wi,mi)
3 for B ∈ bags do
4 nUpdatesBag ← SampleFrom(Poisson(1))
5 for k ∈ 1 : nUpdatesBag do
6 B.rewSum[mi]← B.rewSum[mi] + ρi
7 Add (B.rt[mi], ri)
8 Add (B.work[mi], wi)
9 B.numObs[mi]← B.numObs[mi] + 1
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Fig. 12.4: A higher initial m resulting in a longer response time.

We will show in the following that Eqs. (12.7) to (12.9) hold, under the
scheduling described in Section 12.4.2.

m1 < m2 ⇒ ri(m2) ≤ ri(m1) + V (m2)− V (m1) (12.7)

ri(m1) < V (m1),m1 < m2 ⇒ ri(m2) ≤ ri(m1) (12.8)

ri(m2) > V (m1),m1 < m2 ⇒ ri(m1) ≥ V (m1) (12.9)

In the following, recall the definition of partial schedule Si and profile Qi

of a job Ji in Definition 12.4.1, and the ahead relation of profiles from Defini-
tion 12.4.2.

Assumption 12.5.1. The task model is as outlined in Section 12.4.
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Assumption 12.5.2. Scheduling is with list scheduling, with the same list order
for all arms and not modified during execution.

Assumption 12.5.3. A job Ji is scheduled with two different schedules, S′i and
S′′i , resulting in two different profiles Q′i and Q′′i . At time t0, profile Q′′i (t0) is
ahead of Q′i(t0), Q

′′
i (t0) ≤ Q′i(t0). From time t0 to time t1 > t0, S′i assigns

m1 cores to Ji, and S′′i assigns m2 cores, m1 < m2.

Assumption 12.5.4. A job Ji is scheduled with two initial core assignments
m1 and m2, m1 < m2. At the corresponding V (m1) and V (m2), respectively,
the job is assigned M cores.

Let us consider a single job Ji under different schedules.
Assume that job Ji starts execution at time 0 with m cores, resulting in a

partial schedule Si(t) and profile Qi(t) at time t. Let (e1, e2, . . . , eU ) denote
the execution times of each thread of Ji ordered in the list scheduling order of
the threads.

Since thread processing times are unknown, the remaining processing times
in the profile are also unknown. However the following observations on the
profile Qi(t) hold:

• When a thread completes then its remaining processing time is 0: if
thread a has completed execution then qa(t) = 0;

• Since threads are processed using list scheduling the following holds: if
qa(t) < ea then all threads that precede a in list scheduling have started
execution and, therefore, qb(t) < eb for all b, b < a;

• If at time t partial schedule Si(t) executes a thread of segment H and
thread a belongs to a segment that precedes H then a has completed
execution, and, therefore, qa(t) = 0;

• If at time t thread a has been processed for at least the same time interval
in schedule Si(t)

′ compared to the schedule S′′i (t) then q′a(t) ≤ q′′a(t).

We now compare two different partial schedules S′i(t) and S′′i (t) of Ji with
different number of cores. Lemma 12.5.1 below will be applied in Proposi-
tion 12.5.2 to the part of the task execution taking place before V (2) for both
core allocations illustrated in Fig. 12.4.
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Let Q′(t) = (q′1(t), q
′
2(t), . . . , q

′
U (t)) and Q′′(t) =

(q′′1(t), q
′′
2(t), . . . , q

′′
U (t)) denote the profiles representing the remaining

processing times when m1 and m2, m1 < m2, cores are used in in S′(t) and
S′′(t) respectively.

Lemma 12.5.1. We use assumptions 12.5.1 to 12.5.3. At any time t0 ≤ t ≤ t1,
Q′i(t) ≥ Q′′i (t), i.e. Q′′i (t) is ahead of Q′i(t).

Proof. The proof is by induction. The statement is true at time t = t0.
Assume that the statement is true at time t − 1 and let A be the set of

threads processed at t in schedule S′i(t) (that uses m1 cores). If all threads in
A are also processed at t in schedule S′′i (t), then the claim is true at t by the
inductive hypothesis.

Now assume that there exists a thread a, a ∈ A, that is not executed at t
in S′′i ; if thread a has already completed execution we have q′′a(t) = 0 and the
claim holds at time t.

If thread a has not completed execution by time t − 1 in S′′i , the segment
executed at t in S′′i must be the segment to which a belongs because of the
assumption that Q′(t−1) ≥ Q′′(t−1). Then, at least m2 threads should precede
a in the list ordering that has not been completed. By the inductive hypothesis,
these threads are also unfinished at time t − 1 in the schedule that uses m1

cores; since m2 > m1 this contradicts the assumption that a is executed at t
when m1 cores are available and the claim is true at time t. This completes the
proof of the inductive step.

Proposition 12.5.2. We use assumptions 12.5.1, 12.5.2 and 12.5.4. At any time
0 ≤ t ≤ V (m1), Q′i(t) ≥ Q′′i (t), i.e. Q′′i (t) is ahead of Q′i(t).

Proof. Let t0 = 0 and t1 = V (m1). Then Proposition 12.5.2 follows from
Lemma 12.5.1 because Q′i(0) and Q′′i (0) are identical.

Eqs. (12.8) and (12.9) follow directly from Proposition 12.5.2.
We now consider two partial schedules S′i(t

′) and S′′i (t
′′) obtained using

different number of cores and execution for different time intervals.
We are interested in comparing the completion times of S′i(t

′) and S′′i (t
′′)

when M of cores are used to complete S′i(t
′) (S′′i (t

′′)) after time t′ (t′′). Propo-
sition 12.5.3 will be applied to the part of the task execution taking place after
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V (2) for m = 2 and after V (3) for m = 3 in Fig. 12.4. S′i(t
′) (S′′i (t

′′)) uses M
cores after time t′ (t′′). Let r′i (r′′i ) be the completion time of Ji under schedule
S′i(t

′) (S′′i (t
′′)). The following Proposition shows that, if Q′′i (t

′′), the profile of
S′′i (t

′′) at time t′′, is ahead of Q′i(t
′) then r′′i −t′′ ≤ r′i−t′, i.e. the time required

to complete S′′i is not greater than the time necessary to complete S′i when the
same number of cores M is used.

Proposition 12.5.3. We use assumptions 12.5.1, 12.5.2 and 12.5.4. If t′ ≥
V (m1), t′′ ≥ V (m2) and Q′′i (t

′′), the profile of S′′i (t
′′), is ahead of Q′i(t

′), the
profile of S′i(t

′), then r′′i − t′′ ≤ r′i − t′.

Proof. Assume that t′ ≤ t′′; (the proof for t′′ < t′ is analogous).
It is sufficient to prove that, at any time instant t, t ≥ t′, Q′i(t) ≥ Q′′i (t +

(t′′ − t′)). We prove it by induction. The statement is true at t = t′. We now
assume it is true for t− 1, and we will prove that it holds at t.

Let A′, A′′ be the set of threads that are processed at t in schedule S′i(t) and
at t + (t′′ − t′) in S′′i (t + (t′′ − t′)) respectively, and let I ′′ be the segment to
which threads in A′′ belong. If A′ = A′′, then the proposition is true at time t
by the inductive hypothesis.

Now, assume a thread a, a ∈ A′ − A′′ exists. If a has already completed
execution in S′′i (t−1+(t′′−t′)) at t−1+(t′′−t′) then its remaining processing
time is 0 and the proposition holds at time t. We now observe that if q′′a(t− 1+
(t′′ − t′)) > 0, a must belong to segment I ′′. In fact, if a belongs to a segment
that precedes I ′′ then l has completed execution in S′′i (t−1+(t′′−t′)) and this
implies that q′′a(t− 1+ (t′′− t′)) = 0. Since Q′i(t− 1) ≥ Q′′i (t− 1+ (t′′− t′))
a cannot belong to a segment that succeeds I ′′.

If a has not completed execution by time t−1+(t′′−t′), it follows that there
are M uncompleted threads in segment I ′′ at time t + (t′′ − t′) that precede a
in list ordering. By the inductive hypothesis, these threads have not completed
execution in schedule S′i(t − 1), thus contradicting the assumption that a is
scheduled at t in S′i(t).

This concludes the inductive step and the proof.

Now, we are ready to prove Theorem 12.5.4, claiming that a potential in-
crease in a job’s response time when assigning a higher number of cores ini-
tially is bounded by the difference of the virtual deadlines.
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Theorem 12.5.4. We use assumptions 12.5.1, 12.5.2 and 12.5.4. Then
ri(m2) ≤ ri(m1) + V (m2)− V (m1).

Proof. Let S′i(V (m1)) (S′′i (V (m1))) be the partial schedule at time V (m1)
when m1 (m2) cores are used and let Q′i(V (m1)) (Q′′i (V (m1))) be the profile
at time V (m1). Since m2 > m1 Proposition 12.5.2 implies that Q′i(V (m1)) ≥
Q′′(Vi(m1)).

We now observe that as V (m2) > V (m1), Q′′i (V (m1)) ≥ Q′′i (V (m2)).
By transitivity, it follows that

Q′i(V (m1)) ≥ Q′′i (V (m1)) ≥ Q′′i (V (m2))

By Proposition 12.5.3 ri(m2)− V (m2) ≤ ri(m1)− V (m1) follows.

If we have a response time of a job with one m allocation, Eqs. (12.7)
to (12.9) provide bounds for one end or the range of possible response times
with another allocation. For the other end of the range, we will show that the
following hold:

ri(m2) ≤ ri(m1) ≤ V (m1)⇒ ri(m2) ≥ ri(m1) ·
m1

m2 +m1 − 1
(12.10)

ri(m1) > V (m1)⇒ ri(m2) ≥ V (m1) ·
m1

m2 +m1 − 1
(12.11)

ri(m1) > V (m1) · (m1 +m2 − 1)/m1 ⇒ ri(m2) > V (m1) (12.12)

ri(m2) > V (m1)⇒ ri(m2) ≥ ri(m1)− V (m1) ·
m2 − 1

m1
(12.13)

Eq. (12.10) is simply a reformulation of Theorem 1 from Graham [15],
which proves a bound for the response time ratio for a DAG scheduled with
list ordering and m1 or m2 processors. Eq. (12.11) follows because according
to Theorem 1 from [15], the part of Ji completed at V (m1) with m1 cores as-
signed can be completed earliest at V (m1) · m1

m2+m1−1 with m2 cores assigned.
We denote the response time of a job J with allocation m up until t from

its arrival, thereafter M , with r(J,m, t).

Theorem 12.5.5. We use assumptions 12.5.1, 12.5.2 and 12.5.4. Then
Eq. (12.12) holds.
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Proof. The response time if scheduling Ji with m1 cores until completion,
r(Ji,m1,∞), is compared to ri(m1). Because the profiles are identical at
V (m1), we use t0 = V (m1) in Lemma 12.5.1, that gives r(Ji,m1,∞) ≥
ri(m1).

We compare r(Ji,m1,∞) to r(Ji,m2,∞), and Theorem 1 from [15] gives
that r(Ji,m2,∞) · m1+m2−1

m1
≥ r(Ji,m1,∞) ≥ ri(m1).

Inserting ri(m1) > V (m1) · m1+m2−1
m1

gives r(Ji,m2,∞) > V (m1). At
V (m1) profiles are identical for scheduling with m2 until completion or until
V (m2), so ri(m2) > V (m1)

Theorem 12.5.6. We use assumptions 12.5.1, 12.5.2 and 12.5.4. Then
Eq. (12.13) holds.

Proof. The job Ji is split into two part-jobs denoted Ja and Jb. Ja is the threads
and parts of threads completed at V (m1) when the job is scheduled upon m2

cores. Jb is the remaining parts of threads and threads at this time.
Scheduling Ji with m2 cores up until V (m2), and then with M cores is

equivalent to scheduling Ja with m2 cores, and immediately schedule Jb with
m2 cores up until V (m2)− V (m1) and thereafter M . Therefore, we have:

ri(m2) = r(Ja,m2, V (m2)) + r(Jb,m2, V (m2)− V (m1))

Clearly r(Ja,m2, V (m2)) = V (m1), so ri(m2) = V (m1) +
r(Jb,m2, V (m2)− V (m1)).

From Proposition 12.5.2, r(Jb,m1, 0) ≤ r(Jb,m2, V (m2)− V (m1)), giv-
ing:

ri(m2) ≥ V (m1) + r(Jb,m1, 0)

Since the split is not done with m1 assignment, we have:

ri(m1) ≤ r(Ja,m1, V (m1)) + r(Jb,m1, 0)

Combining these gives ri(m2) ≥ V (m1) + ri(m1)− r(Ja,m1, V (m1)).
We compare scheduling of Ja with m1 cores until completion and schedul-

ing it with m1 cores until V (m1) and thereafter M cores. The pro-
files are identical at V (m1), and from Lemma 12.5.1 with t0 = V (m1),
r(Ja,m1, V (m1)) ≤ r(Ja,m1,∞).
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Theorem 1 from [15] gives r(Ja,m1,∞) ≤ V (m1)
m2+m1−1

m1
. Combining

these results we have ri(m2) ≥ V (m1) + ri(m1)− V (m1)
m2+m1−1

m1
.

Furthermore, we use the total computation time wi of a given a job Ji to
derive the following response time bounds that hold for all m. Eq. (12.14)
states that the response time cannot be longer than the total computation time
(the response time when Ji is scheduled on a single core). Eq. (12.15) states
that the response time cannot be shorter than the time it takes to complete wi if
all assigned cores are busy from start to completion.

ri ≤ wi,∀m (12.14)

ri ≥

{
wi
m wi ≤ V (m) ·m
V (m) + wi−V (m)·m

M wi > V (m) ·m
(12.15)

Bag Mean Reward Estimates

The algorithm for estimating the mean reward of an arm m in a bag B is out-
lined in Algorithm 12.10. If there are observations from this arm in B, we
simply take the mean observed reward in the arm as our estimate. However,
if there are no observations, an observation from another arm is used to ob-
tain the reward estimate. The closest lower or higher arm with observations
in B is used as the source arm, with probability in relation to the number of
observations each of these arms have. We know that in Algorithm 12.10 the
B contains at least one observation for one arm, due to the check on Line 3 in
Algorithm 12.8.

The reward estimate for a target arm from an observation in a source arm
is obtained according to Algorithm 12.11 if the source arm m is lower than the
target arm’s. If the source arm has a higher m than the target arm, the reward
estimate is obtained as described in Algorithm 12.12. In both these algorithms,
an observation is randomly sampled from the source arm, and the response
time and total work are retrieved. Now, we consider the possible response time
range for this observation under the counterfactual scenario that the job was
scheduled with the target arm, although it was in fact scheduled with the source
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Algorithm 12.10: Estimate mean reward of an arm m in bag B.
Input: Bag B, arm m
Output: Estimated mean reward ρ(m) for B

1 Function EstMeanRew(B, m):
2 useThisArmProb← 1
3 if B.numObs[m] > 0 then
4 return B.rewSum[m]

B.numObs[m]

5 sumObs← 0
6 if ∃i < m s.t. B.numObs[i] > 0 then
7 loArm← max(i < m s.t. B.numObs[i] > 0)
8 sumObs← sumObs+B.numObs[loArm]

9 if ∃i > m s.t. B.numObs[i] > 0 then
10 hiArm← min(i > m s.t. B.numObs[i] > 0)
11 sumObs← sumObs+B.numObs[hiArm]

12 useLoArmProb← 0
13 if ∃i < m s.t. B.numObs[i] > 0 then
14 useLoArmProb← B.numObs[loArm]

sumObs

15 s← SampleFrom(U(0, 1))
16 if s ≤ useLoArmProb then
17 return SampleRewardFromLower(loArm,m)

18 else
19 return SampleRewardFromHigher(hiArm,m)
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arm. A response time range with the target arm is retrieved using the bounds
derived in Line 9. A factor is uniformly sampled in [0,1], and used to determine
where in the range the response time estimate for the target arm goes. A reward
is calculated with m, the estimated response time and the sampled total work,
and used as the mean reward estimate.

In Algorithm 12.11, the lower end of the range is obtained from
Eqs. (12.10) to (12.12) and (12.15).The higher end of the range is obtained
from Eqs. (12.7), (12.8) and (12.14). Comments are added in the pseudocode
to relate lines to equations.

In Algorithm 12.12, the lower end of the target arm response time range is
obtained from Eqs. (12.7) to (12.9) and (12.15). The higher end of the range
is obtained from Eqs. (12.10), (12.13) and (12.14). Comments in the algorithm
connect lines to equations.

12.5.4 Returning to the Motivating Example

Let us return to the motivating example in Section 12.5.2 and compare the BES
algorithm with our proposed MAB approach. For this purpose, we construct
a reward function ρ as in Eq. (12.16). For a selected arm m and the observed
response time r, ρ = 1 if the response time is between V (m − 1) (or 0 for
m = 1) and V (m). Otherwise ρ = 0.

ρ(r,m) =


1 r ≤ V (1),m = 1

1 V (m− 1) < r ≤ V (m),m > 1

0 otherwise

(12.16)

We use the proposed MAB approach with this reward function, κ = 50
bags, and the stochastic task described in Section 12.5.2. The resulting core
allocations over 500 rounds compared to using the BES are shown inFig. 12.5.
In the first round, m = 3 is randomly selected. In the next 10 rounds, arms in
the range 5 − 8 are chosen, with m = 5 selected 5 times, m = 6 selected 3
times, and m = 7 and m = 8 both selected once. After this point, m = 6 is
chosen most of the time, and exploration is less frequent the more rounds we
add.
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Algorithm 12.11: Estimate reward in target arm from lower source
arm sample.

Input: Bag B, source arm srcArm, target arm tgtArm
Output: Estimated reward ρ(tgtArm) for B

1 Function SampleRewardFromLower(B, srcArm, tgtArm):
2 sampleIdx← GetRandomIndex(B, srcArm)
3 rt← B.rt[srcArm][sampleIdx]
4 w ← B.work[srcArm][sampleIdx]

/* Eq. (12.10) */

5 loRange← rt srcArm
srcArm+tgtArm−1

/* Eq. (12.12) */
6 if loRange > V (srcArm) then
7 loRange← rt− V (srcArm) · tgtArm−1

srcArm

8 else
/* Eq. (12.11) */

9 if rt > V (srcArm) then
10 loRange← V (srcArm) · srcArm

srcArm+tgtArm−1

/* Eq. (12.15) */
11 loRangeWork ← w

tgtArm

12 if loRangeWork > V (tgtArm) then
13 loRangeWork ← V (tgtArm) + w−V (tgtArm)·tgtArm

M

14 if loRange < loRangeWork then
15 loRange← loRangeWork

/* Eq. (12.7) */
16 hiRange← rt+ V (tgtArm)− V (srcArm)

/* Eq. (12.8) */
17 if rt < V (srcArm) then
18 hiRange← rt

/* Eq. (12.14) */
19 if hiRange > w then
20 hiRange← w

21 u← SampleFrom(U(0, 1))
22 rtTgt← loRange+ u · (hiRange− loRange)
23 return Reward(rtTgt, w, tgtArm)
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Algorithm 12.12: Estimate reward in target arm from higher source
arm sample.

Input: Bag B, source arm srcArm, target arm tgtArm
Output: Estimated reward ρ(tgtArm) for B

1 Function SampleRewardFromHigher(B, srcArm, tgtArm):
2 sampleIdx← GetRandomIndex(B, srcArm)
3 rt← B.rt[srcArm][sampleIdx]
4 w ← B.work[srcArm][sampleIdx]

/* Eq. (12.7) */
5 loRange← rt+ V (tgtArm)− V (srcArm)

/* Eq. (12.8) */
6 if rt < V (tgtArm) then
7 loRange← rt

8 else
/* Eq. (12.9) */

9 if rt < V (srcArm) then
10 loRange← V (tgtArm)

/* Eq. (12.15) */
11 loRangeWork ← w

tgtArm

12 if loRangeWork > V (tgtArm) then
13 loRangeWork ← V (tgtArm) + w−V (tgtArm)·tgtArm

M

/* Eq. (12.10) */

14 hiRange← rt · tgtArm+srcArm−1
tgtArm

/* Eq. (12.13) */
15 if rt > V (tgtArm) then
16 hiRange← V (tgtArm) · srcArm−1

tgtArm + rt

/* Eq. (12.14) */
17 if hiRange > w then
18 hiRange← w

19 u← SampleFrom(U(0, 1))
20 rtTgt← loRange+ u · (hiRange− loRange)
21 return Reward(rtTgt, w, tgtArm)



Paper E 269

0 100 200 300 400 500

2

4

6

8

10

Round

m

BES m
MAB m

Fig. 12.5: Core allocation for the BES and MAB in the motivating example.
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Fig. 12.6: Average rewards over each 20-round interval for the BES and MAB
in the motivating example.

In Fig. 12.6, the rewards of the BES and MAB algorithms are shown. The
reward in Eq. (12.16) is binary, so we show the average reward over each 20-
round interval. The mean reward of m = 6 (the highest mean reward) is dis-
played in magenta. Another common way to evaluate MAB algorithms is the
regret, Eq. (12.1). The difference between consistently choosing the arm with
the highest expected reward and the algorithm choice is calculated over an in-
terval or horizon (T in Eq. (12.1)). The regret for different horizons is shown
in Fig. 12.7. Here, it is clear that the BES regret grows linearly with the hori-
zon, while the MAB regret grows much slower once the algorithm has learned
which arm is likely the best.
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Fig. 12.7: Regrets over different horizons for the BES and MAB in the moti-
vating example.

12.6 Energy Consumption for Reward Function

In this section, we show how to use the MAB approach to find initial core
allocation m that minimizes the energy consumption over time. This is done
by using an energy model that estimates energy consumption of jobs within the
reward function. We emphasize that the MAB approach can also be used with
other optimization goals.

The energy model is based on an existing microarchitecture with sleep
states and the task model and scheduling from Section 12.4. In Section 12.6.1,
we discuss how the sleep state latency affects the schedulability condition.

Consider a job arriving when m cores are in the running (C0) or halt (C1)
state, and M − m cores are in a deep sleep state. The wake-up latency of
the sleep state is denoted as ∆RS . If the parallel synchronous task has not
completed at V −∆RS , the M −m sleeping cores need to be woken up. This
model is a simplification: in a real system, the choice of m needs to be done
∆RS prior to the job arrival, to ensure that cores are woken up if needed. This
implies that the arm selection should be performed prior to this point, when
the observations from the latest task invocation may be only partially complete
(i.e., either the latest task completed and its execution time is known, or it is still
running and its execution time is known with a small uncertainty bounded by
∆RS). This is ignored in what follows, as the effect on the MAB performance
is minor. Sleep states for a full socket can save power by disabling the last-level
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cache. This could cause cold misses and longer response times. However, we
would have the same concern when assigning all cores to the task at the virtual
deadline. One of the assumptions stated in [21] is that the task is compute-
bound.

The energy consumption is modeled according to the Sandy Bridge-EP
(Xeon E5-2670) microarchitecture as described in [27], chosen because the
power savings of the different states were documented here. Cores are dis-
tributed on ns sockets with ncs = 8 cores per socket. We let M = ns · ncs,
only this task is scheduled on ns CPU sockets. Each core is in the running, halt,
or sleeping state, corresponding to the CC0, CC1 and CC6 states. If all cores
sharing a socket are in the sleep state, they enter the package sleep state, corre-
sponding to PC6 in [27]. We assume that the scheduler can control when a core
goes to and leaves the sleeping state. Linux allows for enabling or disabling
individual sleep states either directly, or by specifying the per-core latency tol-
erance3. System-wide latency tolerance is set to allow for the use of deep sleep
states. The scheduler restricts the use of deep sleep states for cores allocated to
the task by temporarily setting a lower per-core latency tolerance. We do not
require the cores to run at the highest possible frequency when executing the
work of τ , but at a fixed frequency taken into consideration when determining
W , L and schedulability.

The power consumption of a core in the running state is PR. In the halt
state, the power is PH . In the sleep state, the power is PS , and in the package
sleep state the power is PSS . Transitions between the halt and running state
are instantaneous in the model, although a delay of less than 2µs was seen in
[27]. Transitions to and from the sleep state are associated with a latency of
∆RS , both for entering and exiting the sleep state. The average power require-
ment during this latency period is P∆RS , and no work is processed during this
time. The power consumption values for the different states are presented in
Table 12.2, along with the transition latency. The power consumption values
are inferred from the power savings compared to the running state presented
in [27], except for the average power consumption during the transition to the
sleep state, P∆RS , as it is not presented in [27]. Therefore, we estimate it
as follows. The residency times, that is the minimum time spent in the sleep

3https://wiki.linuxfoundation.org/realtime/documentation/howto/applications/cpuidle
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state leading to power savings, are documented in the Linux drivers4. Based on
these and the latencies from [27], we estimate P∆RS = 7W , equal to the power
consumption in the running state.

Now we can describe how we model the power consumption over time
from the arrival of a job Ji to its deadline, given the response time ri and the
total work wi. Depending on the relation of D, ri and V we outline 6 cases,
illustrated in Fig. 12.8. The left column, Eq. (12.17), is the case where the job
is completed sufficiently early, so it is advantageous to temporarily move the
m cores into the sleep state and wake them up again before the next job arrival.
The right column, Eq. (12.18), is the case where it is more advantageous to
keep the m cores in the halt state.

The condition for the first column is D − ri > ∆RS
P∆RS−PS
PH−PS

For each of these, we have three cases, represented by the rows in Fig. 12.8.
The first row, a), is the case when the job is completed in time so we don’t need
to wake up the M − m cores, ri < V − ∆RS . The second row, b), is when
we wake them up, but it turns out they were not needed. V −∆RS ≤ ri ≤ V .
The third row, c), is when he M −m cores are used for completion of the job,
ri > V .

The full transition time ∆RS is modeled at the time of going from the sleep
state to the running state, although a smaller part of this is at the time of entering
the sleep state.

The energy consumption Ei(ri, wi,m) from the arrival until the deadline
of Ji is calculated from the selected m, the response time ri, and the total work
wi. The direct energy consumption from the computation is wi · PR appearing
in all cases of Eqs. (12.17) and (12.18). The rest of the energy consumption
comes from halt and sleep states and transitions between states. A core is in
the halt state when it is assigned to the task by the scheduler, but all threads
in the current segment are executing in other cores. The total time of cores in
the halt state from an orange area in Fig. 12.8 is the size of the area minus wi,
found in all cases of Eqs. (12.17) and (12.18). A core is also in the halt state
when there is no benefit in moving to the sleep state after the job has com-
pleted, shown as yellow areas in the right column of Fig. 12.8, and appearing in
Eq. (12.18). The energy consumption while transitioning to and from the sleep

4https://github.com/torvalds/linux/blob/master/drivers/idle/intel idle.c
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Fig. 12.8: Energy model illustration, ns = 2, ncs = 8, M = 16, m = 6.

state is determined by the red areas in Fig. 12.8, and found in Eqs. (12.17),
(12.18b) and (12.18c). The energy consumption in the sleep state is shown as
blue areas (full sleeping sockets) or green areas in Fig. 12.8, and found in all
cases of Eqs. (12.17) and (12.18). Let cs(M−m) denote the number of cores
in M −m that make up full sockets, cs(M−m) = ncs · ⌊M−mncs

⌋. Analogously
csm = ncs · ⌊ m

ncs
⌋ denotes the number of cores in m that make up full sockets.

Let cr(M−m) = M −m− cs(M−m) and crm = m− csm denote the remaining
cores in M −m and m that share a socket with non-sleeping cores.
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The energy consumption is calculated as:

Ei =wi · PR + (ri ·m− wi) · PH +∆RS ·m · P∆RS+

(ri +∆RS) · (cs(M−m) · PSS + cr(M−m) · PS)+ (12.17a)

(D − ri −∆RS) ·M · PSS

Ei =wi · PR + (ri ·m− wi) · PH + (V − ri)(csm · PSS + crm · PS)+

V · (cs(M−m) · PSS + cr(M−m) · PS) + ∆RS ·M · P∆RS+ (12.17b)

(D − V −∆RS) ·M · PSS

Ei =wi · PR + (ri ·m+ (ri − V ) · (M −m)− wi) · PH+

V · (cs(M−m) · PSS + cr(M−m) · PS)+ (12.17c)

∆RS ·M · P∆RS + (D − ri −∆RS) ·M · PSS

Ei =wi · PR + (ri ·m− wi) · PH + (D − ri) ·m · PH+ (12.18a)

D · (cs(M−m) · PSS + cr(M−m) · PS)

Ei =wi · PR + (ri ·m− wi) · PH + (D − ri) ·m · PH+ (12.18b)

+(D −∆RS)(cs(M−m) · PSS + cr(M−m) · PS) + ∆RS · (M −m) · P∆RS

Ei =wi · PR + (ri ·m+ (ri − V ) · (M −m)− wi) · PH+

(V −∆RS +D − ri) · (cs(M−m) · PSS + cr(M−m) · PS)+ (12.18c)

∆RS · (M −m) · P∆RS

We note that the highest possible energy consumption is E↑ = W ·PR+M ·
∆RS ·P∆RS+((D−∆RS) ·M−W ) ·PH and the lowest is E↓ = M ·D ·PSS .
We use this to construct a reward function where rewards are in the interval
[0, 1], according to Eq. (12.19).

ρ(ri, wi,m) =
E↑ − Ei(ri, wi,m)

E↑ − E↓
(12.19)

12.6.1 Schedulability Condition Considering Sleep State Latency

The M − m cores that we need to use at the virtual deadline V may be in
the sleep state, and we need to wake them up at V − ∆RS to ensure they are
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available on time. This means that with this energy model, a non-negative
V (m) according to Eq. (12.5) is not sufficient for schedulability, but valid m
must fulfill the condition in Eq. (12.20).

V (m) =
M · (D − L)− (W − L)

M −m
≥ ∆RS ,m < M (12.20)

12.7 Evaluation

The evaluation5 is performed with task structures selected to highlight factors
that affect the algorithm’s performance. The reward function is based on the en-
ergy model described in Section 12.6, and specified in Eq. (12.19). The MAB
algorithm outlined in Section 12.5.3 (B MAB) is compared to an adapted BES,
a GREEDY algorithm as outlined in Section 12.6.1, and a bandit feedback
MAB algorithm that does not use the response time bounds to share informa-
tion between arms (NB MAB). Both MABs use κ = 50. In NB MAB, arms
without observations in a bag are selected with equal probability to the arm
with the highest mean reward. That is, Algorithm 12.13 is used in place of Al-
gorithm 12.8. The best arm with observations in the bag is added to a set with
all arms without observations. An arm is selected at random from this set. Be-
cause Algorithm 12.10 is never called for an arm and bag without observations,
the response time bounds are not used. We have not included a comparison
with any DAG scheduling approach that requires knowledge about the DAG
structure.

The task structures selected for the evaluation are listed in Table 12.3. Task
structures 1, 3, and 5 have the same number of segments but varying degrees
of parallelism within the segments. Task structures 2, 4, and 6 have the same
degree of parallelism but with varying numbers of segments. Task structure 7
has four low parallelism segments and two high parallelism segments as the
second and fifth segments. Task structure 8 is similar to task structure 7 but
with both high parallelism segments at the end.

The execution time eijk of thread k in segment j of Ji is generated from
a beta distribution, Beta(α = 2, β = 5), scaled and translated according to a

5Code and data will be made available upon acceptance.
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Algorithm 12.13: NB MAB core allocation at round i.
Input: set of κ bags bags, min and max valid arm minArm, maxArm.
Output: Core allocation mi

1 Function CoreAllocatorNB(bags, minArm, maxArm):
2 B ← SampleFrom(bags)
3 if B.empty() then
4 mi ← SampleFrom(U(minArm,maxArm))

5 else
6 sampleArmsSet← (m) s.t. B.numObs[m] = 0
7 if ∃m /∈ sampleArmsSet then
8 mmaxEst ← argmaxm/∈sampleArmsSet EstMeanRew(B,m)

9 sampleArmsSet← sampleArmsSet ∪ (mmaxEst)

10 mi ← SampleFrom(sampleArmsSet)

setting βγ and a translation β∆. eijk is sampled from Ejk ∼ β∆jk · (1 + βγ ·
Beta(α = 2, β = 5)). The setting βγ is varied in the experiments to explore the
effect of thread execution times varying to different degrees between different
jobs in the same task realization. β∆jk is drawn from a uniform distribution
with the same width (50µs) for each thread, U(β∆↓, β∆↓ + 50). The starting
point of the uniform distribution β∆↓ is calculated according to Eq. (12.21) so
that the expected value of thread execution times is the same (150µs) for all βγ
settings. This is to separate the effects of higher work and span from the effects
of higher variance in the thread execution times within a realized sequence. The
experiments generate tasks with βγ ∈ (0.1, 0.2, 0.4, 0.8, 1.6).

β∆↓ =

⌊
150

1 +
2·βγ

7

− 50

2

⌋
(12.21)

A task is generated for each task structure and βγ setting. For each task,
the worst case work W and span L are calculated as W =

∑s
j=1 uj · (β∆↓ +

50) · (1 + βγ) and L = s · (β∆↓ + 50) · (1 + βγ). For each task structure, the
maximum worst-case work and span over all βγ settings are used to calculate
virtual deadlines for all tasks.
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Fig. 12.9: Regrets for the methods over different horizon lengths for the task
structures, with deadline configurations visualized.

The performance of the algorithms depends on the set deadline. A dead-
line set tightly compared to the schedulability condition leads to short virtual
deadlines. This causes the BES to allocate more cores and affects the reward
function for the MAB. Deadlines are generated as D =

(
W+L
M + L+∆RS

)
·ds

from the schedulability condition given in Section 12.6.1. The factor ds is ran-
domly drawn from a uniform distribution U(1.25, 2.5) Every task is run with
20 deadline configurations, and the runs contain 2000 rounds.

The BES in the evaluation is adapted to use only valid m according to the
schedulability condition Eq. (12.20), and aim for the lowest m that results in
response times below V (m)−∆RS instead of below V (m). The greedy method
selects the lowest possible number of full sockets that fulfills the schedulability
condition Eq. (12.20).

12.7.1 Results and Discussion

In Fig. 12.9, the regrets over different horizon lengths are displayed for the
B MAB, BES, GREEDY, and NB MAB methods. Different deadline settings
ds are shown in different colors. InFig. 12.10, the same data is shown but with
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Fig. 12.10: Regrets for the methods over different horizon lengths for the task
structures, with computation time variation configuration visualized.

coloring of the different configurations of βγ that control the computation time
variation between different threads.

It is clear that the regret of the BES and GREEDY methods grow linearly
with the horizon, although the slope of the BES regret may change at points
when the interval is updated. The regrets for the MAB algorithms grow much
slower once the likely best arms are learned. There is no case where B MAB
has higher regret than 10 or NB MAB has higher regret than 15. It is also clear
that in some cases, BES and GREEDY have very low regret. These cases cor-
relate with particular task structures and deadline factors, and for the BES case
also low thread computation time variation. BES has lower regret for tighter
deadlines, while the opposite is true for the MAB methods. GREEDY outper-
forms the other methods for task structure 5, with a large degree of parallelism.
The MABs perform some initial exploration that comes with a cost to the re-
gret, which is more pronounced for NB MAB. Both MABs reliably find arms
providing low regret in the long run for all tested task structures and deadline
configurations.

The average regrets at step 2000 over all tasks and configurations are 18.9
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for GREEDY, 98.9 for BES, 4.5 for NB MAB and 2.1 for B MAB. Using the
response time bounds resulted in regrets less than half of those of NB MAB.
Due to the retrieved response time bounds, arms that cannot be optimal are not
explored, reducing the regret.

To interpret the performance in terms of energy consumption, the total en-
ergy consumption at 2000 rounds with the energy model in Section 12.6 is
calculated for each realization and each of the methods and for the arm that
is best on average for the realization. The results are visualized in Fig. 12.11,
where each black dot represents a realization in a bin, where bins have width
1J . The red dots are the average energy consumption over the realizations for
each method, that are also shown in Table 12.4, along with the ratios with the
consumption using the best-average arm. B MAB is within 0.5% of the op-
timal consumption, NB MAB is within 1%, GREEDY within 4%, and BES
within 25%. Statistical tests are performed with the sign test (binomial test).
The number of realizations where the energy consumption is higher for one
method than another is compared to the binomial distribution of 800 (the num-
ber of realizations) tests with success probability 0.5, the expected distribu-
tion if one method would be equally good as the other. The results show that
B MAB has lower energy consumption than NB MAB, NB MAB lower than
GREEDY, and GREEDY lower than BES, all with p-value < 10−15. The
95%-confidence interval of the binomial test success probability is [0.994, 1]
when comparing B MAB to NB MAB, showing that for a specific realiza-
tion, B MAB almost always outperforms NB MAB slightly due to reduced
initial exploration. The binomial test success probability is [0.633, 1] when
comparing B MAB to GREEDY and [0.612, 1] when comparing NB MAB to
GREEDY. There are realizations where GREEDY is optimal or close to opti-
mal and outperform the MAB methods. Comparing to BES, the binomial test
success probability is [0.968, 1] for B MAB and [0.965, 1] for NB MAB.

In Fig. 12.12, arm selections from one realization of each task structure
are shown, along with the clairvoyant best choice for each job. The average
best arm in the realization is shown as dashed magenta color. The GREEDY
method finds the best allocation in the realizations shown for task structures 5
and 8. The BES method oscillates between different allocations. In the realiza-
tions for task structures 1, 3, and 6 these are near the optimal average choice.
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Fig. 12.11: Energy consumption at 2000 rounds over all realizations for the
different methods compared to the best average arm (OPT) for each realization.

B MAB has a lower amount of exploration than NB MAB. For example the
highest allocations in the realization of task structure 1 and the lowest allo-
cations in the realizations of all task structures are almost never explored for
B MAB. Exploration for B MAB occurs at later times, when NB MAB no
longer explores.

12.8 Conclusion and Future Work

This paper has integrated hard real-time constraints with an MAB resource
management approach optimizing for the average case. Relying on previous
work [21] to ensure that deadlines are met, an MAB approach is evaluated for
assigning a suitable number of cores to a Stochastic Parallel Synchronous Task.
A partial feedback MAB approach is proposed, utilizing response time bounds
to obtain information for unexplored arms. The MAB approach has two main
advantages compared to the methods evaluated in [21]. First, the MAB algo-
rithm considers all observations, compared to the most recent observation only.
Second, the reward function is decoupled from the arm selection, resulting in a
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Fig. 12.12: Examples of arm selections for a few realizations along with the
clairvoyant best arm for each job (OPT C). The best average arm is dashed.

more versatile method. In the evaluation, the MAB approach is compared to the
BES from [21], to a greedy method, and to a bandit feedback MAB not using
response time bounds, for eight selected task structures over different settings
for thread execution time variance and deadlines. Both MABs reliably find arm
choices with low regrets in the long term for all task structures and settings,
while the BES and greedy methods have low regret for certain combinations
of task structure and deadline configuration. Using the response time bounds
in a partial feedback MAB decreases the amount of initial exploration needed
compared to the bandit feedback MAB.

The findings above show that an MAB approach is useful for resource man-
agement with optimization for the average behavior, can be integrated in a hard
real-time context, and that the use of response time bounds for partial feedback
improves the performance.
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In future work, MAB integration in other real-time use cases will be ex-
plored. It would be interesting to investigate the case where the reward de-
pendence on the response, work, and arm choice is unknown, for example, a
reward taken from a power measurement. For systems with changing reward
distributions, such as the tasks switching between different DAG structures in
[21], CMAB or restless bandit approaches could be explored.
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Table 12.1: Notation used in this paper.

Symbol Description
τ , Ji Task, job (at round) i of the task.
p Task period.
s Number of segments in a parallel synchronous τ .
uj Number of threads in the jth segment of τ .
U Total Number of threads in τ .
Ejk Execution time random variable of the kth thread in the jth seg-

ment of τ .
eijk Execution time of thread k in the jth segment of Ji.
L, W The deterministic worst-case span, and work of τ .
ri The response time of Ji.
wi The total work of Ji.
D The relative deadline of τ .
M The maximum number of cores available for τ .
mi The number of cores assigned to Ji at its arrival.

V (m) The virtual deadline of τ associated with m.
Si(t), Qi(t) The partial schedule and profile at time t after arrival.
ns, ncs Number of sockets, and number of cores per socket.
PX The power consumption of a core in power state X .
∆XY Transition latency in transitioning from power state X to Y and

back to X .
P∆XY The average power consumption during ∆XY .
csx, crx The cores out of x cores that make up full sockets, and the re-

maining cores.
Ei The modeled energy consumption from arrival to deadline of Ji.

E↑, E↓ The maximum and minimum possible energy consumption of a
job.

T Horizon (a specified number of rounds).
ρ Reward.
B Bag (bootstrap replicate) to estimate arm mean rewards.
κ Number of bags.
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PR PH PS PSS ∆RS P∆RS

7W 4W 2W 0.25W 40µs 7W

Table 12.2: Core state power consumption and transition latency in the energy
model.

TS Description s u TS Description s u

1 Lo-u 5 (5, 5, 5, 5, 5) 2 Lo-s 4 (5, 10, 5, 10)
3 Mid-u 5 (10, 10, 10, 10) 4 Mid-s 6 (5, 10, 5, 10, 5, 10)
5 Hi-u 5 (15, 15, 15, 15, 15) 6 Hi-s 8 (5, 10, 5, 10, 5, 10, 5, 10)
7 Hi-u-in 6 (6, 16, 6, 6, 16, 6) 8 Hi-u-end 6 (6, 6, 6, 6, 16, 16)

Table 12.3: The evaluated task structures.

OPT B MAB NB MAB GREEDY BES

Mean energy consumption [J] 166.0 166.7 167.5 172.2 203.8
Ratio with OPT 1 1.004 1.009 1.037 1.228

Table 12.4: Average energy consumption at 2000 rounds over all realizations
for the different methods compared to the best average arm (OPT) for each
realization.
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