
Checkpointing and State Transfer for Industrial

Controller Redundancy

Bjarne Johanssona,b,→, Björn Leandera,b, Olof Holmgrena, Thomas Nolteb,
Alessandro V. Papadopoulosb

aABB Process Automation, Process Control Platform, Västerås, Sweden
bMälardalen University, Västerås, Sweden

Abstract

Industrial controllers are moving from controller-centric to network-centric
architectures, where lightweight containerization is increasingly adopted in
operational technology. Many industrial domains require high reliability, of-
ten achieved through spatial standby redundancy with duplicated controllers
where one is the active primary and the other a standby backup. In such
setups, the standby backup must seamlessly take over control when the pri-
mary fails. Hence, the backup needs to be up-to-date with respect to the pri-
mary’s internal state. The retrieval of internal states is commonly known as
checkpointing. We review checkpointing approaches used in virtualized and
industrial settings and derive a set of desired features for state-transfer proto-
cols. We then assess existing communication protocols against these features
and experimentally evaluate the two strongest contenders under no-loss and
packet-loss conditions, measuring recovery performance. The analysis reveals
that no existing protocol meets all the desired features. To address this gap,
we introduce a new state-transfer protocol that satisfies all identified fea-
tures. In experiments, it demonstrates good performance under packet loss,
with only a slight reduction in throughput compared to the identified top
contender protocols that we used for comparison.
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1. Introduction

Industrial Control Systems (ICS) are undergoing an architectural paradigm
shift, a shift from a controller-centric architecture to a network-centric ar-
chitecture [1]. The distinguishing di!erence between the two architectures is
that the network replaces the controller as the system center. The shift is
part of a strive to create interoperable and flexible systems designed to ease
data propagation to data-hungry AI-driven forecasting and decision-making
systems. Facilitating standards is a cornerstone in inter-vendor interoper-
ability; in the context of ICS, OPC UA is believed to be such a standard [2].

The connectivity provided by the network-centric architecture, in combi-
nation with increased Ethernet usage, enables more flexible deployment of
controllers, thereby boosting the interest of Information Technology (IT) in
Operation Technology (OT) domains [3, 4, 5]. One example of such tech-
nologies is lightweight virtualization in the form of containers and the or-
chestration of those [6, 7, 8]. Containerized controllers can increase the
deployment alternatives and provide more flexibility, especially if the con-
trollers are hardware agnostic and not dependent on specialized fieldbuses
for communication [6, 5].

ICS automates a broad range of solutions in a wide spectrum of domains.
Needless to say, no one wants unplanned production stops due to their con-
trol system failing, and for some domains, stops can have severe impacts.
Mandating a need to keep the probability of failure low with various fault-
tolerance techniques. A conventional way to increase fault tolerance is to
duplicate critical devices such as controllers and network paths to form re-
dundant solutions and avoid single points of failure [9]. In the context of
ICS and controllers, spatial standby redundancy with hardware duplication
is a common redundancy pattern, where one controller serves as the active,
primary controller, and the other acts as a standby backup [10, 11]. The
redundancy masks primary controller failures from the perspective of field
devices relying on control from the redundant controller pair, forming a pas-
sive standby redundancy [9]. In the case of primary failure, the backup
controller seamlessly assumes the primary role and provides output to the
field devices.

For a backup to be able to assume the primary role upon failure of the
original primary controller, mechanisms for failure detection and state repli-
cation are needed [12, 13]. As the name implies, failure detection is the
mechanism used to determine if the primary has failed. The second mecha-
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nism, state replication, allows the backup to resume with the internal states
needed to continue the primary role transparently for the field devices and,
ultimately, the controlled process.

Checkpointing is the process of collecting the internal states; hence, to
have any state data to replicate, the primary first needs to checkpoint. As
mentioned, the network-centric transformation and lightweight virtualization
concepts drive controller software to be hardware agnostic, including redun-
dancy functions such as state replication [14]. The focus of the work is the
transfer of checkpoint data, and the goal is to find a solution suitable for
transferring the collected state data of a primary controller over Ethernet to
the backup controller.

The state data transfer needs to be secure, and security is a growing
concern within the industrial domain, given the increasing system complexity
and connectivity of industrial systems that utilize ubiquitous communication
protocols. Hence, state transfer protocols need protection from cybersecurity
threats, as they are potential attack vectors for availability attacks, and state
data may contain sensitive information [15].

We structure the work as a five-step workflow, where each step builds
upon the preceding one, as illustrated in Figure 1.

Step I presents a literature search and summary covering checkpointing/state-
transfer work in industrial controller redundancy and in container/orchestration
contexts.0

Step II defines desired features for state transfer and compares candidate
communication protocols against these features.

Step III presents and performs an experimental evaluation of two pro-
tocols with the highest feature coverage.

Step IV presents a protocol conceived for state transfer, together with
its design.

Step V presents the implementation and integration on VxWorks, a real-
time operating system (RTOS) [16], and the experimental results.

The contributions of the paper are:

C 1: Literature search and summary: a concise overview of checkpointing/state-
transfer approaches in industrial redundancy and container/orchestration
contexts.

0This is a targeted literature scan to identify relevant mechanisms and technologies for
our use case; it is not a systematic literature review.
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Checkpointing for Controller Redundancy
Containers and Checkpointing
Conclusions from the Literature Search

Section I: Introduction

Section IV (Step I):
Checkpointing in the Literature

Section II: Background

Section V (Step II):
Existing Protocols -- Feature

Matching

Section III: Related Work

Section VI (Step III):
Existing Protocols -- Experimental

Evaluation

Section VII (Step IV):
Proposed State-Transfer Protocol

Section VIII (Step V):
Deployment and Experimental

Evaluation

Section IX: Conclusion

TCP and UDP Comparison
State-Transfer Protocol Features
Protocol Selection
Transport Layer Protocols
Application Layer Protocols¨
Non-standardized Protocols
Excluded Protocols
Conclusions from Feature Matching

TCP in VxWorks
SCTP in VxWorks
Evaluation Setup: TCP/SCTP State Transfer
Performance Results: TCP/SCTP State Transfer
Conclusions from Experimental Evaluation

Protocol Overview
Payload Protocol - RSTP-PP
Management Mechanism - RSTP-MM
RSTP Design and Operation
Security Handling
RSTP - Desired Feature Matching

RSTP on VxWorks
RSTP Experimental Implementation
RSTP Experimental Evaluation
RSTP Evaluation Results
Discussion of RSTP Results

Figure 1: Overview of the paper’s sections and the five-step workflow (Step I–V).

C 2: Protocol feature matching: identification of desired features for
communication protocols used for state transfer, and matching these
features against selected protocols, where the main emphasis is to iden-
tify protocols suitable for state transfer in the industrial controller re-
dundancy use case.

C 3: Experimental evaluation: experimental evaluation of the two best-
matching protocols on VxWorks under loss-free and lossy conditions.

4



C 4: State-transfer protocol: design and integration of a state-transfer
protocol, experimentally evaluated on VxWorks (including multi-application
mimicking workloads) and compared to the two best-matching proto-
cols; it exceeds them under loss and supports transmission scheduling
to facilitate deadline-driven prioritization.

The paper is organized as follows: Section 2 introduces industrial con-
trollers, the execution model, fault tolerance, and container orchestration,
and Section 3 provide related work. Section 4 (Step I) details the checkpoint-
ing literature search and summarizes the results. Section 5 (Step II) defines
desired features for state-transfer protocols, introduces candidate protocols,
and assesses them against these features. Section 6 (Step III) experimen-
tally evaluates the top candidates and reports results. Section 7 (Step IV)
presents the proposed protocol, and Section 8 (Step V) evaluates it. Section 9
concludes. Figure 1 illustrates the paper structure.

2. Background

This work addresses challenges related to the fault tolerance of industrial
controllers. Hence, this section first introduces ICS and their execution mod-
els, then introduces fault-tolerance concepts, and finally, briefly introduces
orchestration and containers.

2.1. Industrial Controllers
Industrial controllers are rugged computers designed for longevity in po-

tentially harsh environments. The controller executes the control logic to
drive the process to the desired state by reading and writing values to and
from field devices that interface with the physical world. Distributed Con-
trol Systems (DCS) are large-scale automation systems comprising intercon-
nected controllers that communicate with each other and field devices to
automate an entire site, rather than just a single machine. A Programmable
Logic Controller (PLC) is another well-known term for industrial-grade con-
trollers, often featuring built-in Input/Output (I/O) interfaces.

Figure 2a shows the traditional hierarchical controller-centric architec-
ture, where field devices at the bottom of the figure connect to only one
controller, commonly over dedicated fieldbuses [17]. Above the controllers
are the high-level systems, such as Supervisory Control and Data Acquisition
(SCADA), which provide operator control and overview with fewer real-time
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DCN2DCN1

(a) Controller-centric.

DCN2

DCN1

(b) Network-centric.

Figure 2: Controllers, field devices, and upper layers of the automation pyramid in a
controller-centric architecture and a network-centric architecture.

requirements and more reliance on IT systems. Figure 2b shows the the
flattened network-centric architecture, with all system parts connected to a
communication backbone, denoted as the O-PAS Connectivity Framework
(OCF) by the Open Process AutomationTM Standard (O-PAS) [18]. O-PAS
refers to controllers as Distributed Control Nodes (DCNs); we use the terms
controller and DCN interchangeably.

As mentioned, the DCN runs the control logic that strives to drive the
controlled process to the desired state by getting and providing input and
output to field devices. The following section introduces the DCN execution
model.

2.2. Execution Model
The control logic that executes on the controller is a program, also referred

to as an application, typically developed in an engineering tool provided by
the DCN manufacturer. The engineering tool enables users to program and
develop applications for specific domains and download them to the DCN.
The predominant standard for programming DCN applications is IEC 61131-
3, and the execution model is cyclic as shown in Figure 3 [19, 20].

As shown in Figure 3, the execution phase consists of four phases: (i)
Copy-in (CI), (ii) Execute (Exe), (iii) Replicate State (RS), and (iv) Copy-
out (CO). Copy-in is the phase where updated values from the field device
are made available to the application. These are the values the application
uses when executing the control logic in the Execute phase. The Execute
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phase updates the internal states of the application, i.e., variables are up-
dated. The updated state needs to be replicated to the backup in case of
redundancy. This replication takes place in the Replicate State phase. Lastly,
the updated values are communicated to the connected field devices, which
occurs in phase Copy-out.

Copy-in Execute Replicate State Copy-out

Application
state

Update state

Figure 3: Controller application execution sequence.

A controller typically executes a set of control applications, denoted as
A, where each application a → A has a period Pa. Within each period Pa, the
application a executes all its phases: CIa, Exea, RSa, and COa. Specifically,
application a must complete all phases included in the Execution Phase (EP )
tuple ↑CIa, Exea, RSa, COa↓ during each period. Koziolek et al. define the
application slack time as the interval from when application a completes its
COa phase to its next invocation in the subsequent period [21]. Figure 4
illustrates the application phases and the phases’ dependency on input data
and internal state from earlier periods. Figure 4 also shows the output from
the di!erent phases.

CI Exe RS CO

Sa,1

Oa,1Ia,1Sa,0

CI Exe RS CO

Sa,2

Oa,2Ia,2 Sa,1

Pa,1

CI Exe RS CO

Sa,n

Oa,nIa,n Sa,n-1

Pa,2 P.. Pa,n

...

Application a

Figure 4: Internal state and application execution phases dependency and relation.

Ia,n represents the set of input values from CI at period instance n for
application a. Sa,n↑1 represents the internal state at the start of execution
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for application a in period n, while Sa,n is the new internal state after exe-
cution Exea,n. This new state (Sa,n) is replicated to the backup and used as
the internal state for Exea,n+1 in period Pa,n+1. Lastly, Oa,n represents the
externally visible output from the execution of application a in period Pa,n.

Oa,n depends on Ia,n, Sa,n↑1, and the execution Exea,n. Therefore, to
avoid producing historically outdated values during a failover, any failover
occurring after the output Oa,n must result in outputs that are Oa,n or later
for all a → A. Consequently, once the primary outputs Oa,n, the backup must
hold an internal state Sa,n↑1 or later. This implies that, upon the primary’s
output of Oa,n, state Sa,n↑2 (and older) are outdated. Figure 5 illustrates
state aging on a backup for application a.

Note that the application state for application a is utilized by a only;
hence, a failed state transfer does not directly impact any other application
than a. Inter-application communication between applications is handled in
a similar way as application and field device communication, rather than
multiple applications being directly dependent on the same state data.

ValidExpired

Legend:

Sa,<n-2 Sa,>=n-2

ValidExpired

Sa,<n-1 Sa,>=n-1

ValidExpired

Sa,<n Sa,>=n

Oa,n-1 Oa,n Oa,n+1 Oa,n+2

Latest output
Outdate state for backup to use

Valid state for backup to use

Figure 5: Output to field devices and state and aging on the backup.

2.3. Fault Tolerance
Fault-tolerance, as the name implies, is about being robust and continuing

to operate even in the presence of faults. Spatial standby redundancy is a
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specific fault-tolerance pattern common in ICS [11].
State replication is a fundamental part of a standby spatial redundancy

where one unit is active, and one or more backups are ready to take over in
case of failure of the active [12]. We assume a fail-silent semantics, meaning
that if a primary fails, it stops providing output [22]. The backup typically
supervises the primary by expecting a primary-originated message at known
intervals, a so-called heartbeat [23, 24]. The backup typically interprets
the absence of heartbeats as a failure of the primary controller. Self-tests,
diagnostic checks, and parallel execution with cross-comparison are fault de-
tection methods that also serve to strengthen the fail-silent behavior in in-
dustrial control systems [25]. Failure detection is not in the scope, and other
failure semantics, such as Byzantine faults, are not considered [26].

Spatial standby redundancy with hardware duplication addresses persis-
tent hardware failures, and failure detection is necessary to enable the backup
to recognize that the primary has failed. From the perspective of the field de-
vices, this is a passive redundancy, where a failover occurs when the backup
takes over for a failing former primary, and the change should be transparent
from the field devices’ perspective [9].

The degree of readiness denotes the level of the standby, divided into cold-
, warm-, and hot-standby [9]. Cold standby refers to an unpowered spare
that maintenance personnel can use to quickly replace a failing DCN. The
di!erence between warm and hot is the spare’s activity level. A warm standby
DCN backup does not execute the control applications. Still, it quickly
resumes them when becoming primary, and a hot standby DCN executes the
control application but does not provide output to the field devices. Our
work targets warm and hot standby redundancy.

Retrieving an application state for recovery is commonly referred to as
checkpointing [20]. Alternative to checkpointing, for redundancy purposes,
are, for example, deterministic Replicated State Machines (RSM), where the
events that progress the state machines are transferred rather than check-
pointed internal states, i.e., active replication [27]. To repeat events in
a deterministic order, consensus protocols such as Raft and Paxos can be
used [28, 29]. This work focuses on passive replication, where internal states
are checkpointed and transferred rather than the events themselves.

2.4. Orchestration and Containers
Containers are an OS-level virtualization technique providing software

bundling and resource isolation with low overhead [8]. The performant nature
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of containers and their deployment flexibility make containers interesting
in the ICS context [6]. Docker is one of the most well-known container
solutions [30, 31]. Docker has experimental support for checkpointing using
Checkpoint/Restore In Userspace (CRIU) [32]. CRIU is a Linux software for
checkpointing to disk [33].

Orchestration is a term commonly associated with the automated man-
agement of containers. For example, cloud service providers utilize a combi-
nation of containers and orchestration for elasticity, i.e., scaling resources to
match current needs and handling failures [34]. Kubernetes (K8s) is one of
the most well-known container orchestration systems [35].

3. Related Work

One of the goals of this work is to explore existing research on state
replication in the ICS context, with a focus on the mechanisms used for
transferring state data. Table 2 lists the identified publications.

Of these works, only a few address redundancy directly. Stattelmann
et al. evaluate di!erent checkpointing approaches to reduce data size but
do not discuss the protocols used for transferring state data [20]. Stój pro-
poses a state-machine-based hot-standby solution using a non-redundant con-
troller [36], and Zhao et al. describe a redundant architecture [37]. Hegazy
et al. present automation-as-a-service with redundancy [3], and Goldschmidt
et al. present a container-based architecture that briefly touches on redun-
dancy [6]. Since security is fundamental for ICS, Ma et al. discuss security
challenges in redundant controller architectures [38]. These works cover con-
troller redundancy to varying degrees, but none dive deep into state transfer
mechanisms.

Johansson et al. propose a distributed architecture to avoid overloading
a backup that serves multiple primaries with state data [39]. However, they
do not evaluate the performance of the underlying state transfer protocol.
Bakhshi et al. propose an architecture for persistent, fault-tolerant state
storage for stateful containers in the context of industrial robotics [40]. They
use distributed storage and Raft for consistency, but do not evaluate the per-
formance of the underlying state transfer protocol. Nouruzi et al. also focus
on mobile industrial robotics and propose an architecture with redundant
navigation modules, but do not detail the state replication mechanisms [41].

Another goal of this work is to study checkpointing and state replication
mechanisms used in containerized applications, focusing on the mechanisms
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used to transfer state data to learn if the found approaches suit our redun-
dancy use case. Table 4 summarizes the findings, i.e., related work concerning
checkpointing in a containerized context.

Koziolek et al. address state transfer in the ICS context between Kubernetes-
managed containers, aiming to allow software upgrades without interrupting
the control application [21]. The interruption-free upgrade is enabled by
transferring internal states from the old version to the container running
the new version. They utilize OPC UA Client/Server for state transfer,
achieving relatively good performance. However, the suitability of OPC UA
Client/Server as a state replication protocol for redundancy use cases is not
discussed.

Johansson et al. utilize Kubernetes to manage redundant, containerized
DCNs. When a failure occurs, Kubernetes automatically restores redun-
dancy and mitigates service degradation [5]. However, they do not detail
the mechanisms used for state transfer between the redundant controllers.
Leander et al. present a security analysis of a communication link used for
standby redundancy purposes [15].

None of the studies above propose concrete solutions for transferring
checkpointed state data. In contrast, our work explores the checkpointing
and redundancy literature to determine the suitability of existing protocols
for controller redundancy. We then identify a set of desired features for
state-transfer protocols in redundancy scenarios and evaluate a selection of
candidate protocols against these criteria. Finally, we experimentally assess
the most promising protocols and introduce our own solution, which fulfills
all desired features and is likewise evaluated through experimentation.

4. Checkpointing in the Literature

To gain an understanding of the checkpointing solutions described in the
literature and their applicability to our redundancy use case, we conducted
literature searches. The following subsections present the search results.

4.1. Checkpointing for Controller Redundancy
To find literature covering checkpointing in an industrial controller redun-

dancy context, we searched WebOfScience and Scopus for redundancy-related
work targeting checkpointing and state replication in an industrial controller
context using the query shown in Table 1. We followed references to widen the
search, and the relevant literature was added to the list in Table 2. Table 2
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summarizes the found literature and shows each publication’s main topic and
to what level it covers redundancy, checkpointing, and transfer mechanisms.
As seen in Table 2, most publications do not discuss checkpointing or the
transfer method. The ones that do are further summarized in Section 4.1.1
below.

Table 1: Controller redundancy checkpointing literature query.

("controller" OR "PLC") AND "redundan*" AND ("state" OR

"checkpoint*")

4.1.1. Summary of Identified Papers
Stattelmann et al. discuss a compiler-aided checkpointing mechanism,

where data that has changed since the last checkpoint is stored in a dedicated
bu!er for transfer to the backup [20]. The article states that state data is
transferred, but does not describe how. Ma et al. examine how redundant
controller constellations are vulnerable to cyber attacks [38]. They argue that
redundancy increases the attack surface, and the work discusses the transfer
of checkpoint data without providing details on the mechanisms used. Stój
proposes a cost-e!ective redundancy approach using a PLC pair but does
not address checkpointing or the transfer of state data [36].

Nouruzi-Pur et al. design a cloud-hosted redundant controller for mobile
robots, where the mobile robot is responsible for replicating the state between
redundant servers [41]. The internal workings and details of the state transfer
are not discussed. Johansson et al. address potential network congestion
that may occur when one controller serves as a backup for more than one
primary [39]. To mitigate congestion at the backup, the checkpointed state
data is transferred to a node other than the primary producing the state,
though not necessarily the backup itself. The state transfer protocol is UDP-
based, but its details are not described.

Zhao et al. present a redundant system with redundant networks and
devices but do not address checkpointing or state handling [37]. Luo et al.
present a hot standby solution with redundant PLCs (a quad PLC architec-
ture) but do not discuss checkpointing or state transfer [49].

Wahler et al. present a method for bumpless and fast application updates,
where a new application version is started on another node [50]. "Teacher"
objects in the runtime of the original application gather state data and send
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Table 2: Overview of publications related to checkpointing in industrial controller redun-
dancy context.

Ref. Topic Redundancy Checkpoint Transfer

Directly identified from literature search

[42] Safety ✁ ✁ ✁
[43] Deployment ✁ ✁ ✁
[20] Data reduction ✂ ✂ ✃
[38] Security ✂ ✃ ✃
[44] Simulation ✁ ✁ ✁
[36] Cost-e!. red. ✂ ✁ ✁
[45] Security ✁ ✁ ✁
[46] Time sync. ✁ ✁ ✁
[41] Cloud-hosted ctrl. ✂ ✃ ✃
[47] Deployment ✂ ✁ ✁
[39] State transfer ✂ ✃ ✃
[48] System red. ✂ ✁ ✁

Indirectly identified via reference tracking

[37] System red. ✂ ✁ ✁
[49] Security ✂ ✁ ✁
[50] App. upgrade ✁ ✂ ✃
[3] Cloud-hosted ctrl. ✂ ✂ ✂
[6] Architecture ✃ ✃ ✃
[5] Orch. red. ctrl ✂ ✃ ✃
[51] Cloud-hosted ctrl. ✂ ✃ ✃
[52] Migration ✁ ✂ ✂
[53] Architecture ✁ ✁ ✁
[54] Architecture ✁ ✁ ✁
[55] Recovery time ✂ ✁ ✁
[56] Live migration ✁ ✂ ✃
[14] State transfer ✂ ✃ ✂

Legend: ✂ Detailed, ✃ Mentioned (no technical details), ✁ Not mentioned
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it to "Learner" objects in the runtime of the node hosting the updated ap-
plication. A monitor compares the results of the two application versions.
However, the underlying mechanism for transferring changed state data is
not detailed.

Hegazy et al. host the controller application in the cloud and store state
information on the device to make it accessible to other controllers in the
redundant set [3]. TCP and Modbus TCP are used as communication pro-
tocols; however, the article does not evaluate these protocols for state trans-
fer purposes. Goldschmidt et al. present an architecture for containerized
controllers and identify redundancy-related use cases as important for the
architecture to support, but do not describe checkpointing or state transfer
in detail [6].

Johansson et al. investigate Kubernetes-based orchestration as a com-
plement or even a replacement to traditional warm standby redundancy [5].
They mention using a proprietary checkpointing mechanism but do not pro-
vide details of the protocol. Kaneko et al. present a redundancy solution
where controllers are hosted across multiple geographically distributed data
centers, across continents even [51]. Neither checkpointing nor transfer mech-
anisms are discussed.

Gundall et al. propose a live migration approach where state data is
continuously sent from the source node to the destination during migration.
Once the state data di!erence between the source and destination nodes is
small enough, the handover is initiated [52]. The details of the protocol used
to transfer the state are not presented.

Grüner et al. and Vogt et al. present architectures for flexible control
systems but do not discuss redundancy, checkpointing, or state transfer [53,
54]. Barletta et al. measure the recovery time of stateless applications in a
Kubernetes context [55]. Stateless applications do not require checkpointing
or state transfer, hence, these topics are not covered.

Govindaraj et al. aim to optimize downtime during live migration [56].
They use a request bu!er at the destination server to store and replay re-
quests while transferring checkpointed data. However, the details of the
transfer mechanism are not discussed.

Kampa et al. discuss and evaluate Remote Direct Memory Access (RDMA)
for transferring state data between two virtualized PLCs (vPLCs) in a redun-
dant deployment [14]. They use two types of vPLCs: a homebrewed mockup
and a CODESYS vPLC. The CODESYS vPLC originally employs both TCP
and UDP for state transfer; Kampa et al. replace this with RDMA [57, 14].
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The RDMA-based state transfer introduced by Kampa et al. demonstrates
significantly better performance compared to the original TCP/UDP-based
approach. The measured average time for transferring 1 MB of data using
TCP/UDP is 295 milliseconds over dual 25 Gbps links. In contrast, the the-
oretical minimum transfer time over a single 1 Gbps link is approximately
8 milliseconds. This notable gap is not addressed in the discussion, nor is
the limitation that CODESYS only supports synchronization of data from a
single task [57, 14].

As seen in Table 2, the number of works addressing checkpointing in the
context of industrial controllers for standby redundancy purposes is quite
limited. Fifteen of the listed publications, including those on cold standby,
discuss redundancy. Of these, only five describe checkpointing mechanisms,
and only Hegazy et al. [3] and Kampa et al. [14] discuss the means of state
transfer down to the transport protocol used.

4.2. Containers and Checkpointing
Inspired by the growing adoption of containers and orchestration in indus-

trial control systems and real-time systems in general, we search for check-
pointing mechanisms in the context of containers and orchestration [55, 5, 6,
56]. We search Scopus and Web of Science using the query in Table 3.

Table 3: Checkpointing in container and orchestration context literature query.

("checkpoint*" OR "replicat*" OR "restore") AND

("kubernetes" OR "k8s" OR "k3s" OR "orchestrat*" OR

"container*")

Since the search aims to determine whether recent technologies and so-
lutions in the container context can be used for or inspire checkpointing
mechanisms in an industrial controller redundancy use case, we limit the
search to publications from 2018 to 2024, the year of writing this section.

Table 4 presents the result of the search, gives an overview of the relevant
literature, and highlights the main topic of each publication, the method used
for checkpointing, the transfer mechanism, and whether the work targets a
real-time-dependent solution. The following section, Section 4.2.1, gives a
summary of the found publications.
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Table 4: Overview of container checkpointing publications.

Ref. Topic Method Transfer Real-time

[58] Migration CRIU ✃ ✁
[59] Migration CRIU ZFS ✁
[60] Fault tolerance Incremental ✁ ✁
[61] Recovery time Custom K8s service HTTP ✁
[62] Recovery time Custom K8s service HTTP ✁
[63] Migration CRIU FTP, SSH ✁
[64] Contention CRIU MOSIX (TCP) ✁
[65] Contention CRIU ✁ ✁
[66] Fault tolerance CRIU File share ✁
[67] Migration CRIU SCP ✁
[68] Migration CRIU SCP ✁
[69] Fault tolerance Custom Raft Robotics
[70] Fault tolerance Key-value store NFS ✁
[71] Fault tolerance Apache Kafka ✃ ✁
[72] Utilization CRIU ✃ ✁
[73] Storage DB, etcd ✃ ICS
[74] Migration CRIU ✃ ✁
[75] Migration CRIU rsync V2I
[76] Migration CRIU ✃ ✁
[77] Migration CRIU ✃ ✁
[78] Forensics CRIU No transfer ✁
[79] App. upgrade Custom OPC UA CS ICS
[80] Migration CRIU ✃ ✁
[81] Migration CRIU rsync ✁
[82] Contention CRIU No transfer ✁
[4] Fault tolerance CRIU FTP ✁
[83] Fault tolerance CRIU FTP ✁
[84] Fault tolerance CRIU DRBD ✁
[85] Fault tolerance Custom No transfer ✁
[86] Fault tolerance Custom ✃ ✁
[87] Fault tolerance CRIU ✃ ✁
[88] Fault tolerance CRIU ✃ ✁
[89] Fault tolerance Custom No transfer ✁
[90] Fault tolerance Custom Raft ✁
[91] Migration Custom (CRIU) ✃ ✁
[92] Migration CRIU NFS ✁
[93] Storage Custom ✃ ✁
[94] DB persistence CRIU No transfer ✁
[95] Migration CRIU NFS ✁
[96] Migration CRIU ✃ ✁
[97] Fault tolerance Custom ✃ ✁
[98] Migration CRIU ✃ ✁
[99] Migration CRIU SR-IOV NFS ✁
[100] Migration CRIU rsync ✁
[101] Migration CRIU ✃ ✁
[102] Fault tolerance CRIU ✃ ✁
[103] Migration CRIU ✃ ✁
[104] Migration File replication ✃ ✁
[105] Fault tolerance CRIU ✃ ✁

Legend: ✃ Mentioned (no technical details), ✁ Not mentioned
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4.2.1. Summary of Identified Papers
As seen in Table 4, CRIU is the dominant solution for checkpointing.

When it comes to transfer mechanisms, there is no dominant solution. We
group the found literature into the following categories: (i) CRIU with De-
fined Transfer Methods, (ii) CRIU without Transfer Details, (iii) Custom
Solution with Defined Transfer Details, (iv) Custom Solution without Trans-
fer Details, and (v) Consensus Protocol-based Solutions.

CRIU with Defined Transfer Methods: These works utilize CRIU
and describe the transfer mechanism. Starting with the work that uses a file
transfer protocol. Afshari et al. use CRIU to checkpoint application states
and compare the performance between File Transfer Protocol (FTP) and
Secure Shell (SSH) when transferring the checkpointed file to the destination
node [63]. FTP is quicker, and the transfer times are within the second
range for the smallest checkpointed data. FTP is also used by Droob et
al., who optimize the number of checkpoints to minimize the performance
impact of the checkpointed service while providing fault tolerance [83]. Pu
et al. migrate applications if they believe the Quality of Service (QoS) will
improve by doing so; they use Secure Copy Protocol (SCP), which utilizes
SSH [67].

Chebaane et al. use CRIU checkpointing and Remote Sync (rsync) to of-
fload critical tasks from the device to fog or edge, in a Vehicle-to-Infrastructure
(V2I) use case [75]. They use rsync to transfer the checkpointed file. Qiu
et al. use rsync on top of Multipath TCP (MPTCP) [81]. MPTCP is a
protocol that provides multihoming TCP transfer, that is, multiple paths
between communication endpoints [106]. Guitart et al. also move the CRIU
checkpoint file using rsync [100].

Widjajarto et al. measure the resource utilization when using CRIU for
migration [92]. The checkpointed data is copied with a file copy using Net-
work File System (NFS). Mangkhangcharoen et al. compare CRIU and Dis-
tributed MultiThreaded CheckPointing (DMTCP) for checkpointing machine
learning applications for migration purposes [95]. NFS is used to transfer the
checkpointed data. Prakash et al. use CRIU with single root-input/output
virtualization (SR-IOV) to reduce the CPU overhead induced by handling
virtual networks [99]. The checkpointed data are transferred using NFS.

Bhardwaj et al. utilize the distributed file Z File System (ZFS) to dis-
tribute the checkpointed data [59]. Zhou et al. optimize CRIU and use the
Distributed Replicated Block Device (DRBD) to replicate the checkpointed
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files [84, 102]. Adhipta et al. address shared resource contention when check-
pointing, since the checkpointing process requires processing and storage re-
sources [64]. The file is stored on the distributed file system MOSIX [107].

CRIU without Transfer Details: Below are the works that use CRIU
but don’t detail the checkpointed data transfer. Khan et al. use CRIU for
migration in a V2I use case but do not detail how the data is transferred [58].
Müller et al. propose a Kubernetes-based architecture for fault tolerance of
stateful applications [66]. Checkpointed data is stored on persistent storage,
but the storage details and the transfer of the data to the storage are not
detailed.

Ramanathan et al. improve CRIU to handle migration of network con-
nections better [74, 77]. The actual transfer mechanism of the checkpointed
state is not described. Ngo et al. propose a delta identifier to reduce the
data transferred, but the mechanism for the transfer is not presented [76].
Karhula et al. use checkpointing in a Function as a Server (FaaS) context
to save resource utilization by checkpointing and suspending the container-
ized application that provides the function while the application is waiting
for the next job [72]. Lee et al. use CRIU for checkpointing in memory
databases [94].

Stoyanov et al. compare di!erent checkpointing methods, and Li et al.
use CRIU in a Kubernetes context to checkpoint Virtualized Network Func-
tions (VNF) for migration [80, 96]. Bhardwaj et al. compare the check-
pointing performance between containers and virtual machines [98]. Di et
al. develop a tool for migrating containers using CRIU [101]. Oh et al. pro-
pose a CRIU-based application transparent migration [103]. Schmidt et al.
introduce a Kubernetes operator for transparent checkpointing using CRIU
in the Kubernetes context [105]. Gharaibeh et al. use checkpointing for
forensics purposes, that is, troubleshooting or investigating suspected attack
attempts [78].

Venâncio et al. use CIRU to checkpoint and go through di!erent VNF re-
dundancy deployments [87, 88]. Some VNF deployments discussed replicate
the checkpointed data to a central database, while others use a dedicated
state replicator to distribute state data to replicas.

None of these works detail the mechanisms used for transferring the check-
pointed data.

Custom Solution with Defined Transfer Details: The below works
are the works that define a custom checkpointing solution and also describe
the transfer mechanism used.
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Arif et al. describe a checkpointing solution for FaaS, using a key-value
storage hosted on an NFS [70].

Koziolek et al. introduce a Kubernetes operator for application up-
dates [79]. The updated states are sent from the old version of the application
to the new version using the OPC UA Client-Server (OPC UA CS) proto-
col. This work does not target redundancy, but the use case is similar; the
changed application states are transferred in the execution slack between two
invocations of the same task.

Vayghan et al. introduce a custom Kubernetes controller for quicker
failure recovery and a Kubernetes service for state replication between the
stateful applications over HTTP [61, 62].

Custom Solution without Transfer Details: The works listed below
present customized checkpointing solutions without describing the mecha-
nisms used to transfer state data.

Zhang et al. present a custom approach where they incrementally store
the dirty pages of a Docker container up to a certain threshold, where the
remaining dirty pages are checkpointed, to reduce the time the processes are
freezed [60]. Venkatesh et al. propose checkpointing to memory instead of
disk to boost performance and reduce I/O contention from disk accesses [82].
Yu et al. propose a CRIU optimization that checkpoints to memory instead of
disk. The checkpointed data is transferred, but without providing details [91].
Han et al. also address resource contention when storing checkpointed data
by utilizing properties provided by the storage, in their case, SSD disk [65].

Junior et al. replicate container file systems between di!erent data centers
but do not discuss the communication protocol used [104]. Stavrinides et al.
let each task checkpoint its data, but the data is not transferred [85]. Cai
et al. replicate to a double bu!er; one page of the bu!er is replicated, while
the other is updated by the application [86].

Choi et al. propose a checkpointing solution called iContainer, and Luati
et al. optimize storage of checkpointed data using a distributed storage [89,
93]. Behera et al. propose a predictive checkpointing solution for High-
Performance Computing (HPC) [97]. Jia et al. propose a custom mechanism
for checkpointing, where the states are replicated amongst peers [4]. However,
the transfer protocol is not detailed.

Denzler et al. compare di!erent architectures for persistent storage for
stateful, containerized applications but do not detail the underlying proto-
cols [73].

Consensus Protocol-based Solutions: Below is the literature that
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describes solutions that utilize consensus protocols to distribute the check-
pointed state.

Bakhshi et al. simulate fault-tolerant persistent storage and analyze the
performance of their proposed fault-tolerant persistent storage used for repli-
cated, stateful applications [108, 69]. A storage handling container is respon-
sible for replicating the data amongst all other nodes, using Raft [29]. Netto
et al. also use Raft in a Kubernetes context to replicate requests in an orderly
manner to the replicas, providing active redundancy [90].

Javed et al. use Apache Kafka to replicate the data produced amongst
di!erent processing nodes exemplified in a camera surveillance use case [71].

4.3. Conclusions from the Literature Search
The search for literature covering checkpointing solutions in the context

of industrial controller redundancy reveals that only one work focuses on the
details of state transfer—namely, Kampa et al. and their use of RDMA in
a vPLC setting [14]. They use CODESYS as the redundant PLC, which
is limited to state transfer from a single task [57]. Furthermore, reliability-
related aspects such as packet loss and recovery are not considered.

The literature search for checkpointing solutions in container and orches-
tration contexts reveals a significant amount of work, as shown in Table 4.
The majority of the work uses CRIU for checkpoints. A file transfer, in
one form or another, is the most common alternative for transferring the
checkpointed data.

The work by Koziolek et al., like ours, stems from the ICS context, and
the replication of state in application slack time is similar to the need of
our redundancy use case, as described in Section 2 [79]. They use OPC UA
Client/Server as the communication protocol to transfer the collected state
data, which is performant enough for the use case they address.

Conclusions:

• Detailed state transfer works targeting ICS redundancy are scarce, es-
pecially work considering protocol reliability aspects such as packet
retransmissions.

• Container-based work favors CRIU plus file transfer, with limited dis-
cussion of real-time properties.

• We found no comparative evaluation for transferring checkpointed state
in ICS redundancy (or generally).
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As mentioned, none of the found literature compares protocols for trans-
ferring the checkpointed data, neither in an ICS redundancy use case nor in
general. This finding motivates Step II, Section 5, where we define and de-
scribe features desirable for a state-transfer protocol, against which we match
relevant protocols, followed by the experimental evaluation of top protocol
candidates in Step III, Section 6.

5. Existing Protocols – Feature Matching

The results from the literature search in Section 4 show that there are few
available works related to protocols for exchanging state data, particularly in
the context of industrial controller redundancy. Motivated by that finding,
this section aims to identify suitable protocols for that purpose.

TCP and UDP are the two most widely used transport-layer protocols.
The common perception is that TCP is reliable but unsuitable for real-time
use; however, what does the existing literature say? In Section 5.1, we search
for literature comparing the performance of TCP and UDP to address that
question as a first substep.

As a second substep, we present three features that are highly desirable
for a protocol used for controller redundancy state transfer. We match these
features against a set of protocols to evaluate the protocol’s suitability for
the state transfer use case, which is the primary focus of this step, to identify
suitable protocols for the redundancy state transfer use case.

5.1. TCP and UDP Comparison
Similarly to how we retrieved the checkpointing-related literature in Sec-

tion 4, we turn to Scopus and Web of Science with the query in Table 5
to retrieve literature related to TCP and UDP performance in a real-time
context.

Table 5: TCP and UDP performance comparison literature query.

"tcp" AND "udp" AND ("real-time" OR "real time") AND

"performance" AND "evaluation"

Table 6 presents the remaining publications after filtering out those not
explicitly comparing UDP and TCP. The Topic column shows the focus
of each study (i.e., the targeted challenge), and the Packet Delivery Ratio
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(PDR) column indicates which protocol (UDP or TCP) was found to have
the highest PDR, defined as:

PDR = PacketsReceived÷ PacketsSent (1)

The throughput (Tput) column lists the protocol that achieved the high-
est measured throughput under the measurement conditions, and the latency
column indicates the protocol with the lowest measured latency. The Net-
work column specifies the type of network used (e.g., simulated, wired, or
wireless).

Table 6: TCP and UDP performance comparison.

Ref. Topic PDR Tput Latency Network

(highest) (highest) (lowest)

[109] Dist. RT systems - - UDP Wired
[110] Video streaming TCP TCP UDP Simulated
[111] Voice streaming TCP - UDP Wired
[112] Video streaming TCP UDP - Simulated
[113] Congestion ctrl. - - UDP Simulated
[114] Voice streaming TCP - UDP Simulated
[115] Vehicle comm. TCP - UDP Wireless
[116] Microgrid ctrl. TCP UDP UDP Simulated
[117] Long-dist. TCP TCP - Wired
[118] Session init. - UDP UDP Simulated

As seen in Table 6, three studies did not measure PDR [109, 113, 118], but
among those that did, TCP exhibited the highest PDR. TCP is considered
more reliable due to its congestion window (CWND) management, receiver
window (RWND) flow control, and retransmission of lost packets [119]. In
contrast, all studies that measured latency found that UDP o!ers lower la-
tency. Regarding throughput, three studies favor UDP [112, 116, 118], while
two favor TCP [110, 117].

The result suggests that the optimal choice for throughput depends on
the specific usage scenario. Using UDP without congestion or flow control
mechanisms may risk resource exhaustion, leading to increased packet loss
and reduced throughput. Overall, these results confirm that TCP provides
reliability, whereas UDP o!ers lower latency. A state replication protocol
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should be low-latency, reliable, and deliver high throughput. Additionally, it
must be secure, as discussed in Section 5.2.3. Hence, we further explore the
desired features of a protocol for transferring state data.

5.2. State-Transfer Protocol Features
The industrial controller redundancy use case presents challenges that we

translate into a set of desired protocol features aimed at addressing these
challenges. The following subsections elaborate on and justify these features,
emphasizing why these features are desirable for our redundancy state trans-
fer use case.

TSN and similar standards and technologies o!er low latency and network
resource reservation [2]. However, relying on specific technologies can limit
deployment and complicate life cycle management, especially in DCS instal-
lations, which may operate for over 40 years [120]. It is, therefore, desirable
that the protocol only depends on widespread technology and lower-layer
protocols that are part of most modern operating systems’ network stack. In
other words, the protocol should not depend on niche or fringe technology.
Protocols that do not meet this platform-agnostic prerequisite are excluded;
relevant protocols omitted for this or other reasons are described in Sec-
tion 5.7.

We divide the desirable features into three di!erent categories: (i) Re-
liability, (ii) Real-time, and (iii) Security, all of which are essential for a
protocol used for transferring state data from primary to backup for redun-
dancy purposes. In addition, we use a three-graded feature fulfillment scale,
(i) Absent, (ii) Partly, and (iii) Fully, when listing the protocol fulfillment
grade in Table 12. Where absent means that there is no support. Partly sig-
nifies that the feature is only met under restricted conditions, or via optional
profiles/adjacent layers, or similar. Phrased di!erently, partly indicates that
the feature can be provided by the protocol to some degree, but not entirely.
Fully means that the feature is fully supported.

Protocols are not static; they evolve (with varying degrees), hence, the
feature matching provided in this work might not hold true for future proto-
col versions. Therefore, the feature matching sections refer to the specifica-
tions used to determine the fulfillment grade. We do not consider di!erent
implementation variants or potential deviation/customization, only the spec-
ification.
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5.2.1. Reliability
The reliability-related features address the protocol’s robustness and fault

tolerance. The size of the state data produced by checkpointing varies with
the application, ranging from a few kilobytes to megabytes [7, 14]. When a
large state is segmented into multiple Ethernet frames, the loss of a single
frame should not result in a failed transfer, as that could lead to the backup
lacking the latest state. Therefore, the protocol should include a mechanism
for recovering lost segments, i.e., a retransmission mechanism providing re-
liable delivery of state data. We denote this desired reliability feature, Reli-
able Delivery (Rel_RD). An ordered delivery and a recovery mechanism are
needed to fully fulfill the Rel_RD feature.

Frame loss can result from disturbances or overfull queues and bu!ers on
the network or the receiver. Flow control mitigates frame loss due to overfull
receiver queues [121], regulating the data flow from sender to receiver so that
the receiver’s bu!ers are not exhausted. Congestion control mechanisms ad-
dress network overutilization. Network overutilization can lead to frame loss
when bottleneck links receive more tra"c than they can handle. Congestion
control aims to adjust the sending rate to avoid overloading bottleneck links.
Although many congestion control algorithm variants exist, they typically
share the common principle of reducing the send rate when congestion is
suspected [122]. Congestion control algorithms commonly suspect conges-
tion when acknowledgments are missing or arrive too late. Such dynamic
congestion control complicates throughput prediction and makes it harder to
accurately foresee the transfer time, as the send rate may vary. This issue is
discussed further in Section 6.

Given the above, a desirable feature for protocol robustness is a mech-
anism for managing the receive bu!er to reduce the risk of packet loss due
to exhausted receiver capacity. We denote this feature as Rel_RC. The pro-
tocol should also include a mechanism to prevent packet loss resulting from
overutilization of network capacity, denoted as Rel_NC. Table 7 provides an
overview of the reliability-related features.

We consider Rel_RC fully fulfilled if the protocol includes a mechanism
specifically designed to prevent receiver bu!er exhaustion. Similarly, we con-
sider Rel_NC fully fulfilled if the protocol has a mechanism specifically de-
signed to address network overutilization. Rel_RC and Rel_NC are partly
fulfilled if the protocol includes a feature that achieves a similar result, even
if it is not primarily designed to address these specific needs.
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Table 7: Desired reliability-related features.

Identity Description Motivation

Rel_RD Reliable Delivery Tolerance to transient faults
Rel_RC Receiver Capacity Avoid loss due to bu!er exhaustion
Rel_NC Network Capacity Avoid overutilization-induced data loss

5.2.2. Real-time
As described in Section 2.3, state data must be available at the backup

within a bounded time to ensure that it can assume the primary role without
outputting outdated data. Therefore, the worst-case transfer time, includ-
ing retransmissions, must be predictable, preferably low, and, as mentioned,
bounded. Hence, motivating the desired feature denoted RT_PT - pre-
dictable and bounded transfer time.

Given a bounded transfer time and a known application period, it be-
comes possible to define an expected reception interval. This enables the
receiver to detect when new data has not arrived within the anticipated
timeframe. Ideally, the protocol itself should handle this monitoring, thereby
relieving the application of this responsibility. This capability is represented
by the update expectancy feature, denoted RT_UE. Section 2.2 explains the
time span until state data invalidation.

Section 2 also explains that a controller may run applications with varying
execution periods and state sizes. For example, a controller might host both
a small application with a short cycle time and a larger one with a longer
cycle time. In such cases, the state transfer for the smaller application should
not be delayed by the state transfer induced by the larger one, as this could
result in the state not being transferred within the application period. To
address this, a prioritization mechanism is desirable, hence motivating the
desired feature RT_PR.

Table 8 provides an overview of the real-time related features described
above.

5.2.3. Security
State data may contain sensitive information, such as internal control

application variables. Undetected alteration of state data may cause a backup
device to obtain a false view of the state, which at failover can result in
unexpected, faulty behavior of the new primary, including incorrect setting
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Table 8: Desired real-time features.

Identity Description Motivation

RT_PT Predictable transfer time Bounded transfer time
given bandwidth usage

RT_UE Update time expectancy Backup receives state
data within period

RT_PR Prioritization Long-period transfers must not
block shorter ones

Table 9: Desired security features.

Identity Description Motivation

Sec_Int Data integrity State data cannot be altered
without detection

Sec_Auth Data authenticity Origin of the data can be verified
Sec_Conf Data confidentiality State Data cannot be read by

unintended receiver
Sec_Fresh Data freshness State data cannot be replayed at a

later time without detection

of I/O variables. When state data is being transferred over a shared network,
protection mechanisms for the protocol should be included.

In a previously conducted security analysis of a redundancy link for state
transfer [15], protocol-level mitigations, as described in Table 9 as desired
security features, should be supported to provide necessary protection against
malicious actors.

A protocol for state replication should have a possibility to support these
mitigating mechanisms. The required mechanisms and the strength of the
mechanisms may, however, vary based on application-specific requirements,
e.g., the expected security level of the IEC 62443 standard [123] to be fulfilled.

The most straightforward way to provide the protocol-level security fea-
tures would be to encapsulate the state transfer protocol within a security
protocol on a lower level, e.g., utilizing Transport Layer Security (TLS)
for stream-based protocols, or IPsec or Datagram Transport Layer Security
(DTLS) for packet-oriented protocols.
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Another approach is to use a standard protocol and apply security fea-
tures to the payload using various post-protocol-stack mechanisms on the
application layer.

IPsec can be used for providing security services on the internet layer,
implying that the protective mechanisms will only be from node to node, not
from application to application, i.e., it will only give assurance if the commu-
nicating nodes are trusted. IPsec provides services for integrity, authenticity,
and confidentiality, as well as replay protection.

IPsec is often used in tunneling mode, forming Virtual Private Networks
(VPNs) between networks separated by an insecure network. However, that
use case is not applicable for providing security services to a state transfer
protocol; instead, transport mode is the appropriate option. Usually, IPsec
protocol support is implemented at the OS level and therefore must be con-
figured at the node level. Consequently, applications relying on the security
services may have limited opportunities to enforce or verify that the measures
are actually in place.

IPsec in transport mode does not support broadcast or multicast, as it is
a point-to-point protocol.

TLS and DTLS are by far the most common security protocols used
for providing security services for internet-based communication, denoted
(D)TLS when both protocols are implied. Even though named Transport
Layer Security, (D)TLS is implemented in the application stack, making it
part of the presentation layer. (D)TLS provides security services for integrity,
confidentiality, and authenticity. TLS is a connection-based protocol that
uses a client-server approach and can be run with either single or mutual
authentication, which is typically certificate-based. If run in single mode,
the client can verify the authenticity of the server, but the server requires
additional mechanisms to authenticate the client.

For providing security mechanisms to a state transfer protocol, the sug-
gested approach would be to use mutually authenticated (D)TLS to assure
data authenticity. The OPC UA Client/Server is implemented in a manner
very similar to how mutually authenticated TLS works. It is worth noting
that (D)TLS cannot be added to an existing protocol without adaptation at
the application layer. Any protocol used for state transfer that wants the
benefits of (D)TLS would need to include some changes, which would have
implications on both deployment complexity and execution time.

Similarly to IPsec, (D)TLS cannot support broadcast or multicast tra"c.
Post protocol-stack security mechanisms is a method to add the
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Table 10: Security protocol feature fulfillment.

Protocol Sec_Int Sec_Auth Sec_Conf Sec_Fresh

IPsec Partly Partly Fully Fully
TLS single auth. Fully Partly Fully Fully
TLS mutual auth. Fully Fully Fully Fully
Post-protocol sec. ? ? ? ?
SRTP Fully Fully Fully Fully
DDS Sec. Spec. Fully Partly Fully Partly
UASC Fully Fully Fully Fully
OPC UA SKS Fully Partly Fully Fully

required security mechanisms only for the data, while transporting the data
using a standard non-secure protocol. This allows for high flexibility in the
security services provided, but may increase the complexity of the implemen-
tation. In particular, it is considered a bad practice to implement one’s own
security protocols, implying that well-known patterns and libraries should be
used if adopting this approach.

Secure OPC UA PubSub over UDP is one example of such a post-fix
security mechanism, which can provide some of the required security ser-
vices, e.g., confidentiality, while still supporting UDP multicast on the lower
protocol level.

In addition to the well-known security protocol above, some communica-
tion protocols and standards we evaluate have security profiles or standard
amendments. If so, it is described for each protocol and summarized, along
with the security protocol feature fulfillment, in Table 10.

5.3. Protocol Selection
The protocols selected are identified from the literature referenced in ear-

lier sections, i.e., in Section 4 and Section 5.1. In addition, we complemented
the list by turning to Google with the query shown in Table 11 below.

Table 11: Reliable real-time protocol - Google query.

reliable real-time data communication protocols

We divide the listed protocol into four categories, each with a subsection,
as follows. The categories are (i) Transport layer protocols, (ii) Application
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layer protocols, (iii) Non-standardized protocols, and (iv) Excluded proto-
cols. As the name implies, the transport layer protocol and application layer
protocols are protocols described in a standard that fall into either the trans-
port or application layer categories. Non-standardized protocols list protocols
described in scientific literature but not standardized. The excluded proto-
cols section lists and motivates the exclusion of the listed protocols from the
matching against the desirable features. We match the protocol security with
the security protocol from Section 5.2.3, which are matched against security
features in Table 9.

Table 12 provides an overview of each protocol’s real-time and reliability
features. The "Security Integration" column explains how security measures
are incorporated, while the "Security Protocol" column indicates the typical
protocols used. If a security protocol is listed under "Security Integration,"
it means that the use of that specific protocol is mandated.

5.4. Transport Layer Protocols
This section presents the desired feature fulfillment of the standardized

transport protocol alternatives.

5.4.1. Transmission Control Protocol - TCP
The Transmission Control Protocol (TCP) was first standardized in the

early 1980s [124]. It is a connection-based, reliable protocol that provides an
ordered byte stream to its users.

Reliability features: TCP fully fulfills Rel_RD since it provides or-
dered delivery and detects and retransmits lost data. The receiver advertises
the remaining space in its receive bu!er, thereby fulfilling Rel_RC. Addi-
tionally, a TCP node must implement congestion control mechanisms, such
as slow start and reduction of transmission rate upon loss detection [124],
which means TCP also fulfills Rel_NC.

Real-time features: Due to congestion window management and the
slow start mechanism, calculating the transfer time for a known data size de-
pends on the Round-Trip Time (RTT), as the congestion window increases
upon receiving acknowledgments. Packet loss further decreases the conges-
tion window. Consequently, the transfer time depends on the number of pack-
ets lost and when they are lost. Therefore, TCP only partly fulfills RT_PT,

1OPC UA CS (Client/Sever) utilizes OPC UA TCP.
2OPC UA PubSub utilizes OPC UA UDP.
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Table 12: Protocol feature fulfillment.

Protocol Rel_RD Rel_RC Rel_NC RT_PT RT_UE RT_PR Security integration Security protocol prescribed

Standardized transport layer protocols

TCP Fully Fully Fully Partly Absent Absent Post-protocol -
UDP Absent Absent Absent Fully Absent Absent Post-protocol -
NORM Fully Partly Fully Absent Absent Absent Post-protocol IpSec
RTP Absent Partly Partly Fully Partly Absent Post-protocol SRTP (own)
SCTP Fully Fully Fully Partly Absent Partly Post-protocol DTLS
QUIC Fully Fully Fully Partly Absent Partly TLS single auth. TLS single auth.

Standardized application layer protocols

DDS Fully Partly Partly Partly Fully Partly Post-protocol DDS Security Specification
OPC UA Fully Fully Fully Partly Partly Absent Post-protocol UASC
(CS)1

OPC UA Absent Absent Absent Fully Fully Fully Post-protocol OPC UA SKS
(PubSub)2

Non standardized protocols

RUDP Fully Fully Absent Fully Absent Absent Post-protocol IPsec
RBUDP Fully Absent Fully Fully Absent Absent Post-protocol -
PA-UDP Fully Fully Partly Fully Absent Absent Post-protocol -
UDT Fully Fully Fully Partly Absent Absent Post-protocol -
RUFC Fully Fully Fully Partly Absent Absent Post-protocol -
SABUL Fully Partly Partly Fully Absent Absent Post-protocol -
Tsunami Fully Partly Partly Fully Absent Absent Post-protocol -

Excluded protocols

AMQP See Section 5.7.1
COAP See Section 5.7.2
DCCP See Section 5.7.3
FASP See Section 5.7.4
MQTT See Section 5.7.5
RoCE See Section 5.7.6
Industrial PROFINET, EthernetIP, EtherCAT,
protocols and ModbusTCP. See Section 5.7.7
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as further detailed in Section 6. There is no concept of data expiration in
TCP, meaning RT_UE is absent. Additionally, TCP only carries a single
stream of data and thus lacks support for prioritization, making RT_PR ab-
sent. In fact, TCP can su!er from head-of-line blocking, where a lost segment
prevents delivery of already received data due to TCP’s requirement for in-
order delivery [125]. As a result, multiple application layer streams sharing
the same TCP connection may experience head-of-line blocking.

Security features: As mentioned, TCP is a connection-oriented byte-
stream transport layer protocol that does not provide security features; it
relies on post-protocol security. TCP is commonly used with TLS as the
post-protocol solution.

5.4.2. User Datagram Protocol - UDP
Like TCP, the User Datagram Protocol (UDP) was standardized in the

early 1980s [126]. UDP is a connectionless, packet-oriented protocol that
delivers individual packets, rather than a byte stream like TCP, to its users.

Reliability features: UDP does not provide retransmission capabilities
nor o!er mechanisms for managing receiver or network resources to prevent
bu!er exhaustion. Therefore, Rel_RD, Rel_RC, and Rel_NC are considered
absent for UDP.

Real-time features: UDP does not implement congestion control, such
as slow start or adaptive sending rates based on acknowledgments. The
protocol does not regulate the send rate in any way. Hence, no flow, con-
gestion algorithms, or other UDP-specific mechanisms impact transfer time
predictability, and thereby, RT_PT is fully fulfilled. UDP does not have
any expiration time feature or prioritization capabilities. Thus, RT_UE
and RT_PR are absent.

Security features: UDP is a connectionless transport layer protocol,
and like TCP, it does not provide security features; it relies on post-protocol
security. A UDP is packet-oriented, and DTLS is a suitable post-protocol
UDP solution.

5.4.3. NACK-Oriented Reliable Multicast - NORM
NACK-Oriented Reliable Multicast (NORM) is a connectionless, reliable

protocol for bulk data transfer to one or more receivers [127]. NORM sup-
ports three categories of data transfer: (i) memory, (ii) file, and (iii) streams.
NORM uses Forward Error Correction (FEC) to aid in failure recovery. With
FEC, NORM can avoid retransmissions by reconstructing lost data from the
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error correction information. In addition to FEC, NORM uses Negative AC-
Knowledgments (NACK) to request the retransmission of lost packets when
necessary.

Reliability features: As mentioned above, NORM combines FEC with
NACK-based retransmissions to recover from packet loss, thereby fully fulfill-
ing Rel_RD. Although NORM does not explicitly exchange receiver bu!er
capacity information, the sender can announce the size of the data being
sent, allowing the receiver to allocate appropriate bu!ers. Therefore, we
categorize Rel_RC as partly fulfilled. Like TCP, NORM uses a slow start
congestion avoidance mechanism, gradually increasing the transmission rate
until packet loss is detected. Since NORM is NACK-based, it uses an ex-
plicit message to retrieve round-trip times. The trip times are input to the
transmission rate reduction due to packet loss, and since NORM can handle
multiple receivers, it gathers the round-trip time from all. Hence, NORM
fully fulfills Rel_NC.

Real-time features: The congestion control mechanism makes transfer
time prediction more di"cult, especially since some retransmission timeouts
are randomized by design, hence, RT_PT is absent. Furthermore, NORM
does not have any expectation of timely data updates, nor does it have a
prioritization mechanism. Hence, both RT_UE and RT_PR are absent.

Security features: The protocol specification states that the NORM
is compatible with IPsec, at the same time, it recommends application-level
integrity [127]. Hence, it has to rely on post-protocol security but does not
explicitly mention any other protocol besides IPsec.

5.4.4. Real-Time Transport Protocol - RTP
The Real-Time Transport Protocol (RTP) is a connectionless, packet-

oriented protocol designed in 1996 for audio and video streaming [128]. Al-
though RTP typically utilizes UDP, it is not limited to UDP. RTP uses the
RTP Control Protocol (RTCP) for control [128]. RTCP is also connectionless
and usually operates over UDP. RTCP provides quality feedback, congestion,
and flow control for RTP.

Reliability features: RTP targets streaming audio and video, where mi-
nor data losses might not significantly impact the experience, and the value
of the data diminishes quickly over time. Consequently, RTP does not sup-
port ordered delivery or retransmission mechanisms; thus, Rel_RD is absent.
While RTP does not provide information about receiver-side bu!er capacity,
its companion protocol, RTCP, o!ers feedback on packet loss. Send rates
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can be adjusted based on the packet loss information to reduce loss due to
receiver-side bu!er overutilization. Hence, RTP partly fulfill Rel_RC. Simi-
larly, RTP lacks explicit congestion control mechanisms to prevent network
resource exhaustion. However, RTP applications can utilize RTCP’s packet
loss feedback to reduce send rates and mitigate congestion risks. As a result,
Rel_NC is also partly fulfilled.

Real-time features: RTP is designed to use UDP and does not enforce
rate control, leaving that responsibility to the application; hence, RTP fully
fulfills RT_PT. RTP utilizes timestamps, allowing an application to deter-
mine if the data is too old. However, RTP does not invalidate outdated
data; hence, RT_UE is partly fulfilled. RTP has no prioritization mecha-
nisms; hence RT_PR is absent.

Security features: RTP has a security profile named Secure Real-
time Transport Protocol (SRTP) defined in Internet Engineering Task Force
(IETF) Request For Comments (RFC) 3711 [129]. Adding SRTP to the
RTP is described as a "bump in the stack", i.e., as SRTP resides between
the application and the RTP transport layer, in other words, post-protocol
from the view of RTP. SRTP provides message authentication, a receiver can
verify that the sender is likely to originate from the claimed sender, hence
fulfilling Sec_Auth. RSTP also describes integrity handling, confidentiality
mechanisms, and replay detection prevention, fulfilling Sec_Int, Sec_Conf,
and Sec_Fresh.

5.4.5. Stream Control Transmission Protocol - SCTP
Stream Control Transmission Protocol (SCTP) is a connection and message-

oriented transport protocol from the early 2000s designed to address wishes
not fulfilled by TCP and/or UDP, such as reliable transfer without head-of-
line blocking by allowing more than one stream of data over a single connec-
tion [130]. SCTP o!ers reliable data transfer per stream and multi-homing; a
node can have multiple IP addresses that SCTP can utilize for fault tolerance
by using di!erent paths through the network.

SCTP runs directly on top of IP, as UDP and TCP, but it is not as widely
adopted as TCP and UDP. Linux and VxWorks support it, and third-party
drivers exist for Windows [131, 132, 133].

Reliability features: SCTP fully supports retransmissions of lost data
and provides ordered delivery; hence, SCTP fully fulfill Rel_RD. However,
ordered delivery is optional. Like TCP, SCTP fully fulfills Rel_RC, since
each connection (or associations as SCTP connections are called due to the
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multi-homing capabilities) has a receiver window representing the receiver’s
capacity. SCTP has one receiver window, even if the association is multi-
home; the smallest announced window sets the limit. SCTP also has a
congestion window that is dynamically adapted, as TCP does, to avoid net-
work resource exhaustion-induced congestion, hence fully fulfills Rel_NC.
There is one congestion window per home, i.e., network path.

Real-time features: SCTP congestion handling is basically that of
TCP but capable of handling multiple paths as needed with multi-homing
support. Due to that, we use the same arguments as for TCP regarding
transfer time predictability, namely that the dynamic congestion window
handling complicates the transmission time prediction; hence, SCTP only
partly fulfills RT_PT. SCTP does not o!er any expiration time on data;
therefore, RT_UE is absent. Although SCTP o!ers di!erent streams, these
streams lack prioritization attribute di!erentiation. However, an applica-
tion can prioritize the di!erent streams di!erently; hence, RT_PR is partly
fulfilled.

Security features: RFC 3436 describes TLS over SCTP [134], and later
RFC 6083 describes DTLS over SCTP [135]. TLS over SCTP has limitations
due to SCTP being packet-oriented. Hence, DTLS over SCTP security is a
later RFC to address those weaknesses. In other words, the security protocol
to use on top of SCTP is optional, hence post-protocol.

5.4.6. QUIC - QUIC
QUIC (not an acronym) is a connection-oriented protocol that uses UDP

for the actual data exchange, designed by Google to improve HTTPS per-
formance [136]. RFC 9000 describes the core parts of the protocol, and
IETF RFC 9002 defines the congestion control [137, 138]. QUIC reduces the
connection establishment latency, which can significantly reduce the overall
latency in use cases with many short-lived connections. QUIC also provides
multiple streams, relieving QUIC from the head-of-line blocking problem.

Reliability features: As mentioned, QUIC is a reliable protocol that
provides ordered delivery. Retransmission handles packet losses; hence, QUIC
fully fulfills Rel_RD. QUIC provides flow management by exchanging infor-
mation about the receiver side receive bu!er capacity. Hence, QUIC fully
fulfill Rel_RC. QUIC tries to prevent network resource congestion due to
overutilization with congestion control, similar to TCP; hence, QUIC fully
fulfill Rel_NC.

Real-time features: Using the same argument as for TCP concerning
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transfer time predictability, the slow start and dynamic congestion handle
make it harder to predict; even though the QUIC variant is quicker to recover,
we say that RT_PT is partly fulfilled. QUIC does not provide any expiration
time on data; hence, RT_UE is absent. QUIC does not prioritize the streams
and the transferred data; that is up to the application. However, since QUIC
supports di!erent streams, it provides the foundation for the application to
prioritize them; hence, QUIC partly fulfills RT_PR.

Security features: QUIC requires TLS. TLS is an integrated part of
the protocol, and it uses single authentication, where only the server is au-
thenticated.

5.5. Application Layer Protocols
This section presents the desired feature matching of standardized appli-

cation layer protocols.

5.5.1. Data Distribution Service - DDS
The Data Distribution Service (DDS) is a middleware that provides dis-

tributed applications with a data-centric publish-subscribe communication
model [139]. DDS utilizes a UDP-mappable abstract protocol called Real-
Time Publish-Subscribe (RTPS) [140]. DDS also has a specification in beta
state on how to map DDS onto TSN capable networks [141].

Reliability features: DDS has mechanisms to resend due to loss and
provides ordered delivery; hence, it fully fulfills Rel_RD. DDS does not pro-
vide an exchange of receiver bu!er capacity. However, it can run on top
of TCP, which does. Hence, DDS partly fulfills Rel_RC. The same rea-
soning applies to network resource utilization. Therefore, DDS can partly
fulfill Rel_NC.

Real-time features: DDS does not mandate the underlying trans-
port protocol; the transfer time predictability depends on the protocol used.
Hence, we say that DDS partly fulfill RT_PT. DDS provides a deadline prop-
erty for subscribed data, invalidating data if not updated within that period,
fully fulfilling RT_UE. DDS has a prioritization mechanism, but how well
they are adhered to depends on the used transport protocol; hence, DDS
partly fulfill RT_PR.

Security features: The DDS Security Specification defines a security
model for DDS [142]. DDS does not mandate the use of the security specifica-
tion; therefore, DDS supports post-protocol security integration. However,
the DDS Security Specification should be followed to stay compliant with
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the specification. The specification describes the handling of all the security-
related features. DDS, like OPC UA PubSub, recommends using symmetric
keys for real-time data exchange to improve performance. Hence, authenti-
cation is provided by controlling the key distribution.

5.5.2. OPC UA Client/Server - OPC UA TCP
OPC UA Client/Server (also denoted OPC UA CS for space conserva-

tion) is a part of the OPC UA standard [143]. OPC UA Client/Server
invokes remote procedures exposed by OPC UA servers [144]. OPC UA
Client/Server can utilize an abstract protocol, called the OPC UA Connect
Protocol (UACP), for platform- and technology-independent reasons. OPC
UA also describes the mapping of OPC UA CS to TCP (OPC UA TCP) and
HTTPS (OPC UA HTTPS) as underlying protocols. We assume OPC UA
TCP for the desired feature matching.

Reliability features: OPC UA TCP, as the name implies and as de-
scribed above, uses TCP; hence, the fulfillment of reliability features is the
same as for TCP. That is, full fulfillment of Rel_RD since TCP handles
retransmission, TCP also provides receiver bu!er management and thereby
OPC UA TCP fulfill Rel_RC. TCP also has a mechanism to avoid congestion
by over-utilizing the network; hence, OPC UA TCP fulfills Rel_NC.

Real-time features: Since OPC UA TCP uses TCP, the transfer time
predictability argumentation is the same as for TCP; the dynamic congestion
window handling makes predictability harder, especially if losses a!ect the
congestion window, hence OPC UA TCP partly fulfills RT_PT. OPC UA
provides timestamps. Hence, mechanisms exist to detect outdated data, but
it’s up to the client to utilize them. Hence, we classify feature RT_UE as
partly fulfilled. OPC UA Client/Server does provide prioritization mecha-
nisms for how a server should handle subscriptions, which is a step in the right
direction. However, TCP does not have any prioritization. As mentioned
earlier, TCP also su!ers from the head-of-the-line block. Hence, RT_PR is
absent.

Security features: OPC UA is designed to operate in a very hetero-
geneous industrial landscape. Hence, it provides a flexible use of security
mechanisms, where OPC UA nodes can choose to conform to suitable secu-
rity profiles [145, 144, 146]. Hence, the security integration is post-protocol;
however, the selection is limited to comply with the standard. This descrip-
tion assumes OPC UA TCP secured with OPC UA Secure Conversation
(UASC). UASC can fulfill all the desired security features, as shown in Ta-
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ble 10.

5.5.3. OPC UA PubSub - OPC UA UDP
OPC UA PubSub is an additional OPC UA communication model, and

as the name implies, it is a publish-subscribe communication model [147].
OPC UA PubSub supports two broker models, brokerless and broker-based.
The broker-based model uses Advanced Message Queuing Protocol (AMQP)
or Message Queue Telemetry Transport (MQTT). The broker-less alterna-
tive is one that targets real-time exchange, such as that between a device
and a controller. It utilizes network equipment for brokering, specifically
multicast groups on Ethernet and IP. The brokerless OPC UA PubSub can
run directly over Ethernet or UDP, and it supports connectionless and uni-
directional communication between publisher and subscriber. There is no
mandated communication-related feedback from subscribers to publishers.
The UA Datagram Protocol (UADP) specifies the brokerless OPC UA Pub-
Sub message format, including its headers and their meanings. We base
the feature discussion on OPC UA PubSub UADP, which is built on top of
UDP.

Reliability features: OPC UA UDP uses UDP and does not mandate
any additional resend mechanism; sequence numbers are optional. Sequence
number usage can provide ordered delivery; however, since there is no re-
send option and no alternative to it, Rel_RD is absent. Furthermore, OPC
UA UDP does not exchange receiver bu!er information; hence, Rel_RC is
absent. Rel_NC is also absent, as there are no additional measures for net-
work resource management and congestion avoidance. It is worth noting that
mappings between OPC UA PubSub and TSN have been described, which
could then reserve network resources and detect overutilization if used [148].

Real-time features: OPC UA UDP uses UDP with no throttling;
hence, the transfer time is predictable and fulfills RT_PT. Subscribers to
published data can error mark that data if not updated within the expected
interval, hence fully fulfilling RT_UE. OPC UA PubSub also provides pri-
oritization levels that are mappable onto underlying network prioritization
mechanisms such as di!erentiated service code point (DSCP) in the IP header
or the priority code point (PCP) in the Ethernet frame [148]. The standard
prescribes that the processing of outgoing data with higher priority should
precede that of lower priority, hence fully fulfilling RT_PR.

Security features: OPC UA PubSub does not enforce any security.
Hence, the security integration is post-protocol from the OPC UA UDP per-
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spective. However, the OPC UA prescribed mechanisms should again be
used to ensure compatibility. OPC UA PubSub uses Security Key Service
(SKS) to provide keys for signing and encrypting messages [147]. We denote
this OPC UA SKS. Keys are distributed based on roles. Hence, authentica-
tion is provided by controlling the key distribution. OPC UA SKS can also
fulfill the other desired security features, as shown in Table 10.

5.6. Non-standardized Protocols
This section presents the desired feature matching on non-standardized

protocols found in the literature.

5.6.1. Reliable UDP - RUDP
Reliable UDP (RUDP) is a reliable, connection-oriented protocol built on

top of UDP, as defined in a draft RFC [149]. RUDP provides reliable and
ordered delivery and flow control, but no congestion control.

Reliability features: RUDP fully fulfills Rel_RD, i.e., ordered delivery,
loss detection, and retransmission of lost packets. It exchanges information
about how many outstanding packets are allowed before an acknowledgment
must be received, serving as the flow control. RUDP does not have any
network over-utilization prevention. Hence, fulfilling Rel_RC, but Rel_NC is
absent.

Real-time features: RUDP has no congestion control and a fixed limit
for the number of outstanding packets allowed, serving as a flow control
mechanism. Hence, the predictability of transfer time only depends on
how many packets are lost, not when they are lost. Therefore, RUDP ful-
fills RT_PT. RUDP has no expectancy update time nor prioritization; hence,
both RT_UE and RT_PR are absent.

Security features: RUDP does not mandate any security protocol.
Hence, it is post-protocol. The specification mentions that it is IPsec com-
patible.

5.6.2. Reliable Blast UDP - RBUDP
Reliable Blast UDP (RBUDP) is, as the name implies, a reliable protocol

for transferring bulk data that uses UDP to avoid TCP congestion handling to
increase throughput [150]. RBUDP uses UDP to send data and is configured
with a specific send rate to prevent exceeding the bandwidth capacity of the
underlying network. It utilizes a secondary management channel over TCP
to communicate information about the transfer, including lost packages.
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Reliability features: RBUDP has a resend mechanism, and ordered
delivery is ensured with numbered packets, fully fulfilling Rel_RD. RBUDP
has no mechanism for synchronizing receiver-side bu!er capacity; there-
fore, Rel_RC is absent. RBUDP adjusts its sending to a specified send rate
that should be selected so that the underlying network is not over-utilized;
hence, RBUDP fully fulfills Rel_NC.

Real-time features: RBUDP uses the send rate to avoid overutilizing
the network; given the send rate (and the packet size), the transfer time is
predictable; hence RT_PT is fully fulfilled. RBUDP does not provide any
update expectancy mechanism or prioritization means; hence, both RT_UE
and RT_PR are absent.

Security features: RBUDP does not describe any security measures.
Hence, security integration must be post-protocol.

5.6.3. Performance Adaptive UDP - PA-UDP
Performance Adaptive UDP (PA-UDP) targets bulk data transfer, and

the authors argue that there is no need for congestion control on a dedicated
link; hence, PA-UDP uses UDP for the data transfer [151]. In addition, PA-
UDP also uses a TCP channel to communicate information feedback, such
as lost messages. PA-UDP includes a rate control dictated by the receiver,
as the protocol targets data transfer in use cases where disk access storing
the received data is the limiting factor.

Reliability features: PA-UDP provides ordered delivery and retrans-
mission of lost packets, i.e., fully fulfilling Rel_RD. PA-UDP does not explic-
itly exchange bu!er size information, but the sender can limit the send rate
if bu!er exhaustion is at risk; hence, fully fulfilling what Rel_RC is about.
Assuming the sender and receiver are aware of the capacity of the underlying
link, rate control can serve as a means to avoid overutilizing the receiver and
the network, even though it was primarily designed to prevent overutilizing
the receiver. Hence, PA-UDP partly fulfills Rel_NC.

Real-time features: PA-UDP uses UDP with a receiver-set rate con-
trol; hence, predicting transfer time is straightforward. Therefore, PA-UDP
fully fulfills RT_PT. PA-UDP does not provide any update monitoring or
prioritization mechanism. Hence, both RT_UE and RT_PR are absent.

Security features: PA-UDP does not describe any security measures.
Hence, security integration must be post-protocol.
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5.6.4. UDP-based Data Transfer Protocol - UDT
UDP-based Data Transfer (UDT) is a reliable and connection-oriented

protocol designed to more e!ectively utilize high-speed links by introduc-
ing an alternative congestion control mechanism compared to TCP [152].
Specifically, using TCP over high-speed links with long distances and long
round-trip times can reduce throughput. UDT addresses this problem, and
as the name implies, UDT utilizes UDP.

Reliability features: UDT fully fulfills Rel_RD ; it handles out-of-order
packets as well as resends lost packets. UDT exchanges receiver side capacity,
and the sender adjusts to that, fully fulfilling Rel_RC. UDT has a dynamic
congestion control to avoid congestion due to overutilization of the network;
hence, it fully fullfills Rel_NC. The UDT congestion control does not react to
just one lost packet, thereby avoiding a lossy link and reducing the congestion
window due to disturbance rather than congestion.

Real-time features: UDT has, as mentioned, a dynamic congestion
control. We use the same argument as for TCP when it comes to the ful-
fillment of RT_PT for UDT. The actual transfer time depends on when the
disturbance occurs, not just on the number of losses. Hence, UDT partly ful-
fill RT_PT. UDT does not provide any update monitoring or prioritization.
Hence, both RT_UE and RT_PR are absent in UDT.

Security features: UDT does not describe any security measures. Hence,
security integration must be post-protocol.

5.6.5. Reliable UDP with Flow Control - RUFC
Reliable UDP with Flow Control (RUFC) is a connection-oriented pro-

tocol designed to be a performant alternative that addresses the underuti-
lization that may result from congestion and flow control [153]. RUFC in-
troduces a layer between the application and UDP for evaluating di!erent
control algorithms.

Reliability features: RUFC fully handles retransmission and ordered
delivery, fully fulfilling Rel_RD. It also supports window management, hence
receiver bu!er capacity control, and fulfills Rel_RC. RUFC has tra"c shap-
ing support that can do flow control to adapt to the network capacity; there-
fore, RUFC fulfills Rel_NC.

Real-time features: Rate control is optional when using RUFC, and the
paper evaluates di!erent types, and neither is as performant as native UDP.
The predictability depends on the rate control used; hence, RUFC partly
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fullfills RT_PT. RUFC does not have any update monitoring mechanism or
prioritization. Hence, both RT_UE and RT_PR are absent.

Security features: RUFC does not describe any security measures.
Hence, security integration must be post-protocol.

5.6.6. Simple Available Bandwidth Utilization Library - SABUL
Simple Available Bandwidth Utilization Library (SABUL) is a reliable

and lightweight protocol with flow and rate control [154] SABUL, like RBUDP
and PA-UDP, uses UDP for data exchange and TCP for acknowledgment and
rate control; see Section 5.6.2 and Section 5.6.3. SABUL transmits a fixed
number of packages and then waits for reception information from the re-
ceiver over the TCP channel.

Reliability features: SABUL handles retransmission and ordering, and
the sender is informed about lost messages after transmitting a fixed amount
of packages. SABUL fully handles retransmission and ordered delivery and
thereby fullfills Rel_RD. Since SABUL transmits a fixed amount of packages,
this is a rather simplistic receiver bu!er management and network resource
management; hence, SABUL partly fulfills Rel_RC and Rel_NC.

Real-time features: Given the rather simplistic transmission control of
SABUL, where a predefined number of packages are transmitted before wait-
ing for acknowledgment, predicting the transfer time is straightforward. The
transmission time does not depend on when packages are lost, as for TCP; it
only depends on how many are lost. Hence, SABUL fully fulfills RT_PR. As
mentioned, SABUL is designed to be a lightweight protocol. Hence, it does
not support any data expiration properties or prioritization. In other words,
both RT_UE and RT_PR are absent.

Security features: SABUL does not describe any security measures.
Hence, security integration must be post-protocol.

5.6.7. Tsunami
Tsunami is an application protocol designed to achieve faster file transfer

than FTP over TCP by FTP over UDP [155]. Tsunami is an application-layer
protocol, and like SABUL and others (see Section 5.6.6), Tsunami uses UDP
for data transfer and TCP for control data. Tsunami examples of control
parameters include transfer rate and delay time between transferred data
blocks.

Reliability features: Tsunami provides recovery of lost data and or-
dered delivery; hence, Tsunami fully fulfills Rel_RD. Tsunami does not ex-
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plicitly exchange receiver bu!er sizes, but it exchanges desired transfer rate
and delay time, which can be set so that the receiver bu!er is not exhausted
and the underlying network is not overutilized. Hence, Tsunami partly ful-
fill Rel_RC and Rel_NC.

Real-time features: As mentioned, Tsunami uses a rate and a delay to
avoid congestion. Hence, the transfer time depends on the amount of data
to transfer and the number of lost packages, not when the packages are lost.
Hence, Tsunami fully fulfills RT_PR. Tsunami do not have any expiration
date mechanism nor prioritization. Hence, both RT_UE and RT_PR are
absent.

Security features: Tsunami does not describe any security measures.
Hence, security integration must be post-protocol.

5.7. Excluded Protocols
This section lists protocols excluded from feature matching because they

are deemed unsuitable for the use case, but are relevant enough to warrant
their exclusion.

5.7.1. Advanced Message Queuing Protocol - AMQP
Advanced Message Queuing Protocol (AMQP) is an application-layer pro-

tocol that supports broker-based publish/subscribe and targets enterprise
communication between heterogeneous systems [156].

AMQP is excluded since it is a broker-based protocol that targets hetero-
geneous exchanges through a broker, rather than the real-time point-to-point
transfer of larger data sizes.

5.7.2. Constrained Application Protocol - COAP
The Constrained Application Protocol (COAP) is an application-layer

protocol that exposes RESTful APIs in a resource-constrained manner, com-
pared to HTTPS, targeting resource-constrained devices [157].

COAP is excluded since it primarily targets lightweight communication
for more resource-constrained devices, such as reading samples from battery-
powered intelligent sensors, rather than real-time bulk data transfers.

5.7.3. Datagram Congestion Control Protocol - DCCP
As the name implies, Datagram Congestion Control Protocol (DCCP)

is a datagram-based transport layer protocol that supports congestion con-
trol [158]. The motivation behind DCCP is to spare applications using data-
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gram protocols the need for congestion control implementation, as congestion
control is highly recommended for Internet-bound tra"c [159, 160].

DCCP is excluded due to its limited spread and support in operating
systems’ network stacks.

5.7.4. Fast Adaptive and Secure Protocol - FASP
Fast Adaptive and Secure Protocol (FASP) is a proprietary protocol de-

veloped by Aspera, now part of IBM [161, 162], targeting high-speed data
transfer over long distances. FASP overcomes some TCP shortcomings, such
as lowered bandwidth utilization with increased Round-Trip Time (RTT).

FASP is excluded since it is an IBM proprietary protocol.

5.7.5. Message Queue Telemetry Transport - MQTT
Message Queue Telemetry Transport (MQTT) is a broker-based pub-

lish/subscribe protocol targeting resource-constrained devices and, as the
name implies, targets the exchange of telemetry data, and by that aspiring
to be a lightweight protocol [163].

MQTT is excluded since it’s a broker-based protocol that primarily tar-
gets the exchange of smaller data sizes rather than a real-time exchange of
larger data sizes, such as the application’s state.

5.7.6. Remote memory access over Converged Ethernet - RoCE
Remote direct memory access over Converged Ethernet (RoCE) is a tech-

nology used in data centers for high-speed data transfer, often aided with
hardware support [164, 165]. RoCE is Infiniband’s network and transport
layer encapsulated on top of Ethernet. From RoCE version 2, also UDP
over IP is supported, and there exist software versions that do not require
hardware support, which has been shown to be a performant alternative for
container communication [166].

RoCE and RDMA are excluded since they require OS Kernel and/or
hardware support.

5.7.7. Industrial Protocols
Industrial protocols are protocols developed for an industrial context.

PROFINET, EthernetIP, EtherCAT, and Modbus TCP are four of the most
widely used and well-known protocols[167, 168].

These protocols are designed for real-time exchange between a controller
and devices. Typically, that means reading sensory values from input devices

43



and providing output values to output devices, in other words, small data
sizes. The devices are commonly slave devices, and the controllers are the
masters. On top of that, the cyclic exchanged data are often confined to
fitting into an Ethernet frame [169, 170].

The industrial protocols PROFINET, EthernetIP, EtherCAT, and Mod-
bus TCP are excluded for the above reasons. Namely, they are not designed
to exchange large data sizes, but rather to be performant when it comes to
reading and updating smaller data sizes.

5.8. Conclusions from Feature Matching
From the desired protocol feature matching, summarized in Table 12, we

see that no silver bullet protocol exists, i.e., no protocol fully fulfills all our
desired features. SCTP, QUIC, DDS, and OPC UA TCP are the protocols
that provide the best matches.

DDS and QUIC are the least favorable for our industrial controller redun-
dancy use case compared to SCTP and OPC UA TCP. DDS is a middleware,
and OPC UA is the middleware used by industrial controllers; see Section 2.
Hence, DDS is less favorable since it would add another middleware. QUIC
is less favorable than SCTP since SCTP is available in VxWorks and Linux;
see Section 5.4.5.

As both OPC UA TCP and SCTP only partly fulfill RT_PT, Section 6
evaluates the transfer times and the predictability of those. OPC UA TCP
uses TCP. Hence, the evaluation utilizes TCP, further elaborated in Section 6.

Conclusions:

• No single protocol satisfies all features.

• Top candidates: SCTP and OPC UA Client/Server (OPC UA TCP).

• The real-time feature RT_PT is only partly met, motivating the work
in Part III (see Section 6).

6. Existing Protocols – Experimental Evaluation

As shown and motivated in Section 5.8, OPC UA TCP and SCTP are
the top candidates. OPC UA TCP runs on top of TCP, and as described in
Section 5.5.2, TCP provides the reliability features as well as being the reason
for the fulfillment grade of real-time feature RT_PT and RT_PR. Hence, to
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learn if protocols based on TCP, such as OPC UA TCP, are suitable for the
state transfer use case, we evaluate TCP instead of OPC UA TCP.

In addition to TCP, we evaluate SCTP, the second top candidate. The fol-
lowing subsections present the evaluation of TCP and SCTP as state transfer
protocol candidates, focusing on the real-time properties that are only partly
fulfilled, as indicated in Table 12.

As previously discussed, virtual controllers are gaining interest, presenting
both challenges and opportunities, with real-time performance being one
of the main challenges [30]. Therefore, systems requiring hard real-time
properties will likely run on a real-time operating system. Where applicable,
we use the configuration provided by VxWorks when describing the aspects of
TCP a!ecting transfer time in Section 6.1. In Section 6.2, we apply the same
approach for SCTP. The analysis of the protocols and their implementations
serves as the basis for the experimental evaluation described in Section 6.3.
This evaluation is followed by a discussion of the results and their implications
for our redundancy use case.

6.1. TCP in VxWorks
VxWorks version 24.03 and the RFCs supported by the VxWorks network

stack are the basis for the TCP description in this section [133]. The section
describes the TCP-related RFCs and their implementation in VxWorks.

RFC 793 specifies the protocol and is the RFC referenced in the VxWorks
documentation, even though it has been obsoleted by RFC 9293 [124, 171].
RFC 2018 introduces Selective ACKnowledgment (SACK), which allows a
receiver to inform a sender about segments it has received in the event of
losses [172]. SACK enables the sender to avoid retransmitting segments
received by the receiver.

RFC 5681 describes the four control algorithms a TCP implementation
should adopt with equal or greater conservatism [173]. These algorithms
are (i) Slow Start, (ii) Congestion Avoidance, (iii) Fast Retransmit, and (iv)
Fast Recovery. The slow start algorithm regulates the number of bytes in
flight, i.e., unacknowledged bytes. Two connection-specific variables control
this: the congestion window (cwnd) and the receiver window (rwnd). The
number of unacknowledged bytes must never exceed the smaller of cwnd and
rwnd.

The allowed growth of cwnd depends on whether cwnd is below or above
a connection-specific variable called the slow start threshold (ssthresh). The
slow start algorithm dictates the growth of cwnd when cwnd is lower than
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ssthresh. VxWorks assigns cwnd an initial value equal to two times the
maximum segment size (mss), where mss is 1420 bytes. The initial value
of ssthresh is arbitrary; VxWorks sets it to 65,535. Consequently, the slow
start algorithm is active when a TCP connection is established in VxWorks,
and the implementation increments cwnd by mss for each acknowledgment
of newly received data. Algorithm 1 summarizes the description above.

In VxWorks, the rwnd size is set to the receiver bu!er size (i.e., the
bu!er size of the receiving socket), which is by default set to 60,000. Con-
gestion avoidance becomes active when cwnd exceeds ssthresh. RFC 5681
describes various methods for increasing cwnd during congestion avoidance;
in VxWorks, cwnd is incremented for each acknowledgment of newly received
data. Thus, receiving acknowledgments is crucial when cwnd is small, as it
permits more data to be in flight.

TCP supports delayed acknowledgments to reduce the overall number of
acknowledgments. The rules for delay are as follows: an acknowledgment
should not be delayed for more than 500 milliseconds and should be sent for
at least every second full-sized segment [173]. In VxWorks, the default delay
time is 200 milliseconds, and the system also allows configuration so that an
acknowledgment is sent immediately if a segment with the push (PSH) flag
is received. The PSH flag indicates that the data should be delivered to the
application as soon as possible.

Fast recovery and fast retransmission are often described as two separate
algorithms; however, they are two parts of a cooperative process aimed at
reducing the time to retransmission in the event of lost segments. If the algo-
rithms mentioned above do not detect the loss, RFC 6298 specifies that the
minimum retransmission timeout should be one second [174]. In VxWorks,
the minimum retransmission timeout is configurable. The basic principle is
that when a receiver gets an out-of-order segment, it should immediately
send an acknowledgment for the last in-order segment received rather than
delaying the acknowledgment. A sender that receives three duplicate ac-
knowledgments assumes that the likely cause is a segment loss and issues a
retransmit. When a segment loss is detected, either by a retransmission timer
timeout or by receiving the third duplicate acknowledgment, the ssthresh is
updated as shown in Equation 2.

ssthresh = max(
bytesInF light

2
,mss↔ 2) (2)

The cwnd is updated upon segment loss detection, and the new value depends
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on whether the loss was detected by duplicate acknowledgments (using fast
retransmission and fast recovery) or by the expiration of the retransmission
timer. The expiry of the retransmission timer sets cwnd to mss, while detect-
ing lost segments via duplicate acknowledgments sets cwnd to the updated
ssthresh plus three times mss, reflecting the duplicate acknowledgment limit
of three. RFC 5681 describes the details; where alternatives exist, this section
describes the VxWorks variant [173]. Algorithm 1 summarizes the behavior.

RFC 6298 describes how TCP should derive the retransmission timer
and timeout from round-trip time measurements [174]. However, if the re-
transmission timeout is lower than one second, RFC 6298 describes that
the retransmission timeout should be rounded up to one second. In Vx-
Works, this minimum retransmission timeout is, by default, one second and
configurable. The "round up to one-second" requirement has significance
"SHOULD", which means that under some circumstances a deviation might
be acceptable; however, the full implications of such deviation must be un-
derstood [175]. RFC 6298 also dictates that the retransmission timer should
be doubled for every retransmission due to a timeout, and VxWorks follows
this rule.

6.2. SCTP in VxWorks
The VxWorks 24.03 SCTP implementation follows the second latest SCTP

RFC, RFC 4960 [176, 133]. This section focuses on the aspects of the Vx-
Works implementation of RFC 4960 that a!ect transfer time. VxWorks
also supports RFC 3873, which describes the management and information
base of SCTP, as well as the draft RFC 6458 related to the SCTP socket
API [177, 178].

SCTP, in contrast to TCP, is packet-oriented and supports multiple streams.
Each packet can contain multiple chunks belonging to di!erent streams. Like
TCP, SCTP announces the receiver window in acknowledgments in a field
called Advertised Receiver Window Credit (a_rwnd). VxWorks set a_rwnd
to the socket receive bu!er size, which is, by default, 60,000 bytes.

Like TCP, SCTP can delay acknowledgments. An acknowledgment is
sent for at least every other packet received and should not be delayed more
than 200 milliseconds. These are also the default values for VxWorks. The
delay time is changeable through a socket option. Like TCP, SCTP requires
the receiver to send an acknowledgment immediately if duplicate packets are
received. If a packet contains only duplicate chunks, the receiver must send
an acknowledgment immediately. If a packet is received where some chunks
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Algorithm 1 TCP congestion control in VxWorks.
ω Intial variable values.

1: mss ↗ 1420
2: rwnd ↗ 60000 ω Peer anounced rwnd (60000 bytes)
3: cwnd ↗ 2 ↘mss
4: ssthresh ↗ 65535

ω For every received acknowledgement of new data.
5: if cwnd <= ssthresh then ω Slow start.
6: cwnd ↗ cwnd+mss
7: else ω Congestion avoidance.
8: cwnd ↗ cwnd+ ((mss2)/cwnd)
9: end if

ω Packet loss congestion window handling.
10: if SegmentLost then ω Segment loss detected.
11: ssthresh ↗ max((bytesInF light)/2,mss ↘ 2)
12: if LossDetectedByAcknowledgement then

13: cwnd ↗ ssthresh+ 3 ↘mss
14: else ω Retransmission timeout.
15: cwnd ↗ mss
16: end if

17: end if
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are duplicates and some are not, the receiver may send an acknowledgment
immediately, as VxWorks does. Whenever an acknowledgment is received,
the sender updates the rwnd to reflect any change in a_rwnd and the number
of bytes acknowledged. In other words, rwnd equals a_rwnd minus the
number of bytes still unacknowledged.

SCTP uses a transmission timer called T3-rtx, the SCTP equivalent of
the TCP retransmission timer. The T3-rtx value is calculated based on the
round-trip time, as it is for TCP. Before an initial value has been calculated,
T3-rtx is set to RTO.Initial according to RFC 4960 [176]. If the calculated
T3-rtx is less than RTO.Min, it should be rounded up to RTO.Min. RFC
4960 recommends setting RTO.Initial to three seconds and RTO.Min to
one second. These are also the default values in VxWorks.

Since SCTP is packet-oriented, a message might require fragmentation.
RFC 4960 states that a sender may support fragmentation, while a receiver
must [176]. VxWorks supports sender-side fragmentation, and a message
must be fragmented so that smaller chunks fit in an SCTP packet over IP on
Ethernet. The largest size packet allowed before fragmentation is needed is
determined by the Maximum Transmission Unit (MTU) for the path, which
we denote mtu.

SCTP congestion control, as mentioned, is based on TCP congestion con-
trol, i.e., RFC 5681 [176, 173]. SCTP includes the TCP optional SACK
mechanism with gap acknowledgment blocks. Gap-acknowledged chunks are
included in the in-flight data size until they are included in the total cumula-
tive acknowledgment. Another di!erence is that SCTP supports multihom-
ing; hence, in addition to the receiver-side window rwnd, SCTP maintains
the congestion control–related variables cwnd and ssthresh for each destina-
tion address.

The initial value of cwnd should be no larger than four times the mtu,
and the initial value of ssthresh is arbitrary according to RFC 4960 [176].
For VxWorks, ssthresh is set to the peer’s receiver window, which is 60,000
bytes, assuming the peer is also a VxWorks node.

The slow-start phase is active when cwnd is less than or equal to ssthresh,
and during slow start, the sender increases cwnd by the smaller of the number
of bytes in-flight that is acknowledged by the received acknowledgment or the
mtu. The cwnd shall only be increased if the current cwnd is fully utilized
and if the received acknowledgment increases the cumulative acknowledged
sequence number. In other words, acknowledgments of received chunks that
are out of order do not increase cwnd. The VxWorks implementation does
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not verify that the cwnd is fully utilized before increasing it.
The congestion avoidance algorithm is active when cwnd is larger than

ssthresh. A key di!erence compared to TCP is the use of an additional con-
gestion control variable named partial_bytes_acked, which is used by the
congestion avoidance algorithm. For each acknowledgment that increases the
cumulative acknowledgment, partial_bytes_acked is increased by the total
number of bytes in all the chunks acknowledged by the received acknowledg-
ment. When partial_bytes_acked is equal to or greater than cwnd, cwnd is
increased by mtu and partial_bytes_acked is reduced by mtu.

When a packet loss is detected, ssthresh is set according to Equation 3.

ssthresh = max(
cwnd

2
,mtu↔ 4) (3)

Depending on how the loss is detected, cwnd is updated slightly di!er-
ently. If the loss is detected by acknowledgment information, cwnd is set to
ssthresh, and in case of expiration of T3-rtx, it is set to mtu. The above
is how VxWorks handles the slow start and congestion avoidance to comply
with RFC 4960, summarized in Algorithm 2 [176].

Similar to TCP, SCTP quickly acknowledges lost data. When a receiver
detects lost data, it directly sends an acknowledgment to the sender, making
the sender aware of the loss. Correspondingly, when an acknowledgment
indicates loss, the sender waits for three acknowledgments that indicate loss
before retransmitting the lost data.

6.3. Evaluation Setup: TCP/SCTP State Transfer
To test TCP and SCTP performance in the state transfer use case, we

developed an evaluation application that transfers a configurable amount of
state data and waits for the receiver to acknowledge its reception. Algo-
rithm 3 summarizes the evaluation application. The Sender function runs
on the sending node (representing the primary), while the Receiver function
runs on the receiving node (representing the backup); see Figure 6.

We measure transfer time for various data sizes using either a Single Con-
nection (SC) for all transfers or a new connection for each transfer, i.e., Mul-
tiple Connections (MC). The connection strategy a!ects the transfer times
since cwnd grows with each successful transfer.

Additionally, we measure transfer time under di!erent loss conditions.
Note that TCP and SCTP use di!erent terminology: TCP refers to segments,
while SCTP refers to packets. In the following, we use the term “packet” for
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Algorithm 2 VxWorks SCTP congestion control.
ω Intial variable values

1: mtu ↗ 1500
2: rwnd ↗ a_rwnd ω Peer anounced rwnd (60000 bytes)
3: cwnd ↗ min(4 ↘mtu,max(2 ↘mtu, 4380))
4: ssthresh ↗ rwnd

ω pb_acked is short for partial_bytes_acked
5: pb_acked ↗ 0

ω For every received acknowledgement.
6: if cwnd <= ssthresh then ω Slow start.
7: if AckAdvancesCumulativeSeq then

8: cwnd ↗ cwnd+min(ackBytes,mtu)
9: end if

10: else ω Congestion avoidance.
11: if AckAdvancesCumulativeSeq then

12: pb_acked ↗ pb_acked+ ackBytes
13: if pb_acked >= cwnd then

14: cwnd ↗ cwnd+mtu
15: pb_acked ↗ pb_acked≃mtu
16: end if

17: end if

18: end if

ω Packet loss congestion window handling.
19: if PacketLost then ω Packet loss detected.
20: ssthresh ↗ max((cwnd)/2,mtu ↘ 4)
21: if LossDetectedByAcknowledgement then

22: cwnd ↗ ssthresh
23: else ω Retransmission (T3-rtx) timeout.
24: cwnd ↗ mtu
25: end if

26: end if
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Algorithm 3 State transfer benchmark application.
1: function Sender
2: sndIterations ↗ 0
3: while sndIterations < IterationsToRun do

4: if connEachIt OR isF irstIt then

5: socket ↗ConnectToReceiver( )
6: end if

7: startT ime ↗ GetTime( )
8: SendAllData(socket)
9: WaitForAck(socket)

10: elapsedT ime ↗ GetTime( )≃startT ime
11: sndIterations ↗ sndIterations+ 1
12: end while

13: end function

14: function Receiver
15: rcvIterations ↗ 0
16: while rcvIterations < IterationsToRun do

17: if connEachIt OR isF irstIt then

18: socket ↗AcceptConnectionFromSender( )
19: end if

20: RecieveAllData(socket)
21: SendAck(socket)
22: rcvIterations ↗ rcvIterations+ 1
23: end while

24: end function
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both, with the understanding that when referring to TCP, a packet means
a segment. We consider three loss scenarios: (i) loss of the first packet, (ii)
loss of the last packet, and (iii) loss of middle packets. The rationale behind
selecting these cases is explained below.

As described in Section 6.1 and Section 6.2, transfer times are likely
higher when losses are not detected by fast retransmission. For example, if
the first packet after establishing a connection is lost and no acknowledgment
is received for that packet, the sender is forced to rely on a retransmission
timeout. Similarly, if the last packet in a state transfer is lost, the sender
must again rely on a retransmission timeout. Therefore, losses of the first
and last packets represent two distinct cases. The third case involves the loss
of a middle packet, where data is in flight, and fast retransmission and fast
recovery mechanisms typically detect and handle the loss. We also simulate
an increasing number of lost packets to demonstrate that the retransmission
timeout will be triggered if too many packets are lost. Additionally, each
time a packet is resent due to a retransmission timeout, the timeout doubles
for both SCTP and TCP.

The loss of the first or last frame also serves as a test of edge cases, since
there is only one first and one last frame per transfer, whereas there are many
middle frames. Loss of several consecutive middle frames simulates a burst-
loss. Additional losses may occur due to queue overflow on an overutilized
path; however, we consider these as configuration faults that are outside the
scope of this work.

Table 13 provides an overview of the evaluation cases. The Size column
lists the data sizes used, and the Connection column indicates whether SC,
MC, or both are evaluated. The First Drop and Last Drop columns indi-
cate whether the test was run with the loss of the first and last packets,
respectively; “Both” means tests were conducted both with and without such
losses. The Middle Drop column specifies if middle packets, which are nei-
ther last nor first, were dropped and how many. Note that first, last, and
middle drops are not combined in a single test iteration. Middle packet loss
is simulated only for data sizes of 10 KB and above, as the packet size is
approximately 1 KB for both SCTP and TCP; hence, larger sizes are needed
for middle packets to exist. We run each test for 100 iterations, recording
the minimum, maximum, and average transfer times.

As mentioned, VxWorks allows customization of SCTP and TCP-related
parameters. Therefore, we evaluate using two configurations per protocol:
default parameters and optimized for loss recovery performance, as shown
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Table 13: TCP and SCTP state transfer evaluation cases.

Size Connection First Drop Last Drop Middle Drop

128B Both Both Both No
256B Both Both Both No
512B Both Both Both No
1KB Both Both Both No
2KB Both Both Both No
5KB Both Both Both No
10KB Both Both Both 0,1,5,10
25KB Both Both Both 0,1,5,10
50KB Both Both Both 0,1,5,10
100KB Both Both Both 0,1,5,10
250KB Both Both Both 0,1,5,10
500KB Both Both Both 0,1,5,10
1MB Both Both Both 0,1,5,10

in Table 14. The minimum retransmission timeout in Table 14 corresponds
to the minimum retransmission timeout according to RFC 6298 [174], which
should be one second for TCP and similarly one second for SCTP by de-
fault [176]. The optimized version reduces the minimum timeout to one
millisecond. The maximum delayed acknowledgment time defines how long
a receiver is allowed to delay an acknowledgment. By default, this delay is
200 milliseconds for both SCTP and TCP; in the optimized configuration,
we reduce it to one millisecond. The third parameter we adjust is the limit
at which an acknowledgment is forced. By default, this limit is two packets
for TCP and SCTP; in the optimized setting, we reduce it to one to ensure
that acknowledgments are never delayed.

These optimizations may introduce system-level side e!ects, e.g., higher
CPU utilization due to shorter timeouts. Assessing whether such e!ects
occur and their consequences is left to future work, as is evaluating the gen-
eralizability of these settings across implementations and operating systems.

Figure 6 illustrates the evaluation setup, where the simulated redundant
controller pair connects over a switched 1 Gbps Ethernet with one switch
between. DCN 1 represents the primary and runs the sender part of the
application, and DCN 2 is the receiver as described in Algorithm 3. The OS
on the DCN is VxWorks 24.03, and each DCN is a mini-PC with 2 GHz Intel
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Table 14: VxWorks TCP and SCTP configurations.

Parameter Default setting Optimized setting

Min. retransmission tmo. One second One millisecond
Max delayed ack. 200 milliseconds One millisecond
Force immediate ack. Two packets One packets

DCN2
(B)

DCN1
(P) Switch

Sender Receiver
1Gbs

Figure 6: The evaluation setup used.
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Figure 7: TCP - no losses, maximum transfer time, with default (D) or optimized (O)
settings and either Single Connection (SC) or Multiple Connections (MC).

6.4. Performance Results: TCP/SCTP State Transfer
Tables 15 and 16 detail the measured transfer times for the evaluation

scenarios summarized in Table 13. The theoretical limit for 1 Gbps Ethernet
is 125 MB/second, or 8 milliseconds to transfer 1 MB. As shown in Figure 7
and Table 15, the default TCP transfer with a single connection approaches
this theoretical maximum throughput, transferring 1 MB in less than 10 mil-
liseconds, overhead excluded. However, the optimized version’s throughput
is lower, as depicted in Figure 7. Nevertheless, when packet losses occur, the
optimized version significantly outperforms the default settings, as presented
in Figure 9 and detailed in Table 15.

55



26 28 210 212 214 216 218 220
0

10

20

Data Size

T
ra
n
sf
er

T
im

e
(m

s)

TCP-D-SC

TCP-D-MC

TCP-O-SC

TCP-O-MC

26 28 210 212 214 216 218 220

0

200

400

Data Size

T
ra
n
sf
er

T
im

e
(m

s)

SCTP-D-SC

SCTP-D-MC

SCTP-O-SC

SCTP-O-MC

26 28 210 212 214 216 218 220
0

500

1,000

Data Size

T
ra
n
sf
er

T
im

e
(m

s)

TCP-D-SC

TCP-D-MC

TCP-O-SC

TCP-O-MC

26 28 210 212 214 216 218 220

0

1,000

2,000

Data Size

T
ra
n
sf
er

T
im

e
(m

s)

SCTP-D-SC

SCTP-D-MC

SCTP-O-SC

SCTP-O-MC

1

Figure 8: SCTP - no losses, maximum transfer time, with default (D) or optimized (O)
settings and either Single Connection (SC) or Multiple Connections (MC).
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Figure 9: TCP - loss of first segment, maximum transfer time, with default (D) or opti-
mized (O) settings using either Single Connection (SC) or Multiple Connections (MC).

For SCTP, as shown in Figure 8 and detailed in Table 16, the optimized
version o!ers better performance even in scenarios without packet losses.
Generally, SCTP performance is not as good as TCP. However, both the
optimized SCTP and the optimized TCP exhibit recovery times exceeding
one second; TCP only does so when losing ten packets for 10 kB of data. In
other words, it is a relatively extreme loss situation. One potential reason for
the lower SCTP performance is the hardcoded SCTP progression tick time
of 200 milliseconds.

For TCP and SCTP, the longest recovery time occurs in scenarios with
a single connection where ten consecutive packets are lost. This result is
due to the cumulative reduction in the congestion window (cwnd) caused
by repeated packet losses on the same connection and the increased retrans-
mission timeout when resends are triggered by timeout. The results confirm
that losing the first or last packets presents significant problems for TCP
and SCTP. Although optimization substantially improves results for both
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Figure 10: SCTP - loss of first segment, maximum transfer time, with default (D) or
optimized (O) settings using either Single Connection (SC) or Multiple Connections (MC).

protocols, SCTP still shows a maximum transfer time of around 200 mil-
liseconds when the first or last packet is lost, compared to approximately 20
milliseconds for TCP.

Additionally, the optimized TCP version shows transfer times exceeding
600 milliseconds during scenarios with multiple packet losses, as consecutive
losses reduce the cwnd and increase the retransmission timeout.

6.5. Conclusions from Experimental Evaluation
With default settings, internal TCP and SCTP recovery mechanisms can

extend transfer times by several seconds in the presence of packet losses.
However, the recovery times are reducible by applying the optimizations
described in Table 14. The optimized TCP version’s results indicate that
it typically requires several consecutive packet losses to a!ect transfer time
significantly.

The likelihood of consecutive packet losses might be acceptably low, es-
pecially when redundant networks are employed for state data exchanges.
However, TCP does not o!er prioritization, and if a single TCP connection
is used for all state transfers, one application’s data transfer might block
another, especially under loss [125]. Additionally, TCP optimizations in Vx-
Works are implemented at the kernel configuration level, influencing all TCP
connections. Preferably, it would be handled as for SCTP on the socket
level, only impacting the connection for which the optimization is needed.
As mentioned earlier, deviations from the standard one-second minimum
timeout should be thoroughly understood, which is easier if only applied to
certain connections [175].
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Table 15: TCP transfer times (ms) with minimum, average, and maximum values under
packet loss scenarios.

Size
No Loss First pkt. lost Last pkt. lost 1 mid pkt. lost 5 mid pkts. lost 10 mid pkts. lost

Min Avg Max Min Avg Max Min Avg Max Min Avg Max Min Avg Max Min Avg Max

Default settings - Single connection

128 B 0.1 0.1 0.2 888.9 998.9 1E3 899.8 999.0 1E3 – – – – – – – – –
256 B 0.1 0.1 0.2 892.9 998.9 1E3 899.8 999.0 1E3 – – – – – – – – –
512 B 0.1 0.1 0.2 880.9 998.8 1E3 833.8 998.3 1E3 – – – – – – – – –
1 KB 0.1 0.1 0.2 888.9 998.9 1E3 825.8 998.2 1E3 – – – – – – – – –
2 KB 0.1 0.1 0.2 998.9 1E3 1E3 949.8 999.5 1E3 – – – – – – – – –
5 KB 0.1 0.1 0.2 0.3 9.0 876.0 982.8 999.8 1E3 – – – – – – – – –
10 KB 0.2 0.2 0.3 0.4 9.5 908.1 995.8 999.9 1E3 0.5 988.9 1E3 1E3 3E3 3E3 6.3E4 1.2E5 1.2E5
25 KB 0.3 0.3 0.4 0.4 49.5 995.8 917.8 999.1 1E3 0.6 0.7 0.8 994.3 999.9 1E3 1.5E4 6.2E4 6.3E4
50 KB 0.5 0.5 0.7 0.8 10.0 899.9 898.8 999.0 1E3 0.8 1.0 1.1 0.9 990.7 1E3 978.8 1.5E4 1.5E4
100 KB 0.9 1.0 1.1 1.0 10.9 912.5 898.8 999.0 1E3 1.2 1.5 2.4 1.2 1E3 7E3 1.3 3E3 3E3
250 KB 2.3 2.3 2.4 2.3 12.8 904.2 996.8 1E3 1E3 2.7 3.0 4.1 2.5 2.6 3.2 3.1 625.5 3E3
500 KB 4.5 4.5 4.6 4.5 16.0 893.4 893.8 998.9 1E3 5.0 6.4 9.8 4.8 64.2 989.0 4.6 94.3 7E3
1 MB 9.0 9.1 9.2 9.3 23.6 1E3 889.8 998.9 1E3 9.6 12.8 18.7 10.9 21.4 942.9 9.1 1.4E3 1.2E5

Default settings - Many connections

128 B 0.1 0.1 0.2 890.9 998.8 1E3 899.9 998.9 1E3 – – – – – – – – –
256 B 0.1 0.1 0.2 899.9 998.9 1E3 909.9 999.0 999.9 – – – – – – – – –
512 B 0.1 0.2 0.2 975.9 999.7 1E3 889.9 998.8 999.9 – – – – – – – – –
1 KB 0.1 0.2 0.2 973.9 999.7 1E3 899.9 998.9 999.9 – – – – – – – – –
2 KB 0.1 0.2 0.2 990.0 999.9 1E3 859.8 998.5 999.9 – – – – – – – – –
5 KB 0.2 0.2 0.2 987.0 999.9 1E3 899.9 998.9 999.9 – – – – – – – – –
10 KB 0.3 0.3 0.3 957.1 999.7 1E3 899.8 998.9 999.9 0.4 0.5 0.5 1E3 1E3 1E3 6.3E4 6.3E4 6.3E4
25 KB 0.4 0.4 0.5 890.5 999.4 1E3 934.9 999.2 999.9 0.6 0.6 0.6 901.3 999.4 1E3 1.5E4 1.5E4 1.5E4
50 KB 0.6 0.7 0.7 802.9 998.0 1E3 901.8 998.9 1E3 0.8 0.8 0.8 0.9 1.0 1.0 999.8 999.9 1E3
100 KB 1.1 1.1 1.2 920.6 999.8 1E3 897.8 998.9 1E3 1.2 1.2 1.3 1.2 1.2 1.4 1.3 1.4 1.6
250 KB 2.4 2.4 2.5 919.2 999.4 1E3 998.9 999.9 1E3 2.6 2.7 3.3 2.7 2.8 2.8 2.6 3.0 3.1
500 KB 4.6 4.6 4.7 915.5 999.6 1E3 999.9 999.9 999.9 5.0 5.0 6.2 5.5 5.7 7.4 5.7 5.7 5.8
1 MB 9.2 9.2 9.3 942.2 999.5 1E3 898.8 999.0 1E3 9.5 9.7 12.6 11.3 11.5 15.5 11.4 11.4 11.5

Optimized settings - Single connection

128 B 0.1 0.1 0.1 0.9 1.0 1.0 0.8 1.0 1.0 – – – – – – – – –
256 B 0.1 0.1 3.3 0.9 1.0 1.0 0.8 1.0 1.0 – – – – – – – – –
512 B 0.1 0.1 0.1 0.9 1.0 1.0 0.8 1.0 1.0 – – – – – – – – –
1 KB 0.1 0.1 0.2 0.9 1.0 1.0 0.9 1.0 1.1 – – – – – – – – –
2 KB 0.1 0.1 3.3 0.8 1.0 1.0 0.8 1.0 1.1 – – – – – – – – –
5 KB 0.1 0.1 0.2 0.2 0.3 1.1 0.8 1.0 1.0 – – – – – – – – –
10 KB 0.2 0.2 0.3 0.3 0.4 1.1 0.8 1.0 1.0 0.4 1.0 1.1 1.2 3.0 3.0 99.9 215.3 5.3E3
25 KB 0.3 0.4 0.7 0.4 0.6 1.7 0.8 1.0 1.1 0.6 0.7 0.7 0.9 1.0 1.3 15.4 62.2 63.1
50 KB 0.5 0.8 4.2 0.6 1.0 2.0 0.8 1.9 2.1 0.8 1.0 1.9 0.9 3.3 18.5 1.4 39.9 335.0
100 KB 0.9 1.6 2.5 1.4 1.9 2.7 1.1 1.9 4.1 1.2 1.8 4.0 1.4 2.8 12.0 1.4 57.9 497.1
250 KB 3.3 4.1 5.7 3.3 4.0 6.6 3.4 4.3 6.5 3.1 4.1 6.2 3.1 5.0 22.4 3.2 46.6 645.6
500 KB 6.4 8.0 11.0 6.5 7.8 12.0 6.1 8.4 12.2 6.5 8.0 11.7 6.4 8.5 18.6 6.6 23.9 455.7
1 MB 12.8 14.9 22.4 13.0 15.4 24.3 13.1 15.3 23.1 13.0 16.1 23.4 13.2 15.9 31.0 13.5 60.5 628.3

Optimized settings - Many connections

128 B 0.1 0.1 0.2 0.9 0.9 1.0 0.8 0.9 0.9 – – – – – – – – –
256 B 0.1 0.1 0.2 0.9 1.0 1.0 0.8 0.9 1.0 – – – – – – – – –
512 B 0.1 0.2 0.2 0.9 0.9 1.0 0.8 0.9 0.9 – – – – – – – – –
1 KB 0.1 0.2 0.2 0.9 1.0 1.0 0.8 0.9 0.9 – – – – – – – – –
2 KB 0.1 0.2 0.2 0.9 0.9 1.0 0.8 0.9 0.9 – – – – – – – – –
5 KB 0.2 0.2 0.2 1.0 1.1 1.1 0.9 0.9 0.9 – – – – – – – – –
10 KB 0.3 0.3 0.3 1.1 1.2 1.2 0.8 0.9 1.0 0.4 0.5 0.5 1.2 1.9 2.2 63.2 203.8 5.9E3
25 KB 0.4 0.5 0.5 1.6 1.6 1.7 0.8 0.9 1.0 0.5 0.6 0.6 1.3 1.4 1.4 15.4 15.5 18.7
50 KB 0.6 0.7 0.7 1.8 2.0 2.2 0.8 0.9 1.0 0.7 0.8 0.8 0.9 0.9 1.0 2.7 3.6 3.8
100 KB 1.2 1.3 1.4 2.6 2.9 3.3 1.2 1.3 1.4 1.2 1.2 1.3 1.2 1.2 1.3 1.2 1.3 1.4
250 KB 3.2 4.0 5.0 4.7 5.6 6.6 3.3 4.1 4.9 3.2 4.2 5.2 3.2 3.6 5.0 3.1 3.7 4.7
500 KB 6.4 7.7 10.2 7.8 10.2 12.2 6.8 8.2 10.4 6.8 7.7 17.3 6.4 8.1 22.4 6.9 67.3 316.6
1 MB 13.3 15.2 21.6 14.3 18.2 23.6 13.5 15.9 22.8 13.4 15.6 21.5 13.4 15.4 28.1 13.2 36.7 198.7
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Table 16: SCTP transfer times (ms) with minimum, average, and maximum values under
packet loss scenarios.

Size
No Loss First pkt. lost Last pkt. lost 1 mid pkt. lost 5 mid pkts. lost 10 mid pkts. lost

Min Avg Max Min Avg Max Min Avg Max Min Avg Max Min Avg Max Min Avg Max

Default settings - Single connection

128 B 0.2 197.7 200.0 940.5 999.4 1.1E3 999.9 1.1E3 1.4E3 – – – – – – – – –
256 B 0.2 197.6 200.0 942.4 1.1E3 2.1E3 899.5 1.1E3 1.4E3 – – – – – – – – –
512 B 0.2 197.6 200.0 939.5 1E3 2.1E3 999.9 1.1E3 1.4E3 – – – – – – – – –
1 KB 0.2 197.6 200.0 943.6 999.4 1.1E3 899.6 1.1E3 1.4E3 – – – – – – – – –
2 KB 0.2 1.8 155.5 944.2 1.1E3 2.1E3 999.9 1E3 1.1E3 – – – – – – – – –
5 KB 0.2 1.9 162.9 0.3 491.0 1.1E3 999.9 1E3 1.1E3 – – – – – – – – –
10 KB 0.3 2.0 162.5 0.4 493.0 999.6 999.9 1E3 1.3E3 0.5 0.6 0.6 1.2E3 1.4E3 3.6E3 6.3E4 6.3E4 6.4E4
25 KB 0.6 199.0 295.4 0.7 591.0 999.9 913.6 1.1E3 1.4E3 100.0 199.0 200.0 1.0 1.5E3 1.6E3 3.1E4 6.3E4 6.4E4
50 KB 0.7 1.6 85.2 1.2 491.0 998.8 999.9 1E3 1.3E3 100.1 199.0 200.0 1.4 1.3E3 1.4E3 499.9 6.2E4 6.4E4
100 KB 6.0 196.9 200.0 2.3 540.0 999.9 999.9 1E3 1.2E3 199.9 203.0 400.0 200.0 1.5E3 1.6E3 1.5 6.2E4 6.4E4
250 KB 2.5 96.9 200.0 5.5 548.9 1.2E3 1E3 1.1E3 1.2E3 2.8 140.9 279.1 2.8 201.0 1E3 2.8 1.7E4 3.1E4
500 KB 4.8 100.9 200.0 9.2 535.0 999.9 897.7 1E3 1.4E3 5.3 118.9 380.5 5.2 289.0 1.8E3 6.5 4.9E4 1.8E5
1 MB 9.6 96.9 360.9 22.6 528.9 999.9 845.7 1E3 1.2E3 10.0 108.1 400.0 18.1 309.4 1.4E3 99.8 2.2E5 2.3E5

Default settings - Many connections

128 B 0.2 0.2 0.2 999.6 1E3 1.1E3 999.6 1E3 1.1E3 – – – – – – – – –
256 B 0.2 0.2 0.2 899.6 998.6 999.7 999.6 1E3 1.1E3 – – – – – – – – –
512 B 0.2 0.2 3.4 999.6 1E3 1E3 999.6 1E3 1.1E3 – – – – – – – – –
1 KB 0.2 0.2 0.2 999.7 1E3 1.1E3 999.6 1E3 1.1E3 – – – – – – – – –
2 KB 73.6 198.3 199.6 899.7 998.7 999.7 999.6 1.1E3 1.4E3 – – – – – – – – –
5 KB 199.9 200.7 271.0 0.2 0.3 0.3 999.6 1.1E3 1.4E3 – – – – – – – – –
10 KB 61.5 198.2 199.6 0.4 161.4 200.5 999.6 1.1E3 1.3E3 0.4 0.5 0.6 3.2E3 3.5E3 3.8E3 6.3E4 6.4E4 6.4E4
25 KB 0.6 0.6 0.7 0.6 0.7 0.8 899.7 998.7 999.7 200.0 201.0 300.0 0.9 1.0 1.1 1.5E4 3E4 3.1E4
50 KB 0.8 194.5 224.3 1.1 177.4 200.4 899.7 1.1E3 1.2E3 0.9 193.2 200.2 100.0 199.0 200.0 299.6 398.5 399.6
100 KB 1.3 1.4 1.4 2.0 4.2 201.4 899.7 998.7 999.7 1.4 157.1 300.1 1.4 57.3 389.8 1.5 1.5 1.6
250 KB 2.6 97.0 300.0 4.6 144.8 299.8 899.7 1.1E3 1.4E3 2.8 71.0 200.0 2.8 95.0 294.9 2.9 79.0 199.9
500 KB 4.9 103.2 400.5 8.9 111.3 372.3 999.6 1.1E3 1.4E3 5.1 99.3 200.4 5.1 117.2 395.3 5.2 111.3 370.4
1 MB 9.7 103.2 390.1 17.9 101.6 400.4 999.7 1.1E3 1.2E3 10.1 107.8 389.9 10.1 118.5 369.9 10.2 79.2 389.5

Optimized settings - Single connection

128 B 0.1 0.2 0.2 41.5 198.4 200.0 99.5 199.0 200.0 – – – – – – – – –
256 B 0.1 0.2 0.2 80.5 198.8 201.0 99.5 199.0 200.0 – – – – – – – – –
512 B 0.1 0.2 0.2 78.6 198.8 200.0 99.5 199.0 200.0 – – – – – – – – –
1 KB 0.2 0.2 0.2 78.5 198.8 200.0 99.5 199.0 200.0 – – – – – – – – –
2 KB 0.2 0.2 0.3 77.6 198.7 200.0 99.5 199.0 200.0 – – – – – – – – –
5 KB 0.2 0.2 0.3 0.3 0.3 0.4 39.5 198.4 200.0 – – – – – – – – –
10 KB 0.3 0.4 0.4 0.4 0.4 0.5 52.5 198.5 200.0 0.4 0.5 0.5 339.8 399.4 400.1 1.5E3 1.6E3 1.6E3
25 KB 0.5 0.5 0.6 0.6 0.7 0.8 123.5 199.2 200.0 0.6 0.7 0.8 0.8 393.7 400.0 300.0 1.6E3 1.6E3
50 KB 0.7 0.7 0.8 1.0 1.2 1.3 78.6 198.8 200.0 0.8 1.2 1.2 1.0 389.1 400.1 1.3 1.6E3 1.6E3
100 KB 1.2 1.3 1.3 1.8 2.2 2.4 175.5 199.7 200.0 1.4 2.0 2.2 1.5 385.6 400.1 1.7 1.6E3 1.6E3
250 KB 2.7 2.8 2.9 4.1 5.1 5.3 173.6 199.7 200.0 3.2 4.6 5.2 3.2 189.6 200.3 3.2 4.5E3 6.4E3
500 KB 5.2 5.4 5.6 7.9 10.0 10.2 192.5 199.9 200.0 5.8 8.7 9.9 5.7 175.8 201.2 6.1 991.9 1.2E3
1 MB 10.6 13.8 20.4 15.8 19.9 20.5 199.9 200.1 209.6 11.4 18.0 20.4 11.8 150.9 202.6 11.4 904.4 1.2E3

Optimized settings - Many connections

128 B 0.1 0.2 0.2 99.6 198.6 199.7 99.6 198.6 199.7 – – – – – – – – –
256 B 0.1 0.2 0.2 99.7 198.6 199.7 99.6 198.6 199.7 – – – – – – – – –
512 B 0.2 0.2 0.2 99.6 198.7 199.7 99.6 198.7 199.7 – – – – – – – – –
1 KB 0.2 0.2 0.2 99.7 198.7 199.7 99.6 198.7 199.7 – – – – – – – – –
2 KB 0.2 0.2 0.2 99.7 198.7 199.7 99.6 198.7 199.7 – – – – – – – – –
5 KB 0.2 0.3 0.3 0.2 0.3 0.3 99.7 198.7 199.7 – – – – – – – – –
10 KB 0.3 0.4 0.4 0.4 0.4 0.4 99.6 198.7 199.7 0.4 0.5 0.6 300.0 399.0 400.1 1.5E3 1.6E3 1.6E3
25 KB 0.5 0.5 0.6 0.6 0.6 0.7 99.7 198.7 199.7 0.6 0.6 0.6 0.8 0.8 0.8 300.1 399.2 400.2
50 KB 0.7 0.8 0.8 0.9 1.0 1.1 99.6 198.7 199.7 0.8 0.8 0.9 0.9 1.0 5.7 1.2 1.2 1.3
100 KB 1.2 1.3 1.4 1.7 1.8 1.9 99.7 198.7 199.7 1.3 1.4 1.4 1.4 1.5 4.8 1.6 1.7 1.8
250 KB 2.6 2.8 3.2 4.0 4.1 4.3 99.6 198.7 199.7 2.8 3.1 3.9 3.0 3.1 4.0 3.1 7.2 202.8
500 KB 5.2 5.4 5.6 7.8 8.0 8.2 99.7 198.7 199.8 5.5 5.7 5.9 5.6 5.8 7.6 5.7 6.0 7.0
1 MB 10.5 10.8 11.4 15.4 16.0 16.4 99.6 198.7 199.7 11.1 11.4 15.2 11.2 11.5 11.8 11.2 17.6 409.7
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Conclusions:

• Utilizing VxWorks TCP/SCTP stack parameters adjustment possibil-
ity significantly reduces retransmission latency versus defaults.

• TCP outperforms SCTP in transfer time across the tested scenarios.

• With default parameters, even a single lost packet can push retrans-
mission time into the seconds range.

• With optimization, isolated losses improve, but burst losses still drive
retransmission time back into the seconds range.

• The resulting loss-induced tail in transfer time damages predictability,
making these protocols ill-suited for deadline-bound state transfer.

7. Proposed State-Transfer Protocol

As shown in Section 6, numerous protocols exist; however, none of the
compared ones meet all the desired features of a state transfer protocol for
industrial controller redundancy. This section aspires to design and describe
a protocol that provides the desired features. The first subsections describe
the protocol, and the final subsection performs a desired feature match of
our proposed protocol, as we did for other protocols in Section 5.

7.1. Protocol Overview
The protocol we propose is named Reliable State Transfer Protocol (RSTP).

Similar to RBUDP (see Section 5.6.2) and PA-UDP (see Section 5.6.3), RSTP
comprises a communication protocol for the actual data exchange and an ad-
ditional mechanism for exchanging related metadata. In the case of RSTP,
the RSTP Payload Protocol (RSTP-PP) handles data exchange. The time-
insensitive information used by RSTP-PP is managed by the RSTP Manage-
ment Mechanism (RSTP-MM). It is described as a mechanism rather than
a protocol, leaving it open for implementation that suits the specific deploy-
ment, as further discussed in Section 7.3. Figure 11 presents a high-level
overview of RSTP, and further details are provided in the two subsections
that follow.
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Figure 11: RSTP high-level overview.

7.2. Payload Protocol - RSTP-PP
RSTP-PP targets the transfer of internal state data for controller appli-

cations in a standby redundancy context. The protocol utilizes a channel
concept to allow the transfer of each application state to be scheduled and
handled independently. The fact that a controller typically hosts multiple
applications with di!erent cycle times and state transfer requirements, as
previously explained in Section 2, motivates the channel concept, further
elaborated in Section 7.2.2. Typically, an RSTP-PP deployment consists
of one sender and one receiver, where the sender is the primary controller
sending to the receiver, the backup controller. However, mixing is allowed.

7.2.1. Packet Format
RSTP-PP is a packet-oriented protocol, and Table 17 shows the data

packet header layout. HType and HV er specify the header type and the
version of the packet header. ChId is the identity of the channel; the concept
of channels is further described in Section 7.2.2. Note that the ChId must
be unique within an RSTP-PP communication, but the protocol does not
specify how to allocate the channel identities.

The next field in the data packet header, as shown in Table 17, is TCycle,
the transfer cycle, a steadily incrementing number for each transfer cycle. A
transfer cycle begins when the first packet for a channel is sent and ends
when the receiver has acknowledged all packets or the deadline expires. The
channel description in Section 7.2.2 introduces the concept of deadlines.

Following the TCycle is SeqNo, the sequence number within a TCycle,
and ChId. The sequence number starts at zero for every new cycle, and the
receiver uses the sequence number to order received packets. The sequence
number, combined with the TtlSzCyc and the RSTP-PP payload size, allows
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Table 17: RSTP-PP – data packet header.

Name Bytes Value Description

HType 2 0x0001 Header and message type.
HV er 2 1 Header version.
ChId 2 [1, 216 ≃ 1] Channel identity.
TCycle 2 [0, 216 ≃ 1] Transfer cycle.
SeqNo 2 [0, 216 ≃ 1] Sequence number.
TtlSzCyc 4 [0, 232 ≃ 1] Total number of payload bytes

in this cycle.
ExpInMs 2 [0, 216 ≃ 1] Expiration time, in milliseconds.
FAckCh 2 [1, 216 ≃ 1] Force acknowledgement from

specified channel.

the receiver to calculate the byte o!set for each incoming packet and store
the received data in a contiguous bu!er. Section 7.3 explains the RSTP-PP
payload size.

TtlSzCyc is the total number of payload bytes to transfer in this channel
during this TCycle; header size excluded. It remains constant throughout
the TCycle. TtlSzCyc is included in each packet to allow the size to change
without additional communication to the receiver. Even if the first message
is lost, the receiver can allocate a reception bu!er for the whole message.

ExpInMs is the expiration time in milliseconds. The data in the packet is
valid for the specified number of milliseconds. The sender updates ExpInMs
immediately before passing the packet to the network stack. The receiver
should use the shortest expiration time received for the ChId and TCycle.
Although the time-stamping occurs at the application level, it is deemed
accurate enough for the purpose, which is to prevent the backup from us-
ing expired data, as described in Section 2. If needed, more sophisticated
mechanisms can be designed and incorporated, which is deemed future work.

The last field in the header is FAckCh, which forces the receiver to
acknowledge the specified channel. When a receiver receives a packet where
FAckCh ⇐= 0 and FAckCh is a valid channel identity known by the receiver,
the receiver must send the current packet reception status for the specified
channel. After FAckCh, the last field in the header, is the payload data.

Table 18 shows the acknowledgment packet layout, and the following
describes RSTP-PP acknowledgment fields.

62



Table 18: RSTP-PP – acknowledgement header.

Name Bytes Value Description

HType 2 0x1001 Header and message type.
HV er 2 1 Header version.
ChId 2 [1, 216 ≃ 1] Channel identity.
TCycle 2 [0, 216 ≃ 1] Transfer cycle.
AckBlocks 1 [0, 150] Number (i) of acknowledgment

ranges that follow.
LowAcki 2 [0, 216 ≃ 1] Lowest received sequence number

for ChId and TCycle in
acknowledgement range i.

HighAcki 2 [0, 216 ≃ 1] Highest received sequence number
for ChId and TCycle in
acknowledgement range i.

HType and HV er specify the type of acknowledgment and version, sim-
ilar to the data packet. TCycle and ChId indicate which transfer cycle
and channel the acknowledgment is for. Next is AckBlocks, which specifies
the number of acknowledgment blocks in the acknowledgment. An acknowl-
edgment acknowledging a complete reception of all channel packets for one
transfer cycle has an AckBlocks value of one. For each non-consecutive
missing sequence number, AckBlocks will increase by one since there will
be one more LowAcki,HighAcki pair in the header. Defined as follows: N
is the total number of packets in a transfer cycle, with sequence numbers
{0, 1, . . . , N ≃ 1} and R ⇒ {0, 1, . . . , N ≃ 1} is the set of sequence numbers
of packets received, arranged in increasing order:

r0 < r1 < · · · < rm↑1, where m = |R|.
The the sequence numbers in R partitioned into maximal contiguous ac-

knowledgment blocks ab (i.e., intervals) where AB is the set of all ab and in
one ab consecutive numbers di!er by 1, ⇑abi → AB and any two successive
elements rj, rj+1 → abi where rj+1 = rj + 1 and if rj → abi rj+1 /→ abi then
rj+1 starts a new acknowledgement block. Hence, for each acknowledgment
block abi:

LowAcki = min{abi} and HighAcki = max{abi} The number of ac-
knowledgement blocks, i.e, is AckBlocks = |AB|.
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7.2.2. Channels and Scheduling
The purpose of the channels is to serve as schedulable entities for state

data transfers between various applications running on a controller. We uti-
lize Earliest Deadline First (EDF) scheduling, which was originally developed
for task scheduling and later extended to communication channel scheduling
by Zhen et al.[179, 180]. The RSTP channel concept is based on the work of
Zheng et al., as summarized below [180].

A channel is described by the following tuple ↑C, T, d↓, where C is the
transmission time, i.e., the time it takes to transfer the data. T is the mini-
mum (shortest) interarrival time of new data to be transmitted, and d is the
deadline, denoting the time by which the transfer must be completed.

To determine whether a channel is schedulable, we use the necessary
condition check for non-preemptive scheduling in a bounded time frame pro-
vided by Zheng et al. and summarized below [180]. It consists of three steps,
summarized below: (i) utilization check, (ii) determination of the time inter-
vals for utilization check, and (iii) check that deadlines are met for all time
intervals from step (ii).

For n channels, as mentioned, the first check is to verify that the utiliza-
tion does not exceed the physical link capacity. We refer to the entire physical
or logical path across the network connecting the primary and backup con-
trollers as a link.

n∑

i=1

Cj

Tj
⇓ 1

Next is to deduce the time intervals, S is the set of time intervals to check,
defined as:

tmax = max
{
d1, . . . , dn,

Cp +
∑n

i=1

(
1≃ di

Ti

)
Ci

1 ≃
∑n

i=1
Ci
Ti

}
.

S =
n⋃

i=1

Si, Si =
{
di + nTi : n = 0, 1, . . . ,

⌊tmax ≃ di
Ti

⌋}

Third, verify that we transfer all channels before the required deadlines,
i.e., the deadlines can be met for all intervals in S and all channels n.

⇑ t → S,
n∑

i=1

(⌈t≃ di
Ti

⌉+
Ci

)
+ Cp ⇓ t
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Cp is the preemption blocking time faced by the higher priority transfer
induced by, for example, the operating system or by utilizing the link for
unscheduled tra"c of lower priority.

The schedulability check can be performed either by an engineering tool
or by functionality provided by the protocol implementation. Its purpose is
to prevent overcommitment, ensuring that the system does not promise to
transfer more data than can be realistically handled. While the ideal transfer
time can be estimated by dividing the data size by the available bandwidth,
this is a simplification. In practice, protocol processing introduces overhead
that increases transfer times, and this overhead is likely dependent on the
specific hardware used. Developing a realistic, yet not overly pessimistic,
model for estimating transfer times is left as future work.

The data transferred by RSTP-PP is typically fragmented into multiple
packets, as state data is often larger than the MTU of the underlying link,
usually the size of a standard Ethernet frame. Since RSTP-PP is designed
to be reliable and tolerate packet loss, the transmission time C depends not
only on the link capacity and the e"ciency of the protocol implementation,
C also needs to account for potential retransmissions. These aspects are
further discussed in Section 7.2.4.

Since each channel consumes bu!er memory, the receiver must reserve
enough for incoming packets. The engineering tool can verify that the re-
quired bu!er memory does not exceed the available memory (with a suitable
margin). Memory-management optimizations are left to future work.

7.2.3. RSTP-PP Interaction
This section describes the RSTP-PP protocol interaction between the

sender and receiver. The sending process begins with the sender transmitting
a packet belonging to the channel with the earliest deadline, i.e., the packet
designated for transmission according to the EDF scheduling scheme. Before
sending the first packet for a channel in a channel period Ti, TCycle is
incremented. During the cycle, TtlSzCyc must remain constant, allowing the
receiver to reserve memory as needed upon reception of the first message. The
sender can switch between sending packets for di!erent channels if a switch
is deemed suitable by the scheduler. The transmission of ChId for TCycle
is complete when an acknowledgment is received, confirming the reception of
all packets, i.e., the reception of all payload bytes, or if the deadline can’t be
met.

To prevent exhausting the receiver, RSTP-PP utilizes a flow control mech-
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anism; the number of packets in flight, packetsInF light (unacknowledged
packets), is limited to be no higher than packetsInF lightMax. Each packet
sent that is not a retransmission increments packetsInF lightMax. Each
received acknowledgment confirms that the reception of previously unac-
knowledged packets yields a decrement of packetsInF light, with the amount
of newly acknowledged packets deduced from the received acknowledgment.
Alternatively, an additional field can be added to the acknowledgment, specif-
ically stating the number of received packets, to further simplify handling,
at the cost of extra bytes in the acknowledgment. RSTP-MM provide the
initial packetsInF lightMax value, discussed in Section 7.3

Acknowledgments are sent from the receiver to the sender for a channel
under four conditions: (i) upon reception of the last packet for a TCycle, (ii)
when the number of AckBlocks increases, (iii) upon explicit request from the
sender using FAckCh, and (iv) when the limit (packetsRcvdNoAckCntMax)
of unacknowledged packets (packetsRcvdNoAckCnt) received is reached.
The initial value of packetsRcvdNoAckCntMax is discussed in Section 7.3.

Receiving the final packet, i.e., the one with the highest sequence number,
completes the transfer if no losses have occurred. Regardless of packet loss,
the receiver always sends an acknowledgment upon receiving the last packet.
The second condition is triggered by an increment in AckBlocks, which in-
dicates reception after a loss (i.e., a newly detected gap in contiguous packet
reception). The third condition occurs when the sender explicitly requests
an acknowledgment using FAckCh, typically when it has sent all packets for
a channel but has not yet received confirmation of receipt from the receiver.
The fourth reason acknowledgments are sent is for flow control. Since the
sender is only allowed to send up to packetsInF lightMax packets without re-
ceiving an acknowledgment, the receiver must issue acknowledgments at reg-
ular intervals if none of the above-mentioned conditions are met. This inter-
val is governed by packetsRcvdNoAckCnt and packetsRcvdNoAckCntMax,
which are further detailed in Section 7.3.

As mentioned, the receiver sends an acknowledgment when receiving the
last packet. However, acknowledgments, as well as data packets, can be
susceptible to loss. Hence, the sender typically uses FAckCh to request
acknowledgment for the channel with the earliest deadline, where all packets
have been sent but receipt remains unacknowledged, if such a channel exists.

When the sender has transmitted all packets for a channel, it starts with
the next one, as appointed by EDF. If there is no next channel to transmit,
the last packet is resent until acknowledgment information is received or the
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deadline expires. When the acknowledgment is received, it either confirms
the reception of all packets or provides the information required to determine
which packets to retransmit. Consequently, while awaiting acknowledgments,
unfinished channels are served in deadline order with the FAckCh set to the
identity of the channel with the earliest deadline waiting for an acknowledg-
ment.

A sender informed about missing sequence numbers tags those packets
(or adds them to a resend queue). If the total time left to send all packets
known not to have been received exceeds the channel’s deadline, the sending
of that channel aborts for the current TCycle.

7.2.4. Fault-tolerance and Network Redundancy
Redundant controllers are commonly deployed with network redundancy

to avoid the network being a single point of failure. Gigabit Ethernet IEEE
802.3ab specifies a Bit Error Rate (BER) smaller than 10↑10, and in con-
trolled environments, a BER as low as 10↑12 is plausible [1, 181]. As an
example, the above BER span yields, for a channel utilizing 100 Mbps of a 1
Gbps link, an hourly frame loss between 0.36 and 36 frames of total 30 ↘ 106
frames per hour.

As mentioned, a state transfer typically fragments into several packets
and Ethernet frames; without retransmission, the loss of one frame would
invalidate the entire transfer. A standard Ethernet full-size frame is 1518
bytes, or 12144 bits large. If F is the number of bits in a full-size frame, then
the probability that such a frame is transmitted correctly is qs = (1≃BER)F ,
and the probability of failure is ps = 1 ≃ qs [182]. N is the total number
of frames (or packets) constituting a fragmented message. In the case of
redundant links with parallel transmission, as for PRP, the probability that
at least one of the frames is successfully received is qr = 1≃p2s and pr = 1≃qr.

As mentioned, all packets that constitute a message must be received
for the message to be successfully delivered. We assume that the packet
transmissions are independent and that we can make R individual packet
retransmissions within the deadline. R is the retransmission budget. Hence,
a message is successfully delivered if all packets are delivered with or without
consuming the whole retransmission budget, R. To illustrate the impact
of retransmission we assume each packet to be independent, the successful
transfer of a message can be modeled with the sum of negative binominal
distribution from zero to R retransmissions, where q and p are either qs and
ps or qr and pr depending on if redundant links are used or not. Note that
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even though RSTP uses the retransmission budget R, it is agnostic to how
R is chosen. The model below is just one example of illustrating the impact
of R on the transfer reliability; future work can explore deployment-specific
models.

Pmsg success(R) =
R∑

k=0

(
N + k ≃ 1

k

)
pk qN . (4)

To exemplify how retransmission can improve reliability, we use variable
message sizes sent every hundred milliseconds, ranging from 5 MB to 0.015
MB. The 5 MB message corresponds to over forty percent utilization of a
Gigabit Ethernet link, fragmented into more than 3000 packets, embedded
in an equal number of Ethernet frames. The 0.015 MB message consumes
less than one percent of the Gigabit link and fragments into ten packets.
We use a conservative BER of 10↑10 and calculate the expected number of
lost messages during a year of operation for di!erent retransmission budgets,
with a cuto! at 10↑12 messages lost per year, plotted in Figure 12.

Figure 12 shows that the yearly message loss drops rapidly for each extra
packet retransmission in the retransmission budget, and for R ⇔ 5, the an-
nual loss is less than 10↑6 for all message sizes. Hence, it may be su"cient
for many applications to utilize a single network for state transfer, as the
retransmission mechanism can provide su"cient messaging reliability. How-
ever, this would mean that if one link (network path) fails, the backup is no
longer ready until the link is repaired. Whether this is acceptable depends
on the application and the domain; RSTP supports both. An RSTP channel
can be scheduled on all networks or a single network.

Redundant links that utilize a redundancy protocol, such as PRP, are seen
as one link from RSTP. If the deployment requires redundancy to function
when one of the redundant links has failed, the retransmission budget should
be set accordingly.

7.3. Management Mechanism - RSTP-MM
The purpose of the management mechanism is to provide configuration

and management capabilities to RSTP. It is a denoted mechanism, as it does
not necessitate communication but rather details the information and data
that RSTP requires, as elaborated below.

We categorized the required RSTP information provided by RSTP-MM
into three profiles: (i) node profile, (ii) sender profile, and (iii) receiver profile.

68



Figure 12: Expected yearly message loss for messages with varying sizes and retransmission
budgets, sent every hundred milliseconds, using single (single) and redundant (red) links
(network paths).

The sender profile gives the receiver information about the sender and vice
versa. Currently, all the information is mandatory; future work could detail
additional optional information that might be beneficial.

Do note that exchanging this information over a communication channel
is not mandated, even if that o!ers better flexibility. An alternative ap-
proach would be to provide the information during the configuration phase
and download it to the respective controllers, i.e., the sender (primary) and
receiver (backup).

7.3.1. Node Profile
The node profile provides RSTP with the necessary node information,

which includes details about the node it is running on.
Mandatory: LI is a set of tuples with link information li, where ⇑li → LI

are designated to RSTP-PP and li is the link information tuple ↑BW, id↓
where BW is the link bandwidth and id is the link identity.
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7.3.2. Sender Profile
The receiver uses the information provided by the sender’s profile, i.e.,

information about the sender that must be made available to the receiver.
Mandatory: PayloadSzht1 is the default number of payload bytes in

an RSTP-PP data frame for HType one. All data packets sent have this
payload size, except the last one for each TCycle. The last frame carries
at most PayloadSzht1, or less. The exact size is determined using number
of packets N where N = ↖ TtlSzCyc

PayloadSzht1
↙. Hence,the payload size of the last

packet szlp is:
szlp = TtlSzCyc≃ ((N ≃ 1)PayloadSzht1).

7.3.3. Receiver Profile
The receiver profile contains information the sender needs to know about

the receiver.
Mandatory: Receiver link information, RLI, is a set of tuples, rli,

with link information. The receiver’s LI is made available to the sender
in the receiver’s profile. The sender uses this to determine the end-to-end
connection capacity. We do not consider potential reducing factors in the
network in between; that is, future work. Typically, the id is the link’s IP
address, and a node has only one link per subnet. Hence, pairing links can
be done based on subnet belonging. The bandwidth capacity is the lowest of
lii.BW and rlii.BW for the specific link, i.

As mentioned, the sender uses packetsInF lightMax for flow control to
prevent overwhelming the receiver. Hence, the receiver is responsible for
providing packetsInF lightMax. Queue sizes on the receiver must be large
enough to allow packetsInF lightMax packets to be transmitted without
any losses due to full queues. The value of packetsInF lightMax a!ects
packetsRcvdNoAckCntMax, as acknowledgment reception at the sender re-
duces the number of packets in flight (packetsInF light). Preferably, packetsInF light
should not exceed packetsInF lightMax due to lost acknowledgments, as
reaching packetsInF lightMax pauses sending. Hence, packetsRcvdNoAckCntMax
is set to a fifth of packetsInF lightMax to tolerate some acknowledgment
losses without pausing sending.

7.4. RSTP Design and Operation
This section presents an RSTP design. With the design as a foundation,

we describe RSTP interaction in two use cases: (i) normal operation and (ii)
(re-)configuration.
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7.4.1. RSTP - Normal Operation
By "normal operation," we refer to an operational controller pair con-

figured for redundancy. The primary controller manages the process by ex-
ecuting controller applications and continuously transferring the latest ap-
plication state to the backup. Figure 13 illustrates the internal component
interactions during the normal operation of a primary controller that uti-
lizes RSTP (i.e., RSTP-PP as a sender), detailed below. This is followed by
Figure 14, which details the RSTP-PP receiver flow in the backup.
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Figure 13: RSTP-PP sender design, internal components interaction, and data flow during
normal operation.

As described in Section 2, an application periodically sends its updated
internal state to the backup during normal operation; step (1) in Figure 13
begins at that point. The example application passes its updated state to
the RSTP-PP along with the channel ID (ChId). The RSTP-PP Bu!er
handler ensures that a bu!er capable of holding all the application’s state
data is reserved, for example, through double-bu!er handling. Once a bu!er
has been reserved for the data, the application state is copied to that area
using the Security handler (step 2). The Security handler applies the config-
ured security measures to the state data, including additional security-related
metadata if needed. See Section 7.5. Once the appropriate security measures
have been applied and the state data has been copied to the allocated bu!er,
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the updated channel data is ready to be queued for transmission (step 3).
If data already exists for the same channel, for which the transfer has not
yet started, two alternatives exist: replace the old data or keep both. By
default, the interpretation is that there is no need to retain the old data for
state data; therefore, the old bu!er is released for reuse, and the updated
data takes its place. The deadline for the replaced data is preserved, but the
expiration time is updated. The updated channel data is enqueued, and the
application execution context has completed its part. It is now up to the
RSTP-PP sender task to transfer the updated channel data.

Step (4) and the remaining steps are executed by the RSTP-PP sender
task(s), as shown in Figure 13. The example design only shows one RSTP-
PP sender task; dividing it into two or more can increase the parallelism,
one for acknowledgment handling and one for sending. The first action is
to retrieve any incoming acknowledgments. The Channel sender asks the
Link handler to check all links for received acknowledgments (steps 4 and 5).
The received acknowledgments determine whether any channels have been
completely transferred (step 6). If a channel is completed, the bu!er it uses
is released (step 7), and the application is notified (step 8). The same applies
if the deadline expires without any acknowledgment; in this case, the bu!er
is released, and the application is notified that the state transfer failed.

The Queue handler returns the next packet to be sent, which can be
either a retransmission of a previously sent packet (determined to be lost)
or the next channel to be sent (step 9). The Queue handler uses the same
scheduling model as used to determine if the channels are schedulable; for this
work, it is assumed to be EDF. Future work could dig deeper to investigate
if there are more suitable scheduling alternatives. The Queue handler finds
and returns the next packet to send according to the scheduling used, i.e.,
EDF. The packet is then passed to the Link handler (step 10) and sent to
all links on which the channel is scheduled (step 11).

Figure 14 shows the receiver flow that begins with the Channel receiver
asking the Link handler for new packages. The Link handler checks all links
and provides the new packages to the Channel receiver (steps 1 and 2). The
received packages are then passed to the Reception handler, which checks if
the newly received package is the first in TCycle or the first for a channel; in
such cases, bu!ers are allocated and reserved accordingly (step 4). As with
the sender, a double bu!er can be a suitable implementation alternative,
preserving consistency by allowing the application to read from the inactive
bu!er while the Channel receiver updates the active bu!er until all packages
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are received; at this point, the active and inactive bu!ers are swapped.
The application is informed when the Reception handler determines that

a complete message has been received or that no new messages have been
received within the expiration time (step 5).
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Figure 14: RSTP-PP receiver design, internal components interaction, and data flow
during normal operation.

The Reception handler informs the Channel receiver if any acknowledg-
ments need to be sent. If so, the Channel receiver uses the Link handler to
send the acknowledgments (steps 6, 7, and 8). When the application is noti-
fied of new data (step 5), it retrieves the latest data for the specific channel
ID (ChId) from RSTP-PP (step 9). The receiving application and its send-
ing counterpart must share the same channel ID; hence, the channel identity
can be part of the application configuration. RSTP-PP returns a handle to
a bu!er that the application uses to access the data. This handle is passed
to the Security handler (step 10), which applies the configured security mea-
sures to the received data while copying it to application-managed memory.
Once this is done, the application informs RSTP-PP that the data has been
processed, and the bu!er is freed for reuse (step 11).

We use one RSTP-PP Channel receiver task in the example; a higher
degree of parallelism is achieved by having two or more tasks, where one
handles acknowledgment sending and the other handles packet reception.
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7.4.2. RSTP - Configuration
Figure 15 shows a high-level configuration flow and exemplifies a config-

uration of a redundant controller pair utilizing RSTP. An engineer uses an
engineering tool to modify the application or create an initial version. The
tool utilizes the scheduling and reliability models presented in Section 7 to
determine if the configuration is schedulable given the amount of state data,
cycle time, deadline, and desired reliability (step 1).

Given reliability-related parameters, the reliability model provides a re-
transmission budget (see Section 7.2.4). With preconditions that include
the retransmission budget, data size, deadline, cycle time, and links, the
scheduling model determines if it is possible to meet these requirements. The
scheduling model can also choose the order in which to apply the changes
during a reconfiguration. To avoid overutilizing links during a configuration
change, it is essential to apply changes that reduce link utilization before
those that increase utilization, or perform the switch atomically across all
applications. The scheduling model helps identify changes that reduce link
load and those that increase it, thereby determining the proper order in which
to apply these changes.
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Figure 15: Configuration example.

When the engineer completes the configuration changes, the changes are
downloaded to the a!ected controllers (step 3). The engineering tool sends
the new configuration to the engineering agent, which applies the change
(step 4). The change can be applied stepwise by first applying changes that
reduce link load before applying changes that increase load, or atomically for
all applications at a specific time. Once applied, the applications begin using
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the new settings (step 5).
It is worth noting that if an application is deleted, it should inform RSTP-

PP in some manner so that the channel resources, in terms of bu!ers, can
be completely deallocated. This is implicit in step 5.

7.5. Security Handling
The function of the Security handler is to add security features as defined

in section 5.2.3. Di!erent use cases may require various features. Security
features will also add to the payload size and execution time needed.

The Security handler in the sending and receiving entities is separated
from the RSTP-PP protocol, allowing the application to handle any overhead
related to security measures instead of RSTP tasks. This ensures that the
time consumption for tasks related to receiving and sending data can be kept
down while providing high flexibility in selecting the security mechanisms to
include.

It is also possible to combine the RSTP-PP protocol with IP-sec, if the
level of security provided by IPSec is deemed su"cient. In this case, the
security handler will do nothing, as the operating system provides the security
functionality. As noted, it may be challenging for the application to verify
that protection is actually in place when using this approach, as the security
mechanism is implicitly added outside the protocol.

To secure the application layer, the state data is wrapped within a security
header that contains security-related fragments.

Security mechanisms needed must be indicated as part of the RSTP Se-
curity handler configuration. Table 19 outlines the options required to fulfill
the previously described security requirements. The list of values is, how-
ever, not exhaustive; more potential methods exist, and several variations of
each technique are also available. Quantification of security induced latency
is future work.

Options for Integrity mechanism indicate how integrity and/or authen-
ticity of data is assured. The checksum option will only give a basic integrity
protection of the data (Sec_Int), the symmetric signature will be done using
a symmetric key exchanged either by secure key server or using a peer-to-
peer key establishment protocol such as Internet Key Exchange (IKE), which
will give some degree of authenticity (Sec_Auth), while a certificate-based
signature will provide highest level of authenticity protection.

The Encryption mechanism option describes whether data encryption
will be used to fulfill the requirement Sec_Conf, with the options None and
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Table 19: Security configurations for the RSTP Security handler. R/O column:
R=Required, O=Optional.

Property R/O Value

Integrity mechanism R None, Checksum, Symmetric, Certificate
Encryption mechanism R None, Symmetric
Replay Protection R None, Counter, Session, Timestamp
Key Exchange O None, KeyServer, IKE
Key Server O URL, etc to trusted key server
Partner Certificate O (public) certificate of partner

Symmetric. In reality, this option must be complemented with a list of
supported symmetric encryption algorithms.

Replay protection outlines how the freshness of data is ensured (Sec_Fresh),
providing options with static counters, session identities, and timestamps.

The Key exchange option defines how the backup and partner exchange
the keys needed for encryption or integrity protection, if based on symmetric
keys. If the communicating entities are capable of using public key cryptogra-
phy and the communication is peer-to-peer, a certificate-based key exchange
protocol is advised to be used.

If public-key cryptography is not a viable option, or if there are multiple
backup entities that should receive state data, the suggested scheme is to use
a key distribution server to provide symmetric keys to the communicating
parties. This scheme is inspired by how secure OPC UA PubSub [147] works,
as shown in Fig. 16. The key distribution server can either push keys or the
communicating party can fetch them. However, communication with the key
distribution service needs to be encrypted as well as access-controlled, as the
keys would otherwise be accessible to anyone. The implementation of this
protocol is outside the scope of the current work, but the suggestion is to
follow the approach outlined in the OPC UA specification.

7.6. RSTP - Desired Feature Matching
We conclude the design section by showing how RSTP fulfills the desirable

features presented in Section 5.2.
Reliability features: RSTP has a mechanism for retransmission, with

a configurable retransmission budget to provide the desired reliability; hence,
RSTP fully fulfills Rel_RD. RSTP has a mechanism for flow control to pre-
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Figure 16: Key distribution according to pattern from OPC UA Secure pub-sub.

vent exhausting receiver bu!ers; hence, RSTP fully fulfills Rel_RC. Finally,
since no channel should be deployed on RSTP before confirming that it can
be scheduled, RSTP avoids overutilization of the network; hence, RSTP fully
fulfills Rel_NC.

Real-time features: RSTP guarantees that channel messages are deliv-
ered before their deadline, provided that the channels are successfully sched-
uled; hence, RSTP fully fulfills RT_PT. The protocol also sets an expiration
date for the passed data, meaning that new data is expected to arrive before
that deadline. If new data is not received in time, the consuming application
can be informed by RSTP; hence, RSTP fully fulfills RT_UE. Lastly, RSTP
uses channel concepts and transmits packets from the channel closest to the
deadline. All channels have preallocated bu!ers at the receiver side, and
when a packet is received, its payload is stored at the correct o!set in the
receive bu!er. In other words, RSTP uses channels and an earliest-deadline-
first approach to prioritize the channels; hence, RSTP fully fulfills RT_PR.

Security features: The Security Handler allows RSTP to support a
configurable security level. Thus, it can be configured to fulfill any combina-
tion of the desired security features, from none to all.

8. Deployment and Experimental Evaluation

This section describes RSTP in a VxWorks deployment, examining how
an operating system can be configured to align with RSTP. After that, we
describe an actual implementation of RSTP on VxWorks, which we use for
experimental evaluation.
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8.1. RSTP on VxWorks
VxWorks’s default network stack configuration consists of a single net-

work stack instance with one network task that serves all outgoing and in-
coming tra"c [133]. Figure 17 shows RSTP and other applications on a
VxWorks system with the default settings. Using the default settings means
that one network task handles both time-sensitive and time-insensitive com-
munications.

Regarding RSTP and outgoing tra"c, RSTP will post a packet on the
socket for the channel with the highest priority, as described in Section 7.4.
However, since a single network stack and task serve all sockets, that packet
might not be handled immediately under the default VxWorks settings. The
socket-related network job is placed in a queue, and the network task pro-
cesses that queue in a first-in-first-out fashion without any prioritization.
The single queue and network task may cause a potential latency increase
for time-sensitive packets due to the processing of time-insensitive tra"c
ahead in the queue, as illustrated in Figure 17.

The number of network stacks (and tasks) in VxWorks can be config-
ured [133]. A feature utilized by Johansson et al. as a foundation for pro-
cessing time-sensitive tra"c with a higher-priority network task [183]. An
application can direct outbound tra"c to di!erent network stack instances
and, consequently, di!erent network tasks by assigning the socket to a specific
stack instance using socket options.

Figure 18 shows two stack instances—one for high-priority time-sensitive
tra"c and one for best-e!ort tra"c. In this example, the high-priority net-
work stack serves RSTP, including the Ethernet Controller for the RSTP
link. The low-priority network task handles time-insensitive data. Note that
this configuration can be scaled to include additional tasks and priority levels.
Figure 18 serves as an example.

8.2. RSTP Experimental Implementation
To experimentally evaluate RSTP, we implemented an RSTP sender, an

RSTP receiver, and a prototype RSTP engineering tool that checks schedule
feasibility.

RSTP Engineering: The RSTP Engineering prototype is a Python
script that, given the periodicity, available bandwidth, BER, and state size
of the applications and the acceptable annual loss, provides the channel pa-
rameters and checks if the channels are schedulable. It provides output used
by the RSTP sender prototype, such as the utilization of the links.
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Figure 17: RSTP and other network-dependent applications using the default configured
VxWorks network stack. RSTP, multiple applications, and Ethernet Controllers (EC)
share one network stack and Network Task (NetTask).

RSTP Sender: The RSTP Sender is a simplified version of what is
depicted in Figure 13, with the main di!erences being in the bu!er and
security handling. The prototype does not implement double bu!ering or
a security handler. The applications in the evaluation prototype provide a
state data bu!er to be transmitted every period and measure the time until
RSTP indicates that the transfer is completed. The RSTP-PP data is sent
over UDP, with packets transmitted on one UDP port and acknowledgments
on another. VxWorks is configured according to Figure 18 to prioritize the
RSTP tra"c.

RSTP Receiver: The RSTP Receiver prototype is a simplified version of
the receiver depicted in Figure 14. The prototype omits the security handler
and bu!er management. The application is a placeholder that registers the
reception of new state data through a callback call upon state reception
completion from RSTP.
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Figure 18: Network-dependent applications using a customized VxWorks network stack
configuration with a High Priority (HP) network stack instance for handling RSTP tra!c
and a Low Priority (LP) network stack instance for best-e"ort time-insensitive tra!c.

8.3. RSTP Experimental Evaluation
We experimentally evaluate RSTP using two state transfer arrangements.

The first one uses the same state data size selection as we used to assess TCP
and SCTP in Section 6.4. The second arrangement is a multi-application sce-
nario that mimics a controller running multiple applications utilizing chan-
nels of varying sizes, periods, and deadlines, corresponding to the combina-
tions of applications with distinct periodicity and state sizes, as shown in
Table 20.

An application that consists of 100,000 variables, corresponding to 0.4
MB of state data, and a period of 100 milliseconds, is considered a rea-
sonably large application with a relatively short cycle time for the process
control domain [21, 184]. Moreover, controllers today o!er varying amounts
of memory for application usage; for example, a PM 891 from ABB o!ers
approximately 200 MB of memory available for applications [185], meaning
a controller can host many applications of the size mentioned above, a limit
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Table 20: RSTP evaluation configuration for multiple applications (and channels). Each
application runs in its own task, enabling concurrent RSTP use.

App. Period Retransmission Size Utilization

(ChId) (deadline) budget (of 1 Gbps)

1 10 ms 2 800 B 0.06%
2 20 ms 2 800 B 0.03%
3 50 ms 3 40 KB 0.64%
4 100 ms 3 400 KB 3.2%
5 100 ms 4 800 KB 6.4%
6 200 ms 4 1.6 MB 6.4%
7 500 ms 5 8.0 MB 12.8%
8 500 ms 5 8.0 MB 12.8%
9 500 ms 5 8.0 MB 12.8%
10 500 ms 5 8.0 MB 12.8%
11 1000 ms 5 8.0 MB 6.4%

Total size and utilization: 42.8 MB 74.3%

likely to increase with newer generation controllers.
Table 20 summarizes the concurrent multi-application simulation config-

uration, where each application runs as a separate task. Applications 1 and
2 have small data sizes (800 B) and short periods, representing a small ap-
plication or a heartbeat-based failure detection utilizing RSTP. Application
3 has a data size of 40 KB and a period of 50 milliseconds. Given, as stated
above, that an 400 KB application with a cycle time of 100 milliseconds is
considered large and fast, application 3 serves as smaller, but even faster ap-
plication [21, 184]. Application 4 and 5 have period of 100 milliseconds and a
size of 400 KB and 800 KB respectively, to serve as examples of fast and large
applications. Applications 6-11 are even larger, but with longer periods. We
believe that this selection serves as an example that pushes beyond typical
utilization, given the combination of fast and large concurrent applications.
Table 20 lists the complete configuration, which yields a payload utilization
of 74.3%.

We deliberately avoid going higher to spare some capacity for best-e!ort
tra"c as well as the protocol processing-induced transfer time overhead. In
a real deployment, time-sensitive RSTP tra"c would likely have precedence
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over best-e!ort tra"c by using a priority mechanism, such as Priority Code
Point (PCP) [183].

We ran the evaluation for one hour and collected the minimum, maxi-
mum, and average application state transfer times. In addition, every sec-
ond, a packet is dropped to simulate a very lossy link and utilize the recovery
mechanism. The following section, Section 8.4, presents the result.

8.4. RSTP Evaluation Results
Figure 19 shows the RSTP prototype performance under the same ar-

rangement previously used to evaluate TCP and SCTP, described in Sec-
tion 6.3. It provides an overview and displays the longest measured transfer
times, while Table 21 provides the more detailed measurements.

For the scenario without packet loss, transferring 1 MB (220 bytes), the
longest RSTP transfer time is 11 milliseconds, with an average transfer time
e!ectively at 10 milliseconds, compared to 9.2 milliseconds for TCP. In the
scenario with ten packet losses, the RSTP transfer time peaks at 16 millisec-
onds, whereas TCP’s worst-case transfer time occurs for 10 KB and measures
over five seconds.

Therefore, while RSTP’s overall throughput without packet losses is some-
what lower than TCP, RSTP recovers significantly faster when losses occur.
Additionally, RSTP was evaluated on a prototype implementation, whereas
the TCP implementation is a mature, production-level implementation that
is likely to be highly optimized. Hence, the throughput of RSTP can most
likely be improved with optimization e!orts.

Table 21: Transfer times (ms) with minimum, average, and maximum values under packet
loss scenarios.

Size
No Loss First pkt. lost Last pkt. lost 1 mid pkt. lost 5 mid pkts. lost 10 mid pkts. lost

Min Avg Max Min Avg Max Min Avg Max Min Avg Max Min Avg Max Min Avg Max

128 B 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 3.0
256 B 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 2.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
512 B 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
1 KB 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
2 KB 1.0 1.0 2.0 3.0 3.0 3.0 1.0 1.0 2.0 1.0 1.0 2.0 1.0 1.0 3.0 1.0 1.0 3.0
5 KB 1.0 1.0 2.0 3.0 4.1 5.0 1.0 1.0 2.0 1.0 1.0 1.0 1.0 1.0 5.0 1.0 1.0 5.0
10 KB 1.0 1.0 2.0 3.0 3.5 5.0 1.0 1.0 2.0 1.0 1.0 2.0 1.0 1.0 5.0 1.0 1.0 2.0
25 KB 1.0 1.0 1.0 3.0 3.4 5.0 1.0 1.0 1.0 2.0 2.4 4.0 3.0 3.9 7.0 2.0 4.0 7.0
50 KB 1.0 1.0 4.0 3.0 3.9 7.0 1.0 1.0 4.0 2.0 2.2 4.0 3.0 3.9 5.0 2.0 3.7 5.0
100 KB 2.0 2.0 4.0 4.0 5.0 5.0 2.0 2.0 2.0 4.0 4.0 6.0 5.0 5.0 7.0 2.0 5.1 7.0
250 KB 3.0 3.0 4.0 5.0 5.1 7.0 3.0 3.0 4.0 4.0 4.1 6.0 5.0 5.1 7.0 4.0 4.6 8.0
500 KB 5.0 5.0 6.0 7.0 7.1 9.0 5.0 5.0 6.0 6.0 6.0 8.0 7.0 7.1 9.0 6.0 7.4 9.0
1 MB 10.0 10.0 11.0 11.0 11.1 13.0 10.0 10.0 10.0 11.0 11.0 13.0 11.0 11.9 14.0 11.0 12.2 16.0
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Figure 19: RSTP max transfer times. First, last, and middle denote if the first, last, or
middle packets are lost.

Table 22 shows the results from the concurrent multiple-application RSTP
evaluation arrangement described in Table 20. Transfer times increase with
higher ChId, likely because channels are processed in ascending order of
ChId when deadlines are identical. Using ChId as a tiebreaker was deemed
su"cient for this proof-of-concept implementation; however, it is a potential
area for future work to investigate whether there are more suitable alterna-
tives. Alternatives that would reduce the increase in transfer time for higher
ChId.

Additionally, note that deadlines are met even under conditions of fre-
quent packet loss, as one packet per second was dropped during the one-hour
experimental run, causing all channels to experience packet loss.

8.5. Discussion of RSTP Results
Under no-loss scenarios, RSTP is not as performant as TCP with default

settings in terms of throughput; however, RSTP is more performant than the
recovery-optimized TCP. When comparing SCTP and RSTP under no-loss
conditions, the optimized version of SCTP outperforms the non-optimized
SCTP configuration. However, the optimized SCTP is still less performant
than RSTP for larger data sizes. For smaller data sizes without losses, both
SCTP and TCP are slightly faster than RSTP. Again, we believe this is due
to specific implementation details in the prototype, which could be mitigated
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Table 22: RSTP multiple applications evaluation result.

App. Period Size Min Avg Max

(ChId) (deadline)

1 10 ms 800 B 0.96 ms 1.16 ms 5.01 ms
2 20 ms 800 B 0.96 ms 2.02 ms 6.00 ms
3 50 ms 40 KB 0.96 ms 2.80 ms 15.99 ms
4 100 ms 400 KB 4.00 ms 10.59 ms 32.00 ms
5 100 ms 800 KB 7.97 ms 13.48 ms 34.03 ms
6 200 ms 1.6 MB 23.00 ms 32.37 ms 104.00 ms
7 500 ms 8.0 MB 77.98 ms 106.16 ms 157.01 ms
8 500 ms 8.0 MB 154.01 ms 213.69 ms 257.01 ms
9 500 ms 8.0 MB 216.98 ms 309.76 ms 363.01 ms
10 500 ms 8.0 MB 282.05 ms 403.81 ms 459.01 ms
11 1000 ms 8.0 MB 456.04 ms 922.46 ms 981.00 ms

with further optimizations. Such optimizations are reserved for future work.
The protocol is demonstrated to be performant, achieving 75% utilization
across multiple channels (and applications) under significant loss conditions,
as shown in the measurements in Table 22. Additionally, RSTP significantly
reduces the maximum transfer time under loss compared to TCP and SCTP.

Regarding multiple application evaluations, all deadlines were successfully
met, as shown in Table 22. However, we conducted the evaluation using
only one set of concurrent applications, which utilized roughly 75% of the
available bandwidth. For comparison, as shown in Table 15, TCP transfers
1 MB in 9.2 milliseconds under lossless conditions, corresponding to roughly
86% utilization of the 1 GB/s link.

The retransmission cost is twofold, since a retransmitted packet consumes
bandwidth and processing time. To push the RSTP limit even closer to
the theoretical maximum, the processing of transmission and retransmission
needs to be analyzed in greater depth, and optimizations applied to push the
utilization boundaries, thereby enabling tighter deadlines.

A transfer-reliability model (Section 7.2.4) estimates the probability of
state-transfer failure. The retransmission budget balances the trade-o! be-
tween failure probability and worst-case transfer time. With RSTP schedu-
lability checks plus the reliability model, engineers can verify at design time
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whether deadline and reliability targets are achievable. Future work is to
integrate this analysis into existing toolchains and present actionable and
guiding outputs to support engineering decisions.

In addition to the above-mentioned future work, future evaluations could
include additional application configurations under loss and no-loss condi-
tions. Comparative analyses against other protocols under multi-application
conditions, including security measures and measuring the associated over-
head in both lossless and lossy situations, are examples of relevant future
work.

9. Conclusion

In this work, we have explored checkpointing and state replication solu-
tions within both OT and IT contexts. In OT, we investigated checkpointing
solutions used in industrial controllers and Programmable Logic Controllers
(PLCs). In the IT context, we examined checkpointing solutions used within
container and orchestration environments. CRIU was identified as a com-
monly used solution for retrieving state data; however, we also observed that
none of the reviewed works specifically focused on transferring the retrieved
state data. The literature search and the outcome of that constitute the first
contribution.

The lack of literature detailing state transfer for redundancy purposes
motivated us to investigate suitable alternatives further. We defined a set of
desired features for a state transfer protocol that we used to evaluate existing
protocols against, identifying OPC UA Client/Server, running on top of TCP,
and SCTP as relevant candidates. The identification of features desired from
protocols used for state transfer, as well as the matching of existing protocol
properties against these desired features, constitutes the second contribution.

Considering that OPC UA Client/Server utilizes TCP as its underlying
transport protocol, we compared TCP and SCTP on VxWorks, a commonly
used real-time operating system, using state transfer simulation scenarios.
VxWorks allows for customization of TCP and SCTP internals, a feature
we used to optimize TCP and SCTP settings beyond the default settings.
The TCP configuration optimized for quick recovery in the event of losses
demonstrated strong performance but still su!ered from high transfer times
under specific loss scenarios. Additionally, optimization impacts all TCP
connections globally on the node. This evaluation, under lossy and no-loss
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scenarios, using optimized and default settings of TCP and SCTP, constitutes
the third contribution.

To the best of our knowledge, deduced from the findings mentioned above,
there exists no publicly available protocol targeting state transfer for indus-
trial controller redundancy. That finding motivated us to design a new pro-
tocol for that specific purpose, which we named the Reliable State Transfer
Protocol (RSTP), explicitly tailored to fulfill all desired features, includ-
ing security. RSTP incorporates a retransmission budget, a channel-based
concept, and a security handler. Each channel is assigned its own period,
deadline, and retransmission budget.

A scheduler manages packet transfers based on deadlines, prioritizing
packets with the earliest deadlines. Our evaluation demonstrated that RSTP
handles packet loss scenarios more e"ciently than TCP and SCTP, although
its throughput is somewhat lower than that of TCP. Moreover, we evalu-
ated RSTP under a multi-application scenario with high utilization (75%),
experiencing significant loss to stress recovery handling.

We attribute RSTP’s lower throughput compared to TCP to the current
lack of performance optimizations. Addressing these optimizations remains
part of our future work. Future work also includes more extensive evaluations
involving multiple application scenarios and the comprehensive integration
of security mechanisms, among other examples. RSTP and the experimental
evaluation constitute the fourth contribution.

In summary, research on state transfer for spatial redundancy is limited,
and existing protocols cover only subsets of the desired features. To close
these gaps, we introduced RSTP, a schedule-aware state-transfer protocol
that fulfills the desired features and, on VxWorks, shows lower worst-case
transfer times under loss than TCP/SCTP.
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