It is change, continuing change, inevitable change, that is the
dominant factor in society today.

No sensible decision can be made any longer without taking
into account not only the world as it is, but the world as it will be...

Isaac Asimov
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Abstract

Automation solutions are omnipresent in modern society as a part of the in-
frastructure that provides utility services such as water and power. At the core
of these systems is the controller, a specialized computer designed to operate
in harsh environments where unplanned downtime can be costly. High-quality
hardware, software, and spatial redundancy (i.e., hardware multiplication) are
commonly employed to mitigate disruptions.

Industrial control systems are evolving into more interconnected and inter-
operable architectures, marking a shift toward network-centric designs where
the network, rather than the controller, becomes the central part of the sys-
tem. Concepts traditionally associated with information technology, such as
edge and cloud computing, containerization, and orchestrators, are entering
the operational technology domain. New standards, such as OPC UA, with
its information model and communication protocols, are gaining traction to
facilitate interoperability.

This evolution presents redundancy challenges, such as adapting failure de-
tection and state transfer mechanisms needed by standby redundancy to a net-
work context, and opportunities, such as utilizing systems previously confined
to the information technology domain. This shift toward a network-centric
control system architecture is the overarching motivation for this thesis’s re-
visit of spatial redundancy.

Specifically, this thesis investigates orchestrator-aided failure recovery as
a complement to traditional redundancy. It also proposes a failure detection
mechanism that maintains consistent control during network partitioning be-
tween redundant controllers. The thesis also examines the behavior of OPC
UA PubSub in a standby redundancy context. It introduces a method for pro-
cessing priority based on information embedded in incoming network frames.
Additionally, the thesis proposes an architecture that enables the distribution
of redundancy-related state data. It also investigates checkpointing solutions
and communication protocols to identify a suitable mechanism for transferring
state data between redundant controllers.






Sammanfattning

Vart moderna samhdlle &r beroende av automationssystem for samhéllskritiska
tjinster som vatten och el. En nyckelkomponent i dessa system &r den indus-
triella kontrollern, en specialiserad dator for krivande miljoer dér driftstopp
kan vara kostsamma. Risken for driftstopp reduceras typiskt med hogkvalita-
tiv hardvara, mjukvara och redundansldsningar.

Teknikutvecklingen driver automationssystem mot mer sammankopplade
och nitverksorienterad arkitekturer, déar nitverket, snarare @n kontrollern, &r
systemets mittpunkt. Med denna fordandring gor koncept som traditionellt
forknippas med informationsteknik, sdsom molnbaserad tjinster och
orkestreringssystem, intag styrsystemssammanhang. I fotsparen av detta
skifte foljer ocksa nya standarder, som OPC UA med dess informationsmodell
och kommunikationsprotokoll, vars syfte dr att underlitta informationsutbyte
mellan styrsystemsprodukter fran olika tillverkare.

Ovanndmnda utveckling medfor redundansrelaterade utmaningar, som
att anpassa standby-redundans relaterade funktioner till en nitverksbaserad
kontext. Samtidigt uppstar nya mojligheter, till exempel att utnyttja teknik
som tidigare varit begrinsade till IT-system i automationssammahang. Skiftet
mot en nitverkscentrerad arkitektur for styrsystem utgdr den Overgripande
anledningen for avhandlingens nyintresse av redundanslosningar for
industriella kontrollrar.

Specifikt presenterar avhandlingen en utvirdering av automatisk reparation
med stod av orkestreringssystem som komplement till traditionell redundans.
Den foreslar dven en mekanism for felupptickt som uppritthaller konsistent
styrning vid nétverkspartitionering mellan redundanta kontrollrar. Vidare anal-
yserar avhandlingen OPC UA PubSub i standby-redundanssammanhang och
introducerar en metod for att hantera exekveringsprioritet baserat pa informa-
tion inbdddad i inkommande nitverkspaket. Avhandlingen foreslar ocksa en
arkitektur som mojliggor distribution av tillstdndsdata for redundans, samt un-
dersoker 16sningar for checkpointing och kommunikationsprotokoll i syfte att
identifiera och presentera en limplig mekanism for 6verforing av tillstandsdata
mellan redundanta kontrollrar.
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Chapter 1

Introduction

This thesis revisits spatial redundancy as a method for increasing fault tol-
erance in industrial control systems. The following sections introduce the do-
main of industrial controllers and the principles of fault-tolerant design through
redundancy. Readers who are already familiar with industrial controllers and
redundancy and primarily interested in this thesis contributions may skip di-
rectly to Section[I.4]

1.1 Industrial Controllers and Distributed Control
Systems

Industrial controllers are typically rugged, specialized computers designed for
long-term, continuous operation in potentially harsh environments [1]. As the
name implies, controllers monitor and control various operations, such as ma-
chines, production lines, or chemical processes. They are generic and capable
of supporting a wide range of automation tasks. This flexibility is achieved by
allowing the controller to execute applications specifically developed for the
intended automation solution. These applications are typically created by end
users or organizations with specialized domain knowledge. The execution of
an application on a controller generally follows three phases: (i) Copy-in, (ii)
Execute, and (iii) Copy-out, as shown in Figure [2, 3].

The Copy-in phase involves sampling the current state of the controlled
process, typically by reading values from Input/Output (I/O) devices connected
to sensors sensing the controlled operation. In the Execute phase, the applica-
tion processes these values to determine appropriate actions, including cal-
culating output values for the next phase, the Copy-out phase. During the
Copy-out phase, the controller sends these output values to I/O devices, such
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as actuators, which influence the controlled process. Figure [I.T]illustrates this
execution cycle.

s A
Sampleinput@ﬁ; »t.

Provide output
process values process values

Ol_)[ Copy-in | Execute }—»{ Copy-out ]—l

Figure 1.1: A simplified example of the typical, repetitive execution cycle
of an application running in a controller. The Copy-in phase sample process
values; the Execute phase uses these values in the control loop logic to deduce
the needed control actions. The actions are output values communicated in the
Copy-out phase.

This thesis focuses on challenges and opportunities primarily derived from
the Distributed Control Systems (DCSs) context, which are large-scale au-
tomation systems typically composed of multiple interconnected controllers
that exchange information. DCSs are used to automate entire sites, in contrast
to Programmable Logic Controllers (PLCs), which are generally used to auto-
mate individual machines or parts of machines. In this context, controllers are
commonly referred to as Distributed Control Nodes (DCNs), a term introduced
in the Open Process Automation™ Standard (O-PAS) [4].

The prevailing DCS architecture today is hierarchical, as illustrated in Fig-
ure [I.2] At the bottom of this hierarchy are the I/O and field devices that in-
teract with the physical world. The field devices communicate with the DCN
through I/O channels on the DCN itself or over fieldbuses. As the name im-
plies, a fieldbus allows the DCN to exchange data with devices located in the
"field," which can be geographically distant from the DCN. There exists a wide
variety of different fieldbuses based on varying underlying technologies. How-
ever, recent trends show increasing adoption of Ethernet-based fieldbuses, such
as PROFINET, over traditional non-Ethernet-based alternatives [5, 6].

The trend with increased use of Ethernet-based fieldbuses is part of a
broader shift in the automation industry toward more network-oriented systems
that offer increased flexibility, interconnectivity, and interoperability [7, 8]. O-
PAS envisions a network-centric architecture built on a unified network back-
bone called the O-PAS Connectivity Framework (OCF). Within this frame-
work, Operational Technology (OT) and Information Technology (IT) coexist
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Business
IT planning
Non real-time

Production
management
SCADA
oT
Real-time

Field devices (sensors actuators)

Figure 1.2: The automation pyramid.

on a shared Ethernet-based infrastructure, as illustrated in Figure [[.3] O-PAS
prescribes implementing OCF using Ethernet as the communication technol-
ogy and OPC UA (Open Platform Communications Unified Architecture) as
both the communication protocol and information model [4]. O-PAS also in-
troduces the Advanced Computing Platform (ACP) as a computationally com-
petent device that can run multiple Virtualized DCN (VDCN) instances, actu-
alizing the interest in virtualization technologies in the OT context.

D B
||

C O-PAS Connectivty Framework )

Figure 1.3: Collapsed automation pyramid illustrating a unified connectivity
backbone that integrates both OT and IT components.

This shift implies that the DCS domain transforms from a controller-
centric architecture to a network-centric architecture [8]. Specifically, and
somewhat simplified, this means that the network replaces the controller
as the system center, as shown in Figure [T.4] Time-Sensitive Networking
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Controller
Controller
—C 15 |
Fieldbus|' =
Data consumer Remote I/0 Data consumer
|:| 8 BlB @)
Remote I/0 === |:| A

| Switch

Devices Devices

(a) Controller-centric. (b) Network-centric.

Figure 1.4: Simplified overview of controller-centric and network-centric con-
trol systems.

(TSN) is a set of standard extensions to the IEEE 802.1Q Ethernet networking
standard. In combination with OPC UA, TSN is seen as an enabler of
converged networks and network-centric architectures, as TSN can provide
bounded low-latency communication [7].

The transformation from the hierarchical automation pyramid, shown in
Figure to the converged architecture depicted in Figure provides the
domain-induced motivation for this thesis. Motivated by this change, this the-
sis revisits fault tolerance with a focus on spatial DCN redundancy.

1.2 Fault Tolerance

DCSs are commonly used in domains where production stops are highly un-
desirable, including unplanned stops due to failures in the automation system.
Hence, control system dependability is crucial. Dependability is a broad term
comprising five attributes: (i) Reliability, (ii) Availability, (iii) Maintainability,
(iv) Integrity, and (v) Safety [9].

Reliability and availability are aspects of the likelihood that the system
is operational. Reliability refers to the probability of continuous operation,
whereas availability denotes the proportion of time the system is ready to per-
form as intended. Maintainability addresses the ability to maintain the sys-
tem and repair faults. Integrity focuses on reducing the probability of invalid
system states leading to faulty outputs. Finally, safety concerns lessen the
likelihood that a system failure causes harm when operating in a potentially
hazardous context.

This thesis primarily addresses fault tolerance to increase the likelihood
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of continuous operation, that is, reliability. A specific threat to reliability is
faults. Faults can lead to errors that cause the system to fail and become non-
operational. Hence, fault tolerance is a means to improve reliability. A fault-
tolerant system is a system that can operate in the presence of faults. Thus,
fault tolerance refers to a system’s ability to continue operating and perform-
ing its designated functions even in the presence of faults [10]. Several fault-
tolerance techniques exist, including error correction codes, temporal message
replication, and the method addressed by this thesis, hardware replication via
spatial redundancy [11].

1.2.1 Spatial Controller Redundancy

As mentioned, spatial redundancy is one form of redundancy among many.
Another form is information redundancy, i.e., the addition of information for
fault detection and correction purposes [11]. Temporal redundancy is yet an-
other, where, for example, a message is sent multiple times at different times,
increasing the probability of tolerance to transient faults.

In the context of control systems, spatial redundancy is typically real-
ized through hardware replication in a standby redundancy approach [12, 13].
Standby redundancy means that one controller acts as the active primary, pro-
viding output, while the secondary backup is ready to take over if the primary
fails. Figure [[.5] provides an overview of standby controller redundancy. The
primary controller provides output values to the controlled process, as shown
in Figure The primary continuously synchronizes the backup with the
latest state through checkpoint-aided state transfer; at the same time, it also
sends keep-alive signals, illustrated by the "Redundancy com." arrow in Fig-
ure [[.5a] The continuous keep-alive and state transfer allow the backup to
detect failures in the primary and resume operations with the latest state of
the primary, thereby continuing to drive the process, as shown in Figure [I.5b]
The transition from backup to the primary role due to a failure in the original
primary is commonly referred to as a failover.

1.3 Industrial Controller Redundancy in a Network-
Centric Context

A controller-centric architecture tightly couples 1/Os and devices with a spe-
cific controller. Therefore, in a redundant controller-centric controller pair,
both controllers must be able to access the I/0, which constrains the redundant
pair’s distribution, deployment, and connectivity [8].
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Redundant pair Redundant pair

(a) Both operational. (b) After failover.

Figure 1.5: Simplified standby controller redundancy overview. The primary
controller (P) is the active controller, providing output to control the process.
In the event of a primary failure, the backup (B) assumes the primary role and
begins to provide output.

As mentioned, the shift from a controller-centric architecture to a network-
centric architecture involves moving towards a flatter network structure, where
controllers, as well as the I/O and devices, are connected to the same network
backbone, as illustrated in Figure [1.3] and Figure [I.4b] The network-centric
architecture does not limit access to I/O and devices to a single controller, like
the controller-centric architecture shown in Figure [I.4a]

In a network-centric architecture, the I/O connects to the network instead
of directly to the controller, enabling more flexible controller deployment al-
ternatives. Ultimately, any node on the network that can meet the required
real-time requirements and execute a control application can act as a controller.

The transition from controller-centric to network-centric systems implies
that traditional fault tolerance methods, such as spatial standby redundancy,
need to adapt to the flexibility and opportunities of network-centric control
systems, as any two nodes on the network capable of running the control appli-
cation can form a redundant controller pair. However, this also means that re-
dundancy functionality cannot depend on specialized hardware, which would
limit the use of redundant controllers to nodes with such hardware. Instead,
redundancy functionality should rely only on standard Ethernet networking
functions to be hardware-agnostic.

The essence of this thesis is to revisit fault tolerance, with a specific focus
on spatial controller redundancy. This revisit is motivated by the aforemen-
tioned shift toward network-centric architectures, aiming to leverage the bene-
fits while addressing the challenges introduced by this architectural transition.
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1.4 Contribution and Outline

The overall motivation of this thesis is to explore opportunities and
address challenges associated with fault tolerance and spatial controller
redundancy, specifically arising from the transition from controller-centric to
network-centric architectures.

As previously mentioned, this transition has caused increased interest in
virtualized controllers. This thesis examines the use of orchestration and con-
tainerization within the context of spatial redundancy. The first contribution
is an evaluation of orchestration-based failure recovery as both a replacement
for, and complement to, traditional redundancy methods, resulting in a layered
redundancy approach.

As described in Section |1.2.1} a standby redundancy solution requires a
failure detection mechanism to determine if the primary controller has failed.
The second contribution of this thesis is a failure detection mechanism de-
signed to ensure consistent process control in cases of network partitioning
between redundant controllers.

OPC UA is the envisioned interoperability standard, and the third contri-
bution of this thesis is a study of OPC UA PubSub in a standby controller
redundancy context, focusing on the realization of seamless failover. Further,
a network-centric controller is likely to connect to a collapsed network that car-
ries both time-sensitive and best-effort traffic. Hence, a controller connected to
such a network can receive both types of traffic on the same network interface.
Examples of time-sensitive traffic include redundancy-related traffic, such as
keep-alive messages and state data. The fourth contribution of this thesis is a
method for assigning processing priority within a controller based on priority
information in the received traffic.

The fifth contribution introduces an approach that separates the backup role
from the direct responsibility of receiving all checkpointed state data, thereby
reducing the risk of overwhelming a controller acting as backup for multi-
ple primaries with such network traffic. Finally, the sixth contribution arises
from an investigation of existing checkpointing solutions and state data trans-
fer methods (including communication protocols), leading to the proposal and
evaluation of a solution specifically designed for state transfer between redun-
dant industrial controllers.

This thesis follows the two-part structure common to a collection of papers.
The first part, which is this part, provides an overview and general introduction.
Chapter [I] (this chapter) serves as the introduction to this thesis. Chapter [2]
provides a more detailed presentation of the domain, terminology, and relevant
concepts, including related work. Chapter [3|outlines the research challenges,
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states the research question, and describes the research process and methods
used. Chapter[d]discusses this thesis’s contributions, maps them to the research
question, and maps the contribution to the included publications, as well as
showing the relation to other publications not included in this thesis. Finally,
Chapter [5] concludes the first part with a summary and directions for future
work.

The second part of this thesis consists of the included publications.



Chapter 2

Background and Related Work

As described in the introduction, the motivation for revisiting redundancy in
this thesis originates from the evolution of control systems toward more in-
terconnected and network-oriented architectures [14]. Ethernet-based com-
munication enables this interconnection, which is leveraged by the OPC UA
standard to facilitate inter-vendor data exchange [5, 7].

2.1 Fault Tolerance

As the term fault tolerance suggests, it concerns a system’s resilience to faults.
It commonly refers to the ability of a system to continue functioning in the
presence of faults [10]. But what is a fault? To establish a common understand-
ing, this section revisits the taxonomy and concepts presented by AviZienis et
al. [9] and Nelson et al. [15].

The term "error" is commonly used, and in the context of fault tolerance, an
error refers to an incorrect internal state that results from the manifestation of
a fault. Furthermore, faults manifested as errors can result in externally visible
failures, such as a non-redundant controller failing and no longer providing
process control. Examples of faults include software bugs, permanently failing
hardware components, or transient message loss due to a bit flip from a single-
event upset altering an Ethernet frame passing through a network switch.

As implied in the previous paragraph, a fault can be either active or dor-
mant. An active fault is a fault that has caused an invalid system state (an
error), such as an undetected bit flip changing the value of a used variable or
a software bug. A dormant fault, on the other hand, is a fault that has not yet
caused an error, such as a software bug in an execution path that has not yet
been executed or an improper implementation of shared resources that only
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manifests under certain execution interleaving patterns. As a side note, one
of our works, not included in this thesis, addresses the possibility of detecting
such faults using Static Code Analysis (SCA) tools [16]. A fault that manifests
as an error can lead to a failure. A failure is a deviation from the expected
functionality. For example, a control application that fails to provide updated
values to the controlled process.

Spatial redundancy, involving hardware duplication, is a common fault-
tolerance method in the control system domain [17, 12]. As mentioned, this
thesis addresses various aspects of this fault tolerance method.

2.1.1 Redundancy

The following sections use controllers as illustrative examples, given the do-
main of this thesis. However, the concepts described generally apply to any
computing device facing similar needs. The type of redundancy this thesis ad-
dresses is spatial redundancy. Spatial redundancy comes in various forms, one
of which is Triple Modular Redundancy (TMR), often used in the aerospace
domain [18]. TMR consists of three active controllers producing outputs, with
a voting mechanism, i.e., the voter, selecting the majority output in case of
discrepancies. TMR is a specialization of N-modular redundancy, where NV
represents the number of active controllers. Typically, /V is an odd number so
the voter can form a majority decision in case of output differences from the
controllers.

In the context of industrial control systems, standby redundancy is the
more common redundancy pattern [12, 13]. Standby redundancy typically
means that the backup does not produce outputs used for control. Instead,
as the name implies, the backup is in standby mode. The degree of backup-
readiness varies from cold, warm, and hot [11]. Cold standby means having a
spare unit that can replace the failed one, i.e., a unit kept unpowered in storage.
Warm standby means that the backup is powered on and can assume the pri-
mary role in case of failure, but it does not execute all the functions associated
with the primary role. In hot standby, the backup also executes all functions as-
sociated with the primary role. The significant difference between the primary
and backup in hot standby is that only the primary provides output.

A standby redundancy solution requires two functions: (i) Failure Detec-
tion and (ii) State Replication [10, 19]. As the name might give way, failure
detection is a backup’s means to detect that the primary has failed. The state
replication, i.e., the checkpoint and state transfer mechanism, allows a backup
to recover from where the primary failed. The following sections elaborate on
these functions from the perspective of industrial controller redundancy.
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As mentioned, the reason for revisiting these functions is the transition
from controller-centric systems to network-centric systems [8]. This transi-
tion increases deployment alternatives by eliminating the dependency on des-
ignated, purpose-built redundancy links, which might be the case today [20,
21, 22], and instead utilizes standard Ethernet networking.

2.1.1.1 Failure Detection

In a standby redundancy configuration, failure detection is essential for a
backup to identify primary failure [10, 19]. Failure detection and diagnostics
are also crucial for preventing undetected system deterioration, such as an
unnoticed backup failure. This thesis primarily addresses the failure detection
of a primary from a backup.

As described in Section 2.1} a failure is the manifestation of a fault that
leads to an error and a deviation from the expected result, the actual failure [9].
The consequences of a failure can vary in terms of external observability. Typ-
ically, unless explicitly stated otherwise in this thesis, a fail-silent semantics is
assumed. Fail-silent semantics assume that the failed controller does not con-
tinue to provide output [23]. Another well-known failure model is Byzantine
faults, which can lead to Byzantine failures. Byzantine failures are charac-
terized by multifaceted behavior, which means, for example, that the system
could show correct and incorrect behaviors towards different parts of the sys-
tem at the same time [24]. The Byzantine failure model originates from the
seminal Byzantine general’s problem formulated by Lamport et al. [25].

Failure detection is distinguishing a functioning node, service, or compo-
nent from one that has crashed (failed). Failure detectors are commonly uti-
lized in distributed systems to identify which participants are operational [26].
In the theoretical realm of failure detectors, Chandra and Toueg introduced
the unreliable failure detector abstraction, categorized by its completeness and
accuracy properties, explained below [26]. Subsequently, Chandra, Hadzila-
cos, and Toueg prove that failure detectors belonging to the class ¢ W (eventual
weak) are the weakest mechanism for providing consensus in an asynchronous
distributed system [27]. An asynchronous system is one in which message
transmission and execution durations are unbounded [26].

As mentioned, Chandra et al. define two properties for failure detectors:
completeness and accuracy. Completeness defines the detection capability of
failure detectors. If all functioning failure detectors indicate every failed node
as failed, it fulfills the strong completeness property. If every crashed node
is detected by at least one functioning failure detector as failed, it meets the
criteria for weak completeness. A failure detector that always suspects all
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nodes can achieve strong completeness, regardless of whether the nodes have
failed or not. Therefore, a correctness property, called accuracy, is also needed.
Accuracy specifies the false-positive properties of failure detectors. A failure
detector with no false positives has strong accuracy. Fulfilling weak accu-
racy requires that there is at least one functioning node that is never falsely
suspected of being faulty. Failure detectors in the QW class achieve weak
completeness and, after some time, weak accuracy [27]. Achieving failure de-
tection with strong completeness and accuracy is impossible in asynchronous
systems [26, 28].

Control systems are typically real-time systems, meaning that not only
does the output need to be correct, but it also needs to be delivered at the
correct time to be accurate and useful. Distributed systems where message
delivery and execution occur within a known bounded time are called syn-
chronous systems [29]. Thus, real-time control systems generally fulfill the
synchronous system model’s properties of bounded execution and message de-
livery time. However, failure can happen, such as network failures, causing, for
example, controllers in a redundant pair to become isolated from one another.
In such scenarios, the message delivery time might no longer be bounded, at
least not to a known time. In other words, a control system meets the criteria of
a synchronous system during most of its operational time, but not necessarily
all the time. Hence, control systems generally fit the description of a partly
synchronous system model [30].

Message-based failure detection divides into two approaches: push-based
or pull-based [30, 28]. The pull-based approach involves a "are you alive"
query from the supervising failure detector to the supervised, which responds
with an answer. The absence of an answer is interpreted as a failure. On
the other hand, the push-based approach involves the supervised continuous
sending of heartbeat messages to the supervising failure detector. Again, the
absence of heartbeats is interpreted as a failure of the supervised. The liter-
ature describes numerous failure detection algorithms; the following are just
a few examples. Dwork et al. [30] propose a pull-based algorithm for par-
tially synchronous systems that adapts to potentially unknown but bounded
message transfer times. Other examples include utilizing application message
exchanges as a complement to heartbeats to reduce network load [31], prob-
abilistic approaches [32], and Quality of Service (QoS) properties for failure
detectors [33].

Failure detection implicitly performs a redundancy role selection when
there is only one backup, as the sole backup should assume the primary role
upon primary failure. If multiple backup candidates are available, an election
mechanism can complement failure detection to assign the primary role to an
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appropriate candidate. This scenario is commonly known as the leader elec-
tion problem in the context of distributed systems, with the Bully algorithm
being one of the most well-known examples [34]. Failure detection and leader
election can be integrated to provide a redundancy role selection mechanism
suitable for a DCN context, a topic we explored in related work [35].

This thesis addresses failure detection suitable for controller redundancy,
aiming to ensure that only one of the controllers in the redundant pair is pri-
mary, even in the event of network partitioning. In other words, a failure de-
tection that prioritizes consistency over availability, a choice that distributed
systems, including a controller redundancy pair, must make when faced with
partitioning according to the Consistency, Availability, and Partition tolerance
(CAP) theorem [36]. Requiring a majority from a quorum, often implemented
through consensus protocols, is a common consistency strategy tolerant to net-
work partitioning, as described further in Section 2.1.1.2] A partition that is
unable to form a majority is prevented from performing operations that might
risk the consistency. Witness solutions that utilize a network accessible entity,
such as the cloud or a shared disk, are employed in IT services like Windows
Failover Cluster to break ties between equally sized partitions [37]. Emerson’s
DCS Delta V serves as an SCADA level example of Windows Failover Cluster
usage (and thereby witness use) in DCS context [38].

The failure detection method proposed in this thesis addresses failure de-
tection under network faults between a redundant controller pair, resulting in
equally sized partitions. The proposed solution leverages existing network
equipment as a tiebreaker to determine the primary role, thereby eliminating
the need to introduce an additional witness node. The proposed failure detec-
tor prioritizes consistency over availability. Similarly, in terms of the failure-
detection properties proposed by Chandra et al., it prioritizes accuracy over
completeness [36, 26].

In related but separate work, we investigate the use of the Media Redun-
dancy Protocol (MRP) to distinguish between controller failures and network
failures within bounded time constraints by utilizing MRP’s periodic super-
vision messages [39]. Dorsch et al. employ Bidirectional Forward Detec-
tion (BFD) within Software Defined Networking (SDN) to achieve rapid link-
failure detection within smart-grid contexts [40]. BFD, defined by the Internet
Engineering Task Force (IETF) in Request For Comments (RFC) 5880, sup-
ports configurable supervision intervals (link heartbeat periods), with Dorsch
etal. setting it as short as one millisecond [40, 41]. Utilizing MRP or BFD with
short supervision intervals could facilitate low-latency tie-breaking through the
failure detection proposed in this thesis, though this remains a topic for future
research.



16 2.1. Fault Tolerance

While on the topic of potential future research in the context of
related failure-detection mechanisms, in another related but separate
publication, we present an initial exploration into designing a network
switch-hosted tie-breaker (witness) mechanism for high-integrity controllers
in safety-critical applications [42]. Additionally, inspired by the failure
detection proposed in this thesis, we have conducted model checking to verify
the proposed algorithm’s properties [43]. In the same work, we present a
leasing-based variant based on the same algorithm. Future research could
build upon the work in [42] and explore the feasibility of incorporating a
high-integrity version of the lease-based variant in network switches.

2.1.1.2 State Replication

State replication is the second function needed to realize standby
redundancy [10]. The method of synchronizing redundant instances, often
referred to as replicas in a distributed system context, can vary. One approach
is to use a deterministic Replicated State Machine (RSM) and replicate the
events driving the state transitions; this is called active replication [44].
Employing consensus protocols like Paxos [45, 46, 47], RAFT [48], or
Viewstamped Replication (VSR) [49, 50] ensures that the RSM receives
events in the same order. To the best of the author’s knowledge, active
replication based on consensus protocol-driven event replication is not used to
synchronize redundant industrial controllers.

Consensus protocols are more commonly used in IT contexts, where one
well-known example is etcd, a distributed key-value storage system that uti-
lizes Raft for replication [S1, 52]. As further described in Section [2.2] Kuber-
netes is one of the most well-known container orchestration systems, and Ku-
bernetes uses etcd for replication of, for example, configuration-related data,
etc. [53]. However, etcd is designed for replicating key-value pairs, not for
continuous synchronization of whole application states (bulk data), such as the
internal state of a control application. Moreover, as Hark et al. note, cost-
constrained smaller industrial system installations may only have two nodes,
which makes quorum-based solutions, such as etcd, challenging in this con-
text [54]. They address this challenge by evaluating alternative deployment
strategies and exploring substitutes for etcd within Kubernetes.

Passive replication is the alternative to active replication [44]. Passive
replication is more common in standby redundancy [12]. Checkpointing, the
collection of internal states, is fundamental in passive replication [55]. The
primary system transfers its internal, checkpointed states to the backup. The
backup uses these states to assume the primary role, preventing historical or
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outdated output from reaching the controlled process [17]. In other words, this
approach allows the backup to take over the primary role with the most re-
cent state used to provide an output, i.e., to make a seamless failover from the
perspective of the controlled process [3].

The Very-Low Overhead Checkpointing System (VeloC) and Fault Toler-
ance Interface (FTI) are two libraries providing checkpointing solutions for
fault tolerance in high-performance computing [56, 57]. Checkpoint and Re-
store In Userspace (CRIU) is a Linux utility designed explicitly for check-
pointing application data to files [58]. In the realm of redundant industrial
controllers, vendors typically employ proprietary methods for checkpointing
and transferring controller application states between redundant controllers.
Stattelmann et al., evaluate various compiler-aided checkpointing strategies
for industrial controllers [3].

In the era of network-centric control systems, cloud or edge-hosted
controllers are emerging as viable alternatives [13, 59]. The edge can be a
computationally competent device located at the edge of the network, still
on-premises and not as geographically distant as cloud-based computational
power provided by a remote data center [60]. This emergence brings
flexible deployment patterns, where computationally powerful edge devices,
like the O-PAS described ACP, could potentially replace many traditional
controllers [61, 62]. Hence, one could imagine cost-effective redundancy
deployments where a computationally competent device serves as a backup
for more than one primary.

This thesis revisits the concept of associating the backup with state storage
and proposes an alternative that utilizes storage offered by other controllers or
nodes in the network. The motivation is to reduce the risk that a sole backup
gets congested with state replication data. Furthermore, this thesis investigates
checkpointing solutions employed in industrial and virtualized environments,
with a focus on the protocol used for transferring state data. Based on the result
of the protocol and checkpointing investigation, this thesis presents a solution
designed for transferring state data between a primary and backup controller
in a redundancy context.

2.2  Orchestration

Elasticity is one of the desirable properties of cloud-provided services and can
be simplified as the ability to adjust to change [63]. This ability includes cop-
ing with faults, which lies in the interest of thesis. But what provides this
elasticity? One part of the answer to that question is virtualization, and an-
other part of the answer is the management of the virtual instances, further
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elaborated below [64].

Virtualization is a key ingredient in cloud elasticity since virtualization iso-
lates and abstracts the underlying server farm hardware from the utilizing soft-
ware, allowing, for example, multiple and mixed operating systems to share
the same hardware while remaining isolated from each other in Virtual Ma-
chines (VM) [65]. The number of VMs can be scaled up and down to match
the need more easily than physical machines.

Containers offer another, OS-based and more lightweight, form of virtu-
alization than VMs [66]. Containers introduce negligible overhead [67] and
have, for almost a decade, been considered a promising technology for virtual-
ization of industrial applications with real-time requirements [68]. A percep-
tion shared by Struhdr et al. in their survey on real-time containers applicabil-
ity [69].

Virtualization alone does not provide the elasticity mentioned above. Man-
agement of the virtual instances, such as containers, is also necessary, and this
is where orchestration comes into play. Container orchestration concerns au-
tomated management, deployment, scaling, and failure handling of container
instances [66]. The main interest of this thesis is the failure handling mecha-
nisms provided by orchestrators and the applicability of those in the context of
controller redundancy.

One of the most well-known container orchestration and management sys-
tems is Kubernetes [53]. Kubernetes consists of a control plane containing the
logic for monitoring the compute node cluster and driving it toward the desired
state. A similar architecture was proposed by Goldschmidt et al. for control
systems and flexible controllers running containerized applications [70].

As one can read between the lines in Section[2.1.1.2] a controller, or DCN,
is stateful, and this applies to a VDCN as well. Stateful means that the output
depends on the input and the current internal state. Schmidt et al. introduced a
Kubernetes operator for checkpointing and measured the failure recovery time
of stateful applications to be around ten seconds [71]. This duration is too long
to serve as a controller redundancy replacement, where recovery times ranging
from ten to hundreds of milliseconds are required, depending on the domain
and automation solution [72, 13]. Kampa et al. investigated the use of Remote
Direct Memory Access (RDMA) as a state transfer mechanism for redundant,
virtualized controllers [62]. RDMA over Converged Ethernet (RoCE), as the
name implies, is RDMA over Ethernet [73]. Koziolek et al. introduce a Ku-
bernetes extension (operator) for state transfer using OPC UA Client/Server,
a state transfer used when upgrading the controller application of virtual con-
troller [74, 75].

This thesis evaluates Kubernetes failure recovery mechanisms, similar to
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the work by Schmidt et al. [71] but with the difference that the work in this the-
sis targets real-time VDCN. In addition, the evaluation includes the recovery
time of both single and redundant VDCNs. The work presented in this the-
sis demonstrates that combining VDCN redundancy with Kubernetes failure
recovery provides a layered redundancy, thereby reducing redundancy deteri-
oration in the event of failure.

2.3 Processing of Network Traffic

The processing of network traffic is not a redundancy or fault tolerance topic
per se. However, the state transfer and failure detection functionality mandated
by standby redundancy utilizes the network [10, 19, 76]. Hence, network traf-
fic processing is a cornerstone in realizing spatial standby redundancy using
the network.

On a converged network where OT-traffic coexists with IT-traffic, the
best-effort IT communication shall not prevent bounded delivery time
of OT messages with real-time requirements [77]. TSN provides means
to ensure that time-critical traffic retains its real-time properties even on
converged networks [7]. TSN Scheduled Traffic (TSN-ST), i.e., IEEE
802.1Qbv, prescribes the use of time-aware gates in network switches to
ensure that frames can be scheduled end-to-end without facing unacceptable
queue-induced latency [78]. However, building a schedule that fulfills
the latency requirements of all involved communicators is challenging
and remains one of the primary TSN challenges [79], although promising
scheduling heuristics do exist [80]. The adoption of TSN in automation
solutions is still scarce, and interfacing with brownfield systems are likely
necessary [1, 79].

Industrial controllers connected to converged networks send and receive
traffic with different real-time requirements (e.g., priority, deadline, etc.). If
not properly managed, traffic processing degrades the timing behavior of ap-
plication tasks on the controller, potentially leading to deadline misses [81].
Therefore, different types of traffic may need different processing priorities in
the controller, a challenge that has received limited attention [77]. This issue is
becoming even more relevant in the era of VDCNs in containerized contexts,
where multiple VDCNs can share and compete for the same resources. VD-
CNs can share both the physical network infrastructure and virtual networks,
which can have different performance implications depending on the imple-
mentation [82]. Garbugli et al. present Kubernetes support to enable low-
latency access to underlying TSN networks for virtualized controllers [83].
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In a non-virtualized context, Behnke et al. propose a multi-queue Network
Interface Card (NIC) that assigns incoming Ethernet frames to different queues
based on metadata [84]. In subsequent work, Behnke et al. implement early de-
multiplexing of incoming Ethernet frames in the Network Interface Controller
(NIC) driver. Demultiplexing into queues served by a single network task. The
network task’s priority is adjusted dynamically based on the received frames’
priority [85].

This thesis presents a mechanism that utilizes widely available NIC fea-
tures to direct incoming Ethernet frames to different queues based on priority
indicating values in the received frames. Network tasks with different priori-
ties (higher and lower) serve the queues. Compared to the approaches above,
this solution works with Commercial Off-The-Shelf (COTS) NICs and does
not require TSN amendments.

24 OPCUA

OPC UA is a comprehensive specification that, for example, encompasses in-
formation models and communication protocol specifications, first released in
2008 by the OPC Foundation, which was founded in 1997 [86]. Originally,
OPC stood for OLE for Process Control, referring to Microsoft’s Object Link-
ing and Embedding; today, OPC stands for Open Platform Communication,
and UA stands for Unified Architecture. IEC 62541 standardizes OPC UA.

The OPC UA specification consists of multiple parts, covering areas such
as information modeling, services, alarm handling, safety, and security [87].
Part 14, PubSub, describes a publisher-subscriber communication pattern, with
or without a central broker. The broker-less variant relies on the network in-
frastructure to handle the message brokering using multicast [88]. Broker-less
PubSub is the communication method prescribed by OPC UA for real-time
cyclic process value exchange between controller, I/0, and devices.

Today, there are many Ethernet-based and non-Ethernet-based alternatives
for field communication between controllers and remote I/O and devices [5].
These fieldbuses often require a gateway (or similar) for interprotocol/inter-
fieldbus data exchange. The OPC Foundation released the OPC UA Field eX-
change (UAFX) specification to address these incompatibility challenges and
further enhance field communication interoperability in 2022 [89].

The real-time properties of OPC UA PubSub in combination with TSN
have been demonstrated, with the work by Griiner et al. serving as one exam-
ple [90]. However, research on fault tolerance, particularly spatial redundancy
in OPC UA PubSub end nodes, is limited. Neumann et al. examine the require-
ments for a real-time capable OPC UA PubSub device but do not address fault
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tolerance [91]. Cupek et al. explore fault tolerance and spatial redundancy in
an OPC UA Client-Server context, but not for PubSub [92].

In fact, at the time of writing, no prior work has been found that addresses
OPC UA PubSub in combination with a spatial standby redundancy solution.
This thesis contributes by addressing failover behavior in controllers and de-
vices using broker-less OPC UA PubSub.






Chapter 3

Research Overview

3.1 Motivation and Challenges

The work presented in this thesis is the result of a close collaboration between
industry and academia, with the author having been an industrial practitioner
for nearly two decades. For most of that time, the author has been involved
in the development of the embedded-system products that constitute the core
of DCSs, namely controllers, 1/Os, and communication interfaces providing
fieldbus connectivity. Products that can be deployed in spatial redundancy
settings to avoid single-point-of-failures [22, 93, 94]. Hence, redundancy has
been a part of the author’s everyday work life for quite some time, motivating
the author’s interest in revisiting the topic.

From a non-personal perspective, the motivation for this thesis is the archi-
tectural transformation and technology shift described in the earlier chapters.
A change that motivates a revisit of standby redundancy-related functions, for
the functionality to stay relevant in a new architectural context where previ-
ously non-existent technology, or technology reserved for the IT domain, is
utilizable in the OT domain. This thesis addresses four challenges (Chl.), elab-
orated below, motivated by the architectural transformation and technology
shift described above.

Chl. 1: Orchestration and Failure Recovery. Industrial controller systems in-
creasingly use Ethernet rather than OT-specialized fieldbuses [8, 6]. Less
use of OT-specialized fieldbus hardware allows flexible deployment with
the use of container virtualization and orchestrators [68, 70, 71]. Or-
chestration frameworks like Kubernetes offer automated failure recov-
ery mechanisms [53]. In future industrial systems, orchestrators may
aid the controller management by, for example, deploying services and

23
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3.1. Motivation and Challenges

Chl. 2:

Chl. 3:

Chl. 4:

applications on the controllers to match the needs of the automation so-
lution. Introducing orchestrators in the OT domain brings many chal-
lenges. This thesis addresses a challenge related to fault-tolerance and
redundancy, namely to learn how orchestrator-level and controller-level
failure recovery mechanisms can complement each other.

Failure Detection and Network Partitioning. As industrial systems
move away from specialized fieldbuses toward Ethernet-based network-
centric architectures, the standby redundancy functions, i.e., state repli-
cation and failure detection, should preferably only rely on the same
Ethernet-based communication means, to not decrease deployment al-
ternatives [76, 6]. As described in Section [2.1.1.1] message-based fail-
ure detection methods commonly assume failure of the supervised, i.e.,
the primary controller in our redundancy use case, from the absence of
supervision messages. However, such an absence may also result from
a network failure, causing a partitioning rather than a controller failure.
This duality in the underlying reason for message absence introduces a
research challenge related to ensuring a deterministic and consistent sys-
tem behavior even in a network partitioning scenario between redundant
controllers.

OPC UA PubSub and Spatial Redundancy. As discussed in Sec-
tion 2.4 OPC UA is receiving attention as the future interoperability
standard for DCSs. While the OPC UA specifications define varying
levels of service redundancy for Client/Server communications [95],
they provide no redundancy guidance for PubSub communication [88].
The above is the motivation for the research challenge related to under-
standing the behavior, identifying potential shortcomings, and mitigat-
ing those for OPC UA PubSub in spatial redundancy scenarios, partic-
ularly regarding how publishers and subscribers interact under failover
scenarios.

Checkpointing and State Transfer. Besides failure detection, state
replication is essential for standby redundancy [10]. As discussed in
Section this typically involves checkpointing (capturing inter-
nal states) and state transfer (sending these states to backup controllers).
The shift toward network-centric architectures with hardware-agnostic
redundancy mechanisms motivates revisiting existing checkpointing and
state transfer techniques [76]. Hence, the transition motivates the fol-
lowing research challenge, addressed in this thesis: investigating exist-
ing checkpointing and state transfer mechanisms from OT and IT con-
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texts to consider their applicability for industrial controller redundancy,
including adapting and developing solutions for state transfer over Eth-
ernet networks.

The above-mentioned research challenges can fill many theses and, by that,
keep multiple PhD students busy for several years. In other words, they are
comprehensive. The following section uses them as a motivation and founda-
tion for the research goal and research questions addressed in this thesis.

3.2 Research Goal and Research Questions

Section [3.1] provides the motivation and challenges this thesis addresses.
The motivation and challenges that led us to the following overarching
research goal for this thesis: ''"To explore the challenges and opportunities
for achieving fault-tolerance through spatial redundancy in industrial
control systems transitioning to network-centric architectures."

The overarching research goal, along with the challenges outlined by Chl.
1 - Chl. 4 in Section [3.1] are distilled into more precise research questions,
listed below.

RQ 1: How can container orchestrators complement or replace redun-

dancy mechanisms in industrial controllers for fault-tolerance
purposes?
Motivation: This research question addresses Chl. 1. Containers and
orchestrators have long been vital technologies in cloud computing, but
have not been widely adopted in the OT domain [68, 96]. With the
convergence of IT and OT and industrial control systems becoming
increasingly network-centric, these technologies now appear to be
viable options in the OT domain [70, 74, 62]. Orchestrators like
Kubernetes include fault-tolerance capabilities [53]. Exploring how
orchestrators can complement or potentially replace traditional standby
redundancy mechanisms in industrial controllers is needed to feasibly
leverage this technology’s benefits in industrial environments, for
fault-tolerance purposes.

RQ 2: How can failure detection mechanisms, suitable for redundant
industrial controllers, distinguish controller failures from network
partitions to maintain consistent control in a spatially redundant
setup?

Motivation: This research question addresses Chl. 2. Network-centric
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3.2. Research Goal and Research Questions

RQ 3:

RQ 4:

RQ 5:

controllers preferably utilize standard Ethernet-based networks
for redundancy functions, such as state replication and failure
detection [76]. However, network partitioning can prevent
communication between redundant controllers, potentially causing
both partitions to simultaneously have the primary role if conventional
failure detection mechanisms are used. According to the CAP theorem,
see Section [2.1.1.1] such partitioning scenarios leading to multiple
primary controllers correspond to preserving availability but sacrificing
consistency [97]. Sacrificing consistency by allowing two or more
active primaries within the same redundant controller set is often
undesirable in industrial contexts [21].

How can a spatially redundant OPC UA PubSub backup controller
or device take over as primary during failover without disrupting
communication with interdependent PubSub nodes?

Motivation: This research question addresses Chl. 3. OPC UA PubSub
aspires to become the interoperability standard, as well as the field ex-
change protocol of the future [87, 89, 98]. In critical domains where
downtime is highly undesirable, OPC UA PubSub is expected to be
deployed in spatially redundant setups to facilitate communication be-
tween redundant controllers and devices. This question aims to investi-
gate the behavior of OPC UA PubSub in a standby redundancy context,
focusing on failure recovery when the primary controller or device fails
and the backup assumes the primary role.

How can processing of time-sensitive network traffic be prioritized
over best-effort traffic on industrial controllers?

Motivation: This research question indirectly addresses all the research
challenges, since they are network-dependent. However, the question is
mostly related to Chl. 2 and Chl. 4. Failure detection and state transfer
yield time-sensitive traffic that requires suitable processing prioritiza-
tion to avoid undesirable latency. A controller connected to a converged
network is likely to receive and produce network traffic with varying lev-
els of time sensitivity [81, 77]. For example, failure detection heartbeat
messages are highly time-sensitive, whereas log file retrieval is less so.
This question addresses how traffic can be assigned processing priority
corresponding to the message’s time sensitivity.

How can a distributed architecture for state storage be designed
to reduce bottlenecks in deployments where a single backup serves
multiple primary controllers?
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Motivation: This research question primarily addresses Chl. 4, but it
also relates to Chl. 1. Controller redundancy in a network-centric con-
text is not necessarily limited to one backup per primary. Instead, a com-
putationally powerful edge device could serve as a backup for multiple
controllers [13]. Or, in an orchestrator-managed cluster of controllers,
one controller could potentially act as the backup for multiple primaries.
Once that controller becomes the primary, the orchestrator could desig-
nate the backup role to another suitable node in the cluster. However, in
such cases, this single backup would receive aggregated state replication
traffic from all the primaries it supports, thereby increasing the risk of
network bottlenecks.

RQ 6: How can checkpointed internal state data be transferred reliably,

securely, and with bounded transfer times between redundant con-
trollers running multiple applications?
Motivation: This research question addresses Chl. 4. As previously
mentioned in Section [2.1.1.2] a controller and its applications are state-
ful; hence, for a backup to resume the operation of a failed primary, the
backup needs continuous updates of the primary’s internal states. Mo-
tivated by the previously mentioned entrance of IT into the OT context,
one of the overall purposes of this question is to learn from checkpoint-
ing solutions in the IT domain. From that, the goal is to find a solution
for state transfer that enables time-bounded, secure, and reliable state
data transfer from the primary to the backup controller.

3.3 Research Process

Figure [3.1] illustrates the research process used for all the included publica-
tions. This process follows the Design Science Research Process (DSRP)
methodology [99]. We have grouped this process into three main steps: (i)
formulating a research challenge, (ii) prototyping, experimenting, and evaluat-
ing, and (iii) publishing, as shown in Figure 3.1]

The process begins by identifying a research challenge that stems from
an industrial problem, typically raised by the development organization of the
industrial partner. Once a challenge or problem is identified, a literature review
is conducted to learn the state-of-the-art and state-of-practice. If an existing
solution is found in the literature, the problem identification is revisited and
revised, or a new problem is addressed. If no existing solution is found, the
scouting for knowledge to formulate a path to a solution begins. This path
typically includes steps like providing a design or an algorithm, followed by
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developing a prototype used for experimentation and evaluation against the
solution’s objective.

Form a research challenge Prototype, experiment, and evaluate
0\
. L ~ Design &
Problem identification development

& motivation

ﬁ—/ Evaluation

~

Objectives of a
solution

Demonstration

@@

Publish

Communication

Figure 3.1: Illustration of the Design Science Research Process (DSRP) ap-
plied in this thesis, as outlined by Peffers et al. [99].

The research presented in this thesis is primarily experimental, addressing
identified problems with algorithms and prototypes used in experiments. The
ambition has been to design pragmatic experiments, making them feasible to
perform yet realistic enough to provide reasonable confidence in evaluating the
demonstrated properties and capabilities. Given the nature of research, knowl-
edge gained in later steps might necessitate revisiting earlier steps. However,
eventually, the process reaches a point where newly gained knowledge can be
communicated.

Communication involves publishing. Since most of the work in this the-
sis is industry-oriented, most publications are published at conferences with
a strong industry presence, such as Emerging Technology and Factory Au-
tomation (ETFA). The process restarts with a new problem after completing a
publication, possibly inspired by the recent publication.

The above is the overall description of the research process followed; the
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following subsection describes how each included publication aligns with the
process.

3.3.1 DSRP Alignment - Publication A

Problem identification and motivation. The problem addressed in paper A
originates from Chl. 1, addresses RQ 1, and is motivated by the industry’s
need to understand how an orchestrator can complement controller redun-
dancy. A search for related literature that addresses the problem was conducted
as part of this step.

Objectives of a solution. From the problem, we deduced a quantitative
objective: to determine the reparation time of failed controllers, redundant
and non-redundant, when managed by an orchestrator. Reparation time was
defined as the duration during which the virtualized controller, the VDCN, is
unavailable to external devices that depend on communication with the cluster-
hosted VDCN. A repaired VDCN should also resume with its latest state. A
second design objective was to understand how to deploy a virtualized indus-
trial controller in a bare-metal cluster, which is a prerequisite for achieving the
first objective.

Design and development. A prototype of orchestrated industrial
controllers was designed and developed. The prototype utilized OPC
UA-based communication, using both Client/Server and PubSub to support
different communication models. The inclusion of OPC UA communication
enabled external devices to measure the VDCN downtime and thereby
recovery time.

Demonstration. To measure recovery time, a single and redundant
configured VDCN was deployed on the designed and developed Kubernetes-
managed bare-metal cluster. Failures were introduced by automatically and
randomly rebooting the nodes hosting the primary and single VDCN.

Evaluation. The evaluation involved measuring the time required to re-
store communication with the VDCN, as well as verifying whether the VDCN
resumed operation with its latest state without issues.

Communication. The results are described in publication A and presented
at a conference, see Section 4.3

3.3.2 DSRP Alignment - Publication B

Problem identification and motivation. The problem addressed in paper B
originates from Chl. 2 and addresses RQ 2, specifically, it comes from the in-
dustry’s need to ensure well-defined behavior even in the presence of network
partitioning that isolates the redundant controllers from each other.
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Objectives of a solution. The objective, deduced from the problem, is to
present a failure detection mechanism suitable for industrial controller redun-
dancy that, to a higher degree than conventional failure detection, distinguishes
between an islanding situation and a primary failure. The solution should pri-
oritize consistency to preserve deterministic external behavior when making
the CAP theorem-enforced tradeoff between consistency and availability in
case of partitioning [97].

Design and development. Two artifacts were developed: (i) a failure-
detection algorithm, and (ii) a proof-of-concept prototype realization of the
developed algorithm.

Demonstration. The prototype was deployed on two computers connected
via a redundant network to simulate a redundant controller pair. The controller
pair was connected to simulated I/O, which both received values from and sent
values to the controller pair.

Evaluation. The prototype was compared against conventional failure de-
tection under various network failure scenarios. The behavior of the redundant
controller pair towards the simulated I/O was analyzed and compared.

Communication. The results are described in publication B and presented
at a conference, see Section

3.3.3 DSRP Alignment - Publication C

Problem identification and motivation. The problem addressed in paper C
originates from Chl. 3 and addresses RQ 3, specifically, how a redundant
OPC UA PubSub using controller (or device) can failover without disrupting
the OPC UA PubSub communication. As mentioned earlier, see Section [2.4]
OPC UA PubSub is a candidate for future field communication and needs to
operate in spatially redundant settings. The work began as an investigation of
OPC UA PubSub during failover in spatial redundancy configurations, where
potential issues were identified related to the failover not being seamless.
Objectives of a solution. The solution’s objective is straightforward: to
ensure bumpless failover of redundant controllers and devices using OPC UA
PubSub. The second, equally important, objective is to preserve standard com-
pliance. Alternative solutions are discussed.
Design and development. A standard-compliant solution was identified,
and a prototype design evaluating that solution was described and developed.
Demonstration. The prototype was deployed and tested in simulated
failover scenarios, where publishers provided updated values to subscribers.
Evaluation. The prototype solution to the identified problem was com-
pared to OPC UA PubSub implementations that did not include the prototype
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solution.
Communication. The results are described in publication C and presented
at a conference, see Section 4.3]

3.3.4 DSRP Alignment - Publication D

Problem identification and motivation. The problem addressed in paper D
originates mainly from Chl. 2 and Chl. 4, and it addresses RQ 4. Given the
network dependency of a network-centric controller, processing network traf-
fic becomes a central function. Additionally, when time-sensitive redundancy
functions such as state replication and failure detection rely on the network,
ensuring suitable processing priority of traffic is essential.

Objectives of a solution. The objective of the solution, deduced from
the problem, is to differentiate the processing priority given to time-sensitive
traffic and best-effort traffic to reduce latency potential induced by best-effort
traffic on the time-sensitive traffic. Furthermore, processing best-effort traffic
with high priority could lead to best-effort traffic-induced latency on high-
priority tasks, an effect that the solution should reduce.

Design and development. A design is presented where a commonly avail-
able mechanism in standard Ethernet controllers is used to direct traffic to
different threads based on priority-indicating values in the received Ethernet
frame. The design is implemented and realized on VxWorks, a commonly
used real-time OS in industrial contexts [100].

Demonstration. A prototype was deployed and tested under different traf-
fic combinations, in conjunction with tasks of varying priorities and execution
time, emulating the execution of control applications.

Evaluation. The prototype, which includes differentiation of traffic pro-
cessing based on priority levels indicated in the received Ethernet frames, was
compared to an implementation lacking such differentiation. The evaluation
measured both the effect of best-effort traffic on time-sensitive, critical tasks,
and the latency in the reception of time-sensitive traffic.

Communication. The results are described in publication D and presented
at a conference, see Section 4.3]

3.3.5 DSRP Alignment - Publication E

Problem identification and motivation. The problem addressed in paper E
originates from Chl. 4, and it addresses RQ 5. A potential future deployment
scenario could involve multiple active controllers sharing a single backup con-
troller. Using the conventional state replication approach in such a scenario
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would result in all controllers replicating to that single backup, potentially
causing it, or the shared network paths, to become a bottleneck.

Objectives of a solution. The objective of the solution, deduced from
the problem, is to provide a state replication mechanism suitable for industrial
controllers that distributes state replication-induced traffic more evenly, reduc-
ing the probability that the backup becomes the bottleneck due to an inability
to handle the traffic load.

Design and development. An architecture and design for a distributed
solution is described. This solution was also implemented on top of VxWorks.

Demonstration. A prototype was deployed on a set of virtual machines
simulating redundant controllers, with one of these controllers acting as the
sole backup.

Evaluation. The distributed state replication solution of the prototype was
compared against the conventional state replication approach, using different
set sizes of primary controllers sharing a single backup.

Communication. The results are described in publication E and presented
at a conference, see Section

3.3.6 DSRP Alignment - Publication F

Problem identification and motivation. The problem addressed in paper F
originates from Chl. 4, and it addresses RQ 6. As mentioned, the internal
states must be available to the backup when it becomes the primary, so that
the backup can continue from where the primary left off. The data that consti-
tutes these states must be retrieved and transferred reliably and securely to the
backup. While reliable and secure real-time communication is not new per se,
a challenge related to the redundancy use case is the many-to-one relationship
between the multiple applications hosted by a controller and the single under-
lying network connecting the primary and backup. The use of this network
should be managed to avoid overutilization and ensure bounded transfer times
with a known transfer failure rate.

Objectives of a solution. The objective of the solution, deduced from the
problem, is to provide a performant, reliable, and secure transfer mechanism
for checkpointed state data. A comprehensive search, covering both IT and OT
contexts, was conducted to identify a suitable solution. This search included
checkpointing solutions as well as presenting a set of features desired from a
protocol used to transfer state data, followed by matching existing protocols
against these features. The objective of the solution is to meet the proposed set
of desired features.

Design and development. The results of the searches are presented. Fol-
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lowing that, a protocol design and a proposed VxWorks integration are de-
scribed. A prototype was developed based on the proposed design. The secu-
rity mechanisms were not included in the prototype.

Demonstration. The prototype was run on two mini-PCs running Vx-
Works. These two mini-PCs represent the redundant controller pair. Different
state data were transmitted using varying data sizes and intervals, combined
with different degrees of packet loss.

Evaluation. The proposed protocol was compared against two of the most
suitable candidates identified during the protocol search. The comparison was
conducted using different data sizes and packet loss rates.

Communication. The results are described in publication F and are tar-
geted for journal publication, see Section [#.3]

3.4 Research Framed in Industrial Context

As mentioned, this thesis is the result of close collaboration with industry, as
the author is an industrial PhD candidate. By this point in the thesis, it should
be clear to the reader that the challenges addressed in the research stem from
industry. Hence, the proposed solutions target the domain and context of indus-
trial control systems. As such, the findings may have limited generalizability.
However, as Briand et al. argue, context-driven research is valuable because it
presents relevant use cases that address real-world problems [101]. Addressing
real problems and shedding light on them has been the overarching goal of this
thesis.

As an industrial practitioner who crossed paths with academia to pursue a
PhD after many years in the industry, the author believed that bringing indus-
trial challenges to academia was the most meaningful way to contribute, rather
than tackling already established academic challenges. Therefore, the research
conducted in this thesis is highly applied and is strongly influenced by indus-
try. That is also a contributing factor to the overall and recurring theme of
this thesis, the theme of "revisiting." As mentioned, fault tolerance is a ma-
ture research area, not receiving as much attention as research in areas such
as artificial intelligence at the time of writing. Even so, given that technol-
ogy constantly evolves, it can be motivated (as argued by this thesis) to revisit
established concepts to re-ground them in new architectures and technologies.

The close collaboration with industry also means that the work has been,
and could be, applied to real industrial systems. For example, in Publication
A, we used real industrial control systems. However, this also means that the
level of detail we can disclose is sometimes limited. As a result, in most of our
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work, we used abstractions of the controller functionality that could be shared
and described in more detail.

3.5 Relation to the Licentiate Thesis

As part of the author’s journey as a PhD candidate, a licentiate thesis has
been completed and defended [102]. The topic of the licentiate thesis is in-
dustrial control systems dependability, and it is titled "Dependable Distributed
Control System: Redundancy and Concurrency Defects”. As the title sug-
gests, the licentiate thesis addressed dependability, which is a broad topic, and
the included publications covered aspects such as localization of concurrency-
related bugs and spatial redundancy-related topics like failure detection. Be-
low is the list of the publications included in the licentiate thesis that, like this
thesis, is a collection of publications:

Lic. 1: Concurrency defect localization in embedded systems using static code
analysis: an evaluation
Bjarne Johansson, Alessandro V. Papadopoulos, Thomas Nolte.
In 30th IEEE International Symposium on Software Reliability
Engineering (ISSRE), 2019 [16].

Lic. 2: Heartbeat Bully: Failure Detection and Redundancy Role Selection for
Network-Centric Controller
Bjarne Johansson, Mats Ragberger, Alessandro V. Papadopoulos,
Thomas Nolte.
In 46th Annual Conference of the Industrial Electronics Society
(IECON), 2020 [35].

Lic. 3: Kubernetes Orchestration of High Availability Distributed Control Sys-
tems
Bjarne Johansson, Mats Ragberger, Alessandro V. Papadopoulos, and
Thomas Nolte.
In 23rd IEEE International Conference on Industrial Technology (ICIT),
2022 [Paper Al].

This doctoral thesis continues the dependability path, focusing on spatial re-
dundancy in network-centric control system architectures.
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Contributions

This thesis addresses the research question described in Section [3.2] deduced
from the challenges describe in Section [3.1] mainly focusing on spatial con-
troller redundancy, in a network-centric control system. This chapter provide
a summary of the contribution, as well as mapping of the research challenges,
research question, to contributions and publications.

4.1

Contribution Summary

Below is a summary of the contributions.

Cl:

C2:

C3:

Experimental measurements of failure recovery times for single and
redundant containerized controllers, VDCNs, hosted within a Kuber-
netes cluster. These measurements provide insights into recovery times
achievable through orchestration. Specifically, when paired with con-
troller redundancy, the orchestrator contributes to system robustness by
quickly restoring redundancy after failures, thereby minimizing the pe-
riod of vulnerability.

A failure detection algorithm designed to prevent multiple primary con-
trollers in redundant controller pairs during network partitions. The al-
gorithm, validated experimentally, ensures consistency by allowing at
most one primary controller while lowering the availability trade-off dic-
tated by the CAP theorem.

An investigation of OPC UA PubSubs’ seamless failover properties in
spatial standby redundancy deployments, identifying challenges and ex-
ploring potential solutions. The contribution includes a discussion of

35
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these solution alternatives and an experimental evaluation demonstrat-
ing one selected approach.

C4: A method for directing incoming Ethernet frames to network-stack pro-
cessing in network tasks with priority matching message priority. The
proposed solution operates without requiring TSN and is compatible
with COTS network interfaces. The contribution includes a prototype
used for experimental evaluation.

C5: An architecture that enables a primary controller to replicate its state
to dedicated state storage that does not reside on the primary and does
not necessarily reside on the backup controller, thereby decoupling state
management from the backup role. This contribution also includes an
experimentally evaluated prototype implementation.

C6: A protocol for transferring checkpointed state data between spatially re-
dundant industrial controllers. The contribution includes an architectural
description and an experimental evaluation. It also includes a presenta-
tion of checkpointing-related work in IT and OT environments and an
examination of existing communication protocols and their suitability
for state transfer between a primary and backup controller.

4.2 Contribution Mapping

Table [4.1] shows the mapping between research questions and contributions,
while Table[d.2)illustrates the mapping between contributions and publications.
Although the questions, contributions, and publications are neatly aligned in
these tables, some aspects of this thesis research story get lost in translation
when represented only in tabular form. Therefore, the remainder of this sec-
tion elaborates on how each contribution developed, mapping the relationships
with research challenges, research questions, and publications, including pub-
lications not included in this thesis. Figure d.1| provides an overview, which is
further explained below for each contribution.

Contribution C1, as illustrated in Figure results from addressing re-
search question 1 (RQ 1), which was derived from research challenge 1 (Chl.
1). C1 is described and published in publication A (Pub. A). The work pre-
sented in Pub. A inspired RQ 5, as C1 demonstrated that redundancy can be
automatically restored. This prompt restoration makes an architecture in which
multiple primaries share a single backup more feasible, since a "consumed"
backup (due to a primary failure) can be promptly replaced by deploying a
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Table 4.1: Question — contribution mapping.

RQ1 | RQ2 | RQ3[RQ4 [ RQ5]| RQS5
C1| X
C2 X
C3 X
c4 X
Cs X
C6 X

Table 4.2: Contribution — publication mapping.

Cl | C2|C3|C4 C5]Ceo
Paper A | X
Paper B X
Paper C X
Paper D X
Paper E X
Paper F X

new backup. Furthermore, C1 led to a patent application, resulting in granted
patent 2 (GP 2).

Contribution C2 results from addressing RQ 2, which was derived from
Chl. 2. As illustrated in Figure Chl. 2 was inspired by an earlier publi-
cation not included in this thesis, publication X11 [35]. X11 addressed failure
detection, and the contribution from X11 resulted in the granted patent GP 2.
C2 is described and published in Pub. B. The work and contribution associated
with Pub. B inspired additional publications, X4 [42], X5 [39] and X8 [43],
which are not included in this thesis. Furthermore, C2 led to patent application
PA 1.

Contribution C3 results from addressing RQ 3, which was derived from
Chl. 3. C3 is described and published in Pub. C.

Contribution C4 results from addressing RQ 4, which was inspired by
Chl. 2 and Chl. 4. C4 is described and published in Pub. D. Furthermore, C4
was used as part of the solution that constitute contribution C6, described in
Pub. F.

Contribution CS results from addressing RQ 5, which was derived from
Chl. 4. CS is described and published in Pub. E. The work towards Pub. E
and CS5 inspired patent application PA 2.

Contribution C6 results from addressing RQ 6, which was derived from
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Figure 4.1: Challenges, questions, publications and contributions mapping.
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Chl. 4. C6 is described and published in Pub. F, parts of C4 were used in the
work towards C6 and Pub. F. Furthermore, C6 led to patent application PA 3.

4.3 Included Publications

This section outlines the publications included in this thesis. Table maps
the publication to the contributions.

4.3.1 Paper A

Title: Kubernetes Orchestration of High Availability Distributed Control
Systems

Authors: Bjarne Johansson, Mats Ragberger, Alessandro V. Papadopoulos,
and Thomas Nolte.

Status: Published in the proceedings of the 23rd IEEE International
Conference on Industrial Technology (ICIT), 2022.

Abstract: Distributed control systems transform with the Industry 4.0
paradigm shift. A mesh-like, network-centric topology replaces the traditional
controller-centered architecture, enforcing the interest of cloud-, fog-, and
edge-computing, where lightweight container-based virtualization is a
cornerstone. Kubernetes is a well-known container management system
for container orchestration in cloud computing. It is gaining traction
in edge- and fog-computing due to its elasticity and failure recovery
properties.  Orchestrator failure recovery can complement the manual
replacement of a failed controller and, combined with controller redundancy,
provide a pseudo-one-out-of-many redundancy. This paper investigates the
failure recovery performance obtained from an out-of-the-box Kubernetes
installation in a distributed control system scenario. We describe a Kubernetes
based virtualized controller architecture and the software needed to set
up a bare-metal cluster for control systems. Further, we deploy single
and redundant configured containerized controllers based on an OPC UA
compatible industry middleware software on the bare-metal cluster. The
controllers expose variables with OPC UA PubSub. A script-based daemon
introduces node failures, and a verification controller measures the downtime
when using Kubernetes with an industry redundancy solution.

Paper Contributions: The paper presents an overview and description of
the software components needed to set up a Kubernetes cluster for hosting
containerized controllers. Two different controller configurations are used: a
redundant for high availability and a singular as reference. Node failures are
injected, and downtime is measured for the redundant and single controller.
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The combination of Kubernetes failure recovery in collaboration with the
controller redundancy forms a layered redundancy that reduces deterioration
due to failures and automatically restores redundancy. A discussion around
controller availability, with the gathered measurements as input, concludes the
paper.

Patent: The concept, in which redundancy mechanisms in industrial
controllers and orchestrator-based failure recovery collaborate to enable quick
failover and rapid repair, led to Granted Patent 2 [103].

My role: 1 was the main driver and author of this work, collaborating with my
supervisors and industry mentor, who provided valuable input and feedback.

4.3.2 Paper B

Title: Consistency Before Availability: Network Reference Point based
Failure Detection for Controller Redundancy

Authors: Bjarne Johansson, Mats Ragberger, Alessandro V. Papadopoulos,
and Thomas Nolte.

Status: Published in the proceedings of the 28th International Conference on
Emerging Technologies and Factory Automation (ETFA), 2023.

Abstract: Distributed control systems constitute the automation solution
backbone in domains where downtime is costly. Redundancy reduces the
risk of faults leading to unplanned downtime. The Industry 4.0 appetite to
utilize the device-to-cloud continuum increases the interest in network-based
hardware-agnostic controller software. Functionality, such as controller
redundancy, must adhere to the new ground rules of pure network dependency.
In a standby controller redundancy, only one controller is the active primary.
When the primary fails, the backup takes over. A typical network-based
failure detection uses a cyclic message with a known interval, a.k.a. a
heartbeat. Such a failure detection interprets heartbeat absences as a
failure of the supervisee; consequently, a network partitioning could be
indistinguishable from a node failure. Hence, in a network partitioning
situation, a conventional heartbeat-based failure detection causes more than
one active controller in the redundancy set, resulting in inconsistent outputs.
We present a failure detection algorithm that uses network reference points
to prevent network partitioning from leading to dual primary controllers. In
other words, a failure detection that prioritizes consistency before availability.
Paper Contributions: This paper presents a failure detection algorithm
for redundant controllers that prioritizes consistency over availability. It
addresses the risk that conventional failure detectors may allow multiple
active primaries during a network partition. The algorithm is heartbeat-based
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and utilizes an external network reference point as a primary role tie-breaker.
It leverages the fact that redundant controllers are typically deployed with
redundant network paths, allowing for continued communication even in the
event of a single network failure. Under specific conditions, the algorithm can
dynamically reassign the reference point, reducing the availability tradeoff
following from prioritizing consistency, as dictated by the CAP theorem. The
paper contributes a failure detection algorithm along with an evaluation and
comparison of its performance against a conventional failure detector across
various partitioning scenarios.

Patent: As mentioned, the related publication X11 [35] is one of the
inspirations for the work that led to Paper B. The work with X11 led
to Granted Patent 1 [104]. The combination of failure detection with a
redundancy role leasing function, preferably hosted in network equipment and
runtime changeable in case of failure, led to Patent Application 1 [105].

My role: I was the main driver and author of this work, collaborating with my
supervisors and industry mentor, who provided valuable input and feedback.

4.3.3 Paper C

Title: OPC UA PubSub and Industrial Controller Redundancy

Authors: Bjarne Johansson, Olof Holmgren, Martin Dahl, Hédkan Forsberg,
Alessandro V. Papadopoulos, and Thomas Nolte.

Status: Published in the proceedings of the 29th International Conference on
Emerging Technologies and Factory Automation (ETFA), 2024.

Abstract: Industrial controllers constitute the core of numerous automation
solutions. Continuous control system operation is crucial in certain sectors,
where hardware duplication serves as a strategy to mitigate the risk of unex-
pected operational halts due to hardware failures. Standby controller redun-
dancy is a commonly adopted strategy for process automation. This approach
involves an active primary controller managing the process while a passive
backup is on standby, ready to resume control should the primary fail. Typi-
cally, redundant controllers are paired with redundant networks and devices to
eliminate any single points of failure. The process automation domain is on the
brink of a paradigm shift towards greater interconnectivity and interoperabil-
ity. OPC UA is emerging as the standard that will facilitate this shift, with OPC
UA PubSub as the communication standard for cyclic real-time data exchange.
Our work investigates standby redundancy using OPC UA PubSub, analyzing
a system with redundant controllers and devices in publisher-subscriber roles.
The analysis reveals that failovers are not subscriber-transparent without syn-
chronized publisher states. We discuss solutions and experimentally validate
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an internal stack state synchronization alternative.

Paper Contributions: This paper presents a study of OPC UA PubSub in the
context of controller redundancy, with a focus on failover behavior. It iden-
tifies weaknesses that can lead to communication disruptions during failover.
Different improvement alternatives are proposed and discussed. One of these
alternatives is implemented and experimentally evaluated, and its performance
is compared to an original (non-modified) version.

My role: I was the main driver and author of this work, collaborating with my
supervisors and industry mentor, who provided valuable input and feedback.

4.3.4 PaperD

Title: Priority Based Ethernet Handling in Real-Time End System with
Ethernet Controller Filtering

Authors: Bjarne Johansson, Mats Ragberger, Alessandro V. Papadopoulos,
and Thomas Nolte.

Status: Published in the proceedings of the 48th Annual Conference of the
Industrial Electronics Society (IECON), 2022.

Abstract: This work addresses the impact of best-effort traffic on
network-dependent real-time functions in distributed control systems.
Motivated by the increased Ethernet use in real-time dependent domains, such
as the automation industry, a growth driven by Industry 4.0, interconnectivity
desires, and data thirst. Ethernet allows different network-based functions
to converge on one physical network infrastructure. In the automation
domain, converged networks imply that functions with different criticality and
real-time requirements coexist and share the same physical resources. The
IEEE 60802 Time-Sensitive Networking profile for Industrial Automation
targets the automation industry and addresses Ethernet network determinism
on converged networks. However, the profile is still in the draft stage at the
time of writing this paper. Meanwhile, Ethernet already provides attributes
utilized by network equipment to prioritize time-critical communication. This
paper shows that Ethernet Controller filtering with prioritized processing is
a prominent solution for preserving real-time guarantees while supporting
best-effort traffic. A solution capable of eliminating all best-effort traffic
interference in the real-time application is exemplified and evaluated on a
VxWorks system.

Paper Contributions: This paper presents a strategy for dispatching
incoming Ethernet frames for processing by a network task with a priority
matching that of the received Ethernet frame. The method enables elevated
(differentiated) processing priority for prioritized traffic, and the paper
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describes an implementation of the technique in a testbed that demonstrates
its ability to reduce the impact of best-effort traffic on high-priority,
time-sensitive, real-time tasks.

My role: I was the main driver and author of this work, collaborating with my
supervisors and industry mentor, who provided valuable input and feedback.

4.3.5 Paper E

Title: Partible State Replication for Industrial Controller Redundancy
Authors: Bjarne Johansson, Olof Holmgren, Alessandro V. Papadopoulos,
and Thomas Nolte.

Status: Published in the proceedings of the 25th IEEE International Confer-
ence on Industrial Technology (ICIT), 2024.

Abstract: Distributed control systems are part of the often invisible backbone
of modern society that provides utility services like water and electricity. Their
uninterrupted operation is vital, and unplanned stops due to failure can be ex-
pensive. Critical devices, like controllers, are often duplicated to minimize the
service stop probability, with a secondary controller acting as a backup to the
primary. A seamless takeover requires that the backup has the primary’s lat-
est state, i.e., the primary has to replicate its state to the backup. While this
method ensures high availability, it can be costly due to hardware doubling.
This work proposes a state replication solution that doesn’t require the backup
to store the primary state, separating state storage from the backup function.
Our replication approach allows for more flexible controller redundancy de-
ployments since one controller can be a backup for multiple primaries without
being saturated by state replication data. Our main contribution is the partible
state replication approach, realized with a distributed architecture utilizing a
consensus algorithm. A partial connectivity-tolerant consensus algorithm is
also an additional contribution.

Paper Contributions: This paper introduces the concept of partible state stor-
age in the context of controller redundancy. Unlike conventional approaches,
it decouples the storage of checkpointed state data, retrieved from the primary,
from a designated backup, enabling distributed storage across the cluster. The
paper proposes a partible state storage architecture that includes a consensus
algorithm tolerant to partial connectivity, based on VSR. A prototype imple-
mentation is developed and used to evaluate the partible state storage approach
in comparison to the conventional approach, comparing performance across
varying numbers of primaries sharing a single backup.

Patent: The work on distributed state storage for load-balancing purposes
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described in Paper E inspired Patent Application 2 [106]. The idea utilizes
collected states to evaluate application changes when changes are introduced.
Specifically, two application versions can be executed simultaneously, and
their states can be compared without requiring both versions to run on the
same controller. Thus, Patent Application 2 enables node-independent appli-
cation evaluation.

My role: I was the main driver and author of this work, collaborating with my
supervisors and industry mentor, who provided valuable input and feedback.

4.3.6 Paper F

Title: Checkpointing and State Transfer for Industrial Controller Redundancy
Authors: Bjarne Johansson, Bjorn Leander, Olof Holmgren, Alessandro V.
Papadopoulos, and Thomas Nolte.

Status: Journal submission under review, September 2025.

Abstract:  Industrial controllers are moving from controller-centric
to network-centric architectures, where lightweight containerization is
increasingly adopted in operational technology. Many industrial domains
require high reliability, often achieved through spatial standby redundancy
with duplicated controllers where one is the active primary and the other a
standby backup. In such setups, the standby backup must seamlessly take
over control when the primary fails. Hence, the backup needs to be up-to-date
with respect to the primary’s internal state. The retrieval of internal states is
commonly known as checkpointing. We review checkpointing approaches
used in virtualized and industrial settings and derive a set of desired
features for state-transfer protocols. We then assess existing communication
protocols against these features and experimentally evaluate the two strongest
contenders under no-loss and packet-loss conditions, measuring recovery
performance. The analysis reveals that no existing protocol meets all the
desired features. To address this gap, we introduce a new state-transfer
protocol that satisfies all identified features. In experiments, it demonstrates
good performance under packet loss, with only a slight reduction in
throughput compared to the identified top contender protocols that we used
for comparison.

Paper Contributions: This paper investigates checkpointing and state
transfer solutions suitable for controller redundancy. It presents the results of
a search for checkpointing methods used in both the OT and IT domains, with
a focus on the protocols used for state data transfer. Additionally, the paper
presents a list of desired features for a protocol intended for state transfer
purposes. This feature list is then used to evaluate a set of existing protocols
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for their suitability in the industrial controller redundancy use case. Two top
candidates are selected and experimentally evaluated in scenarios that, to
some extent, mimic state transfer operations. The paper’s main contribution
is the design, integration, and evaluation of a new protocol that meets the
identified desired feature. This protocol is experimentally compared against
the two top candidates.

Patent: The work presented in Paper F inspired Patent Application 3 [107],
which describes a concept for scheduling state data transfers from multiple
applications with varying periods. The idea enables deterministic shared use
of a node’s network resources. It includes a reliability model that considers
retransmission budgets, as well as the overhead introduced by security and
safety mechanisms.

My role: I was the main driver and author of this work, collaborating with
my supervisors, co-authors, and industry mentor, who provided valuable input
and feedback. Bjorn Leander was the main contributor of the security related
parts.






Chapter 5

Conclusions and Future
Directions

This chapter provides a summary of this thesis contributions and presents the
conclusions. A discussion of future work, derived from the research chal-
lenges, concludes the chapter and this part of the thesis.

5.1 Summary and Conclusions

When reading the summary of the contributions and the conclusions derived
from addressing the research questions leading to the contributions, you, the
reader, might get the impression that there is nothing more to be done—that
the work is completed in an absolute sense. That is, of course, not the case; the
description of future work is simply reserved for the next section, Section[5.2]

The first challenge addressed in this thesis concerned orchestration-aided
failure recovery in an industrial controller setting. To address this challenge,
we formulated a research question around whether orchestrators can comple-
ment or even replace redundancy mechanisms in industrial controllers. The
first contribution came from the pursuit of that question, a description of a
bare-metal cluster hosting VDCNss (virtualized controllers), configured as sin-
gle or redundant, and orchestrated by Kubernetes. Failures, in the form of re-
boots, were continuously and randomly injected to trigger the failure recovery
mechanisms. Recovery times were measured from devices dependent on com-
munication with the failed (rebooted) VDCNs. The conclusion of this work
is that controllers relying solely on Kubernetes’ failure detection and recovery
mechanisms experience healing times that are too long to serve as a feasible
replacement for traditional redundancy. However, Kubernetes failure recovery

47
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can synergistically complement controller redundancy, enabling rapid redun-
dancy restoration after a failure.

The second challenge concerned failure detection in network partitioning
scenarios. From this challenge, we derived a research question aimed at find-
ing a suitable failure detection mechanism for redundant industrial controllers
that can maintain consistent process control despite partitioning. To address
this, we developed a heartbeat-based failure detection algorithm that uses an
external reference when determining the primary role. This external reference
can be changed if needed, leveraging the fact that redundant controllers are
commonly deployed with network redundancy. The conclusion is that such
a failure detection mechanism can be designed and implemented, even using
COTS network equipment as the external reference.

The third challenge addressed OPC UA PubSub in the context of spatial
controller redundancy. We derived the third research question from this chal-
lenge, which focuses on achieving disruption-free failover of OPC UA PubSub
using controllers and devices. The resulting contribution is a presentation of
OPC UA PubSub behavior during failover, from both the publisher and sub-
scriber perspectives. We identified that disruption-free failover cannot be guar-
anteed in all configurations. The contribution includes alternative approaches
to address these shortcomings, including the experimental demonstration of
one. The conclusion is that OPC UA PubSub, in some configurations, may
face challenges in providing disruption-free failover without explicit redun-
dancy support.

The fourth challenge involves ensuring that the backup can use the internal
state of the primary so that it can assume the primary role without disruption.
Like the second challenge related to failure detection, this challenge requires
real-time networking in the sense of bounded communication times. These two
challenges inspired the fourth research question addressed in the thesis: how
can processing of time-sensitive traffic be prioritized over best-effort traffic?
To explore this, we developed a solution to direct network traffic based on
priority information in incoming frames to network tasks of suitable priority.
The conclusion is that such a mechanism is feasible and can be deployed using
COTS Ethernet network interfaces on real-time operating system platforms
such as VxWorks, and that is the fourth contribution.

The fifth contribution results from addressing the fifth research question,
which is inspired by the work leading to the first contribution and motivated
by challenge four. The fifth research question concerns the design of an archi-
tecture that allows state data to be replicated to a node other than the primary,
though not necessarily the backup. The goal is to prevent a single backup from
becoming a bottleneck for state data transfer in deployments where multiple
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primaries share a single backup. The resulting contribution is a distributed ar-
chitecture enabling state data distribution across the cluster. The conclusion is
that such an architecture is feasible and can reduce bottleneck effects.

The sixth contribution also originates from the fourth challenge and ad-
dresses research question six, which focuses on finding a suitable solution
for transferring checkpointed state data from a primary to a backup. “Suit-
able” here means fulfilling features derived from redundancy-related needs.
The contribution is a protocol designed to meet these needs. A prototype
implementation is compared against two well-known communication proto-
cols, which were found to be top candidates by matching desired state transfer
features against the properties provided by the protocols. The conclusion is
that while the proposed protocol shows slightly lower performance in loss-free
transfers, it significantly outperforms the alternatives under packet loss condi-
tions.

In summary, we have addressed challenges and provided contributions re-
lated to spatial controller redundancy. Two of these challenges concern essen-
tial functions for standby redundancy: failure detection and state transfer. A
third challenge focused on the failover behavior of OPC UA PubSub, which
is critical given OPC UA’s envisioned role in future automation systems. The
fourth challenge addressed network traffic processing, a crucial aspect consid-
ering that redundancy functions rely heavily on network communication.

5.2 Future Directions

Each of the challenges presented in Section [3.1] that yielded the contributions
summarized above, presents directions for future work, exemplified below.
Orchestration and Failure Recovery. As mentioned, the conclusion of
our work on orchestrators complementing or replacing redundancy functional-
ity showed that Kubernetes failure recovery takes too long to serve as a redun-
dancy replacement. However, that does not mean it must remain this way; there
are likely many potential improvements that could reduce recovery time, per-
haps even enough to make it a feasible replacement. Since Kubernetes relies
on virtualized networks and overlays, the performance characteristics of these,
particularly under contention, form another highly relevant research challenge.
Failure Detection and Network Partitioning. This thesis addresses fail-
ure detection under network partitioning, proposing a heartbeat-based algo-
rithm that prioritizes consistency by utilizing an external reference point within
the network. In related work, not included in this thesis, we extended the algo-
rithm with a redundancy role leasing mechanism, which we formally proved
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to guarantee at most one primary in publication X8 [43]. This concept was fur-
ther explored when discussing the design of a high-integrity system for safety-
critical applications in publication X4 [42]. That work represents a starting
point that could be further developed. Additionally, the proposed algorithms
in an orchestrated context could be investigated, can the orchestrator, as a cen-
tral element in the system architecture, contribute to failure detection?

OPC UA PubSub and Spatial Redundancy. As mentioned, our work
showed that spatially redundant controllers and devices utilizing OPC UA Pub-
Sub might not guarantee a disruption-free failover. We discussed alternatives
and experimentally evaluated one with a prototype. Future work could ex-
plore how platform-agnostic redundancy support for OPC UA PubSub could
be integrated into the open-source stack, open62541 [108].

Checkpointing and State Transfer. This thesis presents a design that en-
ables state data from primary controllers to be distributed to nodes other than
the backup node. Future work in this area includes evaluating the mechanism
in a cluster managed by an orchestrator. Other directions include determining
how to distribute the state efficiently, including defining what "efficient" means
in this context. "Efficient" encompasses various parameters, including the time
it takes for the backup to retrieve the state and the network load incurred by
storing and fetching the state, among others. This thesis also proposes a pro-
tocol designed for state transfer between redundant industrial controllers. The
design outlines security integration. However, the prototype implementation
does not include any security measures. Hence, evaluating a prototype that
includes security measures is suitable for future work. Furthermore, inves-
tigating the integration of the proposed protocol and its scheduling with the
failure detection mechanisms to enable scheduling, security, and retransmis-
sion of heartbeat messages for failure detection is another example of relevant
future work.

The above list of future work is not intended to be exhaustive; it should
rather be seen as a set of examples, examples identified while writing this thesis
and having the pleasure of being yet another dwarf sitting on the shoulders of
giants and observing the winds of change [109].
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Abstract

Distributed control systems transform with the Industry 4.0 paradigm
shift. A mesh-like, network-centric topology replaces the traditional
controller-centered architecture, enforcing the interest of cloud-, fog-, and
edge-computing, where lightweight container-based virtualization is a
cornerstone. Kubernetes is a well-known container management system
for container orchestration in cloud computing. It is gaining traction
in edge- and fog-computing due to its elasticity and failure recovery
properties.  Orchestrator failure recovery can complement the manual
replacement of a failed controller and, combined with controller redundancy,
provide a pseudo-one-out-of-many redundancy. This paper investigates the
failure recovery performance obtained from an out-of-the-box Kubernetes
installation in a distributed control system scenario. We describe a Kubernetes
based virtualized controller architecture and the software needed to set
up a bare-metal cluster for control systems. Further, we deploy single
and redundant configured containerized controllers based on an OPC UA
compatible industry middleware software on the bare-metal cluster. The
controllers expose variables with OPC UA PubSub. A script-based daemon
introduces node failures, and a verification controller measures the downtime
when using Kubernetes with an industry redundancy solution.



Paper A 67

Process

Controller

Centric
data shared
through
controller

Today

Network

Centric
data shared
through
network

Tomorrow

Figure 6.1: A simplified view of a controller-centric and network-centric sys-
tem.

6.1 Introduction

A Distributed Control System (DCS) is a large-scale control system with
multiple Distributed Controller Nodes (DCN) interconnected. A traditional
DCN consists of dedicated hardware running the real-time controller
FirmWare (FW). A high availability DCN is often achieved with hardware
duplication — i.e., two DCNs, an active (primary) and a passive (backup).
If the primary fails, the backup takes over the primary role, providing a
one-out-of-two (1002) redundancy. The controlled process dictates the critical
upper bound takeover time, which translates to around 500 ms for DCS in
process automation [1]. Manual replacement of a failed DCN is required to
restore redundancy.

The Industry 4.0 [2] data thirst drives DCS towards a network-centric ar-
chitecture with an increased possibility of information and data retrieval. Fig-
ure [6.1] shows a simplified view of a traditional controller-centric system and
network-centric system. The interconnectivity provided by a network-centric
architecture allows data exchange between all devices connected to the net-
work. Access to data produced near the process, i.e., the I/O, sensors, and
actuators, does not need to involve the DCN.

Interconnectivity and interoperability are key concepts in the Open Process
Automation™ Standardlﬂ (O-PAS). The O-PAS standard for DCN communi-
cation utilizes the OPC—UAE|m0del making OPC UA suitable as communica-
tion means for our virtualized controller.

Virtualization is a cornerstone in realizing the computational elasticity pro-
vided by cloud-, fog-, and edge-computing. Containers are a lightweight and

'https://publications.opengroup.orqg/pl90
thtps ://opcfoundation.org/
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more performant virtualization alternative to Virtual Machines (VM) [3].

The widespread use of containers has led to container orchestration man-
agement systems such as Docker Swarm, Marathon on Mesos, and Kuber-
netes. The central functionality provided by the orchestrator is situation-aware
scheduling and deployment of containers on the available resources.

We study the failure recovery properties provided by a vanilla
out-of-the-box Kubernetes installation in a DCN context and the additional
plugins needed to set up a bare-metal cluster hosting Virtualized DCN
(VDCN). Kubernetes failure recovery, combined with 1002 VDCN
redundancy, provides a pseudo-one-out-of-N (1ooN) VDCN redundancy and
complements manual replacement of failed DCNGs.

6.2 Related Work

DCNs are embedded real-time systems, i.e., the temporal aspect of function
output is as important as the output itself. Therefore, container performance is
of primary concern.

Struhdr et al. [4] survey the usage of real-time containers and conclude
that tool support, communication, and shared resources are open challenges.
Even though challenges remain, ongoing research on real-time containers has
been developed over the past few years [5, 6]. Felter et al. [3] show that the
container overhead for CPU and memory utilization is negligible, but there
can be a performance impact on I/O intensive applications. A similar conclu-
sion is reached by Watada et al. [7], who also identify several challenges, i.e.,
persistent storage, complex networking, and orchestration management.

Fog computing addresses the inherent communication latency associated
with geographically distant cloud computing by utilizing computational re-
sources that are geographically closer [8], implying that the temporal aspect is
vital in fog computing. Bellavista et al. [9] show that Single Board Comput-
ers (SBC), such as Raspberry Pis, are viable as fog computing nodes. They
emphasize that providing real-time guarantees in a system with complex tem-
poral resource utilization patterns is challenging. In a virtualized environment,
resource contention can occur even if the utilized resources are different. Kim
et al. [10] show that a network-bound application can saturate the CPU with
softirqg processing induced by the network communication.

Domain-specific container scheduling prerequisites have driven
scheduling-related research. Eidenbenz et al. [11] evaluate three different
Kubernetes scheduling integration alternatives to reduce communication
latency and conclude that the Kubernetes native scheduling is the better
alternative. Further, Eidenbenz et al. evaluate failover times, similar to our
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work, but just with Kubernetes native approach, and conclude that it is not fast
enough. Vayghan et al. [12] propose an enhanced Kubernetes controller that
gives a shorter downtime if a stateful application fails by having a redundant,
passive instance ready to resume when told so by the controller.

Struhdr et al. [6] introduce monitoring of real-time properties utilized by
a Kubernetes scheduler extension to strengthen the temporal aspects. Grof3-
mann et al. [13] develop a resource utilization measurement tool with a small
footprint. Using this tool, they compare the resource utilization between Ku-
bernetes and Docker Swarm. Docker Swarm is less resource-demanding, but
they also highlight that the comparison is not fair since Kubernetes provide
more functionality.

A DCN in a network-centric context relies on network connectivity for
various purposes such as communication with field devices, i.e., the network
is fundamental. In a containerized context, the network is typically partly vir-
tualized. Container Network Interface (CNI) and Container Network Model
(CNM) are two specifications, with corresponding libraries, plugins, and inter-
faces that a container runtime can utilize to configure the network. Kubernetes
supports CNI, and CNI is a de-facto standard [14]. There exist many CNI plu-
gins, and researchers have studied the performance of some of them. Qi et
al. [15] categorize a selection of CNI plugins in four categories and perform
a benchmark, measuring throughput and Round-Trip Time (RTT). Depending
on the plugin and the type of communication, the performance degradation
ranges from a fraction of a percent up to 30% [14, 16, 15, 17].

As for automation-related controller virtualization research, Hegazy et
al. [1] show that Automation as a Service (AaaS) is feasible with a latency
compensating control algorithm. However, recouping for the latency is
impossible when an RTT shorter than communication time to the remote cloud
is required, for example, a quick reaction to a discrete event. Goldschmidt et
al. [18] presented and benchmarked a containerized controller architecture,
concluding that the introduced overhead is insignificant.

To the best of our knowledge, no related work combines orchestrator fail-
ure recovery with VDCN redundancy. The combination results in a pseudo-
looN VDCN redundancy. Our contribution is the description of the compo-
nents needed to realize a Kubernetes orchestrated cluster for hosting single
and redundant VDCN combined with the measurement and evaluation of fail-
ure recovery performance.
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6.3 System Description

Docker is a well-known container runtime; examples of other alternatives are
rktE| and LXCﬂ We select Docker as the container runtime, mainly due to
its popularity and performance [3, 5, 18]. Rodriguez et al. [19] presented an
overview of orchestration systems. We chose Kubernetes since it is relatively
mature with a large open-source community. Marathon on Mesos is a relevant
alternative due to its high-availability properties. We identify Marathon on
Mesos and Kubernetes dependability evaluation as potential future work and
focus solely on Kubernetes in this work.

6.3.1 Kubernetes Components and Architecture

Control plane is the name for the logical consolidation of the cluster control
logic, i.e., the brain of the orchestrator. Compute node is the name for the
nodes, physical or virtual, doing the actual work. Kubernetes offer a high-
availability setup that prevents a single point of failure to bring down the con-
trol plane functionality. This work focuses on compute node failure and notes
that evaluating control plane failure in a DCS context is relevant future work.

The central component in Kubernetes is the Pod. A Pod is a collection of
one or more containers that are co-scheduled and co-located. Kubernetes do
not schedule or deploy containers directly; Kubernetes operates on Pods.

The main components in the Kubernetes architecture, divided into control
plane and compute node components, are shown in Figure [6.2] and briefly
described below. Control plane components:

* kube-apiserver: the frontend of the cluster, all cluster interaction,
including configuration, takes place through the kube—-apiserver.

* kube-scheduler: assigns pods to nodes based on scheduling con-
straints and node resource availability.

* kube-controller-manager: control loops driving the actual state
towards the desired state.

Compute node components:

* kubelet: Kubernetes node agent that monitors the node and the Pod
deployed containers.

* kube-proxy: maintainer of node network rules, allowing inter-pod
communication.

Shttps://github.com/rkt/rkt/
‘nttps://linuxcontainers.org/
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Figure 6.2: A Kubernetes-based VDCN cluster architecture.

6.3.2 Kubernetes DCN Cluster Architecture

A VDCN Kubernetes cluster requires additional components, configuration of
Kubernetes components, and VDCN specific components. Figure[6.2]show the
architecture. We divide the components into three categories and give a short
overview below and a more detailed description in Section [6.4]

The installed components are: (i) the Container Runtime (CR) and Local
Container Registry (LCR), (ii) the Container Network, for intra-cluster con-
tainer communication, and (iii) the External Access, for inter-cluster commu-
nication.

The configured Kubernetes objects are: (i) Persistent Storage, (ii) VDCN
Pod, containing a container instantiated from the VDCN Image, (iii) VDCN
Pod Controller, for managing VDCN Pod instances, and (iv) VDCN OPC UA
Service, for OPC UA Server endpoint lookup amongst VDCN Pods, i.e., intra-
cluster OPC UA traffic routing.

VDCN components include: (i) VDCN Application, i.e., the controller
software, (ii) VDCN Image, containing the VDCN Application image, and
(iii)) VDCN Configuration, containing the specific VDCN configuration.

6.4 Components

In this section, we describe the cluster components to provide a holistic view
of a bare-metal cluster capable of hosting redundant and single VDCNss, that
together with Kubernetes, constitute the VDCN cluster.
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Docker runtime and registry

The Docker runtime pulls the container image from the LCR and starts the
containerized process, the VDCN Application. Upon termination, the runtime
cleans up the allocated resource.

The LCR serves as a cluster repository for container images, i.e., the
VDCN images.

Container network

Container Network (CN) is the network that connects containers, intra-, and
inter-node. The CN can be the physical network directly, set up with IP address
routing and Ethernet switching, i.e., the underlay network, e.g., a traditional
switched Ethernet network. A CN can also be a virtual network built upon the
underlay using tunneling protocols such as VXLANE], i.e., an overlay network.

An example of an underlay network is a network created using the
macvlan driver. The macvlan driver creates a virtual Ethernet interface,
with an additional MAC address tied to a physical Ethernet interface. By
making the virtual macvlan interface accessible from the container network
namespace, the container gets access to the network.

A more common approach to allow the container to partake in network
communication is to use a Virtual Ethernet Device (veth) adapter pair, veth
are always created in pairs. One of the adapters resides in the container names-
pace and is therefore visible from the containerized application. The other
veth lives in the host namespace. Together, the veth pair form a tunnel
from the container namespace to the host namespace.

CNI Plugins are software components that comply with the CNI specifica-
tion and provide a CN. For example, Flanne]ﬂ Weave'| and Ciliunﬁ create a
VXLAN based overlay while Calicoﬂ and Kube-routern' | uses IP—in—IPE [15].

To summarize and relate CNI to Kubernetes context, each Pod has an IP
address. The CNI plugins are responsible for providing the IP address and
realizing the Pod-to-Pod communication within the cluster.

Qi et al. [15], evaluate the performance of Flannel, Cilium, Weave, Calico,
and Kube-router and conclude that there is no all-around winner performance-

Shttps://tools.ietf.org/html/rfc7348
®https://github.com/flannel-io/flannel
"https://www.weave.works/oss/net/
$https://cilium.io/
‘nttps://www.projectcalico.org/
Yhttps://www.kube-router.io/
"https://tools.ietf.org/html/rfcl853
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wise. Cilium has the best intra-host performance, while Kube-router and Cal-
ico are more performant in inter-host communication.

The VDCN utilizes UDP multicast, described in the following sections.
Searching the internet and available CNI-plugins project pages tells us that
Calico has multicast support on the roadmap, but it is currently not imple-
mented. Weave is the only plugin we found with multicast support; hence
Weave is the plugin we use for the VDCN cluster.

External access

The CN setup the intra-cluster communication. For inter-cluster ingress traffic,
Kubernetes provides three alternativeﬂ

* NodePort: expose the service on a statically allocated port on each
node’s IP. L.e., a node IP address combined with the static port is the
externally exposed access point.

* Load balancer: load balances and directs the traffic to the service end-
point. The load balancer specifies the external access point, and typically
the cloud provider provides the load balancer.

» External IPs: ingress traffic reaching a cluster node, on an IP address that
matches the IP address specified in the Kubernetes external IP service
specification, is routed to the service endpoint by Kubernetes Services.

A VDCN cluster use case where external access is needed is when an OPC
UA Client outside the cluster requests services from a cluster VDCN OPC UA
Server. The OPC UA Client should always reach the same VDCN on the same
IP address, provided that the VDCN is available.

How feasible are the different alternatives for realizing the above? Node-
Port requires that the client outside the cluster re-connects to a new IP address
in case of failure of the node owning the IP address the client currently uses.
NodePort also requires mapping between the original port and the port used for
exposing the service. NodePort does not ensure that the OPC UA Client only
needs to know one IP address per DCN. Hence, NodePort is not an alternative.

External IP is not per se managed by Kubernetes; the cluster administrator
must ensure that the external IP address exists and routes to a node in the clus-
ter. Kubernetes forwards cluster ingress traffic with a destination IP matching
the external IP to the endpoint designated for the port. For example, external

12https://kubernetes.io/docs/concepts/servicesfnetworking/
service/
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IP could ensure that an OPC UA Client only needs to know one IP address per
VDCN; however, it would require the cluster administrator to set up a solution
tolerant to node failures.

Load balancers, as mentioned, are typically provided by the cloud provider
hosting the cluster. However, an on-site, bare-metal cluster does not necessar-
ily utilize the cloud, and it is not desirable to route time-critical traffic through
the cloud provider. Hence, the load balancer alternative requires a bare-metal
load balancer.

We have been able to identify three bare-metal load balancers, MetalLB []E],
PorterLB ¥ and PureLB [[¥] The selection and evaluation of the load balancer
is a potential work on its own. For the work presented here, we conclude that
using a load balancer with network redundancy capabilities and IP Address
Management (IPAM) would make the load balancer alternative the better of the
three presented alternatives. MetalLLB provides both; hence the load balancer
alternative with MetalLLB as the bare metal load balancer is the one we use.

MetalLB supports two modes: (i) layer 2 mode, and (ii) Border Gateway
Protocol (BGP) mode. In layer 2 mode, all incoming traffic pass through one
of the cluster nodes kube-proxy, the leader node. From kube-proxy and on-
ward, it is the internal Kubernetes service endpoint handling. MetalLB elects
a new leader node if the leader node fails, and MetalLB will send gratuitous
ARP packets, announcing that the IP address association changed to the MAC
address of the new leader.

MetalLB BGP mode requires a router; MetalLB uses BGP to announce
multiple routes, routes leading to different nodes in the cluster, i.e., the load
balancing is the multipath handling in the router. When the traffic reaches the
cluster node, the handling is the same as in layer 2 mode.

We use MetalLLB in layer 2 mode, leaving load balancing related questions
as possible future work. MetalLLB provides IPAM, and the IP address managed
are provided to MetalLLB as an IP address pool. The specification of an exter-
nally accessible Kubernetes Service contains an IP address from the MetalLB
IP address pool.

Persistent storage

Traditionally, memory on the DCN provides the DCNs persistent storage, for
example, a non-volatile RAM or an SD card. The DCN stores the configura-
tion, application, and current state in the persistent storage, which allows the

Bhttps://metallb.universe.tf/
Yhttps://porterlb.io/
Bhttps://gitlab.com/purelb/purelb
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DCN to resume operation after a failure, such as a power failure. A VDCN
in a Kubernetes cluster is deployable on multiple nodes. Hence the persistent
storage needs to be accessible from the nodes that host the VDCN.

Kubernetes provides the possibility to use various storage solutions. Vol-
ume is the Kubernetes term for file storage. A Volume, from a Kubernetes
Pod perspective, is just a directory. Kubernetes do not care how that direc-
tory comes into existence. Setting up the storage is the cluster administrator’s
responsibility.

Kubernetes manages the lifetime of the Volume. There are two types of
Volumes, Volume and Persistent Volume (PV). A Volumes lifespan is the same
as the Pod’, i.e., when the Pod ceases to exist, Kubernetes destroy the Volume.
On the other hand, the PV lifespan is independent of the Pod. A Persistent
Volume Claim (PVC) is the mean for a Pod to claim a PV. The PVC specifies
the Pods requirements on the PV, such as size, access modes, etc.

In our experiment setup, we use a Network File System (NFS hosted
on the control plane node to provide storage. The storage is not redundant —
but that is not crucial for the evaluation since the control plane reschedules the
Pods, i.e., no control plane, no Pod rescheduling.

VDCN Pod

The VDCN Pod is the Kubernetes Pod encapsulation of the VDCN Container.
The VDCN Pod claims a PV using a PVC; the VDCN Pods in the test setup
claim 100 MB that is read and writable. Due to multicast not being supported
by MetalLLB, the VDCN Pod has access to the node (host) network directly.

VDCN Pod controller

The VDCN Pod controller is the name we have given to denote the function-
ality we achieve by utilizing Kubernetes for controlling the VDCN Pods. An
application running on a Kubernetes cluster is a workload, e.g., the VDCN is a
workload. Workload resources are Kubernetes objects that specify the desired
state for a Pod or Pods. Kubernetes controllers, executed in the context of
the kube-controller-manager, strive to maintain the workload resource desired
state.

A Kubernetes Deployment is a workload resource type for managing Pods.
A Deployment strives to ensure that at least as many Pods as specified in the
Deployment description are available in the cluster. In addition, if the Pods

Bhttps://tools.ietf.org/html/rfc3010
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use PV, all the Pods created by the same Deployment share the same PV. Thus,
Deployments are well suited for stateless applications.

Statefulset is another workload resource type that ensures that, at most,
the number of Pods specified in the Statefulset description is available in the
cluster. The Statefulset creates the Pods in a predetermined order with a known
identity. If the Pods use PV, each Pod gets its PV.

The VDCN Pod Controller is the Kubernetes controller with a Statefulset
describing the desired state. We use Statefulset as the workload resource since
we want stricter control of the number of VDCN instances running than the
Deployment can provide to avoid situations where two or more VDCN with
the same identity are active but in different states.

Our testbed cluster uses two separate VDCN Pod Controllers, i.e., State-
fulsets, one for the single VDCN and one for the redundant. For the single
VDCN, the number of Pods is one. The number of Pods in the redundant
VDCN is two since the redundant VDCN is a pair. We use Pod anti-affinity to
ensure that Kubernetes does not schedule both VDCN of the redundant pair on
the same node.

VDCN OPC UA Service

Kubernetes Services is the front-end of a cluster-hosted application function.
The containers running inside Pods are the Service endpoint. Pods’ IP ad-
dresses and whereabouts are not static; they can change from one moment to
another. Kubernetes Services is the mechanism to find the Pod that offers the
Service for the requested function, independent of the current deployment. Ku-
bernetes Services is the intra-cluster solution to find the endpoint. The kube-
proxy handles the Service endpoint lookup on each node, watches the control
plane for Service and endpoint updates through the kube-api, and updates the
node iptables accordingly.

The VDCN has three network communication dependent functions: (i) the
cyclic exchange of variables over OPC UA PubSub, (ii) acyclic communica-
tion using OPC UA Client Server, and (iii) the redundancy communication.
OPC UA PubSub and the redundancy communication use UDP multicast and
do not need a Kubernetes service. The network IGMP support provides the
means to match publishers with subscribers.

OPC UA Connection Protocol (UACP) is the abstract protocol that de-
scribes the full-duplex communication channel between client and server. OPC
UA supports TCP, HTTPS, and WebSocket as the UACP underlying transport
protocols, and the VDCN OPC UA Client-Server uses TCP. In other words,
the OPC UA Client-Server communication is unicast-based, point-to-point.
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A request addressed to a VDCN OPC UA Server can originate from an
OPC UA client inside or outside the cluster. The external handling described
above ensures that the request reaches a cluster node. When the request has
reached a cluster node, the Kubernetes Service handling provides the endpoint
reaching means.

Our example setup consists of three VDCNs, the single configured and
the redundant pair. We use two VDCN OPC UA Services, one for the single
VDCN and one for the primary VDCN. The redundancy state of the redundant
VDCN is application-specific. To allow Kubernetes to redirect the traffic to
VDCN in primary mode, we need Kubernetes to update the routes depending
on the application state. A Kubernetes mechanism for that is the probes, probes
that probe the application’s state. The application tailors the application end of
the probe for its need.

Kubernetes provides three types of probes. The Liveness-probe determines
if the application is responsive (alive) or not. If not, Kubernetes can restart the
container. The Startup-probe tells Kubernetes that the container application
has started, and the Readiness-probe tells if the container application is ready
to accept traffic. If the Readiness-probe result is negative, the probed appli-
cation is removed from the list of potential service endpoints. The VDCN
Application uses the readiness probe to direct traffic to the primary VDCN
in the redundant VDCN configuration; the backup VDCN Application reply
negatively to Kubernetes Readiness-probe requests.

VDCN Application

In a traditional DCN, the VDCN Application is the FW capable of executing
the control loop logic. The VDCN Application used in our testbed is an ABB
proprietary software, i.e., a modern DCN FW. It consists of three main parts,
an OPC UA stack for industrial use, a middleware, and the control loop logic.
The OPC UA stack provides the OPC UA communication means, and the mid-
dleware offers functionality to the control logic. The middleware functionality
relevant for this testbed is redundancy-related. Finally, the control logic in the
VDCN Application consists of a cyclic task with a configurable interval time.
The cyclic task updates configured variables each iteration and exposes the
updated variables externally using OPC UA PubSub.

In addition to the cyclic OPC UA PubSub communication, the VDCN Ap-
plication also contains means for OPC UA Client-Server request-based acyclic
communication. An OPC UA Server is the VDCN Application side of the
request-based, acyclic OPC UA communication, exposing Remote Procedure
Calls (RPC) callable from an OPC UA Client.
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As the name implies, OPC UA PubSub is a publisher-subscriber-based
solution. The publishers do not directly connect to the subscribers, and
vice versa. Two models are supported, broker-based and broker-less. A
broker-based publisher sends messages to a central broker from which
subscribers subscribe. Two concrete broker-based solutions are supported,
Message Queue Telemetry Transport (MQTT) and Advanced Message
Queuing Protocol (AMQP). The broker-less model relies on properties
provided by the network, specifically multicast and broadcast possibilities.
UDP multicast is the supported realization of the broker-less model. A
network infrastructure supporting IGMP ensure that published message only
is forwarded to the subscribers. Network infrastructure without IGMP support
broadcast the messages, i.e., published messages reach the whole broadcast
domain. The VDCN application uses the broker-less OPC UA PubSub model
realized with UDP multicast.

The OPC UA PubSub publishing and subscribing function run in a task of
its own - unsynchronized with the producer/consumer of the exchanged vari-
able values. Figure shows a conceptual view of the data flow between the
tasks.

The VDCN Application redundancy mode is configurable as single or re-
dundant. In single mode, there is no backup ready to resume operation in case
of failure. The single configured VDCN Application stores the dynamic state
(variable values etc.) on a file located in the PV, allowing a re-deployed single
VDCN to resume operation from the last stored state.

The redundant VDCN Application runs in a one-out-of-two (1002) setup.
One VDCN Application is active, publishing updated variable values using
OPC UA PubSub, and the other is passive, ready to resume operation in case
of failure of the active. We refer to the active as the primary and the passive as
the backup.

Two mechanisms are fundamental in a redundant setup where only one is
active, the state transfer and the failure detection. The state transfer provides

Network

D PubSub CyclicTask

naCaCelm

Figure 6.3: The VDCN Application is involved in the cyclic exchange.
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the backup with the primary’s latest checkpointed dynamic state, allowing a
backup to resume the role as primary, without historic signal values outputted.
The VDCN application utilizes an ABB proprietary state transfer mechanism
based on UDP multicast. Heartbeat Bully [20] over UDP multicast constitutes
the failure detection and role selection mechanism.

VDCN Image

The container image. When instantiated by the container runtime, the VDCN
image of the VDCN Application becomes the VDCN. The VDCN image is
built with Docker and pushed to the LCR.

VDCN Configuration

The VDCNs are configurable, and VDCN Pod PV holds the configuration files,
ensuring that they are accessible from each node that hosts the VDCN. Section
[6.5]describes the specific configuration used in the test setup, such as task cycle
times and the variables exchanged.

6.5 Execution and Result

The purpose is to measure the failure recovery time of single and redundant
VDCNs, deployed in VDCN Pods orchestrated by Kubernetes. First, we let
Kubernetes deploy the VDCN Pods on the cluster compute nodes while bring-
ing down the nodes hosting the primary or single VDCN after a random time.
Then, Kubernetes failure detection and rescheduling re-deploy the VDCN af-
fected by the node failure. In the redundant VDCN case, the backup VDCN re-
sumes operation as primary, while Kubernetes re-deploy a new backup VDCN.
A Verification DCN sample the signal values and gather statistic related to the
cyclic exchanged variables, see Section [0.5.1.3] i.e., it checks the cyclic com-
munication. The Verification OPC UA Client test the acyclic communication,
see Section

6.5.1 Testbed

Four main parts constitute the testbed, the cluster, a failure daemon, a cyclic
communication verification node (Verification DCN), and an acyclic verifica-
tion client (Verification OPC UA Client). Figure[6.4] shows the testbed deploy-
ment and Table list the used software.
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Figure 6.4: Testbed deployment.

Table 6.1: Software used.

Name Version Comment
Ubuntu Server 20.04 Control plane OS
Raspberry Pi OS 10 Compute node OS
PREEMPT_RT 4.4 Compute node kernel patch
KubeAdm 1.21 Kubernetes installer
Kubernetes 1.21 Kubernetes version
Docker 20.10.1 Container runtime
Weave 2.8.1 CNI plugin
MetalLLb 0.9.6 Bare-metal load balancer

6.5.1.1 Cluster

The compute nodes in the testbed consist of four Raspberry Pi 4B, with four
GB RAM. The control plane runs on a 2GHz Intel 17 17-9700T PC, with 16
GB RAM.

6.5.1.2 Failure Daemon

The failure daemon is a systemd daemon installed on all compute nodes that
check if a VDCN Pod runs on the node. If it does, and the VDCN Application
is in single or primary mode, the failure daemon shuts down the node after a
random time of 5 minutes, +10s.

6.5.1.3 Verification DCN

The Verification DCN hardware is a 2GHz Intel 17 I7-9700T PC, with 16 GB
RAM, running VxWorks 7.0 and the verification application (VA). The VA
checks VDCN output values and measures the time between updates. The VA
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is the same application as the VDCN Application but with a different cycle
time configuration.

6.5.1.4 Verification OPC UA Client

The Verification OPC UA Client runs on a Windows 10 PC. Every 10s, it estab-
lishes a connection to the VDCN OPC UA servers, one to the primary and one
to the single VDCN, measuring the time between two successful connection
attempts.

6.5.2 Exchanged Variables

The variables published by the VDCN and monitored by the VA in the Verifica-
tion DCN are: (i) ¢ncV ar, 32-bit unsigned integer, incremented by the VDCN
each iteration, and (ii) nodeld, a string identity of the node currently hosting
the specific VDCN. We expect application size to affect a VDCN similar to a
DCN since container overhead is neglectable [3]. Furthermore, we deploy one
VDCN per node. Hence variable handling and communication come down
to resource utilization and prioritization within the VDCN and node, and the
critical VDCN task has real-time priority. Ensuring real-time properties when
running multiple VDCN in the context of containers/pods on one node, with
more extensive use of virtualized networks, is future work.

6.5.3 Task Interval and Updating Period

We base the calculation on the simplification of the VDCN Application shown
in Figure [6.3] In reality, the span will be larger due to task interleaving pat-
terns with other high-priority tasks in the VDCN Application. The PubSub and
Cyclic task in the VDCN Application has 5 and 20ms cycles. The correspond-
ing cycle time in the VA is 1ms for both.

With the cycle times above, the VDCN publishing interval of updated
variable values is in the range PubUpdIntv € (20,25)ms. The interval in
which the Cyclic task in the VA can receive and check variable values is
VaCheckIntv € (1,2)ms. We denote the VA measured update interval of
incVar, VaUpdIntv = PubUpdIntv + VaChecklIntv, thus being in the
range VaUpdIntv € (18,27)ms. In relation to interval times used, the net-
work propagation time is deemed negligible and not included.

The redundant VDCN failure detection mechanism is Heartbeat Bully [20].
The backup VDCN expects heartbeat messages regularly from the primary
VDCN. The time between primary VDCN failure to the backup VDCN resum-
ing the primary role depends on the heartbeat interval and the number of miss-
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ing heartbeats allowed. The heartbeat interval used is 10ms, and the number of
missed heartbeats allowed is two. The VDCN Application polls the heartbeats
receiving status, adding a heartbeat interval to the detection time, resulting in
the primary failure detection time range PriFailDetTime € (30,50)ms. On
top of that, the VDCN has a resume primary role functionality with an exe-
cution time interval of BePriFEzec € (12,34)ms that contributes to the total
failover time. Resulting in failover time range F'oT € (42, 84)ms.

The UpdIntvFail is the longest time between VA observed updates of
tncV ar when a failover happens we have that:

UpdIntvFail = 2 - PubUpdIntv + FoT + VaCheckIntv

resulting in the range UpdIntvFail € (80,136)ms.

6.5.4 Kubernetes Settings

Kubernetes reschedule Pods on failure and the failure detection and reaction
time are configurable, and those setting impacts the single configured VDCN
UpdIntvFail and redundant VDCN timeframe without a backup. The Kuber-
netes kubelet monitors the Pod and updates the status of the Pod and node
to the kube-apiserver on the control plane. By default, the kubelet
reports the node status every 10s, and the kube—-apiserver has a grace
period of forty seconds before setting the node status to not-available.

The default Pod eviction timeout is five minutes, and when a node failure
is detected, Kubernetes reschedules the Pod after the eviction timeout expira-
tion. Statefulsets are used for Pod management, i.e., the VDCN Pod controller.
We use a Pod eviction timeout of 3s, specified in the Statefulset specifica-
tion. A VDCN Pod hosted in a failing node is rescheduled after 43s; hence
UpdIntvFail for the single VDCN is higher than 43s.

When a node running stateful Pods fails, Kubernetes do not schedule a
new stateful Pod by default. Since missing updates from that node’s kubelet
could be a consequence of network partitioning. Kubernetes cannot be confi-
dent that the node and Pod are gone. Hence, Kubernetes requires the cluster
administrator to delete the failed node stateful Pods manually in a node failing
situation.

We assume that the network is redundant and reliable with minimal risk of
network partitioning. Even though our testbed network is not redundant, the
network on an actual site is likely to be. Hence, we configure Kubernetes to
reschedule stateful Pods by setting their termination grace period to Os.
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Table 6.2: Measured interupdate time.

Primary Single
Min Max Avg SD Min Max Avg | SD
Normal | 3.0ms | 36ms | 20ms 1.3ms | 3.0ms | 224 ms | 20ms | 1.8ms
Failure | 83ms | 129ms | 110ms | 10.5ms | 43.5s | 74.7s 55.4s | 8.1s

Mode

6.5.5 Result

The test ran for ten hours and accumulated 200 node failures, one hundred
failures each on primary and single VDCNs hosting nodes and 3.6 million
interupdate measures without node failures in between.

Table [6.2] shows the interupdate times per VDCN and mode. The Normal
mode row shows the interupdate time measured during the failure-free periods
and the Failure mode row when two updates span a node failure of the node
hosting the VDCN publishing the variable. The Normal interupdate time is a
reference for update time in a normal situation. The measured interupdate
(or update interval) times without failure are on average 20ms, and that is
in the expected range VaUpdIntv from Section The single VDCN
interupdate time standard deviation is higher than from the primary. The NFS-
based PV state storage induces a longer execution time for the single VDCN.
Max and min interupdate measured from the primary are outside the theoretical
limit due to task interleaving patterns in the VDCN Application used that we
do not address in the theoretical simplification. The SD tells that the vast
majority is within the expected interval.

The interupdate time during a primary node failure, i.e., the failure recov-
ery time, is within the expected range with an average of 110ms. As a compar-
ison, the Kubernetes controller-based recovery time archived by Vayghan et
al. [12] is in the range of 1.5 seconds. The single VDCN minimum interupdate
time during node failure is 43.5 seconds, reached when the Pod is scheduled
on the same node again. That can happen since the failure injection is a reboot.
After the reboot, the node is failure-free again. In that case, the container im-
age is not pulled from the LCR, reducing the time. The max of 74.7s includes
pulling the image from the LCR.

OPC UA Client connection reestablishment to the new primary VDCN
took a max of 41 seconds with an average of 40 seconds, which is the pod
eviction time. For the single VDCN, the connection reestablishment times are
the same as the failure interupdate times, which is feasible since that is the
time it took Kubernetes to replace the failed single VDCN.
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6.5.6 Availability Discussion

We base the replacement scenarios in this section on input from experienced
engineers working close to end-users. When a DCN fails today, it needs man-
ual replacement and the replacement time depends on the situation. The best
circumstance is when the failed DCN is close to both a spare DCN and mainte-
nance personal that can exchange the broken DCN. In that case, a replacement
within an hour is optimistic but realistic. A less favorable scenario is a failure
in a remote location. It could take time for maintenance personnel to reach the
site, causing repair time to range from several hours to many days. With an
orchestrated VDCN cluster, the orchestrator could redeploy the failed VDCN
on compute nodes with enough available capacity and reduce the replacement
time.

A commonly used measure in reliability contexts is Mean Time To Fail-
ure (MTTF), a statistical measure of the probability of failure within a specific
period [21]. DCN MTTF depends on the hardware components used, tempera-
ture, and more. Based on public product information /[°} we use a mid-range
MTTF approximation of twenty years for the DCN and compute node hard-
ware in the following discussion. Depending on the product and equipment
type, it can be higher or lower. Note that the above user manuals use the term
Mean Time Between Failures (MTBF) as MTTF, since the listed values do not
account for repair time. Hence, MTTF is a more accurate term to use since it
does not include repair time [21].

Auvailability is the proportion of time that a system is available, often
denoted in the number nines in the availability percentage; for example,
99.99% has four nines. A DCN replacement mean-time, Mean Time To
Repair (MTTR) of one hour with MTTF of twenty years translates to an
availability of five nines and an MTTR of twenty-four hours to four nines.

The average time for a redeployment of VDCN upon failure on the com-
pute node currently hosting it is 55 seconds, see Table [6.2] which translates to
an availability of seven nines for the single configured VDCN. A four nines
availability level gives a yearly downtime of roughly 52 minutes, five nines
and seven nines correspond to 5 minutes and 3 seconds downtime respectively
and annual.

A redundant DCN has high availability, with the twenty years MTTF and
the average takeover time from Table the availability level is nine nines.

17https ://search.abb.com/library/Download.aspx?Document ID=
3BSE091397&Action=Launch

"https://support.industry.siemens.com/cs/attachments/
16818490/mtbf.zip
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The orchestration benefit is the automated and quicker backup VDCN return,
resulting in a pseudo-1o0oN redundancy, with N being the number of compute
nodes in the cluster capable of hosting a redundant configured VDCN.

An orchestration benefit is the increased availability that follows the
quicker replacement of a failed DCN. Other potential benefits are flexible
maintenance. For example, a VDCN can be moved to another compute node
while upgrading the base software of the former. Even if one compute node
fails, there might still be enough spare capacity to counter further failures,
allowing process operation until the next scheduled maintenance with high
confidence in the availability.

6.6 Conclusion and Future Work

By describing the components needed when setting up a bare-metal Kuber-
netes cluster for VDCN, we provide a holistic view of the system and show the
multitude of component alternatives available. We created a testbed consisting
of compute nodes, on which we deployed two VDCN configurations, a single
and a redundant. Outside the cluster, we had a DCN verifying the VDCN OPC
UA PubSub published variables and Windows application on a PC confirming
the OPC UA Client/Server communication.

The result shows that Kubernetes hosted VDCN are feasible for both sin-
gle and redundant VDCN. The measured redeployment of the single VDCN
is too long to be a redundancy replacement. As stated in Section [6.1] takeover
time below 500 ms can be needed for DCS in process automation. Neverthe-
less, it can still serve as a faster alternative to a manual replacement of a failed
node. If shorter downtimes are required, a 1002 setup is feasible, where Ku-
bernetes also ensure a quicker reinstatement of a backup VDCN than manual
replacement, resulting in a pseudo-100N VDCN redundancy.

Kubernetes provide much more extensive customization alternatives than
we have utilized. Further work could evaluate the feasibility of further cus-
tomization of Kubernetes for VDCNs, such as the faster discovery of failed
nodes. Kubernetes scheduling in the DCS context is another natural extension
of this work, for example, finding and deploying the VDCN to a suitable node
capable of fulfilling the dependability needs dictated by the VDCN.

We showed the plurality of different network virtualization alternatives.
Reliable, deterministic communication is essential for DCS. VDCN in a con-
tainerized Kubernetes managed context relies on virtualized network functions
provided by CNI plugins and load balancers. Ensuring dependability when
utilizing virtualized network is a future challenge, especially when sharing the
underlying resources between VDCN or other entities on the compute node.
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Abstract

Distributed control systems constitute the automation solution backbone in do-
mains where downtime is costly. Redundancy reduces the risk of faults lead-
ing to unplanned downtime. The Industry 4.0 appetite to utilize the device-
to-cloud continuum increases the interest in network-based hardware-agnostic
controller software. Functionality, such as controller redundancy, must adhere
to the new ground rules of pure network dependency. In a standby controller
redundancy, only one controller is the active primary. When the primary fails,
the backup takes over. A typical network-based failure detection uses a cyclic
message with a known interval, a.k.a. a heartbeat. Such a failure detection in-
terprets heartbeat absences as a failure of the supervisee; consequently, a net-
work partitioning could be indistinguishable from a node failure. Hence, in a
network partitioning situation, a conventional heartbeat-based failure detection
causes more than one active controller in the redundancy set, resulting in in-
consistent outputs. We present a failure detection algorithm that uses network
reference points to prevent network partitioning from leading to dual primary
controllers. In other words, a failure detection that prioritizes consistency be-
fore availability.
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7.1 Introduction

Distributed Control Systems (DCS) progress toward more network-oriented
architectures where switched Ethernet in combination with OPC UA[Y consti-
tute the interoperability communication backbone in future automation instal-
lations [1]. A progression observable through the increase of Ethernet solu-
tions and decrease of fieldbus installations [2, 3].

The trajectory to network-centric architectures yields that DCS controllers,
denoted Distributed Control Nodes (DCN) by the Open Process Automation
Forum (OPAF), and Fieldbus Communication Interfaces (FCI) will rely more
on Ethernet. Ethernet enables new controller deployment alternatives, such as
the execution of control applications in a virtualized context in the cloud or in
orchestrated embedded clusters [4, 5, 6].

DCN redundancy is an example of functionality that must refrain from
customized hardware dependency to avoid reducing deployment alternatives.
Today, standby redundancy with hardware duplication is a typical redundancy
pattern in a DCS context. One DCN is the active primary DCN, and the other
is the passive backup DCN, ready to take the primary role in case of failure
of the current primary. Only the primary DCN provides output values to I/O
connected to the process and physical world.

A common failure detection method is a heartbeat, a cyclic message sent
within a known interval from the supervisee to the supervising [7]. The su-
pervising node interprets heartbeat timeout as a supervisee failure. We denote
such a conventional heartbeat-based failure detection Conv. FD.

In a DCN redundancy context, the supervisee is the primary DCN, and
the backup DCN is the supervising. The backup DCN in a DCN redundancy
pair using Conv. FD interprets a heartbeat timeout as a primary DCN failure
and resumes the primary role. However, a timeout is not necessarily a con-
sequence of a primary DCN failure; it could follow from a network failure
causing a network partitioning between the primary and backup DCN. Hence,
in a network partitioning situation, with a DCN redundancy using Conv. FD,
the partitioning causes the backup DCN to become primary while the former
primary remains primary, resulting in dual primaries. A consequence of dual
primaries is that both the DCNs in the DCN redundancy pair control I/O val-
ues, causing inconsistency.

DCN redundancy is typically used with network redundancy to reduce the
probability of communication failures. However, the partitioning probability
is not zero, not even with duplicated networks. Hence, DCN redundancy based
on Conv. FD gives a dual primary probability larger than zero.

'https://opcfoundation.org/
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If the DCN redundancy cannot ensure a single primary, it is better to have
no output than conflicting outputs from dual primaries. This prevents fluctua-
tions in the controlled process because I/0 channels that expect DCN updated
values will output preconfigured values when updates are missing. This setting
is named Output Set as Predetermined (OSP) [8] in ABB I/O system context,
and the input channel equivalent is Input Set as Predetermined (ISP), which
the DCN control application uses when input values are absent.

Switch A1 Switch A2 Switch A3
A A F1 A
|-~
DCN At X 4 LA DCN A2
(Red. P) [FciAlvo[io] [FciB[yofuo|  [FCIC[IO[0] | (Red.B)
7 )
y Y Y
Switch B1 Switch B2 Switch B3

X

F2

Figure 7.1: Example of a network failure causing a partitioning where both
DCN will become primary and drive output signals. The DCN redundancy
recovery time is typically between ten to hundred milliseconds.

Figure[7.1|shows a partitioning situation, with two network failures F'1 and
F2 between the redundant DCN pair. Both the DCNs (DCN A1 and DCN A2)
take the primary role when using Conv. FD and provide output values in the
resulting dual primary situation. FCI B gets output values from both DCNs.
Values that differ since the DCNs reach two different FCIs. DCN Al reaches
FCI A and B, while DCN A2 reaches FCI B and C. Hence, the two DCNs will
use different input values. DCN A1l will use the ISP values instead of actual
I/O values from FCI C, while DCN A2 will use the actual I/O values from FCI
C. Vice versa applies to FCI A and the DCNss.

We address this problem by proposing a failure detection algorithm that
utilizes a Network Reference Point (NRP) external to the DCNs to mitigate
dual primary situations due to network partitioning while striving to keep high
availability. We use the name NRP Failure Detection (NRP FD) for the pro-
posed algorithm.

The paper is structured as follows, Section presents the related work,
and Section describes NRP FD. Section compares NRP FD and Conv.
FD concerning the availability and consistency tradeoff, followed by an ex-
perimental comparison of NRP FD and Conv. FD described in Section
Lastly, Section summarizes the paper.
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7.2 Related Work

The Consistency, Availability, and Partition tolerance (CAP) theorem [9, 10]
state that in case of partitioning, a distributed system can be either consis-
tent or available, not both. Lee et al. present a modified version of CAP, the
Consistency, Availability, and apparent Latency (CAL) theorem [11, 12]. Us-
ing CAL, Lee et al. quantify consistency and availability compromises under
latency requirements. NRP FD preserves consistency under network partition-
ing by ensuring one or no primary, i.e., consistency before availability, further
described in Section [Z.3]

Failure detection is crucial in a standby redundancy solution, and existing
work ranges from the introduction of unreliable failure detection concept [13]
and failure detection Quality of Service (QoS) attributes [14] to heartbeat opti-
mizations and improvements [15, 16]. However, none of these works addresses
differentiation between node and network failure, which, as pointed out by van
Steen [17], a failure detector ideally should do. Distinguishing node and net-
work failures could solve the problem we address.

We have not found any scientific failure detection publication addressing
the differentiation between node and network failures in wired networks, but
two patents that do. Charny et al. [18] uses an alternative path to the node when
failing to reach the node on the first path, a solution that is similar to the neigh-
boring using approach van Steen [17] discuss. l.e., querying neighbors of the
suspected node to learn if they can reach it. Filsfils et al. [19] describe a Bidi-
rectional Forwarding Detection (BFD) based approach to distinguish network
from node failures using multiple BFD sessions over various disjoint paths.
BFD [20] is a protocol for quick link failure detection between adjacent nodes,
typically used by routers.

Ritter et al. [21] present a similar approach for ad-hoc mobile wireless net-
works. A beacon node sends heartbeats to all other nodes. The beacon’s closest
neighbor, the buddy node, supervises the beacon faster than the heartbeat in-
terval. If the buddy node does not hear the beacon, it tries an alternative path,
and if that also fails, the beacon node is assumed to have failed. Otherwise,
the network is considered partitioned. Our work addresses partitioning without
alternative paths. The work described above would treat such partitioning as a
node failure and cause a dual primary situation, which we want to avoid.

Failure detection in a redundant DCN context, with only one backup, con-
stitutes an implicit leader election. The Bully algorithm [22] is one of the more
famous leader election algorithms, and many variants exist [23, 24, 25]. How-
ever, they will all elect a leader per partition, i.e., provide availability before
consistency.
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Quorum consensus protocols like Paxos [26, 27] and Raft [28] provide
consistency and tolerates (/N —1)/2 faults, where N is the number of nodes. A
redundant DCN only requires two individual DCNs, N = 2, i.e., a consensus
protocol-based redundancy would not tolerate one fault if N = 2, making
quorum-based DCN redundancy meaningless.

Active redundancy means that all the nodes in the redundant set are ac-
tive [29, 30]. However, it pushes the decision of which data to use to a se-
lection function such as a voter, a selection that needs to be made on the data
consumers to be partition tolerant, forcing DCN redundancy data handling to
all data consumers.

None of the related work covered solves the problem we address, a real-
time capable failure detection that prioritizes consistency without requiring a
DCN quorum while minimizing the availability compromise.

7.3 Network Reference Point Failure Detection

7.3.1 Overview

NRP FD is a heartbeat-based failure detection with additions. We describe it in
the context of a redundant DCN pair. A failed DCN is assumed to stop sending
heartbeats. Generalization and adaptation to more flexible redundancy patterns
are future work.

NRP FD provides consistency over availability, meaning that both DCNs
will not be primary due to multiple network failures, but none might.

The NRP FD additions are (i) the usage of the NRP and (ii) the optional
utilization of temporal properties of received heartbeats. We use the word net-
work to describe a communication path between primary and backup DCN.
NRP FD does not dictate any requirement on the number of networks connect-
ing the primary and backup. In the description, we use a redundant network
(two networks), exemplified in Figure NRP FD assumes that the NRP is
an individually accessible node in the network infrastructure between primary
and backup; in practice, a managed switch. Each DCN in the redundant pair
has an NRP candidate per network; see Figure [7.2] How NRP FD is made
aware of the NRP candidates is outside the algorithm’s scope. Section
describes the considerations that apply to the NRP candidates. Only one of the
NRP candidates is the NRP; selected by the primary.

Algorithm summary; the primary sends heartbeats on all networks con-
necting the primary and the backup DCNs, containing the IP address of the
NRP that the primary has selected. If the backup does not observe any heart-
beat within a timeout period, it checks if it can reach the NRP, and if it can, it
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Figure 7.2: NRP in a system context where each DCN has one candidate per
network and the primary has appointed one NRP (switch Al).

becomes the new primary, and if it cannot, it remains passive.

We use the term PINGNRP for the NRP reachability test. NRP FD is
agnostic to the implementation behind PINGNRP. To comply with COTS
switches, the PINGNRP is limited to communication means and protocols
supported by most managed industrial COTS switches; in practice, this means
using ICMPEI ping.

An ICMP ping does not have a bounded response time, but NRP FD can
guarantee a bounded reaction time by utilizing temporal aspects of heartbeats
received on the different networks. NRP FD can assume that a heartbeat si-
lence is due to a primary failure if heartbeats timeout simultaneously on mul-
tiple networks and skip the PINGNRP. Note that this is optional handling with
the cost of a small risk of treating simultaneous network failures as a failure of
the primary.

A backup that does not use the simultaneous timeout optimization or only
has one functioning network always uses the PINGNRP to determine if it
should become the primary in case of heartbeat silence.

In addition to the PINGNRP performed by the backup, NRP FD prescribes
that the primary checks if it can reach the NRP; if it can’t, it tries to elect a new
NRP from the NRP candidates. If that fails, it surrenders the primary role.

If a backup does not receive heartbeats on the network of the NRP but on
other networks, the backup checks if the NRP is reachable. If it is not, the
backup proposes a switch of NRP to the primary.

Figure gives an overview of NRP FD, further described in
Section[7.3.31

nttps://www.rfc-editor.org/rfc/rfc792
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Figure 7.3: NRP FD state machine.
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7.3.2 Assumptions

NRP FD requires that the NRP (i) has no common cause failure with the DCN
and (ii) that the NRP is uniquely addressable.

The NRP must not have any common cause failure with the DCN, such as
being powered by the same power supply or using the same CPU for process-
ing requests, such as ICMP pings. That could be the case if the NRP were an
embedded switch mounted on the DCN hardware.

The DCN is assumed to have an IP address per network, and the IP ad-
dresses of the partner DCN per network, are known for each DCN. The NRP
candidates’ IP addresses are pre-configured and unique, making the NRP can-
didates uniquely addressable.

7.3.3 Detailed Description

We begin the detailed description with the startup and the transition to the
specific roles, followed by NRP selection. Then, we continue with the actual
failure detection, the (i) backup - supervision handling, and the (ii) primary -
supervisee handling. Finally, the NRP change handling wraps up the section.

7.3.3.1 Startup - Init / Waiting

Algorithm [T| describes the startup and initial handling. It consists of the func-
tion BECOMEWAITING that does three things (i) wait for available NRP can-
didates, (ii) wait for acknowledgment to become primary or a heartbeat from
an existing primary, (iii) transition to the primary or backup role.
WAITFORNRPCANDIDATES waits for at least one NRP candidate to be
available. Available means answering to PINGNRP. When at least one NRP
candidate is available, the next step is to wait for either a heartbeat from an ex-
isting primary or an OK-to-be-primary acknowledgment. The function HBOR-
PRIMARYACK performs this wait. An operator or maintenance engineer issues
the primary acknowledgment, okaying the DCN to become primary, mitigat-
ing the risk that a DCN starting up in a partitioned network becomes primary.
The person issuing the acknowledgment must ensure that this is not the case.

7.3.3.2 BecomePrimary - Transition to the Primary Role

The transition to the primary role only consists of selecting an NRP from the
NRP candidates (reachableCandidates from Algorithm [2), Line in
Algorithm[I] Any NRP candidate reachable is selectable.
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Al

gorithm 1 Startup - init / waiting

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:

1
2
3
4
5:
6
7
8
9

: BECOMEWAITING( )
: function BECOMEWAITING( )
WAITFORNRPCANDIDATES( )
do
do
hbOrAckSts <~ HBORPRIMARYACK( )
while hbOr AckSts # HbOr PrimaryAck
if hbOr AckSts = AckToBePrimary then
BECOMEPRIMARY( )
else > HB seen, become backup
BECOMEBACKUP( )
end if
while not(is Primary OR is Backup)
end function
function WAITFORNRPCANDIDATES( )
do
MONITORNRP( ) > See Algorithm 2]
while reachableCandidates = {@}
end function
function BECOMEPRIMARY
SELECTNRP( ) > Select the NRP to use.
isPrimary < TRUFE
end function
function BECOMEBACKUP
SENDIMHERETOPRIMARY( )
1sOwnlpInHb <+ WAITFOROWNADDRINHB(Tmo)
if isOwnIpInHb == T RUE then
isBackup < TRUE
else
isBackup + FALSE
end if
end function
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7.3.3.3 BecomeBackup - Transition to the Backup Role

The backup informs the primary of its presence, Line in Algorithm
Then, the backup waits for the primary to acknowledge its presence by adding
the IP address of the backup to the heartbeat field Backups Known, see Ta-
ble This ensures that the backup does not resume the primary role due to
a failure when the primary is unaware of the backup. Since a primary without
backups will remain primary even if the NRP reachability is lost. A backup is
not a backup unless it sees its address in the heartbeat field Backups Known,
continuously checked while in the backup state.

7.3.3.4 NRP Selection and Candidate Monitoring

The set reachableCandidates, contains the reachable NRP candidates; see
Algorithm 2] The primary selects an NRP from the reachableCandidates set
as the NRP. The reachableCandidates set is updated with a suitable interval,
for example, a few times per minute. Each network has an NRP candidate.
The algorithm description does not cover how NRP FD becomes aware of
NRP candidates; however, Section presents alternatives. The function
GETCANDFORNW represents NRP candidate retrieval for a specific network
nw.

Algorithm 2 NRP candidate monitoring

1: function MONITORNRP( )

2 reachableCandidates < {@}

3 for all nw € AllNetworks do

4: candidate + GETCANDFORNW (nw)

5 isReachable < PINGNRP(candidate)

6 if i.sReachable then

7: reachableCandidates — reachableCandidates U
{candidate}

8: end if

9: end for

10: end function

7.3.3.5 Backup - Supervising

The backup continuously, with a cycle time preferably longer than the heart-
beat interval, announces its presence to the primary, see Algorithm [3| Line [2]
Further described in Section [/.3.3.6)
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Algorithm 3 Backup - supervising

1: while isBackup do

2 SENDIMHERETOPRIMARY( ) > Longer interval.
3 hbSts < CHKHBSTSONALLNW( )

4 if hbSts == tmoAllSimul then

5: BECOMEPRIMARY( )

6 else if hbSts == tmoAllNotSimul then

7 isNrpReachable < PINGNRP()

8

9

if isNrpReachable then

: BECOMEPRIMARY( )
10: end if
11: else if hbSts == tmoSomeN ot All then
12: isNrpReachable + PINGNRP()
13: if not isNrpReachable then
14: ASKPRIMARYTOSWITCHNRP( )
15: end if
16: end if
17: isBackup < isOwnlIpInHb > See Alg.

18: end while

The backup checks the heartbeats on all used networks, Line [3]
If heartbeats timed out on all networks and two or more timed out
simultaneously, NRP FD assumes that the cause is a failure of the primary
rather than two (or more) independent network failures in a short time frame,
Line[3{f5] Treating a simultaneous timeout of heartbeats as a primary failure is
an optimization, a way to reduce decision time by avoiding PINGNRP when
a failover time shorter than the response time of the PINGNRP is required.
If the PINGNRP have a sufficiently low upper bounded reply time, Line
could be removed and be covered by the handling described on Line [6HI0}

Equation defines the simultaneous timeout, where AhbT'mo is the in-
terval for considering two heartbeats to be simultaneous, hbT'moT is the time
of the timeout, and NW is the set of all networks connecting the primary and
backup. hbT'moT is zero in case of no timeout.

i,j € NW,YhoTmoT;, VhbTmoTj,
i # j, hbT'moT; # 0, hbT'moT; # 0 | (7.1)
|hbT'moT; — hbT'moT}| < AhbTmo
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If heartbeats timeout on all networks but not simultaneously (or if the op-
timization is not used), the NRP reachability test determines if the backup
should become the primary, Line [6H10}

If heartbeats timed out on some, but not all, networks, the backup tests the
NRP reachability. If unreachable, the backup asks the primary to change NRP,
Line further described in Section

7.3.3.6 Primary - Supervisee

The primary sends heartbeats on all networks, with the configured interval
containing the address of the current NRP; see Algorithm 4] Line 3]

Algorithm 4 Primary - supervisee

1: nrpAddr <~ GETNRPADDR( )

2: while ¢sPrimary do

3 SENDHEARTBEAT(nrpAddr)

4: isN RP Reachable <~ PINGNRP(nrpAddr)
5: if not isN RP Reachable then
6

7

8

9

newN RPAddr < GETNEWREACHABLENRP( )
if IsValid(newN RP Addr) then

if isBupAvailable then
: ASKBUPTOCHGNRP(newNRPAddr)
10: isN RPChgOk <— NRPCHGRESP(T'mo)
11: if isN RPChgOFk then
12: nrpAddr < newN RP Addr
13: else
14: BECOMEWAITING( ) > See Alg.[]]
15: end if
16: else
17: nrpAddr < newN RP Addr
18: end if
19: else
20: if isBupAvailable then
21: BECOMEWAITING( ) > See Alg.[]]
22: end if
23: end if
24: end if
25: isBupAvailable < ISBACKUPPRESENT( )

26: end while
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The primary also checks the NRP reachability, Line[d, A reachable NRP
does not require any further actions. The remaining parts of Algorithm @] pseu-
docode cover the unreachable NRP scenario, Line [5}24] If a backup and an
alternative NRP candidate exist, the primary tries to switch NRP, Line [7HI§]

The primary must ensure that the backup accepts an NRP change before
changing NRP. Hence, the primary requests the backup to change NRP and
waits for a response with a timeout, Line[OI5] The primary leaves the primary
role if it does not receive a positive confirmation in time. If no backup exists,
the primary just switches NRP.

If no reachable NRP candidate exists, Line the primary leaves the
primary role if the backup is present and remains primary if the backup is
not present. The primary expects the backup to report its presence within a
timeout, see Line [25] allowing the primary to vacate the primary role only if
a backup is present. The backup presence timeout is preferably at least one
order of magnitude larger than the heartbeat interval since backup presence
detection does not affect the failover time.

Table 7.1: Heartbeat message fields.

Name Description

NRP Address of the current NRP.

Backups The addresses of the backups known

Known by the primary.

Iteration Identifies the iteration/cycle the

(seq.) number | the heartbeat was sent. Incremented
each cycle by the primary.

7.3.3.7 NRP Change Handling

The backup and primary must never use different NRPs; an NRP change must
never violate that. It is beneficial to change the NRP in two situations. The
first is when the primary fails to reach the NRP. In that situation, the primary
proposes a new NRP to the backup as shown in Algorithm 4] A backup that
accepts the new NRP starts using it after it sees the new NRP address in a
heartbeat. Hence, during the time between acceptance and heartbeat receiving,
the backup can not use the NRP reachability to become primary. The backup
can only know that the acceptance message is delivered to the primary once it
sees a confirmation. The confirmation is the changed NRP address in received
heartbeats. If the NRP address is not changed, the backup reverts to using the
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former NRP address after two heartbeat cycles by using the iteration number
in the heartbeat message, see Table

The second situation is when the backup cannot reach the NRP. A backup
that cannot reach the NRP cannot take the primary role using the NRP reach-
ability test. Hence, in that situation, the backup suggests that the primary
switches the NRP.

7.4 Consistency and Availability Comparison

In this section, we present a comparison of consistency and availability be-
tween Conv. FD and NRP FD using switch-failure scenarios. We use two
topologies, 7'1.Sw with one switch per network between the DCN redundancy
pair and T'3Sw with three switches, depicted in Figure[7.2]

We assume that all switches, and thereby the NRP and NRP candidates, are
the same make and model and have the same MTTF. We use a switch MTTF
of 75 years, same as the Westermo managed-switch Lynxﬂ The DCN MTTF
is assumed to be lower since DCNs are likely more complex hardware-wise.
We assume a DCN MTTF of 20 years.

The reliability function R(¢) = e~ and the corresponding failure func-
tion F(t) = 1 — R(t) give the failure probabilities. We use a run time of ten
years, i.e., t = 10. The scenarios are multiple faults, requiring the failure of
one network path between the primary and backup and another failure. One
week is the assumed reparation time for the first failure. Heartbeats are sent
from the primary to the backup every 50 milliseconds, Line [3|in Algorithm 4]
and the backup presence timeout I sBackupPresent, Line 23] is one second.
Table [7.2] presents the probabilities for the scenarios described below.

The scenarios where NRP FD prioritizes consistency before availability by
vacating the primary or backup role potentially negatively impact availability.
Therefore, these are the scenarios used for comparison. In other words, we
compare the probability of scenarios that lead to no primary using NRP FD
with the likelihood of scenarios leading to dual primary using Conv. FD.

NRP FD vacates the primary role if the NRP is not reachable, a
backup is present, and the request to change NRP fails, see Line [5{24]
in Algorithm @] The NRP change request can fail for two reasons:
partitioning or backup failure. In the partitioning case, the backup will
become primary unless the second failure is a failure of the NRP itself,
denoted NRPEFINRPAndNW Fail, failure combination F1F4 in

3https ://www.westermo.se/—/media/Files/Data—-sheets/westermo_
ds_lynx_100-and-200-series_2205_en_revg.pdf


https://www.westermo.se/-/media/Files/Data-sheets/westermo_ds_lynx_100-and-200-series_2205_en_revg.pdf
https://www.westermo.se/-/media/Files/Data-sheets/westermo_ds_lynx_100-and-200-series_2205_en_revg.pdf
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Table 7.2: Availability and consistency loss probabilities.

Scenario Probability
NRP FD Conv. FD
No primary Dual primary
NRPFANRPAndNW Fail | T1Sw: 3.2 x1073% 0% !
T3Sw: 8.5+ 1073%
NRPFdIN RPAndBupFail | T1Sw: 1.7 % 107%% 0%
T3Sw: 1.7+ 1073%
NRPFdBupNotRchNRP | T1Sw: 2.0 x1079% 0%
T3Sw: 5.2%1079%
ConvFdNwPart See note? T1Sw: 3.2%107°%
T3Sw: 2.5 107%%

! Partitioning due to NRP failure is included in ConvFdNwPart for Conv.
FD.

2 Partitioning due to failure of any switch is  covered
by NRPFANRPAndNW Fajil for NRP FD.

Figure is an example of this. For NRPFdANRPAndNW Fail to
result in a no primary situation, the NRP must fail while the other
network path is broken.  Hence, the probability increases with the
reparation time. The second reason and scenario for an NRP change
request to fail is a backup failure simultaneously to the primary
loss of NRP reachability, denoted NRPFdJINRPAndBupFail.
For NRPFdN RPAndBupFail to cause a non-primary situation, the NRP
must fail before the sBackupPresent expires, see Line 25]in Algorithm 4]

If the backup cannot reach the NRP, it cannot resume the primary role us-
ing the PINGNRP. Therefore, it proposes an NRP change; see Line in
Algorithm [3] If the primary fails before it has changed the NRP, the backup
won’t takeover, denoted N RPFdBupNotRchNRP. We use 100 millisec-
onds as the NRP change time, i.e., twice the heartbeat interval.

Conv. FD causes a dual primary situation in any network partitioning sce-
nario, denoted ConvFdNwPart.

Table shows that the inconsistency probability for Conv. FD is higher
than NRP FD’s availability loss probability for topology 7'3Sw. The main
reason for that is that a Conv. FD causes a dual primary situation for any par-
titioning situation, i.e., if any of the switches between the primary and backup
fail on the two networks. NRP FD only causes a no primary situation when
the specific failure mentioned above occurs. For T'1.Sw, the probability of
availability loss with NRP FD is marginally higher than the probability for
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consistency loss using Conv. FD.

7.5 Implementation and Evaluation

7.5.1 Implementation

The NRP candidates are the switches, see Table[/.3|and Figure that NRP
FD learns about using a dynamic approach based on Link Layer Discovery
Protocol (LLDP). LLDP allows neighboring devices to announce their pres-
ence. The switches reveal their existence and IP addresses with LLDP, and
NRP FD in each DCN learns about adjacent switches on each network. Those
adjacent switches are the NRP candidates, from which NRP FD selects an
NRP.

LLDP provides vendor-specific extension possibilities. Hence, LLDP
could announce the support of low latency PINGNRP that NRP FD
could utilize if available. For example, a future switch supporting a
real-time PINGNRP could reveal that through LLDP, and NRP FD could use
this knowledge to avoid using simultaneous heartbeat timeout handling when
switches that support real-time capable PINGNRP are used.

Our implementation uses ICMP ping as the PINGNRP, and our test shows
that our switches typically reply to ping with a sub-millisecond response time.

7.5.2 Evaluation

Figure shows the evaluation setup we use. The Input sig. provider emu-
lates an input I/O. It generates a sine wave with a frequency of two Hertz and
an update rate of 100 updates per second. Outputting a new value every ten
milliseconds on network A and B, using UDP multicast.

The control application that runs on the redundant DCN pair (DCN A1 and
DCN A2) expects Input sig. provider values, and outputs values to the Output
sig. consumer. The control application checks for an updated value every five
ms. If received, it outputs the value received; if it does not receive a value after
three iterations, it outputs the ISP value zero.

The Output sig. consumer emulates an output I/O and uses the last received
value as OSP. It is a Windows application that plots the received value for
visualization purposes; Figure shows the Output sig. consumer value plot
when OK.

We compare our NRP FD and Conv. FD implementation and show the
resulting consistency difference between NRP FD and Conv. FD in network
partitioning situations by breaking the network in the places marked F'1 - F'4
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Figure 7.4: The evaluation setup used. F1 - F4 marks the network faults in-
duced.

Table 7.3: Software and hardware used.

Node name Hardware Software
DCN Al MSI, Core i3 VxWorks 7.0
DCN A2 Lenovo, Core 15 VxWorks 7.0
Input sig. provider Intel NUC, Core 13 | VxWorks 7.0
Output sig. consumer | Lenovo, Core i7 Windows 10
Switches Zyxel, GS1900-8 V2.40

in Figure Fault F'1 breaks network B and is always the first fault. We
combine F'1 with F'2 - F'4 separately, resulting in three different fault combi-
nations, (i) F'1F'2, (ii) F1F3, and (iii) F'1F4.

Figure shows the Output sig. consumer plot with fault combination
F1F?2 using Conv. FD. DCN Al receives values from Input sig. provider
while DCN A2 does not. Hence, DCN A1 outputs the sine wave values, and
DCN A2 uses the ISP value and outputs a constant zero. Output sig. consumer
receives values from both DCN Al and DCN A2, resulting in the distorted
sine wave shown in Figure With the same fault combination, F'1F'2, NRP
FD ensures that DCN A1 remains primary and DCN A2 passive. Hence, the
Output sig. consumer receives consistent values, shown in Figure

The fault combination F'1F'3 results in a dual primary situation using
Conv. FD. The difference from F'1F2 is that DCN Al and DCN A2 receive
values from the Input sig. provider. Hence, the inconsistency in the output
values is less than for F'1F2, as shown in Figure[7.7] but it still shows. With
NRP FD, DCN A2 becomes primary, and DCN A1 vacates the primary role,
keeping consistency as shown in Figure

Fault combination F'1 F'4 covers NRP failure (F'4) and the Conv. FD result
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Figure 7.5: Conv. FD based redundancy causes dual primaries in partitioning
situation F'1F'2. Output sig. consumer receives different (inconsistent) values
from DCN A1 (over the lower network) and DCN A2 (over the uper network).

Figure 7.6: Correctly received and plotted values by Output sig. consumer.
NRP FD ensures one primary; hence, Output sig. consumer receives the cor-
rect sine wave values even under partitioning.

is the same as for F'1F'2, shown in Figure[7.5] Fault combination F'1F'4 using
NRP FD results in DCN Al vacating the primary role; it cannot reach the
NRP nor elect a new NRP since it cannot communicate with DCN A2. DCN
A2 does not become primary since it can’t reach the failed NRP. Hence, no
primary and Output sig. consumer, do not get any values and therefore use the
OSP value, shown in Figure

Performance is also an important aspect, and the penalty using NRP FD
comes from the additional PINGNRP, realized with ICMP ping in our eval-
uation. However, the overhead is typically less than a millisecond. We used
a heartbeat period of five milliseconds and required two missing heartbeats
to indicate a failure. With that configuration, we did not see any difference
when measuring the time between two consecutive updates in the Output sig.
consumer when primary failed.

More elaborated performance measurements are future work. Future im-
plementation optimized for performance and combined with a time bounded
low latency implementation in the switches for the PINGNRP.
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Figure 7.7: Conv. FD caused dual primary, where both DCN use the same
input values, hence inconsistency is less than for £'1F'2, shown in Figure
but still visible when compared to Figure

Figure 7.8: No value received - Output sig. consumer plots the last value, as
OSP.

7.6 Summary and Future Work

This paper presents NRP FD, a failure detection algorithm that prioritizes con-
sistency, in contrast to the conventional failure detection, Conv. FD, that prior-
itizes availability. The target use case, and the description base of the NRP FD
algorithm, is controller redundancy. With a theoretical comparison between
NRP FD and Conv. FD we showed that the NRP FD is less likely to lose
availability than Conv. FD is to lose consistency. Further, with a testbed and
implementations of NRP FD and Conv FD, we showed the consistency gain
NRP FD gives over Conv. FD by injecting failures causing network partition-
ing between the redundant pair.

Potential continuations include incorporating a hard real-time,
low-latency PINGNRP support in the switches to perform a more exhaustive
and challenging failover performance test. With tailored switch support, the
heartbeat and PINGNRP could be integrated to allow NRP FD to guarantee
at most one primary, not only under persistent network partitioning but also
under transient disturbance. Future work would aim to prove that property
using model checkers and probabilistic network models.

Furthermore, a low-latency PINGNRP can also be used for performant
network supervision and breakage localization if combined with a topology
map. Additional future work is to combine NRP FD with failure detection
and role selection targeting other redundancy configurations than 1002, such
as Heartbeat bully [31].
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Abstract

Industrial controllers constitute the core of numerous automation solutions.
Continuous control system operation is crucial in certain sectors, where hard-
ware duplication serves as a strategy to mitigate the risk of unexpected op-
erational halts due to hardware failures. Standby controller redundancy is a
commonly adopted strategy for process automation. This approach involves
an active primary controller managing the process while a passive backup is
on standby, ready to resume control should the primary fail. Typically, redun-
dant controllers are paired with redundant networks and devices to eliminate
any single points of failure. The process automation domain is on the brink of a
paradigm shift towards greater interconnectivity and interoperability. OPC UA
is emerging as the standard that will facilitate this shift, with OPC UA PubSub
as the communication standard for cyclic real-time data exchange. Our work
investigates standby redundancy using OPC UA PubSub, analyzing a system
with redundant controllers and devices in publisher-subscriber roles. The anal-
ysis reveals that failovers are not subscriber-transparent without synchronized
publisher states. We discuss solutions and experimentally validate an internal
stack state synchronization alternative.
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8.1 Introduction

Automation solutions are crucial in modern society and pivotal in infrastruc-
ture for critical utility services such as power and freshwater distribution. At
the core of these automation solutions is the controller, which interacts with the
physical environment through Input and Output (I/O) devices. The controller
processes data from input devices to assess the system’s status and directs out-
put devices to achieve desired outcomes, forming what is known as the control
loop. In certain domains, such as offshore oil and gas production, halts can
incur significant costs, particularly unexpected halts due to hardware failures.
Hence, the reliability requirements for the components constituting the control
loop are high in such domains.

A widely adopted strategy to mitigate the risk of unplanned stops caused by
hardware failures is the implementation of spatial redundancy. This involves
duplicating critical hardware components such as devices, communication sys-
tems, and controllers. The aim is to ensure that a single fault does not lead to a
system halt, effectively eliminating what is known as a Single Point of Failure
(SPoF). By having redundant components, the system can continue to oper-
ate even if one component fails, thereby enhancing the system’s reliability and
reducing the risk of unexpected halts.

The predominant industrial controller redundancy solution is standby re-
dundancy [1]. Standby controller redundancy means that one of the controllers
in the controller pair is assigned the primary role, meaning that it is the ac-
tive controller driving the process [2]. The other controller in the pair is the
backup, which is passive until the primary controller fails. In such a situation,
the backup assumes the primary role and continues to run the control applica-
tion. The same principle commonly applies to redundant devices, where one
is the primary, and the other is the backup.

The automation domain is experiencing a paradigm shift driven by Industry
4.0’s demand for data, increased interoperability, and interconnectivity. OPC
UA is identified as the enabling standard for interoperability [3]. The PubSub
part of the OPC UA standard details a publish-subscribe model suitable for
cyclic real-time communication between controllers and I/O devices [4]. Fur-
ther, OPC UA PubSub is the communication foundation in the OPC UA Field
eXchange (UAFX) standard, targeting field device communication [5, 6].

Our contribution is the OPC UA PubSub analysis through the standby
redundancy lens. Using controller and device redundancy as an analysis ba-
sis, we identify challenges in publisher failover when using the standard’s
normative configuration for real-time exchange. The issue is subscriber ex-
pectancy on message information populated by the publisher, which typically
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lacks replication in backup publishers. Based on our analysis, we propose al-
ternative solutions and validate our findings through experiments, including a
basic test where we synchronize publisher internals.

The paper is organized as follows: Section [8.2] present related work; Sec-
tion [8.3] provides an overview of OPC UA, especially PubSub; Section [8.4]
discusses OPC UA PubSub’s behavior in selected controller redundancy fail-
ure scenarios; Section [8.5]explores OPC UA PubSub redundancy adaptations,
complemented by an experimental evaluation in Section and finally, Sec-
tion [8.7|concludes with a summary and future directions.

8.2 Related Work

This work explores OPC UA PubSub in the context of controller and device
redundancy. Redundancy is a means of fault tolerance. Fault tolerance, defined
by Avizienis et al. as the preservation of operation in the face of faults, is a crit-
ical aspect of dependability [7]. The field of fault tolerance research, especially
in embedded and industrial systems, is extensive. For instance, Ballesteros et
al. introduce an architectural model that dynamically adjusts resilience by dy-
namic allocation of communication and computational resources according to
task criticality [8]. Vitucci et al. investigate hardware design techniques that
strengthen product reliability [9]. In the flourishing field of artificial intelli-
gence, Nouioua et al. examine the use of machine learning for network fault
detection [10].

Given the reliability requirements of industrial networks, several fault tol-
erance approaches exist, offering various types of spatial, temporal, or infor-
mational redundancy. Alvarez et al. comprehensively survey these mecha-
nisms in industrial networks [11] and Danielis et al. [12] survey reliability as-
pects of industrial, Ethernet-based, protocols. Neither of the two surveys cover
OPC UA PubSub. Nast et al.’s survey of communication protocols industrial
applicability covers OPC UA PubSub and treats reliability as a requirement,
but does not consider redundancy [13].

Regarding controller redundancy, Simion et al. note that standby
modes—either hot or warm—are prevalent redundancy patterns in industrial
controllers [1]. The distinction between hot and warm standby lies in the level
of backup readiness. However, the backup controls the process in neither
warm nor hot standby mode. Additionally, St6j et al. present a cost-effective
approach to controller redundancy utilizing EtherCAT [14]. None of these
controller redundancy-related works cover OPC UA PubSub.

In the context of OPC UA PubSub, Neumann et al. investigate the re-
quirements that an OPC UA PubSub field device must meet [15]. However,
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their study does not address reliability aspects. Additionally, the integration of
OPC UA PubSub with Time Sensitive Networks (TSN) has been examined by
various researchers, demonstrating the feasibility of achieving low latency in
real-time communication [16, 17, 18, 5].

Redundancy, in the context of OPC UA, is considered by Ismail et al. that
describe a redundant OPC UA server architecture based on ZooKeeper as the
underlying replication means [19]. Additionally, Cupek et al. detail the imple-
mentation of an OPC UA server in Java, focusing on redundancy aspects [20].
However, these works are related to redundancy for OPC UA Servers, which
differs from OPC UA PubSub, further described in Section 8.3

The related work mentioned does not address OPC UA PubSub and redun-
dancy. To our knowledge, this study is the first to examine OPC UA PubSub
in the context of controller redundancy.

8.3 OPCUA

Established in 2008, OPC UA is a comprehensive standard for interoperabil-
ity across various parts of industrial automation, encompassing machine-to-
machine communication, commissioning, and engineering [21]. It introduces
a platform-independent and service-oriented architecture and an information
model where data and services are accessible via attributes and methods on ob-
jects within an information collection called AddressSpace. Remote access to
AddressSpace exposed information typically uses OPC UA Client Server [22].
OPC UA Client Server is not designed for real-time, low-latency communica-
tion but specifies server redundancy handling. OPC UA prescribes OPC UA
PubSub for cyclic, real-time communication, though it does not specify Pub-
Sub redundancy handling.

The OPC UA’s PubSub part details a publish-subscribe communication
model, complementing the client-server model and supporting deterministic
cyclic process value exchange [5, 16, 18]. PubSub utilizes a Message Oriented
Middleware (MOM) to decouple publishers and subscribers [4]. The MOM
can be broker-based, where a broker connects publishers and subscribers, or
broker-less, relying on network equipment to act as a broker via multicast
groups. This work focuses on broker-less PubSub over User Datagram Pro-
tocol (UDP), which targets real-time cyclic data exchange.

8.3.1 OPC UA PubSub - Internals

This section outlines the internals of OPC UA PubSub as defined by the stan-
dard [4]. Figure [8.1] depicts the objects and their interconnections. The Pub-
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lishSubscribe object is the root for all PubSub objects, aggregating one or more
PubSubConnections. A PubSubConnection defines the transport protocol, e.g.,
UDP, and specifies the destination address, either unicast or multicast. Each
PubSubConnection may have multiple WriterGroups. WriterGroups encapsu-
lates the data from DataSetWriter into a NetworkMessage. The DataSetWriter
fetches and formats the data from PublishedDataSet for publishing. On the
subscriber side, ReaderGroup is the receiving counterpart of the WriterGroup,
and DataSetReader, analogous to DataSetWriter, unpacks the data and updates
the SubscribedDataSet.

PublishSubscribel!
0..n

[PubSubConnection
1

N p Publisher, Network,
| DataSetWriter WriterGroup stack

Data DataSet 1
: g DataSetMessage NetworkMessage N

Data . | ||I=> l]:l:I:D

! )
k Data <\ Network
>=== = = = B (MOM)
' 9 Subscriber Network
1 DataSet DataSetReader ReaderGroup
:l Data DataSetMessage NetworkMessage
! Data e 4_
| Data Data

Figure 8.2: OPC UA PubSub data flow from publisher to subscriber.

Next, to describe the OPC UA PubSub internals, we’ll follow the data from
a publisher to a subscriber, depicted in Figure The initial step (1) collects
the DataSet data for publication. The data acquisition method depends on the
type of publisher, for example, sampling I/O values or reading a variable in
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a control application. The PublishedDataSet defines the data source and type
of data, including the DataSetMetaData, which is essential for subscribers to
interpret the received DataSetMessage.

Step (2) encapsulates the DataSet into a DataSetMessage using the
DataSetWriter. The DataSetWriter DataSetMessage creation offers flexibility
in fields selected for inclusion into the DataSetMessage. Which fields to
include is controlled by the DataSetFieldContentMask. For example, fields
like ConfigurationVersion and DataSetMessage SequenceNumber can be
included, as detailed in Figure[8.3]

Next, the WriterGroup (3) encapsulates the DataSetMessage into a
NetworkMessage. A single WriterGroup can receive DataSetMessages
from multiple DataSetWriters, allowing a NetworkMessage to carry several
DataSetMessages. As the DataSetWriter, the WriterGroup offers flexibility in
which fields to include in the NetworkMessage, such as sequence numbers.
The Publishinglnterval parameter of the WriterGroup determines the
frequency of publishing.

In step (4), the WriterGroup sends the NetworkMessage to the publisher’s
network stack. The broker-less middleware utilizes the network for message
broking (5). The publisher can target the message to a specific subscriber
using a unicast IP address or address multiple subscribers simultaneously with
a multicast address. The network equipment, assumed to be layer two network
switches in case of real-time exchange, ensures that the published message
reaches the subscribers.

Upon arrival at the subscriber (6), the network stack verifies that the mes-
sage is meant for this subscriber on the node level, i.e., confirming that the
destination address matches a multicast address or the subscriber’s unicast ad-
dress (IP or MAC address).

Next, the ReaderGroup processes the incoming NetworkMessage (7), dis-
carding any messages not intended for this subscriber by verifying the Pub-
lisherID in the NetworkMessage. It then extracts the DataSetMessage from the
NetworkMessage and forwards the DataSetMessage to the appropriate DataSe-
tReader.

The DataSetReader (8) uses the DataSetMetaData to decode the
DataSetMessage and update the DataSet with the data received. The
DataSetReader monitors the interval between two DataSetMessages.
Suppose no new DataSetMessage appears within the period defined by the
MessageReceiveTimeout parameter of the DataSetReader. In that case, the
DataSetReader enters an error state. When in error state, the DataSetReader
sets the data quality on data update by the DataSetReader to bad, indicating
to any dependent application that the data is outdated. Finally, the specific
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application determines how the received and updated data are utilized (9).

8.3.2 OPC UA PubSub Protocol - UADP

As discussed, OPC UA PubSub offers various alternatives for the underly-
ing protocol and MOM, ranging from direct, broker-less Ethernet operation
to broker-based solutions. This work focuses on the UDP-based alternative,
where published network messages are encapsulated in UDP packets on Eth-
ernet, known as the Unified Architecture Datagram Protocol (UADP) [4].

UADP targets cyclic real-time data exchange, such as controller and de-
vice communication. The standard outlines recommended message layouts
and header configurations. Our description adheres to these recommendations,
excluding security enhancements, which are left for future exploration. Fig-
ure[8.3]illustrates the normative UADP NetworkMessage fields for cyclic real-
time communication, per the standard [4].

1 Byte 1 Byte 2 or 8 Byte 1 Byte 2 Byte 4 Byte 2 Byte 2 Byte

Ver./ Ext Grp. Writer . NetworkMsg Sequence
Flags Flags1 Al Flags Grpld S Number Number <
NetworkMessage header Group header

1 Byte 2 Byte 2 Byte

DataSet|Message Seq|  giatus DataSet DataSet

Flags1 Number data data

DataSetMessage header Payload

Figure 8.3: UADP NetworkMessage layout, with the normative header fields
for cyclic data exchange.

The first field in the NetworkMessage header is the Version/flags byte,
which specifies the UADP version and includes flags that indicate the pres-
ence of other header fields. The standard suggests that Extended Flags 1,
Publisherld, and GroupHeader are included in the cyclic real-time normative
NetworkMessage.

The second field, ExtendedFlags1 (ExtFlags1), further defines which addi-
tional header fields to expect. For instance, it determines whether the Publish-
erld is a 16-bit or 64-bit value, with 64-bit being the default. The Publisherld
is the third field, a unique publisher identifier within the MOM.

Next is the Group header, containing WriterGroup information. The first
field within this header is the GroupFlags (Grp. Flags), which, similar to
the NetworkMessage header, indicates the presence of certain fields in the
Group header. Again, the normative fields are illustrated in Figure [8.3] The
WriterGroupld (WriterGrpld) uniquely identifies the WriterGroup within the
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publisher. The GroupVersion (GrpVersion) notes the time of the last lay-
out change to the data encapsulated by the WriterGroup, such as changes
in header fields or DataSet reconfigurations. The NetworkMessageNumber
(NetworkMsgNumber) is utilized if multiple NetworkMessages are required
to transmit all DataSets managed by the WriterGroup, and the SequenceNum-
ber increments with each message. The subscriber discards the messages that
are deemed outdated by the sequence number comparisons. If no messages
are received from the publisher within a time exceeding a predetermined “fail-
time” (MessageReceiveTimeout), the receiver should be prepared to accept
any sequence number. This mechanism ensures resilience in scenarios where
the publisher fails and subsequently recovers. However, the subscriber tags
the SubscribedDataSet data quality as bad since it is not updated within the
MessageReceiveTimeout.

The DataSetMessage header and the DataSetMessage payloads come after
the Group header and carry the published values/data. The first field in the
DataSetMessage header is DataSetFlags1, specifying the subsequent header
fields that are present. Next is the MessageSequenceNumber, a sequence num-
ber unique to the DataSetMessage, updated by the DataSetWriter for each
DataSetMessage. The Status field follows the MessageSequenceNumber, pro-
viding quality information about the data/values within the DataSetMessage,
indicating whether the data is good, bad, or uncertain. Last is the payload,
comprising the application-specific data exchanged.

8.4 PubSub and Controller/Device Redundancy

In this section, we analyze OPC UA PubSub in the context of controller and
device redundancy, using two configurations as depicted in Figure [8.4 The
distinction between the two configurations is the type of UADP connection
utilized for PubSub, i.e., multicast or unicast. As mentioned, the UADP Pub-
Sub configuration used is the normative for cyclic real-time data exchange as
detailed in Section[8.3.21

With the two configurations illustrated in Figure 8.4} we investigate failure
recovery, i.e., failover, using four different failure scenarios. Those are:

* PCy; - Primary controller failure with multicast PubSub.
* PCy - Primary controller failure with unicast PubSub.
* PDy - Primary device failure with multicast PubSub.

* PDy - Primary device failure with unicast PubSub.
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Figure 8.4: Redundant controller publishing to the redundant subscribing de-
vice.

To keep the explanation and illustration as simple as possible, we assume
that the controller is the publisher and the device the subscriber, even though
a controller and, likewise, a device could be both subscriber and publisher or
any other possible combination. We use the four failure scenarios as the basis
for the following subsections.

The assumptions for our failure consequence analysis and their justifica-
tions are as follows: the backup can, through the synchronization link, detect
if the primary fails and resume the primary role. The application states, partic-
ularly the control loop states, are synchronized with the backup. However, the
internal states of the OPC UA PubSub stack are not synchronized. The ratio-
nale is that control system manufacturers often develop controller runtimes,
whereas communication stacks, such as OPC UA, are typically third-party
software integrated into the system. Therefore, synchronizing internal stack
states is not commonly practiced. Furthermore, we assume the backup is con-
figured identically to the primary regarding OPC UA PubSub-related settings.

8.4.1 Primary Controller Failure with Multicast PubSub - PCy;

As illustrated in Figure and elaborated in Section the WriterGroup
and DataSetWriter hold internal states that contribute to the composition of the
NetworkMessage, such as the sequence numbers. These sequence numbers are
part of the dynamic state data within the WriterGroup and DataSetWriter, and
they change with each message transmitted.

When the backup controller takes over as primary, the necessary actions
depend on the capabilities of the utilized stack. The backup may need to in-
stantiate the WriterGroup and DataSetWriter, or, if the stack permits, these
components could be pre-configured but inactive, allowing for a quicker tran-
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Figure 8.5: Primary controller failure, i.e., publisher failure.

sition to an operational state upon taking over as primary. Upon activation,
the new primary begins publishing with the internal states and sequence num-
bers from its own WriterGroup and DataSetWriter, as shown in Figure
Hence, the sequence number in the messages from the new primary is not re-
sumed from where the former primary failed, causing the subscribing device’s
ReaderGroup to discard them as outdated. In a rare scenario where the backup
takes over just before a sequence number wraparound, the first message from
the new primary might have the expected sequence number, allowing the mes-
sage to go through to the DataSetReader. However, the DataSetReader will
likely reject the DataSetMessage due to an old MessageSequenceNumber.

DataSetMessages are discarded until the MessageReceiveTimeout expires.
At this point, as mentioned in Section[8.3.2] the DataSetReader enters an error
state, marking data quality as bad but resetting the expectation for sequence
numbers. The subsequent DataSetMessage from the new primary is accepted,
but this acceptance comes too late for a seamless transition, as data quality has
already been compromised due to the expiration of the MessageReceiveTime-
out.

Although multicast allows a backup subscribing device to receive data di-
rectly from the primary controller publisher, this doesn’t address the sequence
number expectation mismatch between subscriber and publisher due to the
publisher failover.
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8.4.2 Primary Controller Failure with Unicast PubSub - PCy

The outcome of the PCy failure scenario is identical to that of PCy, be-
cause the failure originates at the publishing end in both examples, and the
subscriber’s sequence number expectations are the same. The only distinction
is that in the PCy scenario, only the primary device receives the published
message. Nevertheless, this difference does not affect the outcome of the fail-
ure scenario; see Figure [8.5b]

8.4.3 Primary Device Failure with Multicast PubSub - PDy,

This scenario covers the failure of a subscribing primary device in a multicast
configuration as depicted in Figure[8.6al We assume both devices are appropri-
ately configured and have their OPC UA PubSub stacks initialized to subscribe
to the multicast published data. Hence, the primary and backup devices receive
the data published by the primary controller. However, this requires the pair to
ensure consistency. One alternative could be to discard the updated values on
the backup when they reach the application layer where the redundancy roles
are known. An alternate strategy would be to prevent the backup device from
receiving any updates by only activating its subscription once it is required to
take over as the primary. This approach would mirror the PDy; scenario.

In this, the PDy; scenario, the new primary’s ReaderGroup and DataSe-
tReader are already aligned with the former primary’s since both devices have
been receiving the same messages. Therefore, when the backup takes the pri-
mary role, it can seamlessly accept and process the published values from the
controller.

8.4.4 Primary Device Failure with Unicast PubSub - PDy

In contrast to PDyy, in this scenario, the backup device, when stepping into
the primary role due to the failure of the former primary, hasn’t received the
latest values published by the controller. Upon starting to receive messages,
the subscriber—now the new primary—has no preconceived expectations re-
garding the sequence numbers. Specifically, the ReaderGroup, having not re-
ceived any NetworkMessage from the publishing controller previously, holds
no anticipation about the sequence numbers from the publishing controller’s
WriterGroup. As a result, it would accept the incoming NetworkMessage
and forward the contained DataSetMessages to the DataSetReader. Similarly,
the DataSetReader, with no prior expectations regarding the MessageSequen-
ceNumber in the DataSetMessage, would also accept the incoming message.
In this scenario, the transition to receiving subscribed data by the new primary
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Figure 8.6: Primary device failure, i.e., subscriber failure.

device would be seamless, ensuring no interruption in data reception despite
the role change.

8.4.5 Summary

Table [8.1| summarizes the redundancy and failure scenarios discussed above. It
shows that a primary subscriber’s failure recovery (PDy1, PDy) in a redundant
pair can be transparent to the OPC PubSub data using layers in the device.
However, the recovery of a publisher failure (PCy;, PCy), e.g., the controller
in our discussion, results in bad data quality status, which is undesirable.

Table 8.1: Failure and recovery scenario summary.

Scenario: | PCy; | PCy | PDym | PDy
Result: OK OK

8.5 Improvement Alternatives

As summarized in Table 8.I] a publisher failure causes the subscriber to
reject DataSetMessages and NetworkMessages from the new primary’s
DataSetWriter and WriterGroup. This section examines three strategies
for seamless publisher failover: (i) the PubSub redundancy layer, (ii) stack
synchronization, and (iii) standard extension alternatives, detailed further
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Figure 8.7: PubSub redundancy layer establishing parallel publications.

in subsequent sections. While our examples use multicast publishers, the
strategies also apply to unicast publishers.

8.5.1 PubSub Redundancy Layer

In the PubSub redundancy layer alternative, PubSub-related redundancy man-
agement occurs in a layer above OPC UA PubSub, termed the redundancy
layer. As depicted in Figure [8.7a] each controller within the pair establishes a
WriterGroup and DataSetWriter, while each device in the redundant pair con-
figures a corresponding ReaderGroup and DataSetReader. Synchronization
between the pair is managed at the redundancy layer, not within the OPC UA
PubSub stacks.

Several approaches exist for the redundancy layer. = One method
involves embedding redundancy state information within the transmitted
data. Embedding redundancy state information in the published data is
similar to PROFINET’s redundancy approach, which creates parallel logical
connections between controller and device, distinguishing one as primary
and the others as backups [23]. At the subscriber, the redundancy layer can
opt to process data solely from the primary, similar to PROFINET’s strategy,
potentially minimizing the backup’s activity. Note that the redundancy state
information is carried in the application-specific data, whereas in PROFINET,
this information is part of the protocol.
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Another approach allows both controllers in the redundant pair to publish
updates and actual data, enabling the subscriber to utilize data from either the
primary or the backup, with the option to switch based on error indications
from the corresponding DataSetReader or ReaderGroup. This necessitates the
backup being up-to-date and publishing data at appropriate intervals, as illus-
trated by variable X in Figure

A third approach is to avoid parallel publications, accept the delays, and
hide potential quality degradation resulting from MessageReceiveTimeout ex-
piration in the redundancy layer. With this approach, the redundancy layer
would manage data updates. This approach hides the resumption of subscrip-
tion from the new primary publisher within the redundancy layer. This strat-
egy is most suitable for RawData since the standard does not prescribe quality
handling for RawData. A MessageReceiveTimeout would otherwise lead to
subscribed data being marked with bad quality.

As exemplified, the redundancy layer is realizable in various incompatible
ways. Hence, the redundancy layer alternative will likely need standardization
to maintain interoperability between vendors.

8.5.2 Stack Synchronization

The stack synchronization entails synchronizing the internal states of the OPC
UA PubSub stack from the primary publishing controller to the backup pub-
lisher, as illustrated in Figure [8.8] The synchronization allows the stack in-
stance running on the backup to resume with the latest state of the primary
stack instance. Specifically, sequence numbers need to be synchronized to
the backup before transmitting the message. With this strategy, the backup
publisher can continue publishing using the same internal state as the former
primary’s DataSetWriter and WriterGroup. Therefore, from the subscriber’s
perspective, the failover due to the failure is transparent. This approach’s ad-
vantage is its transparency to the subscriber. The downside, however, is the
need for synchronization support within the OPC UA PubSub stack’s internal
workings.

8.5.3 Standard Extension

As mentioned in Section [8.5.1] PROFINET achieves redundancy through
parallel logical connections between controllers and devices, designating
a primary connection for data exchange and monitoring others to prevent
failures leading to undetected redundancy deterioration [23]. A redundancy
layer manages these connections, seamlessly switching the primary
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Figure 8.8: Stack synchronization in the publisher creates a seamless appear-
ance, making the stack instances appear as one to the subscriber, hence de-
picted as a single entity. On the subscriber side, there’s no necessity for inter-
nal stack state synchronization; thus, we depict it as two distinct instances.

connection as needed, thereby decoupling redundancy management from the
application layer. The OPC UA PubSub standard could similarly incorporate
a redundancy model like PROFINET. On a high abstraction level, this section
presents one alternative to integrate similar redundancy features into OPC UA
PubSub.

The extension includes (i) a RedundancyState field in the DataSetMes-
sageHeader to indicate if the message is from a primary publisher and (ii)
a redundancy state for DataSetWriter and DataSetReader. DataSetFlags2, as
DataSetFlagl, indicates field presence. A bit in DataSetFlags2 will represent
the presence of the RedundancyState field, with DataSetFlagl indicating the
presence of DataSetFlags2. The extension is detailed in Figure [8.9a]

The PublishedDataSet (1) represents the data set to be published, synchro-
nized between the primary and backup. The primary DataSetWriter (2), la-
beled P, creates the DataSetMessage, setting the introduced RedundancyState
field to primary in the DataSetMessageHeader. A backup DataSetWriter (3) in
the backup controller also publishes, duplicating the data or sending a place-
holder, with RedundancyState field set as backup.

The primary controller’s WriterGroup (4) embeds the primary
DataSetWriter’s DataSetMessage into a NetworkMessage. Similarly, the
backup controller’s WriterGroup (5) encapsulates the DataSetMessage into
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Figure 8.9: Publisher and subscriber redundancy example with the described
OPC UA PubSub standard extension.

a NetworkMessage. The primary and backup WriterGroups have distinct
WriterGrouplds that ideally follow a convention that allows corresponding
pairs to be identified.

The NetworkMessages are multicast (6-7), ensuring that both devices
in the redundant pair receive all messages.  Alternatively, additional
WriterGroups using unicast could also ensure that both devices in the
redundant pair receive all messages without using multicast.

ReaderGroups (8-11) on the redundant device receive NetworkMessages
from both controllers, allowing connection monitoring and means to
prevent undetected redundancy deterioration. The ReaderGroups forward
DataSetMessages to the DataSetReaders (12-13). Each device has two
ReaderGroups to handle messages from both publishing controllers in the
redundant controller pair. Only the primary state DataSetReader updates
the SubscribedDataSet (14), and only with DataSetMessages where the
RedundancyState field equals primary.

If the primary publisher fails, the backup DataSetWriter becomes the pri-
mary, continuing to publish the PublishedDataSet, as shown in Figure [8.9b]
The specifics of this transition, particularly changing the DataSetWriter’s re-
dundancy state, are likely implementation-dependent.
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8.6 Experimental Evaluation

Section [8.4] looked at OPC UA PubSub in a redundancy context, identifying
that publisher failovers aren’t inherently transparent to subscribers, see
Table 8.1 Consequently, Section [8.5] explored alternatives, identifying
the synchronization of internal stack states as the approach that maintains
standard compatibility without necessitating specialized handling by the
subscriber. This section experimentally tests these findings, employing the
multicast scenarios PCyr and PDyy, using the transport protocol and UADP
message configurations outlined in Section[8.3.2]and Figure [8.3]

For the experiment, we use the open source OPC UA stack open62541
(v1.4.0) [24, 25] running on Ubuntu 20.04.6 LTS using VMWare. One Virtual
Machine (VM) acts as the publishing controller, and the other as the redundant
subscriber device. We simulate publisher failure recovery (failover) by halting
and restarting the publisher in the same VM and process. Further, we simulate
subscriber failure and recovery by restarting the subscriber. The exchanged
data consists of ten four-byte values the publisher publishes every 100 ms. The
test implementation and modifications to the open62541 stack are available on
GitHub [26].

8.6.1 Implementation

The open62541 PubSub implementation doesn’t verify sequence numbers. It
checks neither the Group header nor the DataSetMessage sequence numbers.
To address this, we added checksum verification as per the standard. We added
checking of the Group header sequence number, updated by the WriterGroup
and checked by the ReaderGroup, and checking of the DataSetMessageHeader
sequence number, updated by the DataSetWriter and verified by the DataSe-
tReader. Messages with incorrect checksums are discarded.

For stack synchronization, we implemented a simple yet representative so-
lution allowing a resumed instance to continue with the sequence number last
used. This implementation is sufficient for our experiment, where we simulate
the failure by stopping the publisher and resuming a new one in the same VM
and process. For more details, refer to the implementation [26].

8.6.2 Experiment and Result

We conducted the experiments using the setup previously described and three
different variants of the open62541 stack: (i) the original open62541 version
- ORG, (ii) sequence number adherence - SEQ), and (iii) synchronization and
sequence number adherence - SYNC. Table [8.2]displays the results, with OK
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indicating a seamless recovery from the subscriber’s perspective and FAIL in-
dicating a non-seamless recovery.

The results, as detailed in Table [8.2] reflect the analysis from Section [8.4]
highlighting the challenges with publisher failures. ~While the original
open62541 version (ORG) shows OK for publisher failure scenarios (PCyyr),
this is attributed to the stack’s non-adherence to sequence numbering; it
ignores them. In the SEQ variant, publisher recovery is not transparent to
the subscriber; the new primary publisher uses sequence numbers perceived
as outdated by the subscriber, leading to message rejection. Conversely,
the SYNC variant enables the new primary publisher to resume with sequence
numbers aligned with subscriber expectations, resulting in a successful,
seamless recovery.

Table 8.2: Failure recovery result for different scenarios and stack variants.

Scenario Stack variant
ORG | SEQ | SYNC
PCym OK
PDy OK OK OK

8.7 Conclusion and Future Work

This work has examined OPC UA PubSub within the context of controller
and device redundancy, focusing on the standard’s recommended messaging
configuration for real-time, cyclic data exchanges. The type of exchange that is
typical in industrial settings. We explored four failure scenarios in a redundant
controller and device setup using OPC UA PubSub, assessing the transparency
of failovers, where the backup should take over seamlessly without impacting
the application.

Our analysis revealed that the publisher redundancy is not transpar-
ent—highlighting a gap where the redundant publisher fails. We proposed
three alternatives to address this in order to provide a seamless publisher
failover. Further, we conducted experiments using the open62541 stack,
implementing one of the suggested alternatives to validate our discussions.
We conclude that achieving publisher redundancy in a way that is transparent
to subscribers is feasible but requires stack support.

'OK due to the stack not adhering to the, by the standard, prescribed sequence number
verification.
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Future work includes adding general platform-independent redundancy
support in open62541, as well as an in-depth evaluation and implementation
of a redundancy layer similar to that of PROFINET, allowing for status
monitoring to prevent redundancy deterioration from going undetected.
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Abstract

This work addresses the impact of best-effort traffic on network-dependent
real-time functions in distributed control systems. Motivated by the increased
Ethernet use in real-time dependent domains, such as the automation indus-
try, a growth driven by Industry 4.0, interconnectivity desires, and data thirst.
Ethernet allows different network-based functions to converge on one physical
network infrastructure. In the automation domain, converged networks imply
that functions with different criticality and real-time requirements coexist and
share the same physical resources. The IEEE 60802 Time-Sensitive Network-
ing profile for Industrial Automation targets the automation industry and ad-
dresses Ethernet network determinism on converged networks. However, the
profile is still in the draft stage at the time of writing this paper. Meanwhile,
Ethernet already provides attributes utilized by network equipment to prioritize
time-critical communication. This paper shows that Ethernet Controller filter-
ing with prioritized processing is a prominent solution for preserving real-time
guarantees while supporting best-effort traffic. A solution capable of eliminat-
ing all best-effort traffic interference in the real-time application is exemplified
and evaluated on a VxWorks system.
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9.1 Introduction

Distributed Control Systems (DCS) are transcending into the Industry 4.0 era,
where data and information are valuable optimization-enabling assets. Data
collection requires connectivity and communication, pushing the automation
industry towards network-centric solutions, implying that the network, to some
extent, replaces the controller as the information center of the control sys-
tem. Following in the tracks of network-centric systems are increased interest
for interconnectivity and interoperability, key concepts in the Open Process
Automation™ Standard'] (O-PAS). O-PAS prescribes OPC UAP| as the inter-
operable communication standard.

Upper bound end-to-end communication time of real-time traffic is a chal-
lenge for converged Operation Technology (OT) Ethernet networks when com-
peting for network resources against low-priority, best-effort traffic induced by
noncritical functions. A challenge addressed by Time Sensitive Networking
(TSN) amendments to the IEEE 802.1Q Ethernet networking standard. The
IEEE 802.1Qbv amendment for Scheduled Traffic (TSN-ST) brings forth short
and bounded end-to-end communication time on converged networks using
time-scheduled communication. TSN offers solutions but is still in the early
stages of industry adoption. For example, the Industrial Automation IEEE
60802 TSN proﬁleE] is at the time of writing this paper still in the draft stage,
and the support in industrial network equipment is scarce [1].

Ethernet networking does not require TSN to provide Quality of Service
(QoS). The Priority Code Point (PCP), introduced in the late 90s in the IEEE
802.1D-1998 and later incorporated in IEEE 802.1Q, already offers that. PCP
provides priority information utilizable by the OSI layer two network infras-
tructure (i.e., switches) to determine forwarding precedence.

In this paper, we address the challenge of preserving the correctness of
network-dependent real-time functions in end systems when coexisting with
non-real-time programs reliant on best-effort traffic. We illustrate the prob-
lem with a simulated DCN application running on VxWorks. A DCN appli-
cation with OPC UA PubSub-based real-time communication dependencies.
We identify prioritized frame processing aided by Ethernet Controller filtering
as a prominent solution, which is the paper’s contribution, together with the
verification of the solution.

The paper is organized as follows. Section [0.2] presents the related work.
Section [9.3] describes the filtered enabled prioritized frame processing, fol-

"nttps://publications.opengroup.org/pl90
thtps ://opcfoundation.org/
*https://1.ieeeB802.0rg/tsn/iec-ieece-60802/
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lowed by a quantitative evaluation in Section 0.4 and a discussion in Sec-
tion[0.5] Section[9.6]outlines conclusions and future work.

9.2 Related Work

TSN combined with OPC UA is identified by Bruckner et al. [2] as the fu-
ture of communication in the automation domain. TSN consists of multiple
amendments to IEEE 802.1 [3] and Lo Bello et al. [4] provide an overview
and discuss open issues from an automation mindset, where configuration ease
is one of the highlighted challenges. As mentioned in the introduction and
shown, for example, by Zhao et al. [5], TSN-ST provides low latency, deter-
ministic end-to-end communication, but the scheduling problem is not a trivial
problem [6, 7]. Hallmans et al. [1] highlight that industry TSN adoption is still
low, and the support provided by industrial network equipment is still scarce,
motivating why we do not consider TSN in the end system handling in this
work.

Already in 2002, after the introduction of PCP, end system handling of
prioritized traffic was addressed by Skeie et al. [8] with software-based priority
queue to reduce latency, and the need for QoS in the end system highlighted by
Thyrbom et al. [9]. Since then, many studies have been made on network stack
performance on Linux. For example, Larsen et al. [10] studied TCP latency on
Linux in a data center environment and found that the latency is around 10us
in point-to-point communication.

BeifuB3 et al. [11] measures latency and constructs a model to predict la-
tency in the Linux network stack to find optimization knobs to turn. Describing
four main optimization points: (i) copying between user- and kernel space, (ii)
usage of preallocated buffer, (iii) polling to reduce interrupt frequency, and
(iv) processing of batches instead of single frames. The performance study
performed by Ramneek et al. [12] reaches a similar conclusion: buffer alloca-
tion and interrupt handling can be expensive in terms of CPU usage.

Priority inversion due to processing of low priority packets with high pri-
ority can potentially impact high priority real-time execution badly [13]. A
challenge addressed by Lee et al. [14] and further improved by Blumschein et
al. [15]. Both use an early software demuxer to classify packages and prioritize
the handling of the incoming packet according to the priority of the receiving
task. To further aid that approach, Behnke et al. propose a multi-queue net-
work interface [16]. In contrast, our work focuses on unmodified network
stacks and presents Ethernet Controller enabled filtering to enable processing
priority matching the received frame’s QoS.
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9.3 Prioritization Filtering

The Ethernet Controller (EC) and the Media Access Controller (MAC) han-
dles, with the Physical Layer (PHY), the transmission and reception of Ether-
net Frames. When a frame is received, the EC stores the frame in a RxQueue
and raises an interrupt to the CPU, and the OS Network stack process the frame
further. However, as pointed out by earlier work, the network stacks do not,
by default, treat the incoming frames according to priority, which may result
in priority inversion or latency [14, 16].

ECs provide filtering options and the possibility to direct traffic to different
Rx queues based on those filtering options. In this section, we base our EC ex-
amples on Intel 121 1E|, which has PCP filtering capabilities and two Rx queues.
Other ECs, such as Intel I350, have eight Rx queues, allowing even better filter-
ing granularity. Different ECs also support different filtering possibilities, from
Ethernet header information to filtering on the higher protocol-layer informa-
tion, typically IP-header information. We denote the configurable properties
on which to take the filter decision, the filtering property (F'P).

High priority network task

fNetTaskHP)

f Interrupt \
Ethernet
Controller
High prio
Rx FIFO frame

Filter
Low prio
frame
Serve low prio
Interruptg job queue
Low priority network task
Low prio Q (NetTaskLP)
ISR Low prio
jobQ

Figure 9.1: Priority based filtering - an example with two priorities, high and
low.

*https://cdrdv2.intel.com/v1/dl/getContent/333017
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Figure summarizes the idea, elaborated next. Based on the F' P, the EC
determines the frame priority. The EC queue high priority frames on the high
priority Rx queue and raises the corresponding interrupt. The high priority
ISR post the request to serve the incoming frame to the high priority job queue
served by the high priority network task. Low-priority frames are handled
similarly but follow the low-priority path. If the low priority task cannot read
frames from the low priority Rx queue faster than they arrive, the low priority
queue will eventually become full. It is then essential that the EC drop low
priority frames that can’t fit into the low priority queue to avoid filling the
RXFIFO and causing high priority frame drops.

The principle described can also handle multiple network interfaces, where
the filtering can ensure that the most suitable network task, priority vise, pro-
cesses incoming frames.

9.3.1 QoS Prioritization Filtering on VxWorks

VxWorksE] is a widely used and well-known commercial RTOS that has been
around for more than 35 years and installed more than two billion times. The
solution was also tested on Linux but left out due to page limitations.

Enabling priority packet filtering in VxWorks requires two things, enabling
driver support and providing two network tasks with different priorities. The
driver support added consists of (i) support for multiple Rx queues and (ii) filter
configuration support. The filtering configuration of the EC also configures the
EC to drop frames if the destination Rx Queue is full to prevent the RxFifo,
from filling up and causing high priority frame drop due to the Rx Queue for
low priority frames being full.

Two network tasks with different priorities are configured, denoted
NetTaskHP and NetTaskLP. The NetTaskHP is the high-priority
network task, given a priority of 20. The NetTaskLP is the low priority
network task and has priority 50. The priority values given here are the ones
used in the evaluation system, described in section[9.4.3]

9.4 Quantitative Evaluation

9.4.1 Evaluation Setup

The evaluation setup consists of the four nodes, listed in Table Table
lists the software. C1 runs the Evaluation Application (EA), explained in Sec-
tion C3 and C4 are nodes addressing C1 with low-priority traffic. The

Shttps://www.windriver.com/products/vxworks
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Table 9.1: Hardware used.

Node Hardware Ethernet
Cl1 MSI Intel 2.4GHz 13-7100U EP1 1211
256GB RAM EP21219
C2 Lenovo Mini PC EP1 1219
2GHz Intel 17 17-9700T
16 GB RAM
C3,C4 Raspberry Pi 4B EP1 Broadcom 2711
1.5GHz ARM Cortex A72
Switch Zyxel GS1900-8 10 Gbps

high-priority data exchange between C1 and C2 is brokerless OPC UA PubSub
over UDPH The Switch is an OSI level two Ethernet switch configured to give
precedence based on the PCP field in the Ethernet frame. The network consists
of two virtual local area networks (VLAN), with VLAN ID (VID) 1 and 2, see

Figure[9.2]

Mix prio receiver

________ P - =

vianid 2 'l‘n : vianid 1)

!

C4 C3

..

Low prio sender Low prio sender High prio sender

Figure 9.2: Evaluation setup topology.

9.4.2 Network Configuration

C1 has two ECs connected to two RJ45 ports. An 1211 is the Ethernet Port 1
(EP1) EC, and an 1219 manages Ethernet Port 2 (EP2). EP1 connects to VID
1 and EP2 to VID 2. The OPC UA PubSub communication from C2 is the
prioritized traffic. Ethernet frames carrying the PubSub UDP frames have the

®https://reference.opcfoundation.org/v105/Core/docs/Partl4/
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Table 9.2: Software versions used.

Name Version Comment
VxWorks 21.07 OS Cl and C2
Raspberry Pi OS 10 OS on C3 and C4
Open62541 1.0.1 OPC UA PubSub
stack on C1 and C2

PCP field set to six, and the low priority traffic frames have PCP set to zero.
The links are 1 Gbps full-duplex.

9.4.3 Evaluation Application

The EA consists of two applications/subsystems, the real-time and non-real-
time applications. The real-time application simulates a control application
concerning CPU load, determinism, and dependency on input values.

The C1 CPU has four cores { Py, P,, P3, P;}. Each real-time task 7; is a
4-tuple (C;, T;, P;, A;). C; is the worst-case execution time, 7; is the period
(and deadline), i.e., shortest inter-release time, P; is the priority, where a lower
value is a higher priority, and A; is core affinity, A; € {0, P;, Py, P3, P4} and
A; = 0 means no affinity, i.e., the task can be scheduled on all four cores.

The real-time application consists of two sets of tasks,
HP = {7HP P 7HP (HPY and MP = (sMP MP oMP Py
Each set contains as many tasks as there are cores, that is, four. HP contain
the high priority tasks and MP the medium priority tasks.

V HPV MP, HP € HP, TMP S MP|THP P < TMP P

The apphcatlon has two multiprocessor using modes, Partitioned Schedul-
ing (PS) mode, where the real-time tasks are pinned to a specific core, using
the task affinity property 7. A.

VHPVMP, HPGHP TMPGMPZ€1 4’THPA P“TMPA P

The other mode is Global Scheduling (GS) where the scheduler is free to
schedule the real-time tasks on all cores.

Voue¥ e, THE € HP,7MP e MPi € 1,... 4|7HP . A=0,7M" . A=0
Fiéure@] gives a conceptual overview of the EA and system.

At each invocation, the HP task requires an updated value from C2 and
consumes all previous values received. Values are exchanged with OPC UA
PubSub, C2 is the publisher, and C1 is the subscriber. Each of the four sender
tasks in C2 publishes an updated value every 5th ms. In C1, for each 777 there
is an event-driven OPC UA PubSub Subscriber task that shares the affinity and
priority of the 7/, that stores the received values in a FIFO. A FIFO read by
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| -C2 x4
m [_@: PubSub publisher
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High Priority Task Set Y,
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Iperf3 sende

Figure 9.3: Conceptual view of the evaluation application.

TZHP , shown in Figure

The MP task does not have network dependency. An analogy is an ap-
plication dependent on local I/O values. The MP tasks have lower priority
since they can have a longer execution time than the HP task, allowing the HP
task to preempt the MP tasks. Table 9.3 shows priorities and execution times,
elaborated further in Section

Table 9.3: Task parameters.

Name Priority (P) Period (1) Exec. time (C') | CPU utilization
HP 20 10ms Ims 10%
MP 40(HN), 50(EN) | 20ms 0-16ms 0-80%

60(LN)
LP 100 Event driven | Comm. dep. Comm. dep.
NetTask | 50 Event driven | Comm. dep. Net. dep.

The Low Priority (LP) application and tasks represent non-time-critical ap-

plications, dependent on data produced in C3 and C4. For example, reception
of system maintenance files as preparation for a system upgrade, application
change, and less critical process values. We use Iperf3 ||to emulate this

"nttps://iperf.fr/
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application.

9.4.4 Evaluation Variants

By using different priorities, execution times, and best-effort traffic, we mea-
sure the correctness of the EA in terms of deadline misses (overruns) and
missed high-priority values updates from C2.

9.4.4.1 Execution Time

The HP tasks have a fixed execution time of one ms. We use different execution
times for the MP tasks for two reasons. Firstly, to observe how MP.C' impacts
the NetTask and the HP dependencies on received values from C2. Secondly,
the NetTask interference on MP when MP.C increases. Table[9.3]show the MP
tasks C range and the corresponding utilization. Note that the execution time,
C, specified is the CPU time the task requires to complete, i.e., the Worst-Case
Execution Time (WCET) and execution time are always the same.

The HP and MP CPU utilization range is between 10% and 90%. OPC
UA PubSub subscriber adds approximately four percent, in addition to the
time shown in Table 9.3] Figure [0.4] shows that it is not possible to sched-
ule MP tasks with C' = 16ms and 7" = 20ms combined with HP tasks with
C = 1ms and 7' = 10ms with the interference of a high priority NetTask,
the NetTaskHP, and the PubSub task. The execution times illustrated for the
PubSub and NetTaskHP are likely higher than in reality, but other high-priority
executions are left out, such as scheduling overhead. A WCET analysis would
give us the exact limits, but that is beyond the scope of this paper. The above
is the motivation behind the upper limit of MP.C' = 16ms; it is over the limit.

9.4.4.2 Priority

As shown in Table [0.3] we use three priority levels for MP. These are Higher
than NetTask (HN) with priority 40, Equal to the NetTask (EN) with priority
50, and Lower than the NetTask (LN) with priority 60. The three levels are
selected to show the interference between NetTask and real-time application
tasks. MP priority HN, can cause MP execution to block network handling
and delay the values communicated to HP. MP priority EN, can cause the MP
execution time to affect the network handling, similar to HN, since VxWorks,
by default, will not preempt the same priority. Finally, when MP is lower in
priority than the NetTask, LN, the execution of the MP will not interfere with
the network communication. However, network handling can block MP and
cause MP to overrun.
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Incomming PubSub frame Incomming PubSub frame
HP Ready HP Ready
MP Ready MP Ready

Incomming PubSub frame |"C°m"""9 PubSub frame
PubSubEvent
PubSubEvent ubSubEvent ubSubEvent
NetTaskHP HP Completed HP Completed
MP Overrrun (~2ms left)
PubSub

- | -
MPIIIIIIIIII | >

0 5 10 15 20

Figure 9.4: Scheduling example of a HP and MP task.

9.4.4.3 Network Traffic

The high priority network traffic consist of the variable exchange over OPC
UA PubSub from C2 to C1. The different types of low priority, best-effort
traffic are summarized in Table 9.4, With No LP we mean no low-priority

Table 9.4: Low priority network communication types.

Abbreviation | Sender | Protocol | Bandwidth
No LP None - 0

1 TCP C3 TCP < 1Gbps

2 TCP C3,C4 | TCP < 1Gbps

1 UDP C3 UDP < 400Mbps
2 UDP C3,C4 | UDP < 400Mbps

traffic. The 1 Gbps link and the receiver processing possibilities limit the TCP
bandwidth utilization. The UDP max bandwidth utilization is limited to 400
Mbps, about 34 frames per millisecond and 40% of the available bandwidth.

9.4.4.4 Scheduling Variants

The VxWorks scheduler is a priority-based preemptive scheduler that, by de-
fault, uses GS and does not pin tasks to cores, with some exceptions, such as
the NetTask, that have a core affinity for performance reasons. The default
affinity for the NetTask is ;. The EA can run in two scheduling modes, PS
and GS. In PS mode 717 A = P, 7MP A = Py, i.e., 7T and 7]* are pinned to
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the core Py, the same core as the NetTask. Their uncompromising coexistence
with the NetTask on the core P, makes the EA in the PS mode more likely
to encounter failures faster due to overuse of P;. The affinity to P; prevents
those tasks from utilizing the potentially available CPU time on other cores.

9.4.5 VxWorks results — no Filtering

This section presents the results of running the variants discussed without pri-
oritization filtering. The data comes from one-minute per variant runs. Fig-

£ 3000 :
~ 2000 —=—PS-NoLP
o
£ 1000 | |—— GS -NoLP
0 & 5 s 8
0 (0%) 1 (5%) 2 (10%) 3 (15%) 4(20%) 5(25%) 6 (30%)

MP execution time (ms) and corresponding CPU utilization.

Figure 9.5: MP tasks with higher priority than NetTask (HN) result in HP
cycles without input updates.

ure shows that MP with HN priority, cause HP to lack input data when
MP.C increases. MP execution blocks the NetTask, and C2 PubSub values do
not reach HP during MP.C'.

a
= 20001 [ pS-NoLP| | X
< 1000 - i
e 0 = 5 - &
T 0(0%) 2 (10%) 4(20%) 6 (30%)
S T T A
& 200f|-=-GS-NoLP
]
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MP execution time (ms) and corresponding CPU utilization.

Figure 9.6: MP tasks with equal priority to the NetTask (HN) result in HP
cycles without input updates.

Figure 9.6 shows the result when MP priority EN. The result follows the
same pattern for EA in PS mode as for MP priority HN. For £'A in GS mode,
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Figure 9.7: MP lower priority than NetTask - MP misses deadlines (overruns).

HP gets the data each cycle without low priority traffic. A MP task with pri-
ority EN, equal to NetTask priority, won’t preempt and block the NetTask; the
scheduler migrates the MP task to another available core if any. With low-
priority traffic, HP lacks updates when MP.C' increases.

With MP priority LN, MP.C' does not affect HP reception of values. How-
ever, NetTask execution can prolong the MP response time. Figure shows
when MP start to miss deadlines and overruns for the different types of low
priority, best-effort traffic.

Again, we see that the EA in PS mode fails before the EA in GS mode.
Notable is also that the UDP traffic is more of a challenge than TCP most
likely due to the TCP flow control easing the burden on the receiver.

Figure [0.8] shows the average time the MP tasks are in the ready state.
Ready is the state a VxWorks task is in when it is ready to execute, but the
CPU is busy executing higher priority tasks/interrupts. The NetTask interfer-
ence on the MP task is higher in PS mode but limited to the MP task that shares
the core with NetTask. The MP average ready time in PS mode when receiv-
ing low-priority TCP traffic is higher for lower MP.C'. Potential due to LP
tasks (iperf3) getting more execution time, resulting in a larger TCP flow
control window. Except for that TCP variant, UDP traffic causes the highest
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Figure 9.8: Average time MP tasks are in ready state - blocked for execution
by higher priority tasks. The difference between No LP and the graphs for LP
traffic illustrates the LP traffic impact on MP.

interference on the MP tasks.
9.4.6 Evaluation System — with Filtering

Table 9.5: Task parameters.

Name Priority (P) | Period (T') Exec. time (C) CPU utilization
HP 20 10ms Ims 10%

MP 40 20ms 0-16ms 0-80%

LP 100 Event driven | Event driven Comm. dep.
NetTaskHP | 20 Event driven | HP Comm. dep. | HP comm. dep.
NetTaskLP | 50 Event driven | LP Comm. dep. | LP comm. dep.

We apply the prioritization filtering mechanism described in Section [9.3.1]
on VxWorks running in C1. Table 9.5 shows the task priorities when using
filtering. NetTaskHP handles the high-priority traffic and NetTaskLLP processes
the low-priority traffic.
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9.4.7 VxWorks Result — with Filtering

NetTaskHP handles the high-priority network traffic, the data that HP tasks
depend on, and NetTaskHP has a higher priority than the MP tasks. Hence MP
execution does not cause lost / late inputs for HP.
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Figure 9.9: MP deadline misses with packet filtering enabled.

Figure shows that with priority filtering of the incoming frames, the
MP deadline missing limit is higher; it now occurs at 16ms (80% utilization),
the upper limit of what is feasible. Figure[0.10|shows that the time the MP task
is in a ready state is not affected by the low priority traffic. Hence, with the
help of filtering in the EC, a network-dependent real-time application can be
free from interference from less critical, best effort, and low priority network
traffic.

9.5 Discussion

Section[9.4.7)shows that prioritization filtering can eliminate best-effort traffic
impact on the real-time functions. Even though the EA is a simulated ap-
plication designed to show the priority inversion problem that emerges when
handling incoming traffic with different criticality, end-systems on converged
networks benefit from eliminating the priority inversion problem. The elim-
ination of priority inversion due to best-effort traffic interference on critical
real-time task increase the dependability of the system. How much depends
on properties like CPU utilization, communication patterns, etc., domain and
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Figure 9.10: Average pended time for all medium priority tasks - with packet
filtering.

solution-specific properties. Other potential benefits are reduced latency and
decreased probability of dropping high priority frames due to full queues.

High NetTaskHP priority poses a potential risk. For example, a Denial
of Service (DoS) attacker could generate high-priority traffic that starves out
other high-priority execution. However, if real-time functions are network-
dependent, network handling is likely to have high priority. If that is the case,
filtering might reduce the DoS attack surface since prioritization directs low
priority, best-effort traffic to lower priority processing. A potential hardening
strategy could be to limit the nodes trusted for high-priority processing and
filter not only on a QoS property but also on node identities. Such as MAC-
or [P-addresses. However, cybersecurity is a vast topic on its own. We realize
that the challenges and potential future work could further evaluate how to use
the Ethernet Controllers for security purposes.

The traffic load used can be discussed; 400 Mbps UDP traffic might be
much. However, consider that we only used two Ethernet ports and two clients.
A modern IPC, such as the APC 910 from B&R[ﬂ has support for six and more
one Gbps ports served by a similar CPU as the one in C1, a quad-core Intel I3.

8htt]os ://www.br—automation.com/en/products/industrial-pcs/
automation-pc-910/


https://www.br-automation.com/en/products/industrial-pcs/automation-pc-910/
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9.6 Conclusion and Future Work

In this paper, we identified hardware-aided filtering of incoming frames to net-
work processing with appropriate priority as a prominent solution. We de-
scribed the steps needed to realize priority processing filtering on VxWorks.
Finally, we evaluated the solution on VxWorks using a simulated controller
application consisting of several real-time and non-real-time tasks with differ-
ent priorities and network dependencies. The results show that prioritization
filtering eliminates the best-effort traffic impact on the application’s real-time
functionality.

Relevant future work is to evaluate this approach on Linux combined with
virtualization and prioritization handling in converged virtual networks. An-
other natural extension of this work is to take a holistic approach that incorpo-
rates outgoing traffic since outgoing traffic also requires network task process-
ing.
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Abstract

Distributed control systems are part of the often invisible backbone of modern
society that provides utility services like water and electricity. Their uninter-
rupted operation is vital, and unplanned stops due to failure can be expensive.
Critical devices, like controllers, are often duplicated to minimize the service
stop probability, with a secondary controller acting as a backup to the primary.
A seamless takeover requires that the backup has the primary’s latest state, i.e.,
the primary has to replicate its state to the backup. While this method ensures
high availability, it can be costly due to hardware doubling. This work pro-
poses a state replication solution that doesn’t require the backup to store the
primary state, separating state storage from the backup function. Our repli-
cation approach allows for more flexible controller redundancy deployments
since one controller can be a backup for multiple primaries without being sat-
urated by state replication data. Our main contribution is the partible state
replication approach, realized with a distributed architecture utilizing a con-
sensus algorithm. A partial connectivity-tolerant consensus algorithm is also
an additional contribution.
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10.1 Introduction

Distributed Control Systems (DCS) are the backbone of many large-scale au-
tomation solutions, especially in critical domains where unplanned downtime
can have significant financial and operational repercussions. Central to these
systems are controllers with redundancy mechanisms that minimize the risk of
unplanned downtime. Commonly, this redundancy is achieved through hard-
ware duplication, where one controller operates as the active primary and an-
other as a standby backup, ready to take over in case of a primary failure. In a
DCS setting, controllers are often termed Distributed Controller Nodes (DCN),
a term interchangeable with ‘controller’ in this paper.

With the advent of Industry 4.0, there has been a notable transition from
specialized fieldbuses to more flexible, networked solutions, enhancing sys-
tem interconnectivity. Network-based architecture enables flexible redundancy
schemes, such as one backup for multiple primaries, a redundancy pattern that
increases fault tolerance with a reduced hardware footprint. However, seam-
less backup takeover requires state replication from the primaries, a task the
backup’s bandwidth could limit.

Central to the DCS is the DCN-driven control application, which man-
ages the physical process’s state. The application samples the process state by
reading values from input I/O connected to sensors and determines appropriate
actions based on these samples. These actions then dictate the output values
sent to the output I/O, interfacing with the real-world process. Figure [I0.T]
shows this sequence—often described as ‘copy-in, execute, and copy-out.’

As mentioned, a primary DCN replicates the redundant DCN control ap-
plication state to the backup. The application state data size depends on the
application and can vary between a few bytes to many megabytes.

Application

Update state ¢

Ol_)[ Copy-in ]—)[ Execute ]—)[Replicate State]—)[ Copy-out ]—l

Figure 10.1: Typical control application task execution steps.

The latest state is needed to resume the operation of an application seam-
lessly. Figure [T0.2] depicts a redundancy deployment with multiple primaries
and one backup using a naive state replication where all applications replicate
their state to a single backup (DCN 5). The network capacity of the backup in
terms of bandwidth becomes a potential bottleneck in such a deployment.

The required bandwidth is the replicated state data size multiplied by repli-
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Figure 10.2: Naive state replication approach - the backup stores every appli-
cation’s state.

cation frequency. If A is the set of all redundant applications, sds; is the size
of the state data, and rt; is the allowed state replication time for application ¢
and ¢ € A. Then, Eq. shows the total bandwidth required, bw, to replicate
the states. If bw is larger than the bandwidth the backup provides, the puzzle
is not solvable with the naive approach.

Al

bw = stsi (Tltz) (10.1)

i=1

This paper aims to answer the question of how the aggregate state repli-
cation data sent to the backup DCN can be reduced. By reducing this traffic,
the risk of redundancy arrangements being limited due to backup network re-
sources will also decrease. To address this challenge, the paper proposes a new
method called Partible State Replication (PSR), which separates the backup
role from the recipient of primary application states. With PSR, states can be
replicated to any DCN, serving as our direct contribution. Further enhancing
fault tolerance, we decentralize storage allocation handling for PSR, leading to
our secondary contribution: a consensus protocol targeting a DCN cluster.

The paper is organized as follows: Section[I0.2]reviews related work. Sec-
tion |10.3| provides an overview of PSR, elaborated upon in Section The
consensus protocol is detailed in Section[T0.5] while Section [I0.6|presents our
implementation and evaluation findings. Finally, we conclude and discuss fu-
ture work in Section [10.7]

10.2 Related Work

Passive standby redundancy is the prevailing DCN redundancy mechanism [1,
2, 3]. Prior research has explored diverse DCN redundancy concepts, including
cloud-hosted redundant controllers, orchestrator utilization, and architectures
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centered on forming redundant solutions from non-redundant Commercial Off-
The-Shelf (COTS) Programmable Logic Controllers (PLC) [4, 5, 6].

Achieving standby redundancy via hardware duplication is costly, espe-
cially with high-end DCNs designed for redundancy [6]. In contrast to the
related work mentioned above, we propose a partible synchronization between
primary and backup to enable a cost-effective redundancy. This partible ap-
proach entails segregating state storage from the backup role, further detailed
in Section[10.3

The data replication research landscape is vast; examples include dedu-
plication and placement strategies [7, 8, 9]. Our contribution is a placement-
enabling architecture aimed at reducing the network resource load on backup
nodes. Exploring optimal placements for redundant DCN applications remains
an avenue for future research. Like our work, Bakhshi et al. [10] provide a
distributed persistent state storage architecture for containerized applications.
However, their solution replicates the states to all nodes, likely increasing
bandwidth demand.

PSR is a decentralized distributed system. Common in fault-tolerant dis-
tributed systems is active replication using Replicated State Machines (RSM)
synchronized using a replicated request log [11, 12]. Consensus protocols, like
the well-known Paxos, ensure ordered delivery of requests to the RSMs [13,
14]. While influential, Paxos is intricate; hence, Raft offers a simpler al-
ternative [15]. Raft divides time into terms, each with a dedicated leader.
Another quite well-known consensus protocol is Viewstamped Replication
(VSR), which employs views comparable to Raft’s terms [16, 17, 18].

Omni-Paxos, a variant of Paxos, addresses a shortcoming in protocols like
Raft, Paxos, and VSR, which can lose progression under partial connectivity
scenarios [19]. An example of partial connectivity is a three-peer system where
only one peer connects to all others, inhibiting direct communication between
the two remaining peers. This situation can hinder progress in VSR and Raft.
Omni-Paxos resolves this by implementing Quorum-Connected (QC) as a cri-
terion for leader election. QC means a connection to a quorum of peers.

ZooKeeper Atomic Broadcast (ZAB) is a replication protocol that priori-
tizes performance by relaxing the guaranteed order slightly [20, 21, 16].

PSR and the above protocols assume fail-stop semantics; Castro et al. pro-
pose a practical version of a Byzantine fault-tolerant protocol [22].

Industrial control systems—especially those necessitating redun-
dancy—prioritize high dependability [6].  Solutions tolerant to partial
connectivity are more likely to show higher availability. Also, as argued by
Ongaro et al. [15], an algorithm where there is one dedicated leader, and
that leader is the most up-to-date partaker, is easier to understand. Hence,
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with inspiration from the abovementioned protocols, we propose a consensus
protocol that, like Omni-Paxos, is partial connectivity tolerant but built
upon a VSR foundation instead of Paxos. VSR, like Raft, ensures that the
leader is up-to-date with the latest entries after synchronization, and VSR
deterministically elects a leader and ensures that this is the only leader. We
call the proposed protocol Viewstamped Replication - Quorum Connected
(VSR-QQ), further described in Section [10.5]

10.3 Partible State Replication

This section provides a high-level introduction and overview of PSR, the prob-
lem addressed with PSR, the assumptions, and requirements.

Overview: In the naive state replication method, the backup is required to
manage the aggregate bandwidth necessary for synchronizing the state of ev-
ery application for which it serves as the backup DCN, as detailed in Eq.[I0.1]
PSR reduces the state replication bandwidth required from a backup by dis-
tributing the replicated state storage amongst the DCNs in the DCN cluster.
The DCN cluster is the set of DCNs that forms the resource pool available
for state replication. Figure demonstrates the distributed state storage fa-
cilitated by PSR, where DCNs 1-4 function as primary DCNs, managing the
primary instances of the applications, while DCN 5 acts as a backup for all
these primaries.

! DCN Cluster State App 3 State App 4-5 Y
State App 8-10 State App 1-2 App 6 |[App 7 [App 10)

pp 9 State App 6-7

Qollc®

(P) DCN 4 (P) | DCN 5 (B) |
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Figure 10.3: An example of a PSR using DCN cluster of five DCNs. DCN 1-4
host primary applications, and DCN 5 is backup for DCN 1-4. All primary
applications replicate their state somewhere, but not all to the same DCN.

Assumptions: This work does not cover the allocation of applications to
the DCNSs, nor the allocations of DCNs to a DCN cluster. We assume appli-
cations reside in persistent storage and start upon DCN startup. Additionally,
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the backup is assumed to have adequate resources to maintain applications on
warm standby. Le., allow the backup application instance to detect a failure of
the primary instance and resume the primary state. The system operates under
a non-Byzantine failure-recovery semantic.

Requirements: Each primary application instance must have a designated
location for state storage, and each backup instance needs to be able to access
this storage. Efficient state fetching and storing are crucial, especially in ap-
plications with short cycle times. “Short” is relative, but shorter is better for
faster control loops, with updates several times per second being a common
minimum [4].

PSR must avoid central mechanisms for pairing application state storage.
The cluster should operate independently and recover from faults without a
central server, enhancing fault tolerance.

PSR must provide the capability to add (register) and remove (deregis-
ter) applications for state storage, i.e., provide dynamic properties. Active
applications request and consume available storage; removed applications re-
turn storage. Similarly, DCNs register their storage capability upon activation
and update it upon change, ensuring they don’t become over-allocated. In
other words, DCNs report their available capacity, applications declare their
resource needs when registering, and PSR tries to find a matching storage for
each application.

10.4 Architecture

This section outlines the PSR architecture, detailing its internal components
and their interactions in key use cases. Although we refer to DCN, this term is
interchangeable with any computing device. The focus is on storage and state
replication, but the described principles and mechanisms can be applied to
other scenarios, like allocating application execution based on available com-
putational resources.

10.4.1 Components

The PSR architecture comprises three main components, as depicted in Fig-
ure [I0.4} (i) Application Redundancy Functions (ARF), (ii) Partible State
Replication Manager (PSRM), and (iii) Cluster Consensus Manager (CCM).
Section[I0.5]provides a detailed discussion of the CCM. For the context of this
section, it suffices to understand that the CCM provides consistent replication
across all DCNs via a consensus algorithm.
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Figure 10.4: High-level architecture view of the PSR components.

The ARF offers redundancy functions essential for a redundant applica-
tion, including failure detection and state replication. It comprises two sub-
components: the Application Failure Detector (AFD) and the Application State
Replicator (ASR). AFD manages failure detection, where the backup’s AFD
monitors the primary and alerts in case of failure. ASR is responsible for state
replication, transferring the application state to the designated storage, and en-
abling the backup application to fetch the state to resume with the primary’s
latest state if needed.

The PSRM consists of four sub-components: the Application Info Registry
(AIR), the Storage Registry (SR), the Application State Storage Pairer (ASSP),
and the State Storage Pair Registry (SSPR).

The AIR’s responsibility is threefold. The first is to gather the local ap-
plications’ state replication needs. The second is replicating the collected in-
formation in the cluster. The third is to keep a registry of all the application’s
state storage needs in the cluster. See Figure

The SR’s responsibility is also threefold, like AIR. SR is the AIR counter-
part for storage. It gathers the storage capability provided by the local DCN,
replicates this information in the cluster, and holds a registry with all the avail-
able storage in the cluster. See Figure[10.5b]

The ASSP does the actual paring; it uses the application’s state replication
needs to find a state storage for each application. ASSP uses the information
in AIR and SR to do the pairing. The ASSP instance running on the DCN with
the leader CCM does the pairing; see Section[I0.5]

The SSPR keeps the registry of application storage allocation, i.e., the
application-storage pair. The ASSP updates the SSPR if any change in the
requested or available storage impacts the pairing made. Such as the adding



Paper E 163

/ DCN \ a i DCN N\

— onfig/User/ASR
ASR (1) . l g
(42, PSRM (‘1|,) PSRM
[ AR ]_(5)_>[ ASSP ].(6)_)[ SSPR]] [ SR ]—(4)-)[ ASSP ].(5)_>[ SSPR ﬂ
(@ @) ‘g) () (i) (?) @ q)

K[ Y ]/ | coM I,
(b) Storage (DCN) registering (or
deregistering) (adding or removing).

(a) Application registering (or dereg-
istering) (adding or removing).

Figure 10.5: Component interaction when (a) adding/removing an application
or (b) storage when a DCN startup.

or removing of DCNs or applications. SSPR uses the CCM to replicate the
paring information in the cluster. See Figure[I0.5a]

10.4.2 Use Cases

This section shows the interaction between the different components for four
key use cases.

10.4.2.1 Application Start (Application Registering/Deregistering)

A redundant application registers itself with the ASR at startup (1); see Fig-
ure ASR registers the application information in PSRM through AIR
(2). AIR uses the CCM to replicate the application information in the clus-
ter (3). When the CCM has successfully replicated application information in
the cluster, all AIR instances are informed and update their registry (4). AIR
notifies the ASSP when there is a change in the registered applications (5).
A change in the CCM leader state also triggers ASSP to evaluate the current
pairings. The ASSP located with the CCM leader pairs the application with
storage located on a DCN other than the primary application. Once ASSP has
made a paring (or removed one), it asks SSPR to update (6). SSPR requests
the CCM to replicate the updated pairing in the cluster (7). When the pairing
information has replicated in the cluster, the CCM in all DCNs informs the
SSPR of the changed pairing information (8).
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Figure 10.6: Component interaction during (a) normal operation and (b) failure
of DCN running a primary instance of an application.

10.4.2.2 DCN Startup (Storage Registering/Deregistering)

A DCN providing storage registers its information upon startup, as shown in
Figure[10.5b] It informs the SR in PSRM (1), and the SR replicates this storage
information using CCM (2). CCM ensures all SR instances are updated (3).
When SR detects a change in information, it notifies ASSP (4). If the storage
update requires a change in the application state storage pairing, ASSP in the
DCN with the leader CCM updates and passes this information to SSPR (5).
SSPR then replicates this pairing across the cluster using CCM (6), which
distributes the updated pairing to SSPR on all DCNs (7).

An alternative scenario occurs when storage becomes unavailable, trigger-
ing ASR to mark the storage as unavailable, leading ASSP to reassign alterna-
tive storage to the impacted application.

10.4.2.3 Normal Operation

Figure illustrates the standard operation process. The application com-
municates its status to the AFD (1). The AFD in DCN 1 then sends a heart-
beat to its backup counterpart in DCN 3 (2). As long as the AFD in DCN
3 receives confirmation that DCN 1’s primary instance is operational (3), the
backup application in DCN 3 remains on warm standby. The primary appli-
cation instance replicates its state through ASR (4), which retrieves storage
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information from SSPR (5-6) and then stores the application state data, for ex-
ample, in DCN 2 (7). The ASR in the backup continuously verifies access to
the storage and the validity of the state data, retrieving storage location from
SSPR (8-9) and checking its accessibility and data validity (10). Any change
in storage accessibility is reported to PSRM and SR (11), initiating the process
shown in Figure Both primary and backup ASRs perform this accessi-
bility check.

10.4.2.4 DCN Failure

Figure [10.6b] depicts a DCN failure and the subsequent actions by the backup
application instance in DCN 3 to take the primary role. If the primary applica-
tion instance fails to trigger the AFD, the warm standby application in DCN 3
becomes the primary (1-4). Upon assuming the primary role (4), it requests
the latest state from the ASR in ARF (5). The ASR then inquires about SSPR
for the storage location (6-7), retrieves the latest state from the storage (e.g.,
DCN 2) (8-9), and supplies the retrieved state to the application (10).

10.5 CCM - Cluster Consensus Manager

PSR utilizes CCM for cluster consensus, employing VSR-QC as its consensus
protocol. This section details VSR-QC and outlines the CCM sub-components
for implementing CCM with VSR-QC.

10.5.1 VSR-QC Protocol

VSR-QC, influenced by VSR [18], Raft [15], and Omni-Paxos [19], operates
under a non-Byzantine failure-recovery model. It assumes protocol instances
don’t continuously crash and recover. Messages may be lost, but the system
is generally synchronous, following a partially synchronous model. When de-
scribing the protocol, we use the term VSR-QC instance rather than server,
node, or DCN since VSR-QC can run multiple instances per node / DCN.

Like Raft, a VSR-QC instance can be in either of the three states
Follower, Electing, or Leader, shown in Figure[10.7

The leader is the VSR-QC instance in state Leader and it is the driver of
the replication. The leader is elected from the set of followers. A follower can
only become a leader if it is QC and elected by a majority. Each instance has a
unique and persistently stored identification, id.

Followers are VSR-QC instances in state Follower. Each VSR-QC in-
stance maintains its own instance of the replicated log. The replicated log is
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Figure 10.7: The VSR-QC state machine.

an ordered list of replicated requests. The log is orderly replicated to all func-
tioning VSR-QC instances in the replica group. The replica group is the set of
VSR-QC instances forming the distributed replication. VSR-QC as VSR, Raft,
and Paxos tolerate f faulty VSR-QC instances in the replica group. Hence,
2f 4+ 1 is the minimum replica group size to be f fault tolerant.

VSR-QC utilizes the view concept [18, 15]. A view is an inte-
ger, ViewNumber, incremented each time a leader election process is
started.

The protocol’s functionality is explained through four scenarios: (i) normal
operation, (ii) leader election, (iii) synchronization, and (iv) failure detection,
concluded with a brief discussion on configuration.

10.5.1.1 Normal Operation

The normal operation of VSR-QC is similar to VSR [18], illustrated in Fig-
ure[T0.8] and summarized below.

A DCN (or other client) issues a request by sending a <Request, rid, msg>
message to the leader (1). Step 3 in Figure [[0.5a] is a PSR request example.
The rid is a tuple comprising the client ID and a request number, forming
a unique request ID, rid. The rid prevents double processing of requests in
case of a leader failure while a request is uncompleted. The payload of the
request is msg. Unprocessed requests, identified by rid, prompt the leader to
dispatch a ( Prepare, v,n,r, m) message to all followers (2), where v is the
current View Number, n the OpNumber, and r and m are the rid and msg.
The OpNumber is an integer incremented by the leader for each finalized
request.

Followers process Prepare messages sequentially in OpNumber order.
Upon having all prior log entries, a follower adds the new entry, stores the rid,
and sends a <PrepareOK ,, n> back to the leader. If preceding entries are
missing, the follower attempts synchronization (see Section [10.5.1.3)), with-
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holding PrepareOK until all previous and current entries are stored in the
log.

. . . Commit .
Request - Prepare = PrepareOK - .
DCN/Client q : p : p : and upcall : Reply
. . . . (6)
(). . . .
Leader . (5)-
2. @ I\ u .
Follower 1 . . .
. . (5) -
2); D\ LI
. /(3) .
Follower 2 .

Uﬁ)
Figure 10.8: Normal replication flow of VSR-QC.

The leader waits for replies from f followers with PreparecOK (f
followers plus the leader constitute a majority). After receiving at least f
PrepareOK, the request is stored in the replicated log of a majority, and the
leader issues a commit with the <Commz’t, v, k> message (4), where k is the
CommitNumber. The CommitNumber is the highest OpNumber that
has been committed. Committed entries can not be changed or removed.

After sending the Commit, the leader performs the upcall to the dis-
tributed application (5). The upcall is the term for passing the request to the
distributed application layer, PSR, in our case, exemplified in step 4 in Fig-
ure The followers issue the upcall when they receive the Commit if all
previous entries are committed.

10.5.1.2 Leader Election

As mentioned in Section VSR does not handle partial connectivity be-
cause it requires QC voters [18, 19]. VSR-QC is partial connection tolerant
because VSR-QC uses QC as leader criteria, but it does not require that the
voters are QC, similar to Omni-Paxos [19].

Failure Detection Election  Ejection  "MoUn- Sync
Leader 31 . start . . cement T
" . . = Follower 1 is .
Follower 1 : " " _: the new leader * -
cc=3 : (2) T g . (6) .
. . QI 7.
Follower 2 . . . .
cc=2 . (5) . .
Follower 3
cc=2

Figure 10.9: Leader election.
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The failure detection catches leader failure and determines which instances
are QC or not; see Section [I0.5.1.4] Figure [10.9 shows a leader election se-
quence that starts with the failure of the current leader (1). Eventually, the
failed leader is detected by another VSR-QC instance, in this case, Follower 1
2).

Follower 1 detects the failed leader and initiates an election by entering the
Electing state, increments its ViewNumber, sends an ( ElectionStart, v)
message to all other VSR-QC instances (3), and starts the election timeout
timer. The ElectionStart message contains v set to the current (just incre-
mented) View Number of the VSR-QC instance.

Follower 2 receives the FlectionStart message from Follower 1 and en-
ters the Electing state if the received v is higher than ViewNumber and
assigns v to its View Number. Follower 2 also sends an ElectionStart mes-
sage to all other instances when entering the Flecting state and starts the
election period timer.

Suppose no leader has presented itself directly via the ElectionComplete
message or indirectly via the heartbeat. In that case, when the election
period timer expires, the election process restarts by incrementing the
ViewNumber again and re-entering the Electing state.

If a new FElectionStart message with v higher than ViewNumber is
received before the election period has ended, the election period restarts and
the above-described actions repeat.

In Electing, VSR-QC instances cast one vote per election period
(ViewNumber) using (FElectionVote,lid,v,n,k), addressed to the
prospective new leader. This message includes lid (the prospective leader’s
id), ViewNumber, OpNumber, and Commit Number, as depicted in step
(4) in Figure[10.9]

Voting is based on the Connectivity Count (cc), updated by the failure de-
tection; see Section[10.5.1.4] The cc reflects the number of connected VSR-QC
instances. Votes are given to the instance with the highest cc over the QC limit.
In case of equal cc values, the tie is broken by id, favoring the lowest id.

A VSR-QC instance receiving an FElectionV ote message enters the
FElecting state if the received v is higher than ViewNumber and performs
the above-described action when entering state Flecting. In state Electing it
counts all ElectionV ote messages with v = View Number received within
the election period as valid votes. If it gets an ElectionV ote with a v higher
than its ViewNumber, it re-enters Electing, resets the vote count, restarts
the election timer, and updates its View Number to v.

A VSR-QC instance in Flecting that receives f + 1 valid votes accepts
that it is the new leader and enters the Leader state and announces itself
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as the new leader by sending out a <ElectionComplete, lid, v,n, k>
message where lid is id, v is ViewNumber, n the OpNumber, and k the
Commit Number. Figure (4) shows Follower 1 obtaining the majority
of votes, becoming the new leader, and making the announcement with
the ElectionComplete message (5). The other VSR-QC instance in state
Electing enters the Follower state when receiving ElectionComplete, or a
Heartbeat indicating a leader, with a v equal or higher than View Number.

A leader that loses QC leaves the leader role and initiates a new election
by sending the ElectionStart message; see Figure[10.7]

The new leader must ensure it has the latest log entries, which it does by
requesting the entries it is missing, if any, from the most up-to-date follower.
The n k in the ElectionV ote message has informed the leader about the most
up-to-date follower, and it is to that follower the leader requests a synchroniza-
tion, step (6) and (7) in Figure [10.9] Synchronization is further described in
Section[10.5.1.3

10.5.1.3 Synchronization

VSR-QC requires no persistent storage to store the log; it assumes that a ma-
jority never fails at the same time. However, if desired, VSR-QC, as the VSR
inspiration, can be modified to use persistent storage and reduce the synchro-
nization needed upon recovery [18].

This section describes synchronization steps to bring a VSR-QC instance
that, for whatever reason, has become outdated in synchronization again. We
divided the synchronization description into three steps: (i) detection, (ii) fol-
lower synchronization, and (iii) (newly elected) leader synchronization.

A follower detects that it is not synchronized when receiving Prepare
or a Heartbeat message with a v and n higher than the follower’s
ViewNumber and OpNumber. A leader detects lagging when it has
received a majority of votes by comparing the v and n in the received
ElectionV ote message with its View Number and OpNumber.

A follower that is out of synchronization uses the <S yncMeReq, z> mes-
sage where i is the ¢d of the follower. The receiving VSR-QC instance, regard-
less of its current role, will reply with the <S yncMeReply,v,n, k,l > message,
where v,n,k, and [ is the View Number, OpNumber, Commit Number, and
log entries of VSR-QC instance 7.

The leader is the most updated VSR-QC instance since it is the desig-
nated receiver of client requests and is the driver of advancement. However,
a new leader might not possess the latest entries immediately after the elec-
tion. Therefore, as described in Section [I0.5.1.2] a newly elected leader’s
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first step is synchronizing itself with the latest entries. The information in
the ElectionV ote concludes which is the most updated VSR-QC instance in
the majority. The leader sends a SyncM e Req message to one of the most up-
dated VSR-QC instances to retrieve the log and perform any missing commits
and upcalls. After synchronization completion, the leader starts accepting and
processing client requests.

Do note there are several ways to make the synchronization handling more
efficient; some are discussed in the VSR description [18].

10.5.1.4 Failure Detection

All the VSR-QC instances send Heartbeat to one another. A concrete real-
ization example of such an exchange is a multicast group dedicated to failure
detection within the replica group.

The <H eartbeat,v,n, k, i, p, c> message conveys each instance’s replica-
tion and connectivity status. Replication status includes ViewNumber(v),
OpNumber(n), Commit Number(k), instance id (i), and the leader’s id (p),
with p set to zero if no leader is identified. Hence, this message gossips the
leader’s identity. Connectivity status is represented by c, indicating which in-
stances are connected in a simple bit-field format, where each bit corresponds
to a VSR-QC instance.

Based on these heartbeats, VSR-QC instances update their Connectivity
Count (cc). Only QC followers can start elections, and votes are given to the
highest cc, averting continuous re-elections. The leader will relinquish its role
if it loses QC status.

10.5.1.5 Configuration

Adding and removing VSR-QC instances to the replica group is not covered
for page conservation reasons. We envision that the mechanisms VSR uses for
adding/removing members are suitable for VSR-QC as well [18].

10.5.2 Components

Figure [10.10] displays the components of CCM, with the CCM Service Ab-
straction (CSA) acting as an interface. CSA’s role is to provide an easy-to-use
interface to the replicated services like PSR and abstract the underlying con-
sensus protocol. CSA functions include issuing requests, upcall registration,
and leader checks. CCM’s architecture, as shown in Figure [I0.10] comprises
four sub-components: (i) Leader Elector (LE), (ii) Failure Detector (FD), (iii)
Group Member Manager (GMM), and (iv) Log Replicator (LR). LE and FD
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handle leader election and failure detection (Section [10.5.1.2] and [10.5.1.4),
GMM manages and updates replica group membership, and LR, detailed in
Section [T0.5.1.1] manages replication, performs upcalls for new log entries,
and handles synchronization.

g CCM N\

CCM Service Abstraction )

(CSA) J

VSR-QC )

Leader Elector Failure Detector
(LE) (FD)
[Group Member Mgr. ] [ Log Replicater ]

(GMM) (LR) /j

Figure 10.10: CCM Components.

10.6 Implementation, Execution and Result

10.6.1 Implementation

We developed a PSR prototype for VxWorks based on the architecture de-
scribed in the previous sections. The prototype is available on GitHub [23].

The prototype version of the ASSP application-storage pairing algorithm
pairs applications with available storage based on the sequence of their regis-
tration. The primary goal of the algorithm is to find storage on another DCN
than the DCN hosting the primary application instance; the secondary goal is
to find the least utilized storage. The prototype version pairs an application
requiring storage with the first found unused storage. If no unused storage ex-
ists, it searches for the first storage used by only one other application. If that
fails, no storage exists for the application. The exploration of more advanced
pairing algorithms is future work.

The ARF implementation of the AFD uses a UDP-based heartbeat message
protocol. The heartbeat messages are sent on requests from the application.
The ASR state replication uses a UDP-based message encapsulating the most
recent state as reported by the application. This message is directed to the state-
storing DCN, exemplified by DCN 2 in Figure The ASR is responsible
for operating a storage server on the storage DCN. This server receives the
incoming state messages and preserves the most recent within RAM.
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The prototype includes a Test Application (TAPP), a redundant application
that can function as either primary or backup. We utilize the TAPP to assess
PSR’s performance and to draw comparisons with the naive state replication
approach depicted in Figure [I0.2] In its backup role, the TAPP remains in
warm standby, meaning it’s loaded into RAM and primed to switch to the
primary role when the AFD detects a failure of the original primary instance of
TAPP. The primary TAPP instance requests that the AFD send heartbeats and
the ASR transmit its latest state to the storage. The state includes a sequence
number that is incremented in each iteration. The state size and period time
are adjustable.

When a TAPP instance takes the primary role, it requests the latest state
using its local ASR. The local ASR, in turn, sends a state request message to
the ASR on the storage DCN to obtain the most recent state, as illustrated in
Figure [10.6b]

To conduct failover testing, the primary TAPP instance is instructed to
cease operation, which prompts the backup instance to assume the primary
role upon the AFD heartbeat timing out. In transitioning to the primary role,
the TAPP anticipates a specific state from the ARF. Knowing the sequence
number of the latest state before a commanded shutdown, the TAPP can con-
firm whether it has successfully retrieved the most recent state.

10.6.2 Setup and Execution

We utilize virtual machines running on VMware 17 as DCNs. Each virtual
machine has one CPU, one core, and two GB of RAM. These machines are
hosted on a Lenovo ThinkPad P15, featuring a 2.7 GHz Intel I7 processor and
48 GB of RAM. The bandwidth of the virtual network interface connecting the
virtual machines is limited to 1024 Kbps. This limitation is imposed to make
evaluations feasible in a virtualized environment without overloading the host
computer. On these virtual DCNs, we run the PSR prototype, including the
TAPP, on VxWorks 21.07.

Our experiments involve five different redundancy patterns: (i) one pri-
mary and one backup (1p), (ii) two primaries and one backup (2p), (iii) three
primaries and one backup (3p), (iv) four primaries and one backup (4p), and
(v) five primaries and one backup (5p). The primaries run the TAPP instance
in the primary mode, while the backups host the backup TAPP, as depicted
in Figure In the 1p configuration, there are four TAPP instances: two
running as primaries on the primary DCN and two as warm standby backups.
This pattern continues, resulting in 8 instances for 2p, 12 for 3p, 16 for 4p, and
SO on.
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Each TAPP instance operates on a 40-millisecond cycle, sending a heart-
beat (via AFD) and replicating its state (using ASR). The volume of state data
replicated in each cycle is adjustable. We begin our tests with 128 bytes of
state data, increasing it in 128-byte increments until network resource overuti-
lization on one or more DCN5s causes the test to fail. At each increment, we
simulate a controlled failure of the TAPP instance on DCN 1 by commanding
it to stop.

A test is considered to have failed when a backup TAPP instance erro-
neously transitions to the primary role due to AFD not receiving heartbeats — a
consequence of network congestion from state replication traffic. Similarly, a
test fails if a triggered failure doesn’t result in the backup retrieving the latest
state. We define the point at which tests begin to fail as the ‘failure threshold.’

In our tests, we run the system in PSR mode, employing PSR for state
replication. Each participating virtual DCN contributes storage for two TAPP
instances in this mode. Therefore, in the 1p configuration, two DCNs provide
storage. However, for fault tolerance, the primary can only use storage on
the backup DCN, not on itself. In the 2p setup, three DCNs offer storage,
assigned to TAPP by PSR, demonstrating the concept illustrated in Figure[10.3]
In contrast, the naive mode only uses the backup for storage, as shown in

Figure[10.2]

10.6.3 Result

The graphs presented in Fig[T0.TT|illustrate the bandwidth usage for state repli-
cation under functioning redundancy, the TAPP state replication increment be-
fore the failure threshold. In other words, the graphs highlight the point at
which an additional 128-byte increment in the TAPP state data usage leads to
system failure. Thus, these graphs offer insights into the differing aspects of
the state replication bandwidth threshold for both naive state replication and
PSR.

For the 1p configuration, the state replication threshold is identical between
PSR and the naive approach. This is because, in a 1p setup, the naive and
PSR methods replicate the state to the only backup available. However, as
illustrated in Figure[T0.1Ta] the bandwidth available to each DCN decreases as
we expand the configuration using the naive approach. In contrast, with PSR,
the bandwidth remains consistent regardless of the number of DCNs since each
added DCN also contributes storage, as shown in Figure

Figure [10.11D] displays the bandwidth utilization per application. In our
experiment, we consistently deployed two TAPP instances per DCN, meaning
the threshold bandwidth utilization for each application is effectively half that
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Bibliography 175

of the DCN.

Finally, Figure depicts the total bandwidth used for state replica-
tion across all applications in the various configurations. Notably, the total
bandwidth usage for PSR increases as more configurations are added. This
increase is attributed to each newly added DCN hosting both the TAPP and
provides storage. Conversely, in the naive approach, where only the backup
provides storage, the total bandwidth usage slightly decreases. This decrease
is likely due to the increased number of heartbeat messages and overhead.

10.7 Conclusion and Future Work

This paper introduced an architecture that separates state replication storage
from backup in a decentralized system, employing the VSR-QC consensus
protocol to maintain consistency. We evaluated the state replication capacity,
comparing PSR with naive state replication methods. Our results show that
PSR significantly increases the feasible state replication data volume, enabling
a single DCN to back up multiple primaries.

Future research goals include bounded, low-latency, state data retrieval
mechanisms, and reliability modeling to find cost-efficient deployments for
real applications that satisfy given reliability targets. Another future research
possibility is optimizing application and state storage pairing, given available
resources and response time requirements. A last example of future research
is investigating the integration of PSR in a context where a system like Kuber-
netes orchestrates the DCNs and applications.
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Abstract

Industrial controllers are moving from controller-centric to network-centric ar-
chitectures, where lightweight containerization is increasingly adopted in op-
erational technology. Many industrial domains require high reliability, often
achieved through spatial standby redundancy with duplicated controllers where
one is the active primary and the other a standby backup. In such setups,
the standby backup must seamlessly take over control when the primary fails.
Hence, the backup needs to be up-to-date with respect to the primary’s inter-
nal state. The retrieval of internal states is commonly known as checkpointing.
We review checkpointing approaches used in virtualized and industrial settings
and derive a set of desired features for state-transfer protocols. We then assess
existing communication protocols against these features and experimentally
evaluate the two strongest contenders under no-loss and packet-loss condi-
tions, measuring recovery performance. The analysis reveals that no existing
protocol meets all the desired features. To address this gap, we introduce a
new state-transfer protocol that satisfies all identified features. In experiments,
it demonstrates good performance under packet loss, with only a slight reduc-
tion in throughput compared to the identified top contender protocols that we
used for comparison.
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11.1 Introduction

Industrial Control Systems (ICS) are undergoing an architectural paradigm
shift, a shift from a controller-centric architecture to a network-centric archi-
tecture [1]. The distinguishing difference between the two architectures is that
the network replaces the controller as the system center. The shift is part of a
strive to create interoperable and flexible systems designed to ease data prop-
agation to data-hungry Al-driven forecasting and decision-making systems.
Facilitating standards is a cornerstone in inter-vendor interoperability; in the
context of ICS, OPC UA is believed to be such a standard [2].

The connectivity provided by the network-centric architecture, in combi-
nation with increased Ethernet usage, enables more flexible deployment of
controllers, thereby boosting the interest of Information Technology (IT) in
Operation Technology (OT) domains [3, 4, 5]. One example of such technolo-
gies is lightweight virtualization in the form of containers and the orchestration
of those [6, 7, 8]. Containerized controllers can increase the deployment alter-
natives and provide more flexibility, especially if the controllers are hardware
agnostic and not dependent on specialized fieldbuses for communication [6, 5].

ICS automates a broad range of solutions in a wide spectrum of domains.
Needless to say, no one wants unplanned production stops due to their control
system failing, and for some domains, stops can have severe impacts. Mandat-
ing a need to keep the probability of failure low with various fault-tolerance
techniques. A conventional way to increase fault tolerance is to duplicate crit-
ical devices such as controllers and network paths to form redundant solutions
and avoid single points of failure [9]. In the context of ICS and controllers, spa-
tial standby redundancy with hardware duplication is a common redundancy
pattern, where one controller serves as the active, primary controller, and the
other acts as a standby backup [10, 11]. The redundancy masks primary con-
troller failures from the perspective of field devices relying on control from the
redundant controller pair, forming a passive standby redundancy [9]. In the
case of primary failure, the backup controller seamlessly assumes the primary
role and provides output to the field devices.

For a backup to be able to assume the primary role upon failure of the orig-
inal primary controller, mechanisms for failure detection and state replication
are needed [12, 13]. As the name implies, failure detection is the mechanism
used to determine if the primary has failed. The second mechanism, state repli-
cation, allows the backup to resume with the internal states needed to continue
the primary role transparently for the field devices and, ultimately, the con-
trolled process.

Checkpointing is the process of collecting the internal states; hence, to
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have any state data to replicate, the primary first needs to checkpoint. As men-
tioned, the network-centric transformation and lightweight virtualization con-
cepts drive controller software to be hardware agnostic, including redundancy
functions such as state replication [14]. The focus of the work is the transfer
of checkpoint data, and the goal is to find a solution suitable for transferring
the collected state data of a primary controller over Ethernet to the backup
controller.

The state data transfer needs to be secure, and security is a growing con-
cern within the industrial domain, given the increasing system complexity and
connectivity of industrial systems that utilize ubiquitous communication pro-
tocols. Hence, state transfer protocols need protection from cybersecurity
threats, as they are potential attack vectors for availability attacks, and state
data may contain sensitive information [15].

We structure the work as a five-step workflow, where each step builds upon
the preceding one, as illustrated in Figure [I1.1]

Step I presents a literature search and summary covering
checkpointing/state-transfer work in industrial controller redundancy and in
container/orchestration contexts/[1]

Step II defines desired features for state transfer and compares candidate
communication protocols against these features.

Step III presents and performs an experimental evaluation of two protocols
with the highest feature coverage.

Step IV presents a protocol conceived for state transfer, together with its
design.

Step V presents the implementation and integration on VxWorks, a real-
time operating system (RTOS) [16], and the experimental results.

The contributions of the paper are:

C 1: Literature search and summary: a concise overview of
checkpointing/state-transfer approaches in industrial redundancy and
container/orchestration contexts.

C 2: Protocol feature matching: identification of desired features for com-
munication protocols used for state transfer, and matching these features
against selected protocols, where the main emphasis is to identify pro-
tocols suitable for state transfer in the industrial controller redundancy
use case.

'This is a targeted literature scan to identify relevant mechanisms and technologies for our
use case; it is not a systematic literature review.
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Figure 11.1: Overview of the paper’s sections and the five-step workflow (Step

V).

C3:

Experimental evaluation: experimental evaluation of the two best-

matching protocols on VxWorks under loss-free and lossy conditions.

C 4: State-transfer protocol:

protocol,  experimentally

evaluated

on VxWorks

design and integration of a state-transfer
(including

multi-application mimicking workloads) and compared to the two
best-matching protocols; it exceeds them under loss and supports
transmission scheduling to facilitate deadline-driven prioritization.

The paper is organized as follows: Section [I1.2]introduces industrial con-
trollers, the execution model, fault tolerance, and container orchestration, and
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Section[I1.3|provide related work. Section[IT.4](Step I) details the checkpoint-
ing literature search and summarizes the results. Section[T1.5]|(Step II) defines
desired features for state-transfer protocols, introduces candidate protocols,
and assesses them against these features. Section [I1.6] (Step IIT) experimen-
tally evaluates the top candidates and reports results. Section (Step IV)
presents the proposed protocol, and Section (Step V) evaluates it. Sec-
tion[TT.9|concludes. Figure [IT.T]illustrates the paper structure.

11.2 Background

This work addresses challenges related to the fault tolerance of industrial con-
trollers. Hence, this section first introduces ICS and their execution models,
then introduces fault-tolerance concepts, and finally, briefly introduces orches-
tration and containers.

11.2.1 Industrial Controllers

Industrial controllers are rugged computers designed for longevity in
potentially harsh environments. The controller executes the control logic to
drive the process to the desired state by reading and writing values to and
from field devices that interface with the physical world. Distributed Control
Systems (DCS) are large-scale automation systems comprising interconnected
controllers that communicate with each other and field devices to automate
an entire site, rather than just a single machine. A Programmable Logic
Controller (PLC) is another well-known term for industrial-grade controllers,
often featuring built-in Input/Output (I/O) interfaces.

E IIJCNZ :
DCN1|: DCN2|: EI
| | |
'@ DCN1|: E[%I
o) >)le :
(a) Controller-centric. (b) Network-centric.

Figure 11.2: Controllers, field devices, and upper layers of the automation
pyramid in a controller-centric architecture and a network-centric architecture.
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Figure shows the traditional hierarchical controller-centric archi-
tecture, where field devices at the bottom of the figure connect to only one
controller, commonly over dedicated fieldbuses [17]. Above the controllers
are the high-level systems, such as Supervisory Control and Data Acquisition
(SCADA), which provide operator control and overview with fewer real-time
requirements and more reliance on IT systems. Figure[IT.2b|shows the the flat-
tened network-centric architecture, with all system parts connected to a com-
munication backbone, denoted as the O-PAS Connectivity Framework (OCF)
by the Open Process Automation™ Standard (O-PAS) [18]. O-PAS refers to
controllers as Distributed Control Nodes (DCNS5s); we use the terms controller
and DCN interchangeably.

As mentioned, the DCN runs the control logic that strives to drive the con-
trolled process to the desired state by getting and providing input and output
to field devices. The following section introduces the DCN execution model.

11.2.2 Execution Model

The control logic that executes on the controller is a program, also referred
to as an application, typically developed in an engineering tool provided by
the DCN manufacturer. The engineering tool enables users to program and
develop applications for specific domains and download them to the DCN. The
predominant standard for programming DCN applications is IEC 61131-3, and
the execution model is cyclic as shown in Figure[TT.3][19, 20].

As shown in Figure [IT.3] the execution phase consists of four phases: (i)
Copy-in (C1), (i) Execute (Fxe), (iii) Replicate State (RS), and (iv) Copy-
out (C'O). Copy-in is the phase where updated values from the field device are
made available to the application. These are the values the application uses
when executing the control logic in the Execute phase. The Execute phase
updates the internal states of the application, i.e., variables are updated. The
updated state needs to be replicated to the backup in case of redundancy. This
replication takes place in the Replicate State phase. Lastly, the updated values
are communicated to the connected field devices, which occurs in phase Copy-
out.

A controller typically executes a set of control applications, denoted as A,
where each application a € A has a period P,. Within each period F,, the
application a executes all its phases: C1,, Eze,, RS,, and CO,. Specifically,
application a must complete all phases included in the Execution Phase (£ P)
tuple (C1,, Exe,, RS,, CO,) during each period. Koziolek et al. define the
application slack time as the interval from when application a completes its
CO, phase to its next invocation in the subsequent period [21]. Figure [IT.4]
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Application

Update state ¢

I_)[ Copy-in ]—)[ Execute }—)[Replicate State]—)[ Copy-out ]—l

Figure 11.3: Controller application execution sequence.

illustrates the application phases and the phases’ dependency on input data and
internal state from earlier periods. Figure[I1.4]also shows the output from the
different phases.

Application a
Pa,1 I:>a,2 P.. F>a,n

. I ,1Sa,0 @) K :|a_2 Sa,1 oa,2 : . Ia,n Sa,n-1 oa,n

ci]Exe]rs[cd - (c]Exe]Rslcg -

v o v

Sa,1 Sa,2 Sa,n

Figure 11.4: Internal state and application execution phases dependency and
relation.

I, represents the set of input values from C'I at period instance n for
application a. S, ,—1 represents the internal state at the start of execution for
application a in period n, while S, ,, is the new internal state after execution
Exeq . This new state (S, 5,) is replicated to the backup and used as the inter-
nal state for E'xe, 41 in period P, ,,41. Lastly, O, ,, represents the externally
visible output from the execution of application a in period P, ,,.

Og,n depends on I ,, Sqn—1, and the execution Eze, . Therefore, to
avoid producing historically outdated values during a failover, any failover
occurring after the output O, ,, must result in outputs that are O, or later for
all @ € A. Consequently, once the primary outputs O, ,,, the backup must hold
an internal state .S, ,—1 or later. This implies that, upon the primary’s output of
Og,n, state S, p—2 (and older) are outdated. Figure @] illustrates state aging
on a backup for application a.

Note that the application state for application a is utilized by a only; hence,
a failed state transfer does not directly impact any other application than a.
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Inter-application communication between applications is handled in a similar
way as application and field device communication, rather than multiple appli-
cations being directly dependent on the same state data.

Oa,n-1 Oa,n oa,n+1 Oa,n+2

A A A

Sa,>=n-1 Sa,>=n

Expired) Valid | { (Expired| Valid

Legend:
g Outdate state for backup to use

A Latest output
) Valid state for backup to use

Figure 11.5: Output to field devices and state and aging on the backup.

11.2.3 Fault Tolerance

Fault-tolerance, as the name implies, is about being robust and continuing to
operate even in the presence of faults. Spatial standby redundancy is a specific
fault-tolerance pattern common in ICS [11].

State replication is a fundamental part of a standby spatial redundancy
where one unit is active, and one or more backups are ready to take over in
case of failure of the active [12]. We assume a fail-silent semantics, meaning
that if a primary fails, it stops providing output [22]. The backup typically
supervises the primary by expecting a primary-originated message at known
intervals, a so-called heartbeat [23, 24]. The backup typically interprets the ab-
sence of heartbeats as a failure of the primary controller. Self-tests, diagnostic
checks, and parallel execution with cross-comparison are fault detection meth-
ods that also serve to strengthen the fail-silent behavior in industrial control
systems [25]. Failure detection is not in the scope, and other failure semantics,
such as Byzantine faults, are not considered [26].

Spatial standby redundancy with hardware duplication addresses persistent
hardware failures, and failure detection is necessary to enable the backup to
recognize that the primary has failed. From the perspective of the field devices,
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this is a passive redundancy, where a failover occurs when the backup takes
over for a failing former primary, and the change should be transparent from
the field devices’ perspective [9].

The degree of readiness denotes the level of the standby, divided into cold-,
warm-, and hot-standby [9]. Cold standby refers to an unpowered spare that
maintenance personnel can use to quickly replace a failing DCN. The differ-
ence between warm and hot is the spare’s activity level. A warm standby DCN
backup does not execute the control applications. Still, it quickly resumes them
when becoming primary, and a hot standby DCN executes the control applica-
tion but does not provide output to the field devices. Our work targets warm
and hot standby redundancy.

Retrieving an application state for recovery is commonly referred to as
checkpointing [20]. Alternative to checkpointing, for redundancy purposes,
are, for example, deterministic Replicated State Machines (RSM), where the
events that progress the state machines are transferred rather than checkpointed
internal states, i.e., active replication [27]. To repeat events in a deterministic
order, consensus protocols such as Raft and Paxos can be used [28, 29]. This
work focuses on passive replication, where internal states are checkpointed
and transferred rather than the events themselves.

11.2.4 Orchestration and Containers

Containers are an OS-level virtualization technique providing software
bundling and resource isolation with low overhead [8]. The performant nature
of containers and their deployment flexibility make containers interesting
in the ICS context [6]. Docker is one of the most well-known container
solutions [30, 31]. Docker has experimental support for checkpointing using
Checkpoint/Restore In Userspace (CRIU) [32]. CRIU is a Linux software for
checkpointing to disk [33].

Orchestration is a term commonly associated with the automated manage-
ment of containers. For example, cloud service providers utilize a combination
of containers and orchestration for elasticity, i.e., scaling resources to match
current needs and handling failures [34]. Kubernetes (K8s) is one of the most
well-known container orchestration systems [35].

11.3 Related Work

One of the goals of this work is to explore existing research on state replication
in the ICS context, with a focus on the mechanisms used for transferring state
data. Table[TT.2]lists the identified publications.
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Of these works, only a few address redundancy directly. Stattelmann et
al. evaluate different checkpointing approaches to reduce data size but do not
discuss the protocols used for transferring state data [20]. Stdj proposes a state-
machine-based hot-standby solution using a non-redundant controller [36], and
Zhao et al. describe a redundant architecture [37]. Hegazy et al. present
automation-as-a-service with redundancy [3], and Goldschmidt et al. present
a container-based architecture that briefly touches on redundancy [6]. Since
security is fundamental for ICS, Ma et al. discuss security challenges in redun-
dant controller architectures [38]. These works cover controller redundancy to
varying degrees, but none dive deep into state transfer mechanisms.

Johansson et al. propose a distributed architecture to avoid overloading a
backup that serves multiple primaries with state data [39]. However, they do
not evaluate the performance of the underlying state transfer protocol. Bakhshi
et al. propose an architecture for persistent, fault-tolerant state storage for
stateful containers in the context of industrial robotics [40]. They use dis-
tributed storage and Raft for consistency, but do not evaluate the performance
of the underlying state transfer protocol. Nouruzi et al. also focus on mo-
bile industrial robotics and propose an architecture with redundant navigation
modules, but do not detail the state replication mechanisms [41].

Another goal of this work is to study checkpointing and state replication
mechanisms used in containerized applications, focusing on the mechanisms
used to transfer state data to learn if the found approaches suit our redundancy
use case. Table [IT.4] summarizes the findings, i.e., related work concerning
checkpointing in a containerized context.

Koziolek et al. address state transfer in the ICS context between
Kubernetes-managed containers, aiming to allow software upgrades without
interrupting the control application [21]. The interruption-free upgrade is
enabled by transferring internal states from the old version to the container
running the new version. They utilize OPC UA Client/Server for state transfer,
achieving relatively good performance. However, the suitability of OPC UA
Client/Server as a state replication protocol for redundancy use cases is not
discussed.

Johansson et al. utilize Kubernetes to manage redundant, containerized
DCNs. When a failure occurs, Kubernetes automatically restores redundancy
and mitigates service degradation [5]. However, they do not detail the mecha-
nisms used for state transfer between the redundant controllers. Leander et al.
present a security analysis of a communication link used for standby redun-
dancy purposes [15].

None of the studies above propose concrete solutions for transferring
checkpointed state data. In contrast, our work explores the checkpointing
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and redundancy literature to determine the suitability of existing protocols
for controller redundancy. We then identify a set of desired features for
state-transfer protocols in redundancy scenarios and evaluate a selection of
candidate protocols against these criteria. Finally, we experimentally assess
the most promising protocols and introduce our own solution, which fulfills
all desired features and is likewise evaluated through experimentation.

11.4 Checkpointing in the Literature

To gain an understanding of the checkpointing solutions described in the litera-
ture and their applicability to our redundancy use case, we conducted literature
searches. The following subsections present the search results.

11.4.1 Checkpointing for Controller Redundancy

To find literature covering checkpointing in an industrial controller redundancy
context, we searched WebOfScience and Scopus for redundancy-related work
targeting checkpointing and state replication in an industrial controller context
using the query shown in Table We followed references to widen the
search, and the relevant literature was added to the list in Table[T1.2] Table[T1.2]
summarizes the found literature and shows each publication’s main topic and
to what level it covers redundancy, checkpointing, and transfer mechanisms.
As seen in Table [T1.2] most publications do not discuss checkpointing or the
transfer method. The ones that do are further summarized in Section [T.4.1.1]
below.

Table 11.1: Controller redundancy checkpointing literature query.

("controller™ OR "PLC") AND "redundan=*" AND
("state" OR "checkpoint«")

11.4.1.1 Summary of Identified Papers

Stattelmann et al. discuss a compiler-aided checkpointing mechanism, where
data that has changed since the last checkpoint is stored in a dedicated buffer
for transfer to the backup [20]. The article states that state data is transferred,
but does not describe how. Ma et al. examine how redundant controller con-
stellations are vulnerable to cyber attacks [38]. They argue that redundancy
increases the attack surface, and the work discusses the transfer of checkpoint
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Table 11.2: Overview of publications related to checkpointing in industrial
controller redundancy context.

Ref. Topic Redundancy Checkpoint Transfer

Directly identified from literature search

[42] Safety
[43] Deployment
[20] Data reduction
[38] Security
[44] Simulation
[36] Cost-eff. red.
[45] Security

[46] Time sync.
[41] Cloud-hosted ctrl.
[47] Deployment
[39] State transfer
[48] System red.

SSOSNS NS X %N\ % NN %X X%
X O% O% % %% O\ %X X%
X O%x O%%x%x%x(0O0O%x%

Indirectly identified via reference tracking

[37] System red. v X X
[49] Security v X X
[50] App. upgrade X 4 O
[3] Cloud-hosted ctrl. v e Ve
[6] Architecture O @) O
[5] Orch. red. ctrl Ve @) O
[51] Cloud-hosted ctrl. v ©) O
[52] Migration X v v
[53] Architecture X X X
[54] Architecture X X X
[55] Recovery time v X X
[56] Live migration X v O
[14] State transfer v O v

Legend: v Detailed, O Mentioned (no technical details), X Not mentioned
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data without providing details on the mechanisms used. Stdj proposes a cost-
effective redundancy approach using a PLC pair but does not address check-
pointing or the transfer of state data [36].

Nouruzi-Pur et al. design a cloud-hosted redundant controller for mobile
robots, where the mobile robot is responsible for replicating the state between
redundant servers [41]. The internal workings and details of the state trans-
fer are not discussed. Johansson et al. address potential network congestion
that may occur when one controller serves as a backup for more than one pri-
mary [39]. To mitigate congestion at the backup, the checkpointed state data
is transferred to a node other than the primary producing the state, though not
necessarily the backup itself. The state transfer protocol is UDP-based, but its
details are not described.

Zhao et al. present a redundant system with redundant networks and de-
vices but do not address checkpointing or state handling [37]. Luo et al.
present a hot standby solution with redundant PLCs (a quad PLC architecture)
but do not discuss checkpointing or state transfer [49].

Wahler et al. present a method for bumpless and fast application updates,
where a new application version is started on another node [50]. "Teacher"
objects in the runtime of the original application gather state data and send it
to "Learner” objects in the runtime of the node hosting the updated application.
A monitor compares the results of the two application versions. However, the
underlying mechanism for transferring changed state data is not detailed.

Hegazy et al. host the controller application in the cloud and store state
information on the device to make it accessible to other controllers in the re-
dundant set [3]. TCP and Modbus TCP are used as communication protocols;
however, the article does not evaluate these protocols for state transfer pur-
poses. Goldschmidt et al. present an architecture for containerized controllers
and identify redundancy-related use cases as important for the architecture to
support, but do not describe checkpointing or state transfer in detail [6].

Johansson et al. investigate Kubernetes-based orchestration as a comple-
ment or even a replacement to traditional warm standby redundancy [5]. They
mention using a proprietary checkpointing mechanism but do not provide de-
tails of the protocol. Kaneko et al. present a redundancy solution where
controllers are hosted across multiple geographically distributed data centers,
across continents even [51]. Neither checkpointing nor transfer mechanisms
are discussed.

Gundall et al. propose a live migration approach where state data is contin-
uously sent from the source node to the destination during migration. Once the
state data difference between the source and destination nodes is small enough,
the handover is initiated [52]. The details of the protocol used to transfer the
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state are not presented.

Griiner et al. and Vogt et al. present architectures for flexible control
systems but do not discuss redundancy, checkpointing, or state transfer [53,
54]. Barletta et al. measure the recovery time of stateless applications in a
Kubernetes context [55]. Stateless applications do not require checkpointing
or state transfer, hence, these topics are not covered.

Govindaraj et al. aim to optimize downtime during live migration [56].
They use a request buffer at the destination server to store and replay requests
while transferring checkpointed data. However, the details of the transfer
mechanism are not discussed.

Kampa et al. discuss and evaluate Remote Direct Memory Access
(RDMA) for transferring state data between two virtualized PLCs (vPLCs) in
a redundant deployment [14]. They use two types of vPLCs: a homebrewed
mockup and a CODESYS vPLC. The CODESYS vPLC originally employs
both TCP and UDP for state transfer; Kampa et al. replace this with
RDMA [57, 14]. The RDMA-based state transfer introduced by Kampa et
al. demonstrates significantly better performance compared to the original
TCP/UDP-based approach. The measured average time for transferring 1
MB of data using TCP/UDP is 295 milliseconds over dual 25 Gbps links.
In contrast, the theoretical minimum transfer time over a single 1 Gbps link
is approximately 8 milliseconds. This notable gap is not addressed in the
discussion, nor is the limitation that CODESYS only supports synchronization
of data from a single task [57, 14].

As seen in Table [I1.2] the number of works addressing checkpointing in
the context of industrial controllers for standby redundancy purposes is quite
limited. Fifteen of the listed publications, including those on cold standby,
discuss redundancy. Of these, only five describe checkpointing mechanisms,
and only Hegazy et al. [3] and Kampa et al. [14] discuss the means of state
transfer down to the transport protocol used.

11.4.2 Containers and Checkpointing

Inspired by the growing adoption of containers and orchestration in industrial
control systems and real-time systems in general, we search for checkpointing
mechanisms in the context of containers and orchestration [55, 5, 6, 56]. We
search Scopus and Web of Science using the query in Table[T1.3]

Since the search aims to determine whether recent technologies and solu-
tions in the container context can be used for or inspire checkpointing mech-
anisms in an industrial controller redundancy use case, we limit the search to
publications from 2018 to 2024, the year of writing this section.
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Table 11.3: Checkpointing in container and orchestration context literature
query.

("checkpoint*" OR "replicat*" OR "restore") AND
("kubernetes" OR "k8s" OR "k3s" OR "orchestrat*"
OR "containerx")

Table [I1.4] presents the result of the search, gives an overview of the rele-
vant literature, and highlights the main topic of each publication, the method
used for checkpointing, the transfer mechanism, and whether the work targets
a real-time-dependent solution. The following section, Section[I1.4.2.1] gives
a summary of the found publications.

11.4.2.1 Summary of Identified Papers

As seen in Table[IT.4] CRIU is the dominant solution for checkpointing. When
it comes to transfer mechanisms, there is no dominant solution. We group the
found literature into the following categories: (i) CRIU with Defined Transfer
Methods, (i) CRIU without Transfer Details, (iii) Custom Solution with De-
fined Transfer Details, (iv) Custom Solution without Transfer Details, and (v)
Consensus Protocol-based Solutions.

CRIU with Defined Transfer Methods: These works utilize CRIU and
describe the transfer mechanism. Starting with the work that uses a file transfer
protocol. Afshari et al. use CRIU to checkpoint application states and compare
the performance between File Transfer Protocol (FTP) and Secure Shell (SSH)
when transferring the checkpointed file to the destination node [63]. FTP is
quicker, and the transfer times are within the second range for the smallest
checkpointed data. FTP is also used by Droob et al., who optimize the num-
ber of checkpoints to minimize the performance impact of the checkpointed
service while providing fault tolerance [82]. Pu et al. migrate applications if
they believe the Quality of Service (QoS) will improve by doing so; they use
Secure Copy Protocol (SCP), which utilizes SSH [67].

Chebaane et al. use CRIU checkpointing and Remote Sync (rsync) to of-
fload critical tasks from the device to fog or edge, in a Vehicle-to-Infrastructure
(V2I) use case [75]. They use rsync to transfer the checkpointed file. Qiu et
al. use rsync on top of Multipath TCP (MPTCP) [80]. MPTCP is a protocol
that provides multihoming TCP transfer, that is, multiple paths between com-
munication endpoints [105]. Guitart et al. also move the CRIU checkpoint file
using rsync [99].

Widjajarto et al. measure the resource utilization when using CRIU for
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Table 11.4: Overview of container checkpointing publications.

Ref. Topic Method Transfer Real-time
[58]  Migration CRIU O X
[59] Migration CRIU ZFS X
[60] Fault tolerance Incremental X X
[61] Recovery time ~ Custom K8s service HTTP X
[62] Recovery time ~ Custom K8s service HTTP X
[63] Migration CRIU FTP, SSH X
[64] Contention CRIU MOSIX (TCP) X
[65] Contention CRIU X X
[66] Fault tolerance CRIU File share X
[67] Migration CRIU SCP X
[68] Migration CRIU SCP X
[69] Fault tolerance Custom Raft Robotics
[70] Fault tolerance Key-value store NFS X
[71] Fault tolerance Apache Kafka O X
[72] Utilization CRIU O X
[73] Storage DB, etcd @] ICS
[74] Migration CRIU O X
[75] Migration CRIU rsync V2I
[76] Migration CRIU O X
[77] Migration CRIU ©] X
[78] Forensics CRIU No transfer X
[71 App. upgrade Custom OPC UA CS ICS
[79] Migration CRIU O X
[80] Migration CRIU rsync X
[81] Contention CRIU No transfer X
[4] Fault tolerance CRIU FTP X
[82] Fault tolerance CRIU FTP X
[83] Fault tolerance CRIU DRBD X
[84] Fault tolerance Custom No transfer X
[85] Fault tolerance Custom O X
[86] Fault tolerance CRIU O X
[87] Fault tolerance CRIU O X
[88] Fault tolerance Custom No transfer X
[89] Fault tolerance Custom Raft X
[90] Migration Custom (CRIU) O X
[91] Migration CRIU NFS X
[92] Storage Custom O X
[93] DB persistence CRIU No transfer X
[94] Migration CRIU NFS X
[95] Migration CRIU X
[96] Fault tolerance Custom X
[97] Migration CRIU O X
[98]  Migration CRIU SR-IOV NFS X
[99]  Migration CRIU rsync X
[100] Migration CRIU O X
[101]  Fault tolerance CRIU 0] X
[102] Migration CRIU 0] X
[103] Migration File replication O X
[104]  Fault tolerance CRIU O X

Legend: O Mentioned (no technical details), X Not mentioned
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migration [91]. The checkpointed data is copied with a file copy using Net-
work File System (NFS). Mangkhangcharoen et al. compare CRIU and Dis-
tributed MultiThreaded CheckPointing (DMTCP) for checkpointing machine
learning applications for migration purposes [94]. NES is used to transfer the
checkpointed data. Prakash et al. use CRIU with single root-input/output vir-
tualization (SR-IOV) to reduce the CPU overhead induced by handling virtual
networks [98]. The checkpointed data are transferred using NFS.

Bhardwaj et al. utilize the distributed file Z File System (ZFS) to distribute
the checkpointed data [59]. Zhou et al. optimize CRIU and use the Distributed
Replicated Block Device (DRBD) to replicate the checkpointed files [83, 101].
Adhipta et al. address shared resource contention when checkpointing, since
the checkpointing process requires processing and storage resources [64]. The
file is stored on the distributed file system MOSIX [106].

CRIU without Transfer Details: Below are the works that use CRIU but
don’t detail the checkpointed data transfer. Khan et al. use CRIU for migration
in a V2I use case but do not detail how the data is transferred [58]. Miiller
et al. propose a Kubernetes-based architecture for fault tolerance of stateful
applications [66]. Checkpointed data is stored on persistent storage, but the
storage details and the transfer of the data to the storage are not detailed.

Ramanathan et al. improve CRIU to handle migration of network connec-
tions better [74, 77]. The actual transfer mechanism of the checkpointed state
is not described. Ngo et al. propose a delta identifier to reduce the data trans-
ferred, but the mechanism for the transfer is not presented [76]. Karhula et al.
use checkpointing in a Function as a Server (FaaS) context to save resource
utilization by checkpointing and suspending the containerized application that
provides the function while the application is waiting for the next job [72]. Lee
et al. use CRIU for checkpointing in memory databases [93].

Stoyanov et al. compare different checkpointing methods, and Li et al. use
CRIU in a Kubernetes context to checkpoint Virtualized Network Functions
(VNF) for migration [79, 95]. Bhardwaj et al. compare the checkpointing per-
formance between containers and virtual machines [97]. Di et al. develop a
tool for migrating containers using CRIU [100]. Oh et al. propose a CRIU-
based application transparent migration [102]. Schmidt et al. introduce a Ku-
bernetes operator for transparent checkpointing using CRIU in the Kubernetes
context [104]. Gharaibeh et al. use checkpointing for forensics purposes, that
is, troubleshooting or investigating suspected attack attempts [78].

Venancio et al. use CIRU to checkpoint and go through different VNF re-
dundancy deployments [86, 87]. Some VNF deployments discussed replicate
the checkpointed data to a central database, while others use a dedicated state
replicator to distribute state data to replicas.
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None of these works detail the mechanisms used for transferring the check-
pointed data.

Custom Solution with Defined Transfer Details: The below works are
the works that define a custom checkpointing solution and also describe the
transfer mechanism used.

Arif et al. describe a checkpointing solution for FaaS, using a key-value
storage hosted on an NFS [70].

Koziolek et al. introduce a Kubernetes operator for application updates [7].
The updated states are sent from the old version of the application to the new
version using the OPC UA Client-Server (OPC UA CS) protocol. This work
does not target redundancy, but the use case is similar; the changed application
states are transferred in the execution slack between two invocations of the
same task.

Vayghan et al. introduce a custom Kubernetes controller for quicker failure
recovery and a Kubernetes service for state replication between the stateful
applications over HTTP [61, 62].

Custom Solution without Transfer Details: The works listed
below present customized checkpointing solutions without describing the
mechanisms used to transfer state data.

Zhang et al. present a custom approach where they incrementally store
the dirty pages of a Docker container up to a certain threshold, where the re-
maining dirty pages are checkpointed, to reduce the time the processes are
freezed [60]. Venkatesh et al. propose checkpointing to memory instead of
disk to boost performance and reduce I/O contention from disk accesses [81].
Yu et al. propose a CRIU optimization that checkpoints to memory instead of
disk. The checkpointed data is transferred, but without providing details [90].
Han et al. also address resource contention when storing checkpointed data by
utilizing properties provided by the storage, in their case, SSD disk [65].

Junior et al. replicate container file systems between different data centers
but do not discuss the communication protocol used [103]. Stavrinides et al.
let each task checkpoint its data, but the data is not transferred [84]. Cai et
al. replicate to a double buffer; one page of the buffer is replicated, while the
other is updated by the application [85].

Choi et al. propose a checkpointing solution called iContainer, and Luati
et al. optimize storage of checkpointed data using a distributed storage [88,
92]. Behera et al. propose a predictive checkpointing solution for High-
Performance Computing (HPC) [96]. Jia et al. propose a custom mechanism
for checkpointing, where the states are replicated amongst peers [4]. However,
the transfer protocol is not detailed.

Denzler et al. compare different architectures for persistent storage
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for stateful, containerized applications but do not detail the underlying
protocols [73].

Consensus Protocol-based Solutions: Below is the literature that de-
scribes solutions that utilize consensus protocols to distribute the checkpointed
state.

Bakhshi et al. simulate fault-tolerant persistent storage and analyze the per-
formance of their proposed fault-tolerant persistent storage used for replicated,
stateful applications [107, 69]. A storage handling container is responsible for
replicating the data amongst all other nodes, using Raft [29]. Netto et al. also
use Raft in a Kubernetes context to replicate requests in an orderly manner to
the replicas, providing active redundancy [89].

Javed et al. use Apache Kafka to replicate the data produced amongst
different processing nodes exemplified in a camera surveillance use case [71].

11.4.3 Conclusions from the Literature Search

The search for literature covering checkpointing solutions in the context of in-
dustrial controller redundancy reveals that only one work focuses on the details
of state transfer—namely, Kampa et al. and their use of RDMA in a vPLC set-
ting [14]. They use CODESYS as the redundant PLC, which is limited to state
transfer from a single task [57]. Furthermore, reliability-related aspects such
as packet loss and recovery are not considered.

The literature search for checkpointing solutions in container and orches-
tration contexts reveals a significant amount of work, as shown in Table [TT.4]
The majority of the work uses CRIU for checkpoints. A file transfer, in one
form or another, is the most common alternative for transferring the check-
pointed data.

The work by Koziolek et al., like ours, stems from the ICS context, and
the replication of state in application slack time is similar to the need of our
redundancy use case, as described in Section [7]. They use OPC UA
Client/Server as the communication protocol to transfer the collected state
data, which is performant enough for the use case they address.

Conclusions:

* Detailed state transfer works targeting ICS redundancy are scarce, es-
pecially work considering protocol reliability aspects such as packet re-
transmissions.

* Container-based work favors CRIU plus file transfer, with limited dis-
cussion of real-time properties.
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* We found no comparative evaluation for transferring checkpointed state
in ICS redundancy (or generally).

As mentioned, none of the found literature compares protocols for trans-
ferring the checkpointed data, neither in an ICS redundancy use case nor in
general. This finding motivates Step II, Section [l 1.5] where we define and de-
scribe features desirable for a state-transfer protocol, against which we match
relevant protocols, followed by the experimental evaluation of top protocol
candidates in Step III, Section|11.6

11.5 Existing Protocols — Feature Matching

The results from the literature search in Section [[1.4] show that there are few
available works related to protocols for exchanging state data, particularly in
the context of industrial controller redundancy. Motivated by that finding, this
section aims to identify suitable protocols for that purpose.

TCP and UDP are the two most widely used transport-layer protocols. The
common perception is that TCP is reliable but unsuitable for real-time use;
however, what does the existing literature say? In Section[I1.5.1] we search for
literature comparing the performance of TCP and UDP to address that question
as a first substep.

As a second substep, we present three features that are highly desirable for
a protocol used for controller redundancy state transfer. We match these fea-
tures against a set of protocols to evaluate the protocol’s suitability for the state
transfer use case, which is the primary focus of this step, to identify suitable
protocols for the redundancy state transfer use case.

11.5.1 TCP and UDP Comparison

Similarly to how we retrieved the checkpointing-related literature in
Section [11.4] we turn to Scopus and Web of Science with the query in
Table [I1.5] to retrieve literature related to TCP and UDP performance in a
real-time context.

Table 11.5: TCP and UDP performance comparison literature query.

"tcp" AND "udp" AND ("real-time" OR "real time")
AND "performance" AND "evaluation”

Table[T1.6] presents the remaining publications after filtering out those not
explicitly comparing UDP and TCP. The Topic column shows the focus of
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each study (i.e., the targeted challenge), and the Packet Delivery Ratio (PDR)
column indicates which protocol (UDP or TCP) was found to have the highest
PDR, defined as:

PDR = PacketsReceived ~ PacketsSent (11.1)

The throughput (Tput) column lists the protocol that achieved the highest
measured throughput under the measurement conditions, and the latency col-
umn indicates the protocol with the lowest measured latency. The Network
column specifies the type of network used (e.g., simulated, wired, or wireless).

Table 11.6: TCP and UDP performance comparison.

Ref.  Topic PDR Tput Latency Network
(highest) (highest) (lowest)

[108] Dist. RT systems - - UDP Wired
[109] Video streaming TCP TCP UDP Simulated
[110] Voice streaming TCP - UDP Wired
[111] Video streaming TCP UDP - Simulated
[112] Congestion ctrl. - - UDP Simulated
[113] Voice streaming TCP - UDP Simulated
[114] Vehicle comm. TCP - UDP Wireless
[115] Microgrid ctrl. TCP UDP UDP Simulated
[116] Long-dist. TCP TCP - Wired
[117] Session init. - UDP UDP Simulated

As seen in Table[T1.6] three studies did not measure PDR [108, 112, 117],
but among those that did, TCP exhibited the highest PDR. TCP is considered
more reliable due to its congestion window (CWND) management, receiver
window (RWND) flow control, and retransmission of lost packets [118]. In
contrast, all studies that measured latency found that UDP offers lower latency.
Regarding throughput, three studies favor UDP [111, 115, 117], while two
favor TCP [109, 116].

The result suggests that the optimal choice for throughput depends on the
specific usage scenario. Using UDP without congestion or flow control mech-
anisms may risk resource exhaustion, leading to increased packet loss and re-
duced throughput. Overall, these results confirm that TCP provides reliability,
whereas UDP offers lower latency. A state replication protocol should be low-
latency, reliable, and deliver high throughput. Additionally, it must be secure,
as discussed in Section[T1.5.2.3] Hence, we further explore the desired features
of a protocol for transferring state data.
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11.5.2 State-Transfer Protocol Features

The industrial controller redundancy use case presents challenges that we
translate into a set of desired protocol features aimed at addressing these
challenges. The following subsections elaborate on and justify these features,
emphasizing why these features are desirable for our redundancy state transfer
use case.

TSN and similar standards and technologies offer low latency and network
resource reservation [2]. However, relying on specific technologies can limit
deployment and complicate life cycle management, especially in DCS instal-
lations, which may operate for over 40 years [119]. It is, therefore, desirable
that the protocol only depends on widespread technology and lower-layer pro-
tocols that are part of most modern operating systems’ network stack. In other
words, the protocol should not depend on niche or fringe technology. Proto-
cols that do not meet this platform-agnostic prerequisite are excluded; relevant
protocols omitted for this or other reasons are described in Section [11.5.7

We divide the desirable features into three different categories: (i) Relia-
bility, (ii) Real-time, and (iii) Security, all of which are essential for a protocol
used for transferring state data from primary to backup for redundancy pur-
poses. In addition, we use a three-graded feature fulfillment scale, (i) Absent,
(ii) Partly, and (iii) Fully, when listing the protocol fulfillment grade in Ta-
ble [I1.12] Where absent means that there is no support. Partly signifies that
the feature is only met under restricted conditions, or via optional profiles/ad-
jacent layers, or similar. Phrased differently, partly indicates that the feature
can be provided by the protocol to some degree, but not entirely. Fully means
that the feature is fully supported.

Protocols are not static; they evolve (with varying degrees), hence, the fea-
ture matching provided in this work might not hold true for future protocol
versions. Therefore, the feature matching sections refer to the specifications
used to determine the fulfillment grade. We do not consider different imple-
mentation variants or potential deviation/customization, only the specification.

11.5.2.1 Reliability

The reliability-related features address the protocol’s robustness and fault tol-
erance. The size of the state data produced by checkpointing varies with the
application, ranging from a few kilobytes to megabytes [7, 14]. When a large
state is segmented into multiple Ethernet frames, the loss of a single frame
should not result in a failed transfer, as that could lead to the backup lack-
ing the latest state. Therefore, the protocol should include a mechanism for
recovering lost segments, i.e., a retransmission mechanism providing reliable
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delivery of state data. We denote this desired reliability feature, Reliable De-
livery (Rel_RD). An ordered delivery and a recovery mechanism are needed to
fully fulfill the Rel_RD feature.

Frame loss can result from disturbances or overfull queues and buffers on
the network or the receiver. Flow control mitigates frame loss due to over-
full receiver queues [120], regulating the data flow from sender to receiver so
that the receiver’s buffers are not exhausted. Congestion control mechanisms
address network overutilization. Network overutilization can lead to frame
loss when bottleneck links receive more traffic than they can handle. Conges-
tion control aims to adjust the sending rate to avoid overloading bottleneck
links. Although many congestion control algorithm variants exist, they typi-
cally share the common principle of reducing the send rate when congestion
is suspected [121]. Congestion control algorithms commonly suspect con-
gestion when acknowledgments are missing or arrive too late. Such dynamic
congestion control complicates throughput prediction and makes it harder to
accurately foresee the transfer time, as the send rate may vary. This issue is
discussed further in Section

Given the above, a desirable feature for protocol robustness is a mech-
anism for managing the receive buffer to reduce the risk of packet loss due
to exhausted receiver capacity. We denote this feature as Rel_RC. The pro-
tocol should also include a mechanism to prevent packet loss resulting from
overutilization of network capacity, denoted as Rel_NC. Table provides
an overview of the reliability-related features.

We consider Rel_RC fully fulfilled if the protocol includes a mechanism
specifically designed to prevent receiver buffer exhaustion. Similarly, we con-
sider Rel_NC fully fulfilled if the protocol has a mechanism specifically de-
signed to address network overutilization. Rel_RC and Rel_NC are partly ful-
filled if the protocol includes a feature that achieves a similar result, even if it
is not primarily designed to address these specific needs.

Table 11.7: Desired reliability-related features.

Identity Description Motivation

Rel_RD  Reliable Delivery  Tolerance to transient faults
Rel_RC  Receiver Capacity Avoid loss due to buffer exhaustion
Rel_NC  Network Capacity  Avoid overutilization-induced data loss
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11.5.2.2 Real-time

As described in Section [11.2.3] state data must be available at the backup
within a bounded time to ensure that it can assume the primary role with-
out outputting outdated data. Therefore, the worst-case transfer time, includ-
ing retransmissions, must be predictable, preferably low, and, as mentioned,
bounded. Hence, motivating the desired feature denoted RT_PT - predictable
and bounded transfer time.

Given a bounded transfer time and a known application period, it becomes
possible to define an expected reception interval. This enables the receiver to
detect when new data has not arrived within the anticipated timeframe. Ide-
ally, the protocol itself should handle this monitoring, thereby relieving the
application of this responsibility. This capability is represented by the update
expectancy feature, denoted RT_UE. Section|[11.2.2|explains the time span un-
til state data invalidation.

Section|l 1.2]also explains that a controller may run applications with vary-
ing execution periods and state sizes. For example, a controller might host both
a small application with a short cycle time and a larger one with a longer cycle
time. In such cases, the state transfer for the smaller application should not
be delayed by the state transfer induced by the larger one, as this could re-
sult in the state not being transferred within the application period. To address
this, a prioritization mechanism is desirable, hence motivating the desired fea-
ture RT_PR.

Table[TT.§provides an overview of the real-time related features described
above.

Table 11.8: Desired real-time features.

Identity Description Motivation

RT _PT  Predictable transfer time Bounded transfer time
given bandwidth usage
RT_UE  Update time expectancy  Backup receives state
data within period
RT_PR  Prioritization Long-period transfers must not
block shorter ones

11.5.2.3 Security

State data may contain sensitive information, such as internal control applica-
tion variables. Undetected alteration of state data may cause a backup device
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Table 11.9: Desired security features.

Identity Description Motivation

Sec_Int Data integrity State data cannot be altered
without detection

Sec_Auth  Data authenticity Origin of the data can be verified

Sec_Conf  Data confidentiality State Data cannot be read by
unintended receiver

Sec_Fresh  Data freshness State data cannot be replayed at a
later time without detection

to obtain a false view of the state, which at failover can result in unexpected,
faulty behavior of the new primary, including incorrect setting of I/O variables.
When state data is being transferred over a shared network, protection mecha-
nisms for the protocol should be included.

In a previously conducted security analysis of a redundancy link for state
transfer [15], protocol-level mitigations, as described in Table [I1.9)as desired
security features, should be supported to provide necessary protection against
malicious actors.

A protocol for state replication should have a possibility to support these
mitigating mechanisms. The required mechanisms and the strength of the
mechanisms may, however, vary based on application-specific requirements,
e.g., the expected security level of the IEC 62443 standard [122] to be ful-
filled.

The most straightforward way to provide the protocol-level security fea-
tures would be to encapsulate the state transfer protocol within a security proto-
col on a lower level, e.g., utilizing Transport Layer Security (TLS) for stream-
based protocols, or IPsec or Datagram Transport Layer Security (DTLS) for
packet-oriented protocols.

Another approach is to use a standard protocol and apply security features
to the payload using various post-protocol-stack mechanisms on the applica-
tion layer.

IPsec can be used for providing security services on the internet layer, im-
plying that the protective mechanisms will only be from node to node, not from
application to application, i.e., it will only give assurance if the communicat-
ing nodes are trusted. IPsec provides services for integrity, authenticity, and
confidentiality, as well as replay protection.

IPsec is often used in funneling mode, forming Virtual Private Networks
(VPNs) between networks separated by an insecure network. However, that
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use case is not applicable for providing security services to a state transfer
protocol; instead, transport mode is the appropriate option. Usually, IPsec
protocol support is implemented at the OS level and therefore must be con-
figured at the node level. Consequently, applications relying on the security
services may have limited opportunities to enforce or verify that the measures
are actually in place.

IPsec in transport mode does not support broadcast or multicast, as it is a
point-to-point protocol.

TLS and DTLS are by far the most common security protocols used
for providing security services for internet-based communication, denoted
(D)TLS when both protocols are implied. Even though named Transport
Layer Security, (D)TLS is implemented in the application stack, making it
part of the presentation layer. (D)TLS provides security services for integrity,
confidentiality, and authenticity. TLS is a connection-based protocol that
uses a client-server approach and can be run with either single or mutual
authentication, which is typically certificate-based. If run in single mode,
the client can verify the authenticity of the server, but the server requires
additional mechanisms to authenticate the client.

For providing security mechanisms to a state transfer protocol, the sug-
gested approach would be to use mutually authenticated (D)TLS to assure data
authenticity. The OPC UA Client/Server is implemented in a manner very sim-
ilar to how mutually authenticated TLS works. It is worth noting that (D)TLS
cannot be added to an existing protocol without adaptation at the application
layer. Any protocol used for state transfer that wants the benefits of (D)TLS
would need to include some changes, which would have implications on both
deployment complexity and execution time.

Similarly to IPsec, (D)TLS cannot support broadcast or multicast traffic.

Post protocol-stack security mechanisms is a method to add the required
security mechanisms only for the data, while transporting the data using a
standard non-secure protocol. This allows for high flexibility in the security
services provided, but may increase the complexity of the implementation.
In particular, it is considered a bad practice to implement one’s own security
protocols, implying that well-known patterns and libraries should be used if
adopting this approach.

Secure OPC UA PubSub over UDP is one example of such a post-fix se-
curity mechanism, which can provide some of the required security services,
e.g., confidentiality, while still supporting UDP multicast on the lower protocol
level.

In addition to the well-known security protocol above, some communi-
cation protocols and standards we evaluate have security profiles or standard
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Table 11.10: Security protocol feature fulfillment.

Protocol Sec_Int  Sec_Auth Sec_Conf Sec_Fresh
IPsec Partly Partly Fully Fully
TLS single auth. Fully Partly Fully Fully
TLS mutual auth.  Fully Fully Fully Fully
Post-protocol sec. ? ? ? ?
SRTP Fully Fully Fully Fully
DDS Sec. Spec. Fully Partly Fully Partly
UASC Fully Fully Fully Fully
OPC UA SKS Fully Partly Fully Fully

amendments. If so, it is described for each protocol and summarized, along
with the security protocol feature fulfillment, in Table [TT.10]

11.5.3 Protocol Selection

The protocols selected are identified from the literature referenced in earlier
sections, i.e., in Section and Section In addition, we comple-
mented the list by turning to Google with the query shown in Table [IT.11]
below.

Table 11.11: Reliable real-time protocol - Google query.

reliable real-time data communication protocols

We divide the listed protocol into four categories, each with a subsection,
as follows. The categories are (i) Transport layer protocols, (ii) Application
layer protocols, (iii) Non-standardized protocols, and (iv) Excluded protocols.
As the name implies, the transport layer protocol and application layer pro-
tocols are protocols described in a standard that fall into either the transport
or application layer categories. Non-standardized protocols list protocols de-
scribed in scientific literature but not standardized. The excluded protocols
section lists and motivates the exclusion of the listed protocols from the match-
ing against the desirable features. We match the protocol security with the
security protocol from Section [11.5.2.3] which are matched against security
features in Table

Table provides an overview of each protocol’s real-time and relia-
bility features. The "Security Integration" column explains how security mea-
sures are incorporated, while the "Security Protocol" column indicates the typ-
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ical protocols used. If a security protocol is listed under "Security Integration,"
it means that the use of that specific protocol is mandated.
11.5.4 Transport Layer Protocols

This section presents the desired feature fulfillment of the standardized trans-
port protocol alternatives.

Table 11.12: Protocol feature fulfillment.

Protocol Rel_RD Rel RC Rel NC RT_PT RT _UE RT_PR Security integration Security protocol prescribed

Standardized transport layer protocols

TCP Fully Fully Fully Partly  Absent Absent Post-protocol -

UDP Absent  Absent Absent  Fully Absent  Absent Post-protocol -

NORM Fully Partly Fully Absent Absent  Absent Post-protocol IpSec

RTP Absent  Partly Partly Fully Partly ~ Absent Post-protocol SRTP (own)

SCTP Fully Fully Fully Partly  Absent  Partly Post-protocol DTLS

QUIC Fully Fully Fully Partly ~ Absent Partly TLS single auth. TLS single auth.
Standardized application layer protocols

DDS Fully Partly Partly Partly  Fully Partly Post-protocol DDS Security Specification

OPCUA  Fully Fully Fully Partly  Partly  Absent Post-protocol UASC

sy

OPCUA  Absent Absent Absent Fully Fully Fully Post-protocol OPC UA SKS

(PubSub)?

Non standardized protocols

RUDP Fully Fully Absent  Fully Absent  Absent Post-protocol IPsec
RBUDP Fully Absent  Fully Fully Absent  Absent Post-protocol -
PA-UDP  Fully Fully Partly Fully Absent  Absent Post-protocol -
UDT Fully Fully Fully Partly ~ Absent  Absent Post-protocol -
RUFC Fully Fully Fully Partly ~ Absent Absent Post-protocol -
SABUL Fully Partly Partly Fully Absent  Absent Post-protocol -
Tsunami Fully Partly Partly Fully Absent  Absent Post-protocol -

Excluded protocols

AMQP See Section|11.5.7.1

COAP See Section|11.5.7.2,

DCCP See Section|11.5.7.3

FASP See Section|11.5.7.4

MQTT See Section|11.5.7.5

RoCE See Section|11.5.7.6,
Industrial PROFINET, EthernetIP, EtherCAT,
protocols and ModbusTCP. See Section|11.5.7.7

11.5.4.1 Transmission Control Protocol - TCP

The Transmission Control Protocol (TCP) was first standardized in the early
1980s [123]. It is a connection-based, reliable protocol that provides an or-
dered byte stream to its users.

'OPC UA CS (Client/Sever) utilizes OPC UA TCP.
20PC UA PubSub utilizes OPC UA UDP.
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Reliability features: TCP fully fulfills Re/_RD since it provides ordered
delivery and detects and retransmits lost data. The receiver advertises the re-
maining space in its receive buffer, thereby fulfilling Rel_RC. Additionally, a
TCP node must implement congestion control mechanisms, such as slow start
and reduction of transmission rate upon loss detection [123], which means
TCP also fulfills Rel_NC.

Real-time features: Due to congestion window management and the slow
start mechanism, calculating the transfer time for a known data size depends
on the Round-Trip Time (RTT), as the congestion window increases upon re-
ceiving acknowledgments. Packet loss further decreases the congestion win-
dow. Consequently, the transfer time depends on the number of packets lost
and when they are lost. Therefore, TCP only partly fulfills RT_PT, as further
detailed in Section[IT.6] There is no concept of data expiration in TCP, mean-
ing RT_UE is absent. Additionally, TCP only carries a single stream of data
and thus lacks support for prioritization, making RT_PR absent. In fact, TCP
can suffer from head-of-line blocking, where a lost segment prevents delivery
of already received data due to TCP’s requirement for in-order delivery [124].
As a result, multiple application layer streams sharing the same TCP connec-
tion may experience head-of-line blocking.

Security features: As mentioned, TCP is a connection-oriented byte-
stream transport layer protocol that does not provide security features; it re-
lies on post-protocol security. TCP is commonly used with TLS as the post-
protocol solution.

11.5.4.2 User Datagram Protocol - UDP

Like TCP, the User Datagram Protocol (UDP) was standardized in the early
1980s [125]. UDP is a connectionless, packet-oriented protocol that delivers
individual packets, rather than a byte stream like TCP, to its users.

Reliability features: UDP does not provide retransmission capabilities
nor offer mechanisms for managing receiver or network resources to prevent
buffer exhaustion. Therefore, Rel_RD, Rel_RC, and Rel_NC are considered
absent for UDP.

Real-time features: UDP does not implement congestion control, such as
slow start or adaptive sending rates based on acknowledgments. The protocol
does not regulate the send rate in any way. Hence, no flow, congestion algo-
rithms, or other UDP-specific mechanisms impact transfer time predictability,
and thereby, RT_PT is fully fulfilled. UDP does not have any expiration time
feature or prioritization capabilities. Thus, RT_UE and RT_PR are absent.

Security features: UDP is a connectionless transport layer protocol, and
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like TCP, it does not provide security features; it relies on post-protocol se-
curity. A UDP is packet-oriented, and DTLS is a suitable post-protocol UDP
solution.

11.5.4.3 NACK-Oriented Reliable Multicast - NORM

NACK-Oriented Reliable Multicast (NORM) is a connectionless, reliable pro-
tocol for bulk data transfer to one or more receivers [126]. NORM supports
three categories of data transfer: (i) memory, (ii) file, and (iii) streams. NORM
uses Forward Error Correction (FEC) to aid in failure recovery. With FEC,
NORM can avoid retransmissions by reconstructing lost data from the error
correction information. In addition to FEC, NORM uses Negative ACKnowl-
edgments (NACK) to request the retransmission of lost packets when neces-
sary.

Reliability features: As mentioned above, NORM combines FEC with
NACK-based retransmissions to recover from packet loss, thereby fully ful-
filling Rel_RD. Although NORM does not explicitly exchange receiver buffer
capacity information, the sender can announce the size of the data being sent,
allowing the receiver to allocate appropriate buffers. Therefore, we catego-
rize Rel_RC as partly fulfilled. Like TCP, NORM uses a slow start congestion
avoidance mechanism, gradually increasing the transmission rate until packet
loss is detected. Since NORM is NACK-based, it uses an explicit message to
retrieve round-trip times. The trip times are input to the transmission rate re-
duction due to packet loss, and since NORM can handle multiple receivers, it
gathers the round-trip time from all. Hence, NORM fully fulfills Rel_NC.

Real-time features: The congestion control mechanism makes transfer
time prediction more difficult, especially since some retransmission timeouts
are randomized by design, hence, RT_PT is absent. Furthermore, NORM does
not have any expectation of timely data updates, nor does it have a prioritiza-
tion mechanism. Hence, both RT_UE and RT_PR are absent.

Security features: The protocol specification states that the NORM is
compatible with IPsec, at the same time, it recommends application-level in-
tegrity [126]. Hence, it has to rely on post-protocol security but does not ex-
plicitly mention any other protocol besides IPsec.

11.5.4.4 Real-Time Transport Protocol - RTP

The Real-Time Transport Protocol (RTP) is a connectionless, packet-oriented
protocol designed in 1996 for audio and video streaming [127]. Although RTP
typically utilizes UDP, it is not limited to UDP. RTP uses the RTP Control
Protocol (RTCP) for control [127]. RTCP is also connectionless and usually
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operates over UDP. RTCP provides quality feedback, congestion, and flow
control for RTP.

Reliability features: RTP targets streaming audio and video, where mi-
nor data losses might not significantly impact the experience, and the value
of the data diminishes quickly over time. Consequently, RTP does not sup-
port ordered delivery or retransmission mechanisms; thus, Rel_RD is absent.
While RTP does not provide information about receiver-side buffer capacity,
its companion protocol, RTCP, offers feedback on packet loss. Send rates can
be adjusted based on the packet loss information to reduce loss due to receiver-
side buffer overutilization. Hence, RTP partly fulfill Re/_RC. Similarly, RTP
lacks explicit congestion control mechanisms to prevent network resource ex-
haustion. However, RTP applications can utilize RTCP’s packet loss feedback
to reduce send rates and mitigate congestion risks. As a result, Rel_NC is also
partly fulfilled.

Real-time features: RTP is designed to use UDP and does not enforce
rate control, leaving that responsibility to the application; hence, RTP fully
fulfills RT_PT. RTP utilizes timestamps, allowing an application to determine
if the data is too old. However, RTP does not invalidate outdated data;
hence, RT_UE is partly fulfilled. RTP has no prioritization mechanisms;
hence RT_PR is absent.

Security features: RTP has a security profile named Secure Real-time
Transport Protocol (SRTP) defined in Internet Engineering Task Force (IETF)
Request For Comments (RFC) 3711 [128]. Adding SRTP to the RTP is de-
scribed as a "bump in the stack", i.e., as SRTP resides between the applica-
tion and the RTP transport layer, in other words, post-protocol from the view
of RTP. SRTP provides message authentication, a receiver can verify that the
sender is likely to originate from the claimed sender, hence fulfilling Sec_Auth.
RSTP also describes integrity handling, confidentiality mechanisms, and re-
play detection prevention, fulfilling Sec_Int, Sec_Conf, and Sec_Fresh.

11.5.4.5 Stream Control Transmission Protocol - SCTP

Stream Control Transmission Protocol (SCTP) is a connection and message-
oriented transport protocol from the early 2000s designed to address wishes
not fulfilled by TCP and/or UDP, such as reliable transfer without head-of-
line blocking by allowing more than one stream of data over a single connec-
tion [129]. SCTP offers reliable data transfer per stream and multi-homing; a
node can have multiple IP addresses that SCTP can utilize for fault tolerance
by using different paths through the network.

SCTP runs directly on top of IP, as UDP and TCP, but it is not as widely
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adopted as TCP and UDP. Linux and VxWorks support it, and third-party
drivers exist for Windows [130, 131, 132].

Reliability features: SCTP fully supports retransmissions of lost data and
provides ordered delivery; hence, SCTP fully fulfill Rel_RD. However, ordered
delivery is optional. Like TCP, SCTP fully fulfills Rel_RC, since each connec-
tion (or associations as SCTP connections are called due to the multi-homing
capabilities) has a receiver window representing the receiver’s capacity. SCTP
has one receiver window, even if the association is multi-home; the smallest
announced window sets the limit. SCTP also has a congestion window that
is dynamically adapted, as TCP does, to avoid network resource exhaustion-
induced congestion, hence fully fulfills Rel_NC. There is one congestion win-
dow per home, i.e., network path.

Real-time features: SCTP congestion handling is basically that of TCP
but capable of handling multiple paths as needed with multi-homing support.
Due to that, we use the same arguments as for TCP regarding transfer time
predictability, namely that the dynamic congestion window handling compli-
cates the transmission time prediction; hence, SCTP only partly fulfills RT_PT.
SCTP does not offer any expiration time on data; therefore, RT_UE is ab-
sent. Although SCTP offers different streams, these streams lack prioritization
attribute differentiation. However, an application can prioritize the different
streams differently; hence, RT_PR is partly fulfilled.

Security features: RFC 3436 describes TLS over SCTP [133], and later
RFC 6083 describes DTLS over SCTP [134]. TLS over SCTP has limitations
due to SCTP being packet-oriented. Hence, DTLS over SCTP security is a
later RFC to address those weaknesses. In other words, the security protocol
to use on top of SCTP is optional, hence post-protocol.

11.54.6 QUIC - QUIC

QUIC (not an acronym) is a connection-oriented protocol that uses UDP
for the actual data exchange, designed by Google to improve HTTPS
performance [135]. RFC 9000 describes the core parts of the protocol, and
IETF RFC 9002 defines the congestion control [136, 137]. QUIC reduces the
connection establishment latency, which can significantly reduce the overall
latency in use cases with many short-lived connections. QUIC also provides
multiple streams, relieving QUIC from the head-of-line blocking problem.
Reliability features: As mentioned, QUIC is a reliable protocol that
provides ordered delivery. Retransmission handles packet losses; hence,
QUIC fully fulfills Rel_RD. QUIC provides flow management by exchanging
information about the receiver side receive buffer capacity. Hence, QUIC
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fully fulfill Re/_RC. QUIC tries to prevent network resource congestion due
to overutilization with congestion control, similar to TCP; hence, QUIC fully
fulfill Rel_NC.

Real-time features: Using the same argument as for TCP concerning
transfer time predictability, the slow start and dynamic congestion handle make
it harder to predict; even though the QUIC variant is quicker to recover, we say
that RT_PT is partly fulfilled. QUIC does not provide any expiration time on
data; hence, RT_UE is absent. QUIC does not prioritize the streams and the
transferred data; that is up to the application. However, since QUIC supports
different streams, it provides the foundation for the application to prioritize
them; hence, QUIC partly fulfills RT_PR.

Security features: QUIC requires TLS. TLS is an integrated part of the
protocol, and it uses single authentication, where only the server is authenti-
cated.

11.5.5 Application Layer Protocols

This section presents the desired feature matching of standardized application
layer protocols.

11.5.5.1 Data Distribution Service - DDS

The Data Distribution Service (DDS) is a middleware that provides
distributed applications with a data-centric publish-subscribe communication
model [138]. DDS utilizes a UDP-mappable abstract protocol called
Real-Time Publish-Subscribe (RTPS) [139]. DDS also has a specification in
beta state on how to map DDS onto TSN capable networks [140].

Reliability features: DDS has mechanisms to resend due to loss and pro-
vides ordered delivery; hence, it fully fulfills Rel_RD. DDS does not provide
an exchange of receiver buffer capacity. However, it can run on top of TCP,
which does. Hence, DDS partly fulfills Rel_RC. The same reasoning applies
to network resource utilization. Therefore, DDS can partly fulfill Rel_NC.

Real-time features: DDS does not mandate the underlying transport pro-
tocol; the transfer time predictability depends on the protocol used. Hence,
we say that DDS partly fulfill RT_PT. DDS provides a deadline property for
subscribed data, invalidating data if not updated within that period, fully ful-
filling RT_UE. DDS has a prioritization mechanism, but how well they are
adhered to depends on the used transport protocol; hence, DDS partly ful-
fill RT_PR.

Security features: The DDS Security Specification defines a security
model for DDS [141]. DDS does not mandate the use of the security spec-
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ification; therefore, DDS supports post-protocol security integration. How-
ever, the DDS Security Specification should be followed to stay compliant with
the specification. The specification describes the handling of all the security-
related features. DDS, like OPC UA PubSub, recommends using symmetric
keys for real-time data exchange to improve performance. Hence, authentica-
tion is provided by controlling the key distribution.

11.5.5.2 OPC UA Client/Server - OPC UA TCP

OPC UA Client/Server (also denoted OPC UA CS for space conservation) is
a part of the OPC UA standard [142]. OPC UA Client/Server invokes remote
procedures exposed by OPC UA servers [143]. OPC UA Client/Server can
utilize an abstract protocol, called the OPC UA Connect Protocol (UACP),
for platform- and technology-independent reasons. OPC UA also describes
the mapping of OPC UA CS to TCP (OPC UA TCP) and HTTPS (OPC UA
HTTPS) as underlying protocols. We assume OPC UA TCP for the desired
feature matching.

Reliability features: OPC UA TCP, as the name implies and as described
above, uses TCP; hence, the fulfillment of reliability features is the same as
for TCP. That is, full fulfillment of Rel_RD since TCP handles retransmission,
TCP also provides receiver buffer management and thereby OPC UA TCP
fulfill Rel_RC. TCP also has a mechanism to avoid congestion by over-utilizing
the network; hence, OPC UA TCP fulfills Rel_NC.

Real-time features: Since OPC UA TCP uses TCP, the transfer time pre-
dictability argumentation is the same as for TCP; the dynamic congestion win-
dow handling makes predictability harder, especially if losses affect the con-
gestion window, hence OPC UA TCP partly fulfills RT_PT. OPC UA provides
timestamps. Hence, mechanisms exist to detect outdated data, but it’s up to
the client to utilize them. Hence, we classify feature RT_UE as partly ful-
filled. OPC UA Client/Server does provide prioritization mechanisms for how
a server should handle subscriptions, which is a step in the right direction.
However, TCP does not have any prioritization. As mentioned earlier, TCP
also suffers from the head-of-the-line block. Hence, RT_PR is absent.

Security features: OPC UA is designed to operate in a very heteroge-
neous industrial landscape. Hence, it provides a flexible use of security mech-
anisms, where OPC UA nodes can choose to conform to suitable security pro-
files [144, 143, 145]. Hence, the security integration is post-protocol; however,
the selection is limited to comply with the standard. This description assumes
OPC UA TCP secured with OPC UA Secure Conversation (UASC). UASC can
fulfill all the desired security features, as shown in Table
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11.5.5.3 OPC UA PubSub - OPC UA UDP

OPC UA PubSub is an additional OPC UA communication model, and as the
name implies, it is a publish-subscribe communication model [146]. OPC UA
PubSub supports two broker models, brokerless and broker-based. The broker-
based model uses Advanced Message Queuing Protocol (AMQP) or Message
Queue Telemetry Transport (MQTT). The broker-less alternative is one that
targets real-time exchange, such as that between a device and a controller. It
utilizes network equipment for brokering, specifically multicast groups on Eth-
ernet and IP. The brokerless OPC UA PubSub can run directly over Ethernet
or UDP, and it supports connectionless and unidirectional communication be-
tween publisher and subscriber. There is no mandated communication-related
feedback from subscribers to publishers. The UA Datagram Protocol (UADP)
specifies the brokerless OPC UA PubSub message format, including its head-
ers and their meanings. We base the feature discussion on OPC UA PubSub
UADP, which is built on top of UDP.

Reliability features: OPC UA UDP uses UDP and does not mandate any
additional resend mechanism; sequence numbers are optional. Sequence num-
ber usage can provide ordered delivery; however, since there is no resend
option and no alternative to it, Rel RD is absent. Furthermore, OPC UA
UDP does not exchange receiver buffer information; hence, Rel_RC is ab-
sent. Rel_NC is also absent, as there are no additional measures for network
resource management and congestion avoidance. It is worth noting that map-
pings between OPC UA PubSub and TSN have been described, which could
then reserve network resources and detect overutilization if used [147].

Real-time features: OPC UA UDP uses UDP with no throttling; hence,
the transfer time is predictable and fulfills R7T_PT. Subscribers to published
data can error mark that data if not updated within the expected interval, hence
fully fulfilling RT_UE. OPC UA PubSub also provides prioritization levels
that are mappable onto underlying network prioritization mechanisms such
as differentiated service code point (DSCP) in the IP header or the priority
code point (PCP) in the Ethernet frame [147]. The standard prescribes that the
processing of outgoing data with higher priority should precede that of lower
priority, hence fully fulfilling RT_PR.

Security features: OPC UA PubSub does not enforce any security. Hence,
the security integration is post-protocol from the OPC UA UDP perspective.
However, the OPC UA prescribed mechanisms should again be used to ensure
compatibility. OPC UA PubSub uses Security Key Service (SKS) to provide
keys for signing and encrypting messages [146]. We denote this OPC UA
SKS. Keys are distributed based on roles. Hence, authentication is provided
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by controlling the key distribution. OPC UA SKS can also fulfill the other
desired security features, as shown in Table[TT.10]

11.5.6 Non-standardized Protocols

This section presents the desired feature matching on non-standardized proto-
cols found in the literature.

11.5.6.1 Reliable UDP - RUDP

Reliable UDP (RUDP) is a reliable, connection-oriented protocol built on top
of UDP, as defined in a draft RFC [148]. RUDP provides reliable and ordered
delivery and flow control, but no congestion control.

Reliability features: RUDP fully fulfills Rel_RD, i.e., ordered delivery,
loss detection, and retransmission of lost packets. It exchanges information
about how many outstanding packets are allowed before an acknowledgment
must be received, serving as the flow control. RUDP does not have any net-
work over-utilization prevention. Hence, fulfilling Rel_RC, but Rel_NC is ab-
sent.

Real-time features: RUDP has no congestion control and a fixed
limit for the number of outstanding packets allowed, serving as a flow
control mechanism. Hence, the predictability of transfer time only depends
on how many packets are lost, not when they are lost. Therefore, RUDP
fulfills RT_PT. RUDP has no expectancy update time nor prioritization;
hence, both RT_UE and RT_PR are absent.

Security features: RUDP does not mandate any security protocol. Hence,
it is post-protocol. The specification mentions that it is IPsec compatible.

11.5.6.2 Reliable Blast UDP - RBUDP

Reliable Blast UDP (RBUDP) is, as the name implies, a reliable protocol for
transferring bulk data that uses UDP to avoid TCP congestion handling to in-
crease throughput [149]. RBUDP uses UDP to send data and is configured
with a specific send rate to prevent exceeding the bandwidth capacity of the
underlying network. It utilizes a secondary management channel over TCP to
communicate information about the transfer, including lost packages.
Reliability features: RBUDP has a resend mechanism, and ordered
delivery is ensured with numbered packets, fully fulfilling Rel RD.
RBUDP has no mechanism for synchronizing receiver-side buffer capacity;
therefore, Rel_RC is absent. RBUDP adjusts its sending to a specified send
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rate that should be selected so that the underlying network is not over-utilized;
hence, RBUDP fully fulfills Rel_NC.

Real-time features: RBUDP uses the send rate to avoid overutilizing
the network; given the send rate (and the packet size), the transfer time is
predictable; hence R7T_PT is fully fulfilled. RBUDP does not provide any
update expectancy mechanism or prioritization means; hence, both RT_UE
and RT_PR are absent.

Security features: RBUDP does not describe any security measures.
Hence, security integration must be post-protocol.

11.5.6.3 Performance Adaptive UDP - PA-UDP

Performance Adaptive UDP (PA-UDP) targets bulk data transfer, and the au-
thors argue that there is no need for congestion control on a dedicated link;
hence, PA-UDP uses UDP for the data transfer [150]. In addition, PA-UDP
also uses a TCP channel to communicate information feedback, such as lost
messages. PA-UDP includes a rate control dictated by the receiver, as the pro-
tocol targets data transfer in use cases where disk access storing the received
data is the limiting factor.

Reliability features: PA-UDP provides ordered delivery and retransmis-
sion of lost packets, i.e., fully fulfilling Rel_RD. PA-UDP does not explic-
itly exchange buffer size information, but the sender can limit the send rate
if buffer exhaustion is at risk; hence, fully fulfilling what Rel_RC is about.
Assuming the sender and receiver are aware of the capacity of the underlying
link, rate control can serve as a means to avoid overutilizing the receiver and
the network, even though it was primarily designed to prevent overutilizing the
receiver. Hence, PA-UDP partly fulfills Rel_NC.

Real-time features: PA-UDP uses UDP with a receiver-set rate control;
hence, predicting transfer time is straightforward. Therefore, PA-UDP fully
fulfills RT_PT. PA-UDP does not provide any update monitoring or prioritiza-
tion mechanism. Hence, both RT_UE and RT_PR are absent.

Security features: PA-UDP does not describe any security measures.
Hence, security integration must be post-protocol.

11.5.6.4 UDP-based Data Transfer Protocol - UDT

UDP-based Data Transfer (UDT) is a reliable and connection-oriented pro-
tocol designed to more effectively utilize high-speed links by introducing an
alternative congestion control mechanism compared to TCP [151]. Specifi-
cally, using TCP over high-speed links with long distances and long round-trip
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times can reduce throughput. UDT addresses this problem, and as the name
implies, UDT utilizes UDP.

Reliability features: UDT fully fulfills Rel_RD; it handles out-of-order
packets as well as resends lost packets. UDT exchanges receiver side capacity,
and the sender adjusts to that, fully fulfilling Rel_RC. UDT has a dynamic
congestion control to avoid congestion due to overutilization of the network;
hence, it fully fullfills Re/_NC. The UDT congestion control does not react to
just one lost packet, thereby avoiding a lossy link and reducing the congestion
window due to disturbance rather than congestion.

Real-time features: UDT has, as mentioned, a dynamic congestion con-
trol. We use the same argument as for TCP when it comes to the fulfill-
ment of RT_PT for UDT. The actual transfer time depends on when the dis-
turbance occurs, not just on the number of losses. Hence, UDT partly ful-
fill RT_PT. UDT does not provide any update monitoring or prioritization.
Hence, both RT_UE and RT_PR are absent in UDT.

Security features: UDT does not describe any security measures. Hence,
security integration must be post-protocol.

11.5.6.5 Reliable UDP with Flow Control - RUFC

Reliable UDP with Flow Control (RUFC) is a connection-oriented protocol
designed to be a performant alternative that addresses the underutilization that
may result from congestion and flow control [152]. RUFC introduces a layer
between the application and UDP for evaluating different control algorithms.

Reliability features: RUFC fully handles retransmission and ordered de-
livery, fully fulfilling Re/_RD. 1t also supports window management, hence
receiver buffer capacity control, and fulfills Rel_RC. RUFC has traffic shap-
ing support that can do flow control to adapt to the network capacity; therefore,
RUEFC fulfills Rel_NC.

Real-time features: Rate control is optional when using RUFC, and the
paper evaluates different types, and neither is as performant as native UDP.
The predictability depends on the rate control used; hence, RUFC partly full-
fills RT_PT. RUFC does not have any update monitoring mechanism or prior-
itization. Hence, both RT_UE and RT_PR are absent.

Security features: RUFC does not describe any security measures. Hence,
security integration must be post-protocol.

11.5.6.6 Simple Available Bandwidth Utilization Library - SABUL

Simple Available Bandwidth Utilization Library (SABUL) is a reliable and
lightweight protocol with flow and rate control [153] SABUL, like RBUDP
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and PA-UDP, uses UDP for data exchange and TCP for acknowledgment and
rate control; see Section [I[1.5.6.2] and Section [I1.5.6.3] SABUL transmits a
fixed number of packages and then waits for reception information from the
receiver over the TCP channel.

Reliability features: SABUL handles retransmission and ordering, and
the sender is informed about lost messages after transmitting a fixed amount
of packages. SABUL fully handles retransmission and ordered delivery and
thereby fullfills Rel_RD. Since SABUL transmits a fixed amount of packages,
this is a rather simplistic receiver buffer management and network resource
management; hence, SABUL partly fulfills Rel_RC and Rel_NC.

Real-time features: Given the rather simplistic transmission control of
SABUL, where a predefined number of packages are transmitted before wait-
ing for acknowledgment, predicting the transfer time is straightforward. The
transmission time does not depend on when packages are lost, as for TCP; it
only depends on how many are lost. Hence, SABUL fully fulfills RT_PR. As
mentioned, SABUL is designed to be a lightweight protocol. Hence, it does
not support any data expiration properties or prioritization. In other words,
both RT_UE and RT_PR are absent.

Security features: SABUL does not describe any security measures.
Hence, security integration must be post-protocol.

11.5.6.7 Tsunami

Tsunami is an application protocol designed to achieve faster file transfer than
FTP over TCP by FTP over UDP [154]. Tsunami is an application-layer pro-
tocol, and like SABUL and others (see Section[11.5.6.6), Tsunami uses UDP
for data transfer and TCP for control data. Tsunami examples of control pa-
rameters include transfer rate and delay time between transferred data blocks.

Reliability features: Tsunami provides recovery of lost data and ordered
delivery; hence, Tsunami fully fulfills Re/_RD. Tsunami does not explicitly
exchange receiver buffer sizes, but it exchanges desired transfer rate and
delay time, which can be set so that the receiver buffer is not exhausted
and the underlying network is not overutilized. Hence, Tsunami partly
fulfill Rel_RC and Rel_NC.

Real-time features: As mentioned, Tsunami uses a rate and a delay to
avoid congestion. Hence, the transfer time depends on the amount of data
to transfer and the number of lost packages, not when the packages are lost.
Hence, Tsunami fully fulfills R7_PR. Tsunami do not have any expiration date
mechanism nor prioritization. Hence, both RT_UE and RT_PR are absent.

Security features: Tsunami does not describe any security measures.
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Hence, security integration must be post-protocol.

11.5.7 Excluded Protocols

This section lists protocols excluded from feature matching because they are
deemed unsuitable for the use case, but are relevant enough to warrant their
exclusion.

11.5.7.1 Advanced Message Queuing Protocol - AMQP

Advanced Message Queuing Protocol (AMQP) is an application-layer protocol
that supports broker-based publish/subscribe and targets enterprise communi-
cation between heterogeneous systems [155].

AMAQP is excluded since it is a broker-based protocol that targets hetero-
geneous exchanges through a broker, rather than the real-time point-to-point
transfer of larger data sizes.

11.5.7.2 Constrained Application Protocol - COAP

The Constrained Application Protocol (COAP) is an application-layer protocol
that exposes RESTful APIs in a resource-constrained manner, compared to
HTTPS, targeting resource-constrained devices [156].

COAP is excluded since it primarily targets lightweight communication
for more resource-constrained devices, such as reading samples from battery-
powered intelligent sensors, rather than real-time bulk data transfers.

11.5.7.3 Datagram Congestion Control Protocol - DCCP

As the name implies, Datagram Congestion Control Protocol (DCCP)
is a datagram-based transport layer protocol that supports congestion
control [157]. The motivation behind DCCP is to spare applications
using datagram protocols the need for congestion control implementation,
as congestion control is highly recommended for Internet-bound
traffic [158, 159].

DCCEP is excluded due to its limited spread and support in operating sys-
tems’ network stacks.

11.5.7.4 Fast Adaptive and Secure Protocol - FASP

Fast Adaptive and Secure Protocol (FASP) is a proprietary protocol developed
by Aspera, now part of IBM [160, 161], targeting high-speed data transfer over



220 11.5. Existing Protocols — Feature Matching

long distances. FASP overcomes some TCP shortcomings, such as lowered
bandwidth utilization with increased Round-Trip Time (RTT).
FASP is excluded since it is an IBM proprietary protocol.

11.5.7.5 Message Queue Telemetry Transport - MQTT

Message Queue Telemetry Transport (MQTT) is a broker-based publish/sub-
scribe protocol targeting resource-constrained devices and, as the name im-
plies, targets the exchange of telemetry data, and by that aspiring to be a
lightweight protocol [162].

MQTT is excluded since it’s a broker-based protocol that primarily targets
the exchange of smaller data sizes rather than a real-time exchange of larger
data sizes, such as the application’s state.

11.5.7.6 Remote memory access over Converged Ethernet - RoCE

Remote direct memory access over Converged Ethernet (RoCE) is a technol-
ogy used in data centers for high-speed data transfer, often aided with hard-
ware support [163, 164]. RoCE is Infiniband’s network and transport layer
encapsulated on top of Ethernet. From RoCE version 2, also UDP over 1P
is supported, and there exist software versions that do not require hardware
support, which has been shown to be a performant alternative for container
communication [165].

RoCE and RDMA are excluded since they require OS Kernel and/or hard-
ware support.

11.5.7.7 Industrial Protocols

Industrial protocols are protocols developed for an industrial context.
PROFINET, EthernetlP, EtherCAT, and Modbus TCP are four of the most
widely used and well-known protocols[166, 167].

These protocols are designed for real-time exchange between a controller
and devices. Typically, that means reading sensory values from input devices
and providing output values to output devices, in other words, small data sizes.
The devices are commonly slave devices, and the controllers are the masters.
On top of that, the cyclic exchanged data are often confined to fitting into an
Ethernet frame [168, 169].

The industrial protocols PROFINET, EthernetIP, EtherCAT, and Modbus
TCP are excluded for the above reasons. Namely, they are not designed to
exchange large data sizes, but rather to be performant when it comes to reading
and updating smaller data sizes.
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11.5.8 Conclusions from Feature Matching

From the desired protocol feature matching, summarized in Table we
see that no silver bullet protocol exists, i.e., no protocol fully fulfills all our
desired features. SCTP, QUIC, DDS, and OPC UA TCP are the protocols that
provide the best matches.

DDS and QUIC are the least favorable for our industrial controller redun-
dancy use case compared to SCTP and OPC UA TCP. DDS is a middleware,
and OPC UA is the middleware used by industrial controllers; see Section[11.2]
Hence, DDS is less favorable since it would add another middleware. QUIC is
less favorable than SCTP since SCTP is available in VxWorks and Linux; see
Section

As both OPC UA TCP and SCTP only partly fulfill RT_PT, Section [I1.6]
evaluates the transfer times and the predictability of those. OPC UA TCP uses
TCP. Hence, the evaluation utilizes TCP, further elaborated in Section [T1.6}

Conclusions:

* No single protocol satisfies all features.
* Top candidates: SCTP and OPC UA Client/Server (OPC UA TCP).

* The real-time feature R7_PT is only partly met, motivating the work in
Part III (see Section [T1.6).

11.6 Existing Protocols — Experimental Evaluation

As shown and motivated in Section [I1.5.8] OPC UA TCP and SCTP are the
top candidates. OPC UA TCP runs on top of TCP, and as described in Sec-
tion[T1.5.5.2] TCP provides the reliability features as well as being the reason
for the fulfillment grade of real-time feature R7T_PT and RT_PR. Hence, to
learn if protocols based on TCP, such as OPC UA TCP, are suitable for the
state transfer use case, we evaluate TCP instead of OPC UA TCP.

In addition to TCP, we evaluate SCTP, the second top candidate. The fol-
lowing subsections present the evaluation of TCP and SCTP as state transfer
protocol candidates, focusing on the real-time properties that are only partly
fulfilled, as indicated in Table [T1.12]

As previously discussed, virtual controllers are gaining interest, presenting
both challenges and opportunities, with real-time performance being one of the
main challenges [30]. Therefore, systems requiring hard real-time properties
will likely run on a real-time operating system. Where applicable, we use
the configuration provided by VxWorks when describing the aspects of TCP
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affecting transfer time in Section[I1.6.1] In Section[I1.6.2] we apply the same
approach for SCTP. The analysis of the protocols and their implementations
serves as the basis for the experimental evaluation described in Section[T1.6.3]
This evaluation is followed by a discussion of the results and their implications
for our redundancy use case.

11.6.1 TCP in VxWorks

VxWorks version 24.03 and the RFCs supported by the VxWorks network
stack are the basis for the TCP description in this section [132]. The section
describes the TCP-related RFCs and their implementation in VxWorks.

RFC 793 specifies the protocol and is the RFC referenced in the VxWorks
documentation, even though it has been obsoleted by RFC 9293 [123, 170].
RFC 2018 introduces Selective ACKnowledgment (SACK), which allows a
receiver to inform a sender about segments it has received in the event of
losses [171]. SACK enables the sender to avoid retransmitting segments re-
ceived by the receiver.

RFC 5681 describes the four control algorithms a TCP implementation
should adopt with equal or greater conservatism [172]. These algorithms are
(i) Slow Start, (ii) Congestion Avoidance, (iii) Fast Retransmit, and (iv) Fast
Recovery. The slow start algorithm regulates the number of bytes in flight,
i.e., unacknowledged bytes. Two connection-specific variables control this:
the congestion window (cwnd) and the receiver window (rwnd). The number
of unacknowledged bytes must never exceed the smaller of cwnd and rwnd.

The allowed growth of cwnd depends on whether cwnd is below or above
a connection-specific variable called the slow start threshold (ssthresh). The
slow start algorithm dictates the growth of cwnd when cwnd is lower than
ssthresh. VxWorks assigns cwnd an initial value equal to two times the max-
imum segment size (mss), where mss is 1420 bytes. The initial value of
ssthresh is arbitrary; VxWorks sets it to 65,535. Consequently, the slow start
algorithm is active when a TCP connection is established in VxWorks, and the
implementation increments cwnd by mss for each acknowledgment of newly
received data. Algorithm [5|summarizes the description above.

In VxWorks, the rwnd size is set to the receiver buffer size (i.e., the
buffer size of the receiving socket), which is by default set to 60,000. Con-
gestion avoidance becomes active when cwnd exceeds ssthresh. RFC 5681
describes various methods for increasing cwnd during congestion avoidance;
in VxWorks, cwnd is incremented for each acknowledgment of newly received
data. Thus, receiving acknowledgments is crucial when cwnd is small, as it
permits more data to be in flight.
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TCP supports delayed acknowledgments to reduce the overall number of
acknowledgments. The rules for delay are as follows: an acknowledgment
should not be delayed for more than 500 milliseconds and should be sent for
at least every second full-sized segment [172]. In VxWorks, the default delay
time is 200 milliseconds, and the system also allows configuration so that an
acknowledgment is sent immediately if a segment with the push (PSH) flag
is received. The PSH flag indicates that the data should be delivered to the
application as soon as possible.

Fast recovery and fast retransmission are often described as two separate
algorithms; however, they are two parts of a cooperative process aimed at re-
ducing the time to retransmission in the event of lost segments. If the algo-
rithms mentioned above do not detect the loss, RFC 6298 specifies that the
minimum retransmission timeout should be one second [173]. In VxWorks,
the minimum retransmission timeout is configurable. The basic principle is
that when a receiver gets an out-of-order segment, it should immediately send
an acknowledgment for the last in-order segment received rather than delaying
the acknowledgment. A sender that receives three duplicate acknowledgments
assumes that the likely cause is a segment loss and issues a retransmit. When a
segment loss is detected, either by a retransmission timer timeout or by receiv-
ing the third duplicate acknowledgment, the ssthresh is updated as shown in
Equation|11.2]

bytesInFlight

ssthresh = max( 5

,MSs X 2) (11.2)
The cwnd is updated upon segment loss detection, and the new value depends
on whether the loss was detected by duplicate acknowledgments (using fast re-
transmission and fast recovery) or by the expiration of the retransmission timer.
The expiry of the retransmission timer sets cwnd to mss, while detecting lost
segments via duplicate acknowledgments sets cwnd to the updated ssthresh
plus three times mss, reflecting the duplicate acknowledgment limit of three.
RFC 5681 describes the details; where alternatives exist, this section describes
the VxWorks variant [172]. Algorithm [5|summarizes the behavior.

RFC 6298 describes how TCP should derive the retransmission timer and
timeout from round-trip time measurements [173]. However, if the retransmis-
sion timeout is lower than one second, RFC 6298 describes that the retransmis-
sion timeout should be rounded up to one second. In VxWorks, this minimum
retransmission timeout is, by default, one second and configurable. The "round
up to one-second" requirement has significance "SHOULD", which means that
under some circumstances a deviation might be acceptable; however, the full
implications of such deviation must be understood [174]. RFC 6298 also dic-
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tates that the retransmission timer should be doubled for every retransmission
due to a timeout, and VxWorks follows this rule.

Algorithm 5§ TCP congestion control in VxWorks.

> Intial variable values.

1: mss < 1420
2: rwnd < 60000 > Peer anounced rwnd (60000 bytes)
3: cwnd < 2 % mss
4: ssthresh < 65535
> For every received acknowledgement of new data.
5: if cwnd <= ssthresh then > Slow start.
6: cwnd < cwnd + mss
7: else > Congestion avoidance.
8: cund «+ cwnd + ((mss?)/cwnd)
9: end if
> Packet loss congestion window handling.
10: if SegmentLost then > Segment loss detected.
11: ssthresh < max((bytesInFlight)/2, mss x 2)
12: if LossDetected By Acknowledgement then
13: cund < ssthresh + 3 x mss
14: else > Retransmission timeout.
15: cund < mss
16: end if
17: end if

11.6.2 SCTP in VxWorks

The VxWorks 24.03 SCTP implementation follows the second latest SCTP
RFC, RFC 4960 [175, 132]. This section focuses on the aspects of the Vx-
Works implementation of RFC 4960 that affect transfer time. VxWorks also
supports RFC 3873, which describes the management and information base of
SCTP, as well as the draft RFC 6458 related to the SCTP socket API [176,
177].

SCTP, in contrast to TCP, is packet-oriented and supports multiple streams.
Each packet can contain multiple chunks belonging to different streams. Like
TCP, SCTP announces the receiver window in acknowledgments in a field
called Advertised Receiver Window Credit (a_rwnd). VxWorks set a_rwnd
to the socket receive buffer size, which is, by default, 60,000 bytes.

Like TCP, SCTP can delay acknowledgments. An acknowledgment is sent
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for at least every other packet received and should not be delayed more than
200 milliseconds. These are also the default values for VxWorks. The de-
lay time is changeable through a socket option. Like TCP, SCTP requires the
receiver to send an acknowledgment immediately if duplicate packets are re-
ceived. If a packet contains only duplicate chunks, the receiver must send an
acknowledgment immediately. If a packet is received where some chunks are
duplicates and some are not, the receiver may send an acknowledgment im-
mediately, as VxWorks does. Whenever an acknowledgment is received, the
sender updates the rwnd to reflect any change in a_rwnd and the number of
bytes acknowledged. In other words, rwnd equals a_rwnd minus the number
of bytes still unacknowledged.

SCTP uses a transmission timer called T'3-rtz, the SCTP equivalent of
the TCP retransmission timer. The T'3-rtz value is calculated based on the
round-trip time, as it is for TCP. Before an initial value has been calculated,
T3-rtz is set to RT'O.Initial according to RFC 4960 [175]. If the calculated
T3-rtx is less than RT'O.M:in, it should be rounded up to RT'O.Min. RFC
4960 recommends setting RT'O.Initial to three seconds and RT'O.Min to
one second. These are also the default values in VxWorks.

Since SCTP is packet-oriented, a message might require fragmentation.
RFC 4960 states that a sender may support fragmentation, while a receiver
must [175]. VxWorks supports sender-side fragmentation, and a message must
be fragmented so that smaller chunks fit in an SCTP packet over IP on Ethernet.
The largest size packet allowed before fragmentation is needed is determined
by the Maximum Transmission Unit (MTU) for the path, which we denote
mitu.

SCTP congestion control, as mentioned, is based on TCP congestion con-
trol, i.e., RFC 5681 [175, 172]. SCTP includes the TCP optional SACK mech-
anism with gap acknowledgment blocks. Gap-acknowledged chunks are in-
cluded in the in-flight data size until they are included in the total cumula-
tive acknowledgment. Another difference is that SCTP supports multihom-
ing; hence, in addition to the receiver-side window rwnd, SCTP maintains the
congestion control-related variables cwnd and ssthresh for each destination
address.

The initial value of cwnd should be no larger than four times the mtu,
and the initial value of ssthresh is arbitrary according to RFC 4960 [175].
For VxWorks, ssthresh is set to the peer’s receiver window, which is 60,000
bytes, assuming the peer is also a VxWorks node.

The slow-start phase is active when cwnd is less than or equal to ssthresh,
and during slow start, the sender increases cwnd by the smaller of the number
of bytes in-flight that is acknowledged by the received acknowledgment or the
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mtu. The cwnd shall only be increased if the current cwnd is fully utilized
and if the received acknowledgment increases the cumulative acknowledged
sequence number. In other words, acknowledgments of received chunks that
are out of order do not increase cwnd. The VxWorks implementation does not
verify that the cwnd is fully utilized before increasing it.

The congestion avoidance algorithm is active when cwnd is larger than
ssthresh. A key difference compared to TCP is the use of an additional con-
gestion control variable named partial_bytes_acked, which is used by the
congestion avoidance algorithm. For each acknowledgment that increases the
cumulative acknowledgment, partial_bytes_acked is increased by the total
number of bytes in all the chunks acknowledged by the received acknowledg-
ment. When partial_bytes_acked is equal to or greater than cwnd, cwnd is
increased by mtu and partial_bytes_acked is reduced by mtu.

When a packet loss is detected, ssthresh is set according to Equation[I1.3]

d
ssthresh = max(%, mitu x 4) (11.3)

Depending on how the loss is detected, cwnd is updated slightly differently. If
the loss is detected by acknowledgment information, cwnd is set to ssthresh,
and in case of expiration of T'3-rtz, it is set to mtu. The above is how Vx-
Works handles the slow start and congestion avoidance to comply with RFC
4960, summarized in Algorithm@ [175].

Similar to TCP, SCTP quickly acknowledges lost data. When a receiver
detects lost data, it directly sends an acknowledgment to the sender, making
the sender aware of the loss. Correspondingly, when an acknowledgment indi-
cates loss, the sender waits for three acknowledgments that indicate loss before
retransmitting the lost data.

11.6.3 Evaluation Setup: TCP/SCTP State Transfer

To test TCP and SCTP performance in the state transfer use case, we developed
an evaluation application that transfers a configurable amount of state data and
waits for the receiver to acknowledge its reception. Algorithm [/| summarizes
the evaluation application. The Sender function runs on the sending node (rep-
resenting the primary), while the Receiver function runs on the receiving node
(representing the backup); see Figure [I1.6]

We measure transfer time for various data sizes using either a Single Con-
nection (SC) for all transfers or a new connection for each transfer, i.e., Multi-
ple Connections (MC). The connection strategy affects the transfer times since
cwnd grows with each successful transfer.
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Algorithm 6 VxWorks SCTP congestion control.

AW N =

W

19:
20:
21:
22:
23:
24:
25:
26:

> Intial variable values

: mitu < 1500

: rwnd < a_rwnd > Peer anounced rwnd (60000 bytes)
: cwnd < min(4 * mtu, max(2 * mtu, 4380))

. ssthresh < rwnd

> pb_acked is short for partial_bytes_acked

: pb_acked < 0

> For every received acknowledgement.

. if cwnd <= ssthresh then > Slow start.

if AckAdvancesCumulativeSeq then
cwnd < cwnd + min(ackBytes, mtu)
end if

. else > Congestion avoidance.

if AckAdvancesCumulativeSeq then
pb_acked < pb_acked + ackBytes
if pb_acked >= cwnd then
cwnd < cwnd + miu
pb_acked + pb_acked — mtu
end if
end if

. end if

> Packet loss congestion window handling.
if PacketLost then > Packet loss detected.
ssthresh < max((cwnd)/2, mtu * 4)
if LossDetected By Acknowledgement then
cwnd < ssthresh
else > Retransmission (T3-rtx) timeout.
cwnd < mtu
end if
end if
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Algorithm 7 State transfer benchmark application.

1: function SENDER

2 sndlterations < 0

3 while sndlterations < IterationsToRun do
4 if connFachlt OR isFirstlt then

5: socket «+~CONNECTTORECEIVER()

6 end if

7 startTime < GETTIME( )

8 SENDALLDATA(socket)

9: WAITFORACK(socket)

10: elapsedTime < GETTIME( )—startTime
11: sndlterations < sndlterations + 1

12: end while

13: end function

14: function RECEIVER

15: rcvlterations < 0

16: while rcvlterations < IterationsToRun do

17: if connFachlt OR isFirstlt then

18: socket + ACCEPTCONNECTIONFROMSENDER( )
19: end if

20: RECIEVEALLDATA(socket)

21: SENDACK(socket)

22: rcvlterations < rcvlterations + 1

23: end while

24: end function
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Additionally, we measure transfer time under different loss conditions.
Note that TCP and SCTP use different terminology: TCP refers to segments,
while SCTP refers to packets. In the following, we use the term “packet” for
both, with the understanding that when referring to TCP, a packet means a seg-
ment. We consider three loss scenarios: (i) loss of the first packet, (ii) loss of
the last packet, and (iii) loss of middle packets. The rationale behind selecting
these cases is explained below.

As described in Section[T1.6.1]and Section|[11.6.2] transfer times are likely
higher when losses are not detected by fast retransmission. For example, if the
first packet after establishing a connection is lost and no acknowledgment is re-
ceived for that packet, the sender is forced to rely on a retransmission timeout.
Similarly, if the last packet in a state transfer is lost, the sender must again rely
on a retransmission timeout. Therefore, losses of the first and last packets rep-
resent two distinct cases. The third case involves the loss of a middle packet,
where data is in flight, and fast retransmission and fast recovery mechanisms
typically detect and handle the loss. We also simulate an increasing number of
lost packets to demonstrate that the retransmission timeout will be triggered if
too many packets are lost. Additionally, each time a packet is resent due to a
retransmission timeout, the timeout doubles for both SCTP and TCP.

The loss of the first or last frame also serves as a test of edge cases, since
there is only one first and one last frame per transfer, whereas there are many
middle frames. Loss of several consecutive middle frames simulates a burst-
loss. Additional losses may occur due to queue overflow on an overutilized
path; however, we consider these as configuration faults that are outside the
scope of this work.

Table[IT.13|provides an overview of the evaluation cases. The Size column
lists the data sizes used, and the Connection column indicates whether SC,
MC, or both are evaluated. The First Drop and Last Drop columns indicate
whether the test was run with the loss of the first and last packets, respectively;
“Both” means tests were conducted both with and without such losses. The
Middle Drop column specifies if middle packets, which are neither last nor
first, were dropped and how many. Note that first, last, and middle drops are
not combined in a single test iteration. Middle packet loss is simulated only
for data sizes of 10 KB and above, as the packet size is approximately 1 KB
for both SCTP and TCP; hence, larger sizes are needed for middle packets to
exist. We run each test for 100 iterations, recording the minimum, maximum,
and average transfer times.

As mentioned, VxWorks allows customization of SCTP and TCP-related
parameters. Therefore, we evaluate using two configurations per protocol:
default parameters and optimized for loss recovery performance, as shown
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Table 11.13: TCP and SCTP state transfer evaluation cases.

Size Connection First Drop Last Drop Middle Drop

128B Both Both Both No
256B Both Both Both No
512B Both Both Both No
1KB Both Both Both No
2KB Both Both Both No
5KB Both Both Both No
10KB  Both Both Both 0,1,5,10
25KB  Both Both Both 0,1,5,10
50KB  Both Both Both 0,1,5,10
100KB Both Both Both 0,1,5,10
250KB Both Both Both 0,1,5,10
500KB Both Both Both 0,1,5,10
1MB Both Both Both 0,1,5,10

in Table [1.14l The minimum retransmission timeout in Table [1.14] corre-
sponds to the minimum retransmission timeout according to RFC 6298 [173],
which should be one second for TCP and similarly one second for SCTP by
default [175]. The optimized version reduces the minimum timeout to one
millisecond. The maximum delayed acknowledgment time defines how long
a receiver is allowed to delay an acknowledgment. By default, this delay is
200 milliseconds for both SCTP and TCP; in the optimized configuration, we
reduce it to one millisecond. The third parameter we adjust is the limit at
which an acknowledgment is forced. By default, this limit is two packets for
TCP and SCTP; in the optimized setting, we reduce it to one to ensure that
acknowledgments are never delayed.

These optimizations may introduce system-level side effects, e.g., higher
CPU utilization due to shorter timeouts. Assessing whether such effects occur
and their consequences is left to future work, as is evaluating the generalizabil-
ity of these settings across implementations and operating systems.

Figure [I1.6] illustrates the evaluation setup, where the simulated redun-
dant controller pair connects over a switched 1 Gbps Ethernet with one switch
between. DCN 1 represents the primary and runs the sender part of the ap-
plication, and DCN 2 is the receiver as described in Algorithm [/| The OS on
the DCN is VxWorks 24.03, and each DCN is a mini-PC with 2 GHz Intel
17-9700T, with 16 GB RAM.
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Table 11.14: VxWorks TCP and SCTP configurations.

Parameter Default setting ~ Optimized setting
Min. retransmission tmo. One second One millisecond
Max delayed ack. 200 milliseconds  One millisecond
Force immediate ack. Two packets One packets

Receiver
DCN1|: DCN2|:
1) | [ svien <1

Figure 11.6: The evaluation setup used.

11.6.4 Performance Results: TCP/SCTP State Transfer

Tables and detail the measured transfer times for the evaluation
scenarios summarized in Table[IT.T3] The theoretical limit for 1 Gbps Ethernet
is 125 MB/second, or 8 milliseconds to transfer 1 MB. As shown in Figure[T1.7]
and Table[TT.T3] the default TCP transfer with a single connection approaches
this theoretical maximum throughput, transferring 1 MB in less than 10 mil-
liseconds, overhead excluded. However, the optimized version’s throughput is
lower, as depicted in Figure[T1.7] Nevertheless, when packet losses occur, the
optimized version significantly outperforms the default settings, as presented
in Figure[T1.9)and detailed in Table [IT.13]

For SCTP, as shown in Figure [I1.8] and detailed in Table the op-
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Figure 11.7: TCP - no losses, maximum transfer time, with default (D) or opti-
mized (O) settings and either Single Connection (SC) or Multiple Connections
MCO).
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Figure 11.8: SCTP - no losses, maximum transfer time, with default (D) or
optimized (O) settings and either Single Connection (SC) or Multiple Connec-
tions (MC).
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Figure 11.9: TCP - loss of first segment, maximum transfer time, with default
(D) or optimized (O) settings using either Single Connection (SC) or Multiple
Connections (MC).

timized version offers better performance even in scenarios without packet
losses. Generally, SCTP performance is not as good as TCP. However, both
the optimized SCTP and the optimized TCP exhibit recovery times exceeding
one second; TCP only does so when losing ten packets for 10 kB of data. In
other words, it is a relatively extreme loss situation. One potential reason for
the lower SCTP performance is the hardcoded SCTP progression tick time of
200 milliseconds.

For TCP and SCTP, the longest recovery time occurs in scenarios with a
single connection where ten consecutive packets are lost. This result is due
to the cumulative reduction in the congestion window (cwnd) caused by re-
peated packet losses on the same connection and the increased retransmission
timeout when resends are triggered by timeout. The results confirm that losing
the first or last packets presents significant problems for TCP and SCTP. Al-
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Figure 11.10: SCTP - loss of first segment, maximum transfer time, with de-
fault (D) or optimized (O) settings using either Single Connection (SC) or
Multiple Connections (MC).

though optimization substantially improves results for both protocols, SCTP
still shows a maximum transfer time of around 200 milliseconds when the first
or last packet is lost, compared to approximately 20 milliseconds for TCP.

Additionally, the optimized TCP version shows transfer times exceeding
600 milliseconds during scenarios with multiple packet losses, as consecutive
losses reduce the cwnd and increase the retransmission timeout.

11.6.5 Conclusions from Experimental Evaluation

With default settings, internal TCP and SCTP recovery mechanisms can extend
transfer times by several seconds in the presence of packet losses. However,
the recovery times are reducible by applying the optimizations described in
Table [I[1.14] The optimized TCP version’s results indicate that it typically
requires several consecutive packet losses to affect transfer time significantly.
The likelihood of consecutive packet losses might be acceptably low, espe-
cially when redundant networks are employed for state data exchanges. How-
ever, TCP does not offer prioritization, and if a single TCP connection is used
for all state transfers, one application’s data transfer might block another, espe-
cially under loss [124]. Additionally, TCP optimizations in VxWorks are im-
plemented at the kernel configuration level, influencing all TCP connections.
Preferably, it would be handled as for SCTP on the socket level, only impacting
the connection for which the optimization is needed. As mentioned earlier, de-
viations from the standard one-second minimum timeout should be thoroughly
understood, which is easier if only applied to certain connections [174].
Conclusions:
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Table 11.15: TCP transfer times (ms) with minimum, average, and maximum
values under packet loss scenarios.

No Loss First pkt. lost
Min Avg Max | Min  Avg Max

Last pkt. lost
Min  Avg  Max

1 mid pkt. lost 5 mid pkts. lost 10 mid pkts. lost

Size Min Avg Max | Min Avg Max | Min Avg  Max

Default settings - Single connection

128B | 0. 0.1 02 | 8889 9989 1E3 |899.8 999.0 1E3 - - - - - - - - -
256B | 0.1 0.1 02 |8929 9989 1E3 | 899.8 999.0 1E3 - - - - - - - - —
512B | 0.1 0.1 02 | 8809 9988 1E3 | 8338 9983 1E3 - - - - - - - - -
1 KB 0.1 0.1 02 |889 9989 IE3 |8258 998.2 IE3 - - - - - - - - -
2KB 01 0.1 02 |9989 IE3 1E3 | 949.8 999.5 1E3 - - - - - - - - -
5KB 01 01 02 0.3 9.0 876.0 | 982.8 999.8 1E3 - - - - - - - - -
I0KB | 02 02 03 0.4 9.5 908.1]9958 999.9 1E3 | 0.5 9889 [1E3 | 1E3 3E3 3E3 | 6.3E4 1.2E5 1.2E5

25KB | 03 03 04 0.4 49.5 9958 | 917.8 999.1 1E3 | 0.6 0.7 0.8 | 9943 9999 1E3 | 1.5E4 6.2E4 6.3E4
50KB | 0.5 05 07 0.8 10.0 899.9 | 898.8 999.0 IE3 | 0.8 1.0 1.1 09 990.7 1E3 | 9788 1.5E4 1.5E4
I00KB | 09 10 11 1.0 109 9125 | 8988 999.0 1E3 1.2 1.5 24 1.2 1IE3  7E3 13 3E3 3E3

250KB | 23 23 24 23 128 904.2 | 996.8 1E3 1E3 | 27 30 41 2.5 2.6 32 3.1 6255 3E3
500KB | 45 45 46 4.5 160 8934 | 8938 9989 1E3 | 50 64 98 4.8 642 989.0 | 46 943  7E3
IMB | 90 91 92 9.3 23.6 1E3 | 889.8 9989 1E3 | 9.6 128 187 | 109 214 9429 | 9.1 1.4E3 1.2E5

Default settings - Many connections

128B | 0. 0.1 02 |890.9 998.8 1E3 |899.9 9989 I1E3 - - - - - - - - -
256B | 0.1 0.1 02 |899.9 9989 1E3 | 909.9 999.0 999.9 | - - - - - - - - -
512B | 0.1 02 02 |9759 999.7 1E3 | 889.9 9988 999.9 | - - - - - - - - -
1 KB 01 02 02 [973.9 999.7 1E3 | 899.9 998.9 999.9 | - - - - - - - - -
2KB 01 02 02 [990.0 999.9 [1E3 |859.8 998.5 999.9 | - - - - - - - - -
5KB 02 02 02 |[987.0 999.9 1E3 |899.9 998.9 9999 | - - - - - -
I0KB | 03 03 03 |957.1 999.7 1E3 | 899.8 9989 999.9 | 0.4 0.5 0.5 1E3 1E3 1E3 | 6.3E4 6.3E4 6.3E4
25KB | 04 04 05 [890.5 9994 1E3 | 9349 9992 999.9 | 0.6 0.6 0.6 |901.3 9994 1E3 | 1.5E4 1.5E4 1.5E4
50KB | 0.6 0.7 0.7 |8029 998.0 1E3 |901.8 9989 1E3 | 0.8 0.8 0.8 0.9 1.0 1.0 | 999.8 999.9 1E3
100KB | 1.1 1.1 1.2 19206 999.8 1E3 | 897.8 9989 1E3 1.2 12 1.3 12 1.2 1.4 1.3 14 1.6
250KB | 24 24 25 |9192 9994 1E3 | 9989 9999 1E3 | 2.6 2.7 33 2.7 2.8 2.8 2.6 3.0 3.1
S500KB | 46 4.6 47 | 9155 999.6 1E3 | 999.9 9999 9999 | 5.0 5.0 6.2 55 5.7 7.4 57 57 5.8
1MB 92 92 93 |9422 9995 IE3 | 898.8 999.0 IE3 | 9.5 9.7 126 | 113 115 155 11.4 11.4 115

Optimized settings - Single connection

128B | 0.1 0.1 0.1 0.9 1.0 1.0 0.8 1.0 1.0 - - - - - - - - -
256B | 0.1 0.1 33 0.9 1.0 1.0 0.8 1.0 1.0 - - - - - - - - -
512B | 0.1 0.1 0.1 0.9 1.0 1.0 0.8 1.0 1.0 - - - - - - - - -

1 KB 01 01 02 0.9 1.0 1.0 0.9 1.0 1.1 - - - - - - - - -
2KB 0.1 0.1 33 0.8 1.0 1.0 0.8 1.0 1.1 - - - - - - - - -
5KB 01 01 02 0.2 0.3 1.1 0.8 1.0 1.0 - - - - - - - - -
I0KB | 02 02 03 0.3 0.4 1.1 0.8 1.0 1.0 0.4 1.0 1.1 1.2 3.0 3.0 99.9 2153 5.3E3
25KB | 03 04 07 0.4 0.6 1.7 0.8 1.0 1.1 0.6 0.7 0.7 0.9 1.0 1.3 154 622  63.1
50KB | 0.5 08 42 0.6 1.0 2.0 0.8 1.9 2.1 0.8 1.0 1.9 0.9 33 18.5 1.4 399 3350
100KB | 09 16 25 14 1.9 2.7 1.1 1.9 4.1 1.2 1.8 4.0 1.4 2.8 12.0 1.4 57.9 497.1

250KB | 33 41 5.7 33 4.0 6.6 34 4.3 6.5 3.1 4.1 6.2 3.1 50 224 32 46.6 6456
500KB | 64 8.0 11.0| 65 7.8 12.0 6.1 8.4 122 | 65 8.0 117 | 64 85 18.6 6.6 239 4557
1IMB | 128 149 224 | 13.0 154 243 13.1 153 231 | 13.0 161 234 | 132 159 310 135 605 6283

Optimized settings - Many connections

128B | 0.1 0.1 02 0.9 0.9 1.0 0.8 0.9 0.9 - - - - - - - - —
256B | 0.1 0.1 02 0.9 1.0 1.0 0.8 0.9 1.0 - - - - - - - - —

512B | 0.1 02 02 0.9 0.9 1.0 0.8 0.9 0.9 - - - - - - - - -

1 KB 01 02 02 0.9 1.0 1.0 0.8 0.9 0.9 - - - - - - - - -
2KB 01 02 02 0.9 0.9 1.0 0.8 0.9 0.9 - - - - - - - - -
5KB 02 02 02 1.0 1.1 1.1 0.9 0.9 0.9 - - - - - - - - -
I0KB | 03 03 03 1.1 1.2 1.2 0.8 0.9 1.0 04 05 0.5 1.2 1.9 22 632 2038 S5.9E3
25KB | 04 05 05 1.6 1.6 1.7 0.8 0.9 1.0 0.5 06 0.6 1.3 1.4 1.4 154 155 18.7
S0KB | 06 07 0.7 1.8 2.0 22 0.8 0.9 1.0 07 08 0.8 0.9 0.9 1.0 2.7 3.6 3.8
100KB | 1.2 13 14 2.6 29 33 12 1.3 1.4 1.2 12 1.3 1.2 1.2 1.3 1.2 13 1.4
250KB | 3.2 40 50 4.7 5.6 6.6 33 4.1 49 32 42 52 32 3.6 5.0 3.1 37 4.7

500KB | 64 7.7 102 | 78 102 122 6.8 8.2 104 | 6.8 77 173 | 64 8.1 224 6.9 67.3  316.6
1IMB | 133 152 216 | 143 182 236 | 135 159 228 | 134 156 215 | 134 154 281 132 367 1987
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Table 11.16: SCTP transfer times (ms) with minimum, average, and maximum
values under packet loss scenarios.

Size ‘ No Loss First pkt. lost ‘ Last pkt. lost 1 mid pkt. lost 5 mid pkts. lost 10 mid pkts. lost
Min  Avg Max | Min Avg  Max | Min Avg Max | Min Avg Max | Min Avg Max | Min Avg  Max
Default settings - Single connection
128 B 02 197.7 2000 | 940.5 999.4 1.1E3|999.9 1.1E3 14E3 - - - - - - - - -
256 B 0.2 197.6  200.0 | 942.4 1.1E3 2.1E3 | 899.5 1.1E3 14E3 - - - - - - - - -
512B 02 1976 2000 | 939.5 1E3 2.1E3 | 999.9 1.1E3 1.4E3 - - - - - - - - -
1 KB 02 197.6 2000 | 943.6 9994 1.1E3 | 899.6 1.1IE3 14E3 - - - - - - - - -
2KB 0.2 1.8 1555|9442 1.1E3 2.1E3 | 999.9 1E3 1.1E3 - - - - - - - - -
5KB 0.2 19 1629 | 03 491.0 1.1E3|999.9 1E3 1.1E3 - - - - - - - - -
10KB | 0.3 20 1625| 04 4930 9996 | 9999 1E3 1.3E3| 05 0.6 0.6 | 1.2E3 14E3 3.6E3 | 6.3E4 6.3E4 6.4E4
25KB | 0.6 199.0 2954 | 0.7 591.0 9999 | 913.6 1.1IE3 14E3 | 100.0 199.0 2000 | 1.0 1.5E3 16E3 |3.1E4 6.3E4 6.4E4
50KB | 0.7 1.6 852 12 491.0 998.8 | 999.9 1E3 1.3E3 | 100.1 199.0 200.0 | 14 13E3 14E3|499.9 6.2E4 6.4E4
100KB | 6.0 1969 2000 | 23 5400 9999 | 999.9 1E3 1.2E3 | 1999 203.0 400.0 | 2000 1.5E3 1.6E3 | 15 62E4 6.4E4
250KB | 25 969 2000 | 55 5489 12E3| 1E3 1.1IE3 12E3 | 2.8 1409 279.1| 2.8 2010 1E3 28 17E4 3.1E4
500KB | 48 1009 2000 | 9.2 5350 9999 |897.7 1E3 14E3 | 53 1189 3805| 52 289.0 18E3| 65 49E4 1.8E5
1 MB 96 969 3609 | 22.6 5289 9999|8457 1E3 1.2E3 | 10.0 108.1 4000 | 18.1 3094 14E3 | 998 22E5 23E5
Default settings - Many connections
128 B 0.2 0.2 02 |999.6 1E3 1.1E3|999.6 1E3 1.1E3 - - - - - - - - -
256 B 0.2 0.2 0.2 |899.6 9986 999.7|999.6 1E3 1.1E3 - - - - - - - - -
512B 0.2 0.2 34 19996 1E3 1E3 | 999.6 1E3 1.1E3 - - - - - - - - -
1 KB 0.2 0.2 0.2 [999.7 1E3 1.1E3|999.6 1E3 1.1E3 - - - - - - - - -
2KB | 73.6 1983 199.6 | 899.7 998.7 999.7 | 999.6 1.1E3 14E3 - - - - - - - - -
5KB 199.9 2007 271.0 | 0.2 0.3 0.3 999.6 1.1E3 1.4E3 - - - - - - - - -
I0KB | 61.5 1982 199.6 | 04 1614 2005 |999.6 1.1E3 13E3| 04 0.5 0.6 | 32E3 3.5E3 3.8E3 | 6.3E4 6.4E4 6.4E4
25KB | 0.6 0.6 0.7 0.6 0.7 0.8 |899.7 998.7 999.7 | 200.0 201.0 300.0 | 0.9 1.0 1.1 | 1L.5E4 3E4 3.1E4
50 KB 0.8 1945 2243 1.1 177.4 2004 | 899.7 1.1E3 1.2E3 | 0.9 1932 200.2 | 100.0 199.0 200.0 | 299.6 398.5 399.6
100KB | 1.3 1.4 14 2.0 42 2014 | 899.7 9987 999.7 | 14 157.1 300.1 | 14 573 3898 | 15 L5 16
250KB | 26 970 3000 | 4.6 1448 299.8 |899.7 1.1IE3 14E3| 2.8 710 2000 | 2.8 950 2949 | 29 79.0  199.9
S00KB | 4.9 103.2 400.5 8.9 1113 3723 1 999.6 1.1E3 14E3 | 5.1 99.3 2004 5.1 117.2 3953 52 111.3 3704
1 MB 9.7 1032 390.1| 179 101.6 400.4 | 999.7 1.1E3 1.2E3 | 10.1 107.8 389.9 | 10.1 1185 3699 | 102 79.2 3895
Optimized settings - Single connection
128 B 0.1 0.2 0.2 | 415 1984 200.0 | 99.5 199.0 200.0 - - - - - - - - -
256 B 0.1 02 0.2 | 805 1988 201.0 | 99.5 199.0 200.0 - - - - - - - - -
512B 0.1 0.2 02 | 786 1988 200.0 | 99.5 199.0 200.0 - - - - - - - - -
1 KB 0.2 0.2 0.2 | 785 1988 200.0 | 99.5 199.0 200.0 - - - - - - - - -
2KB 0.2 0.2 0.3 77.6 1987 200.0 | 99.5 199.0 200.0 - - - - - - - - -
5KB 0.2 0.2 0.3 0.3 0.3 04 | 395 1984 2000 - - - - - - - - -
10KB | 0.3 0.4 0.4 0.4 0.4 0.5 525 1985 200.0 | 0.4 0.5 0.5 | 3398 3994 400.1 | 1.5E3 1.6E3 1.6E3
25 KB 0.5 0.5 0.6 0.6 0.7 0.8 1235 1992 2000 | 0.6 0.7 0.8 0.8 393.7 400.0 | 300.0 1.6E3 1.6E3
50KB | 0.7 0.7 0.8 10 12 1.3 78.6 1988 200.0 | 0.8 12 12 1.0 389.1 400.1 13 1.6E3 1.6E3
100KB | 1.2 13 1.3 1.8 22 24 | 1755 199.7 2000 | 14 20 22 1.5 3856 400.1 1.7 1.6E3 1.6E3
250KB | 2.7 28 29 4.1 5.1 53 173.6  199.7 200.0 32 4.6 52 32 189.6 2003 32 45E3 64E3
500KB | 5.2 54 5.6 79 100 102 | 1925 1999 200.0 | 5.8 8.7 9.9 57 1758 2012 | 6.1 9919 1.2E3
IMB | 106 138 204 | 158 199 205 | 1999 200.1 209.6 | 114 180 204 | 11.8 1509 202.6 | 11.4 9044 12E3
Optimized settings - Many connections
128 B 0.1 0.2 0.2 99.6 198.6 199.7 | 99.6 198.6 199.7 - - - - - - - - -
256 B 0.1 0.2 02 | 997 1986 199.7 | 99.6 198.6 199.7 - - - - - - - - -
512B 0.2 0.2 02 | 99.6 1987 199.7 | 99.6 198.7 199.7 - - - - - - - - -
1 KB 0.2 0.2 0.2 99.7 198.7 199.7 | 99.6 198.7 199.7 - - - - - - - - -
2KB 0.2 0.2 02 | 997 1987 199.7 | 99.6 198.7 199.7 - - - - - - - - -
5KB 0.2 03 0.3 0.2 0.3 0.3 99.7 1987 199.7 - - - - - - - - -
10 KB 0.3 0.4 0.4 0.4 0.4 0.4 99.6 1987 199.7 0.4 0.5 0.6 300.0 399.0 400.1 | .5E3 1.6E3 1.6E3
25KB | 05 0.5 0.6 0.6 0.6 0.7 99.7 1987 199.7 | 0.6 0.6 0.6 0.8 0.8 0.8 | 300.1 3992 4002
S0KB | 0.7 0.8 0.8 0.9 1.0 1.1 99.6 1987 199.7 | 0.8 0.8 0.9 0.9 1.0 5.7 1.2 1.2 1.3
100 KB 1.2 1.3 1.4 1.7 1.8 1.9 99.7 198.7 199.7 1.3 1.4 1.4 1.4 1.5 4.8 1.6 1.7 1.8
250KB | 2.6 2.8 32 4.0 4.1 43 99.6 1987 199.7 | 28 31 39 3.0 31 4.0 31 72 2028
S500KB | 5.2 54 5.6 7.8 8.0 82 | 997 1987 199.8 | 55 5.7 59 5.6 5.8 7.6 5.7 6.0 7.0
1 MB 10.5 10.8 11.4 154 16.0 16.4 99.6 1987 199.7 | 11.1 1.4 152 11.2 11.5 11.8 1.2 17.6  409.7
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» Utilizing VxWorks TCP/SCTP stack parameters adjustment possibility
significantly reduces retransmission latency versus defaults.

* TCP outperforms SCTP in transfer time across the tested scenarios.

* With default parameters, even a single lost packet can push retransmis-
sion time into the seconds range.

* With optimization, isolated losses improve, but burst losses still drive
retransmission time back into the seconds range.

* The resulting loss-induced tail in transfer time damages predictability,
making these protocols ill-suited for deadline-bound state transfer.

11.7 Proposed State-Transfer Protocol

As shown in Section @], numerous protocols exist; however, none of the
compared ones meet all the desired features of a state transfer protocol for
industrial controller redundancy. This section aspires to design and describe
a protocol that provides the desired features. The first subsections describe
the protocol, and the final subsection performs a desired feature match of our
proposed protocol, as we did for other protocols in Section|11.

11.7.1 Protocol Overview

The protocol we propose is named Reliable State Transfer Protocol (RSTP).
Similar to RBUDP (see Section[I1.5.6.2) and PA-UDP (see Section[I1.5.6.3),
RSTP comprises a communication protocol for the actual data exchange and
an additional mechanism for exchanging related metadata. In the case of
RSTP, the RSTP Payload Protocol (RSTP-PP) handles data exchange. The
time-insensitive information used by RSTP-PP is managed by the RSTP Man-
agement Mechanism (RSTP-MM). It is described as a mechanism rather than
a protocol, leaving it open for implementation that suits the specific deploy-
ment, as further discussed in Section[I1.7.3] Figure[IT.TT|presents a high-level
overview of RSTP, and further details are provided in the two subsections that
follow.

11.7.2 Payload Protocol - RSTP-PP

RSTP-PP targets the transfer of internal state data for controller applications
in a standby redundancy context. The protocol utilizes a channel concept to
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Figure 11.11: RSTP high-level overview.

allow the transfer of each application state to be scheduled and handled in-
dependently. The fact that a controller typically hosts multiple applications
with different cycle times and state transfer requirements, as previously ex-
plained in Section [I1.2] motivates the channel concept, further elaborated in
Section Typically, an RSTP-PP deployment consists of one sender
and one receiver, where the sender is the primary controller sending to the
receiver, the backup controller. However, mixing is allowed.

11.7.2.1 Packet Format

RSTP-PP is a packet-oriented protocol, and Table shows the data packet
header layout. HT'ype and HV er specify the header type and the version of
the packet header. C'hId is the identity of the channel; the concept of channels
is further described in Section Note that the C'hId must be unique
within an RSTP-PP communication, but the protocol does not specify how to
allocate the channel identities.

The next field in the data packet header, as shown in Table is
T'Cycle, the transfer cycle, a steadily incrementing number for each transfer
cycle. A transfer cycle begins when the first packet for a channel is sent
and ends when the receiver has acknowledged all packets or the deadline
expires. The channel description in Section[I1.7.2.2]introduces the concept of
deadlines.

Following the T'Cycle is SeqN o, the sequence number within a T'C'ycle,
and Chld. The sequence number starts at zero for every new cycle, and the
receiver uses the sequence number to order received packets. The sequence
number, combined with the T't1.SzCyc and the RSTP-PP payload size, allows
the receiver to calculate the byte offset for each incoming packet and store
the received data in a contiguous buffer. Section explains the RSTP-PP
payload size.
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Table 11.17: RSTP-PP — data packet header.

Name Bytes Value Description

HType 2 0x0001 Header and message type.

HVer 2 1 Header version.

Chld 2 [1,216 — 1]  Channel identity.

TCycle 2 [0,2'6 — 1]  Transfer cycle.

SeqNo 2 (0,216 — 1]  Sequence number.

TtlSzCyc 4 (0,232 — 1]  Total number of payload bytes
in this cycle.

ExpInMs 2 [0,2'6 — 1]  Expiration time, in milliseconds.

FAckCh 2 [1,216 — 1]  Force acknowledgement from
specified channel.

T'tlSzCyc is the total number of payload bytes to transfer in this channel
during this T'Cycle; header size excluded. It remains constant throughout the
TCycle. TtlSzCyc is included in each packet to allow the size to change
without additional communication to the receiver. Even if the first message is
lost, the receiver can allocate a reception buffer for the whole message.

ExpInM s is the expiration time in milliseconds. The data in the packet is
valid for the specified number of milliseconds. The sender updates ExpInM s
immediately before passing the packet to the network stack. The receiver
should use the shortest expiration time received for the ChId and T'Cycle.
Although the time-stamping occurs at the application level, it is deemed accu-
rate enough for the purpose, which is to prevent the backup from using expired
data, as described in Section [[1.2] If needed, more sophisticated mechanisms
can be designed and incorporated, which is deemed future work.

The last field in the header is F"AckCh, which forces the receiver to ac-
knowledge the specified channel. When a receiver receives a packet where
FAckCh # 0 and FAckCHh is a valid channel identity known by the re-
ceiver, the receiver must send the current packet reception status for the speci-
fied channel. After F'AckCh, the last field in the header, is the payload data.

Table [TT.18] shows the acknowledgment packet layout, and the following
describes RSTP-PP acknowledgment fields.

HType and HV er specity the type of acknowledgment and version, sim-
ilar to the data packet. T'C'ycle and C'hld indicate which transfer cycle and
channel the acknowledgment is for. Next is AckBlocks, which specifies the
number of acknowledgment blocks in the acknowledgment. An acknowledg-
ment acknowledging a complete reception of all channel packets for one trans-
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Table 11.18: RSTP-PP — acknowledgement header.

Name Bytes Value Description

HType 2 OXIOOI Header and message type.

HVer 2 Header version.

Chld 2 [1 216 — 1]  Channel identity.

TCycle 2 [0,216 — 1]  Transfer cycle.

AckBlocks 1 [0, 150] Number (i) of acknowledgment
ranges that follow.

LowAck; 2 [0,216 — 1] Lowest received sequence number
for Chld and T'C'ycle in

acknowledgement range .

[0,216 — 1] Highest received sequence number
for Chld and T'Cycle in
acknowledgement range :.

HighAck;

[\S]

fer cycle has an AckBlocks value of one. For each non-consecutive miss-
ing sequence number, AckBlocks will increase by one since there will be
one more LowAck;,HighAck; pair in the header. Defined as follows: N
is the total number of packets in a transfer cycle, with sequence numbers
{0,1,...,N — 1} and R C {0,1,...,N — 1} is the set of sequence num-
bers of packets received, arranged in increasing order:

ro <711 <---<rm-1, Wherem = |R]|.

The the sequence numbers in R partitioned into maximal contiguous ac-
knowledgment blocks ab (i.e., intervals) where AB is the set of all ab and in
one ab consecutive numbers differ by 1, Vab; € AB and any two successive
elements 7,741 € ab; where 711 = r; + 1 and if r; € ab; rj11 ¢ ab; then
rj4+1 starts a new acknowledgement block. Hence, for each acknowledgment
block ab;:

LowAck; = min{ab;} and HighAck; = max{ab;} The number of
acknowledgement blocks, i.e, is AckBlocks = |AB|.

11.7.2.2 Channels and Scheduling

The purpose of the channels is to serve as schedulable entities for state data
transfers between various applications running on a controller. We utilize Ear-
liest Deadline First (EDF) scheduling, which was originally developed for task
scheduling and later extended to communication channel scheduling by Zhen
et al.[178, 179]. The RSTP channel concept is based on the work of Zheng et
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al., as summarized below [179].

A channel is described by the following tuple (C, T, d), where C is the
transmission time, i.€., the time it takes to transfer the data. 7" is the minimum
(shortest) interarrival time of new data to be transmitted, and d is the deadline,
denoting the time by which the transfer must be completed.

To determine whether a channel is schedulable, we use the necessary con-
dition check for non-preemptive scheduling in a bounded time frame provided
by Zheng et al. and summarized below [179]. It consists of three steps, sum-
marized below: (i) utilization check, (ii) determination of the time intervals for
utilization check, and (iii) check that deadlines are met for all time intervals
from step (ii).

For n channels, as mentioned, the first check is to verify that the utilization
does not exceed the physical link capacity. We refer to the entire physical or
logical path across the network connecting the primary and backup controllers

as a link.
n
C .
> o<
i=1 " J
Next is to deduce the time intervals, S is the set of time intervals to check,
defined as:

7

Ci
L= L7

tmax = maX{ dy, ... dp,

g — QS“ S, = {di—i—nTi: n:O,l,...,[tIna’;{diJ}

Third, verify that we transfer all channels before the required deadlines,
i.e., the deadlines can be met for all intervals in S and all channels n.

vtes, iqt;d"r(h) + 0, <t
i=1 ¢

C), is the preemption blocking time faced by the higher priority transfer
induced by, for example, the operating system or by utilizing the link for un-
scheduled traffic of lower priority.

The schedulability check can be performed either by an engineering tool
or by functionality provided by the protocol implementation. Its purpose is to
prevent overcommitment, ensuring that the system does not promise to transfer
more data than can be realistically handled. While the ideal transfer time can
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be estimated by dividing the data size by the available bandwidth, this is a sim-
plification. In practice, protocol processing introduces overhead that increases
transfer times, and this overhead is likely dependent on the specific hardware
used. Developing a realistic, yet not overly pessimistic, model for estimating
transfer times is left as future work.

The data transferred by RSTP-PP is typically fragmented into multiple
packets, as state data is often larger than the MTU of the underlying link,
usually the size of a standard Ethernet frame. Since RSTP-PP is designed to
be reliable and tolerate packet loss, the transmission time C' depends not only
on the link capacity and the efficiency of the protocol implementation, C' also
needs to account for potential retransmissions. These aspects are further dis-
cussed in Section

Since each channel consumes buffer memory, the receiver must reserve
enough for incoming packets. The engineering tool can verify that the required
buffer memory does not exceed the available memory (with a suitable margin).
Memory-management optimizations are left to future work.

11.7.2.3 RSTP-PP Interaction

This section describes the RSTP-PP protocol interaction between the sender
and receiver. The sending process begins with the sender transmitting a packet
belonging to the channel with the earliest deadline, i.e., the packet designated
for transmission according to the EDF scheduling scheme. Before sending
the first packet for a channel in a channel period T;, T'C'ycle is incremented.
During the cycle, TtlSzCyc must remain constant, allowing the receiver to
reserve memory as needed upon reception of the first message. The sender can
switch between sending packets for different channels if a switch is deemed
suitable by the scheduler. The transmission of Chld for TCycle is complete
when an acknowledgment is received, confirming the reception of all packets,
i.e., the reception of all payload bytes, or if the deadline can’t be met.

To prevent exhausting the receiver, RSTP-PP utilizes a flow control mech-
anism; the number of packets in flight, packetsInFlight (unacknowledged
packets), is limited to be no higher than packetsInFlight M az. Each packet
sent that is not a retransmission increments packetsInFlight Max. Each re-
ceived acknowledgment confirms that the reception of previously unacknowl-
edged packets yields a decrement of packetsInFlight, with the amount of
newly acknowledged packets deduced from the received acknowledgment. Al-
ternatively, an additional field can be added to the acknowledgment, specifi-
cally stating the number of received packets, to further simplify handling, at
the cost of extra bytes in the acknowledgment. RSTP-MM provide the initial
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packetsInFlight M ax value, discussed in Section|11.7.3

Acknowledgments are sent from the receiver to the sender for a
channel under four conditions: (i) upon reception of the last packet
for a TCwycle, (ii) when the number of AckBlocks increases, (iii)
upon explicit request from the sender using F'AckCh, and (iv) when
the limit (packetsRcvdNoAckCntMaz) of unacknowledged packets
(packetsRcvdNoAckCnt) received is reached.  The initial value of
packets Revd N oAckCntM ax is discussed in Section[11.7.3

Receiving the final packet, i.e., the one with the highest sequence number,
completes the transfer if no losses have occurred. Regardless of packet loss,
the receiver always sends an acknowledgment upon receiving the last packet.
The second condition is triggered by an increment in AckBlocks, which in-
dicates reception after a loss (i.e., a newly detected gap in contiguous packet
reception). The third condition occurs when the sender explicitly requests an
acknowledgment using F'AckCh, typically when it has sent all packets for a
channel but has not yet received confirmation of receipt from the receiver. The
fourth reason acknowledgments are sent is for flow control. Since the sender
is only allowed to send up to packetsInFlight M ax packets without receiv-
ing an acknowledgment, the receiver must issue acknowledgments at regular
intervals if none of the above-mentioned conditions are met. This interval
is governed by packets RcvdN oAckCnt and packets Rcvd N oAckCntMaz,
which are further detailed in Section [IT1.7.3]

As mentioned, the receiver sends an acknowledgment when receiving the
last packet. However, acknowledgments, as well as data packets, can be sus-
ceptible to loss. Hence, the sender typically uses F'AckCh to request acknowl-
edgment for the channel with the earliest deadline, where all packets have been
sent but receipt remains unacknowledged, if such a channel exists.

When the sender has transmitted all packets for a channel, it starts with the
next one, as appointed by EDF. If there is no next channel to transmit, the last
packet is resent until acknowledgment information is received or the deadline
expires. When the acknowledgment is received, it either confirms the reception
of all packets or provides the information required to determine which pack-
ets to retransmit. Consequently, while awaiting acknowledgments, unfinished
channels are served in deadline order with the F"AckC'h set to the identity of
the channel with the earliest deadline waiting for an acknowledgment.

A sender informed about missing sequence numbers tags those packets (or
adds them to a resend queue). If the total time left to send all packets known
not to have been received exceeds the channel’s deadline, the sending of that
channel aborts for the current T'C'ycle.
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11.7.2.4 Fault-tolerance and Network Redundancy

Redundant controllers are commonly deployed with network redundancy to
avoid the network being a single point of failure. Gigabit Ethernet IEEE
802.3ab specifies a Bit Error Rate (BER) smaller than 10719, and in controlled
environments, a BER as low as 10712 is plausible [1, 180]. As an example,
the above BER span yields, for a channel utilizing 100 Mbps of a 1 Gbps link,
an hourly frame loss between 0.36 and 36 frames of total 30 * 10° frames per
hour.

As mentioned, a state transfer typically fragments into several packets and
Ethernet frames; without retransmission, the loss of one frame would invali-
date the entire transfer. A standard Ethernet full-size frame is 1518 bytes, or
12144 bits large. If F' is the number of bits in a full-size frame, then the prob-
ability that such a frame is transmitted correctly is ¢s = (1 — BER)Y, and the
probability of failure is p; = 1 — ¢s [181]. N is the total number of frames
(or packets) constituting a fragmented message. In the case of redundant links
with parallel transmission, as for PRP, the probability that at least one of the
frames is successfully received is ¢, = 1 — pg and p, = 1 — q,.

As mentioned, all packets that constitute a message must be received for
the message to be successfully delivered. We assume that the packet transmis-
sions are independent and that we can make R individual packet retransmis-
sions within the deadline. R is the retransmission budget. Hence, a message is
successfully delivered if all packets are delivered with or without consuming
the whole retransmission budget, R. To illustrate the impact of retransmission
we assume each packet to be independent, the successful transfer of a message
can be modeled with the sum of negative binominal distribution from zero to
R retransmissions, where ¢ and p are either g5 and ps or g, and p, depending
on if redundant links are used or not. Note that even though RSTP uses the
retransmission budget R, it is agnostic to how R is chosen. The model below
is just one example of illustrating the impact of R on the transfer reliability;
future work can explore deployment-specific models.

R
N+Ek-1
Pmsg success(R) = Z ( > pk qN. (114)

k=0 K
To exemplify how retransmission can improve reliability, we use variable
message sizes sent every hundred milliseconds, ranging from 5 MB to 0.015
MB. The 5 MB message corresponds to over forty percent utilization of a
Gigabit Ethernet link, fragmented into more than 3000 packets, embedded in
an equal number of Ethernet frames. The 0.015 MB message consumes less
than one percent of the Gigabit link and fragments into ten packets. We use a
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conservative BER of 10~1? and calculate the expected number of lost messages
during a year of operation for different retransmission budgets, with a cutoff at
10~ '2 messages lost per year, plotted in Figure|11.12
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Figure 11.12: Expected yearly message loss for messages with varying sizes

and retransmission budgets, sent every hundred milliseconds, using single (sin-
gle) and redundant (red) links (network paths).

Figure [T1.12] shows that the yearly message loss drops rapidly for each
extra packet retransmission in the retransmission budget, and for R > 5, the
annual loss is less than 10~% for all message sizes. Hence, it may be suffi-
cient for many applications to utilize a single network for state transfer, as the
retransmission mechanism can provide sufficient messaging reliability. How-
ever, this would mean that if one link (network path) fails, the backup is no
longer ready until the link is repaired. Whether this is acceptable depends on
the application and the domain; RSTP supports both. An RSTP channel can
be scheduled on all networks or a single network.

Redundant links that utilize a redundancy protocol, such as PRP, are seen
as one link from RSTP. If the deployment requires redundancy to function
when one of the redundant links has failed, the retransmission budget should
be set accordingly.
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11.7.3 Management Mechanism - RSTP-MM

The purpose of the management mechanism is to provide configuration and
management capabilities to RSTP. It is a denoted mechanism, as it does not ne-
cessitate communication but rather details the information and data that RSTP
requires, as elaborated below.

We categorized the required RSTP information provided by RSTP-MM
into three profiles: (i) node profile, (ii) sender profile, and (iii) receiver profile.
The sender profile gives the receiver information about the sender and vice
versa. Currently, all the information is mandatory; future work could detail
additional optional information that might be beneficial.

Do note that exchanging this information over a communication channel
is not mandated, even if that offers better flexibility. An alternative approach
would be to provide the information during the configuration phase and down-
load it to the respective controllers, i.e., the sender (primary) and receiver
(backup).

11.7.3.1 Node Profile

The node profile provides RSTP with the necessary node information, which
includes details about the node it is running on.

Mandatory: LI is a set of tuples with link information l¢, where Vii € LI
are designated to RSTP-PP and /i is the link information tuple (BW, id) where
BW is the link bandwidth and id is the link identity.

11.7.3.2 Sender Profile

The receiver uses the information provided by the sender’s profile, i.e., infor-
mation about the sender that must be made available to the receiver.
Mandatory: PayloadSzps is the default number of payload bytes in an
RSTP-PP data frame for HType one. All data packets sent have this pay-
load size, except the last one for each T'Cycle. The last frame carries at most
PayloadSzp,, or less. The exact size is determined using number of packets
N where N = [%] Hence,the payload size of the last packet sz,
is:

sz = Tt1SzCyc — ((N — 1) PayloadSzp ).

11.7.3.3 Receiver Profile

The receiver profile contains information the sender needs to know about the
receiver.
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Mandatory: Receiver link information, RLI, is a set of tuples, rli, with
link information. The receiver’s LI is made available to the sender in the re-
ceiver’s profile. The sender uses this to determine the end-to-end connection
capacity. We do not consider potential reducing factors in the network in be-
tween; that is, future work. Typically, the id is the link’s IP address, and a node
has only one link per subnet. Hence, pairing links can be done based on subnet
belonging. The bandwidth capacity is the lowest of l¢;. BW and rli;. BW for
the specific link, 3.

As mentioned, the sender uses packetsInFlight Max for flow control
to prevent overwhelming the receiver. Hence, the receiver is responsible
for providing packetsInFlightMaz. Queue sizes on the receiver must
be large enough to allow packetsInFlight Max packets to be transmitted
without any losses due to full queues. The value of packetsInFlight Max
affects packetsRcvdNoAckCntMaz, as acknowledgment reception at
the sender reduces the number of packets in flight (packetsInFlight).
Preferably, packetsInFlight should not exceed packetsInFlightMax
due to lost acknowledgments, as reaching packetsInFlightMax pauses
sending.  Hence, packetsRcvdNoAckCntMazx is set to a fifth of
packetsInFlight Max to tolerate some acknowledgment losses without
pausing sending.

11.7.4 RSTP Design and Operation

This section presents an RSTP design. With the design as a foundation, we
describe RSTP interaction in two use cases: (i) normal operation and (ii) (re-
)configuration.

11.7.4.1 RSTP - Normal Operation

By "normal operation," we refer to an operational controller pair configured
for redundancy. The primary controller manages the process by executing con-
troller applications and continuously transferring the latest application state to
the backup. Figure[TT.13]illustrates the internal component interactions during
the normal operation of a primary controller that utilizes RSTP (i.e., RSTP-PP
as a sender), detailed below. This is followed by Figure [[1.14] which details
the RSTP-PP receiver flow in the backup.

As described in Section|11.2] an application periodically sends its updated
internal state to the backup during normal operation; step (1) in Figure [TT.13]
begins at that point. The example application passes its updated state to the
RSTP-PP along with the channel ID (C'hId). The RSTP-PP Buffer handler en-
sures that a buffer capable of holding all the application’s state data is reserved,
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Figure 11.13: RSTP-PP sender design, internal components interaction, and
data flow during normal operation.

for example, through double-buffer handling. Once a buffer has been reserved
for the data, the application state is copied to that area using the Security han-
dler (step 2). The Security handler applies the configured security measures
to the state data, including additional security-related metadata if needed. See
Section[I1.7.5] Once the appropriate security measures have been applied and
the state data has been copied to the allocated buffer, the updated channel data
is ready to be queued for transmission (step 3). If data already exists for the
same channel, for which the transfer has not yet started, two alternatives exist:
replace the old data or keep both. By default, the interpretation is that there is
no need to retain the old data for state data; therefore, the old buffer is released
for reuse, and the updated data takes its place. The deadline for the replaced
data is preserved, but the expiration time is updated. The updated channel data
is enqueued, and the application execution context has completed its part. It is
now up to the RSTP-PP sender task to transfer the updated channel data.

Step (4) and the remaining steps are executed by the RSTP-PP sender
task(s), as shown in Figure[TT.13] The example design only shows one RSTP-
PP sender task; dividing it into two or more can increase the parallelism, one
for acknowledgment handling and one for sending. The first action is to re-
trieve any incoming acknowledgments. The Channel sender asks the Link
handler to check all links for received acknowledgments (steps 4 and 5). The
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received acknowledgments determine whether any channels have been com-
pletely transferred (step 6). If a channel is completed, the buffer it uses is
released (step 7), and the application is notified (step 8). The same applies if
the deadline expires without any acknowledgment; in this case, the buffer is
released, and the application is notified that the state transfer failed.

The Queue handler returns the next packet to be sent, which can be either
a retransmission of a previously sent packet (determined to be lost) or the next
channel to be sent (step 9). The Queue handler uses the same scheduling
model as used to determine if the channels are schedulable; for this work, it
is assumed to be EDF. Future work could dig deeper to investigate if there are
more suitable scheduling alternatives. The Queue handler finds and returns
the next packet to send according to the scheduling used, i.e., EDF. The packet
is then passed to the Link handler (step 10) and sent to all links on which the
channel is scheduled (step 11).

Figure[IT.14]shows the receiver flow that begins with the Channel receiver
asking the Link handler for new packages. The Link handler checks all links
and provides the new packages to the Channel receiver (steps 1 and 2). The
received packages are then passed to the Reception handler, which checks if
the newly received package is the first in T'C'ycle or the first for a channel; in
such cases, buffers are allocated and reserved accordingly (step 4). As with the
sender, a double buffer can be a suitable implementation alternative, preserving
consistency by allowing the application to read from the inactive buffer while
the Channel receiver updates the active buffer until all packages are received;
at this point, the active and inactive buffers are swapped.

The application is informed when the Reception handler determines that
a complete message has been received or that no new messages have been
received within the expiration time (step 5).

The Reception handler informs the Channel receiver if any acknowledg-
ments need to be sent. If so, the Channel receiver uses the Link handler to send
the acknowledgments (steps 6, 7, and 8). When the application is notified of
new data (step 5), it retrieves the latest data for the specific channel ID (Chld)
from RSTP-PP (step 9). The receiving application and its sending counterpart
must share the same channel ID; hence, the channel identity can be part of the
application configuration. RSTP-PP returns a handle to a buffer that the appli-
cation uses to access the data. This handle is passed to the Security handler
(step 10), which applies the configured security measures to the received data
while copying it to application-managed memory. Once this is done, the ap-
plication informs RSTP-PP that the data has been processed, and the buffer is
freed for reuse (step 11).

We use one RSTP-PP Channel receiver task in the example; a higher de-
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Figure 11.14: RSTP-PP receiver design, internal components interaction, and
data flow during normal operation.

gree of parallelism is achieved by having two or more tasks, where one handles
acknowledgment sending and the other handles packet reception.

11.7.4.2 RSTP - Configuration

Figure [I1.T5] shows a high-level configuration flow and exemplifies a config-
uration of a redundant controller pair utilizing RSTP. An engineer uses an en-
gineering tool to modify the application or create an initial version. The tool
utilizes the scheduling and reliability models presented in Section to de-
termine if the configuration is schedulable given the amount of state data, cycle
time, deadline, and desired reliability (step 1).

Given reliability-related parameters, the reliability model provides a re-
transmission budget (see Section[I1.7.2.4). With preconditions that include the
retransmission budget, data size, deadline, cycle time, and links, the scheduling
model determines if it is possible to meet these requirements. The schedul-
ing model can also choose the order in which to apply the changes during a
reconfiguration. To avoid overutilizing links during a configuration change,
it is essential to apply changes that reduce link utilization before those that
increase utilization, or perform the switch atomically across all applications.
The scheduling model helps identify changes that reduce link load and those
that increase it, thereby determining the proper order in which to apply these
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Figure 11.15: Configuration example.

When the engineer completes the configuration changes, the changes are
downloaded to the affected controllers (step 3). The engineering tool sends the
new configuration to the engineering agent, which applies the change (step 4).
The change can be applied stepwise by first applying changes that reduce link
load before applying changes that increase load, or atomically for all applica-
tions at a specific time. Once applied, the applications begin using the new
settings (step 5).

It is worth noting that if an application is deleted, it should inform RSTP-
PP in some manner so that the channel resources, in terms of buffers, can be
completely deallocated. This is implicit in step 5.

11.7.5 Security Handling

The function of the Security handler is to add security features as defined in
section [[1.5.2.3] Different use cases may require various features. Security
features will also add to the payload size and execution time needed.

The Security handler in the sending and receiving entities is separated from
the RSTP-PP protocol, allowing the application to handle any overhead re-
lated to security measures instead of RSTP tasks. This ensures that the time
consumption for tasks related to receiving and sending data can be kept down
while providing high flexibility in selecting the security mechanisms to in-
clude.

It is also possible to combine the RSTP-PP protocol with IP-sec, if the
level of security provided by IPSec is deemed sufficient. In this case, the se-
curity handler will do nothing, as the operating system provides the security
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Table 11.19: Security configurations for the RSTP Security handler. R/O col-
umn: R=Required, O=Optional.

Property R/O Value

Integrity mechanism R None, Checksum, Symmetric, Certificate
Encryption mechanism R~ None, Symmetric
Replay Protection R None, Counter, Session, Timestamp
Key Exchange O  None, KeyServer, IKE
Key Server O  URL, etc to trusted key server
o

Partner Certificate (public) certificate of partner

functionality. As noted, it may be challenging for the application to verify
that protection is actually in place when using this approach, as the security
mechanism is implicitly added outside the protocol.

To secure the application layer, the state data is wrapped within a security
header that contains security-related fragments.

Security mechanisms needed must be indicated as part of the RSTP Secu-
rity handler configuration. Table [I1.19|outlines the options required to fulfill
the previously described security requirements. The list of values is, however,
not exhaustive; more potential methods exist, and several variations of each
technique are also available. Quantification of security induced latency is fu-
ture work.

Options for Integrity mechanism indicate how integrity and/or authentic-
ity of data is assured. The checksum option will only give a basic integrity
protection of the data (Sec_Int), the symmetric signature will be done using a
symmetric key exchanged either by secure key server or using a peer-to-peer
key establishment protocol such as Internet Key Exchange (IKE), which will
give some degree of authenticity (Sec_Auth), while a certificate-based signa-
ture will provide highest level of authenticity protection.

The Encryption mechanism option describes whether data encryption will
be used to fulfill the requirement Sec_Conf, with the options None and Sym-
metric. In reality, this option must be complemented with a list of supported
symmetric encryption algorithms.

Replay protection outlines how the freshness of data is ensured
(Sec_Fresh), providing options with static counters, session identities, and
timestamps.

The Key exchange option defines how the backup and partner exchange the
keys needed for encryption or integrity protection, if based on symmetric keys.
If the communicating entities are capable of using public key cryptography and
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the communication is peer-to-peer, a certificate-based key exchange protocol
is advised to be used.

If public-key cryptography is not a viable option, or if there are multiple
backup entities that should receive state data, the suggested scheme is to use
a key distribution server to provide symmetric keys to the communicating par-
ties. This scheme is inspired by how secure OPC UA PubSub [146] works,
as shown in Fig. [T1.T6] The key distribution server can either push keys or
the communicating party can fetch them. However, communication with the
key distribution service needs to be encrypted as well as access-controlled, as
the keys would otherwise be accessible to anyone. The implementation of this
protocol is outside the scope of the current work, but the suggestion is to follow
the approach outlined in the OPC UA specification.

DCN1(P) Secie H DCNXx(B)
State datagram |

Fetch key Push key

Key distribution
service

Figure 11.16: Key distribution according to pattern from OPC UA Secure pub-
sub.

11.7.6 RSTP - Desired Feature Matching

We conclude the design section by showing how RSTP fulfills the desirable
features presented in Section[I1.5.2]

Reliability features: RSTP has a mechanism for retransmission, with a
configurable retransmission budget to provide the desired reliability; hence,
RSTP fully fulfills Rel_RD. RSTP has a mechanism for flow control to pre-
vent exhausting receiver buffers; hence, RSTP fully fulfills Rel_RC. Finally,
since no channel should be deployed on RSTP before confirming that it can
be scheduled, RSTP avoids overutilization of the network; hence, RSTP fully
fulfills Rel_NC.

Real-time features: RSTP guarantees that channel messages are deliv-
ered before their deadline, provided that the channels are successfully sched-
uled; hence, RSTP fully fulfills RT_PT. The protocol also sets an expiration
date for the passed data, meaning that new data is expected to arrive before
that deadline. If new data is not received in time, the consuming application
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can be informed by RSTP; hence, RSTP fully fulfills RT_UE. Lastly, RSTP
uses channel concepts and transmits packets from the channel closest to the
deadline. All channels have preallocated buffers at the receiver side, and when
a packet is received, its payload is stored at the correct offset in the receive
buffer. In other words, RSTP uses channels and an earliest-deadline-first ap-
proach to prioritize the channels; hence, RSTP fully fulfills RT_PR.

Security features: The Security Handler allows RSTP to support a con-
figurable security level. Thus, it can be configured to fulfill any combination
of the desired security features, from none to all.

11.8 Deployment and Experimental Evaluation

This section describes RSTP in a VxWorks deployment, examining how an op-
erating system can be configured to align with RSTP. After that, we describe an
actual implementation of RSTP on VxWorks, which we use for experimental
evaluation.

11.8.1 RSTP on VxWorks

VxWorks’s default network stack configuration consists of a single network
stack instance with one network task that serves all outgoing and incoming
traffic [132]. Figure shows RSTP and other applications on a VxWorks
system with the default settings. Using the default settings means that one net-
work task handles both time-sensitive and time-insensitive communications.

Regarding RSTP and outgoing traffic, RSTP will post a packet on the
socket for the channel with the highest priority, as described in Section|11.7.4
However, since a single network stack and task serve all sockets, that packet
might not be handled immediately under the default VxWorks settings. The
socket-related network job is placed in a queue, and the network task pro-
cesses that queue in a first-in-first-out fashion without any prioritization. The
single queue and network task may cause a potential latency increase for time-
sensitive packets due to the processing of time-insensitive traffic ahead in the
queue, as illustrated in Figure

The number of network stacks (and tasks) in VxWorks can be config-
ured [132]. A feature utilized by Johansson et al. as a foundation for pro-
cessing time-sensitive traffic with a higher-priority network task [182]. An ap-
plication can direct outbound traffic to different network stack instances and,
consequently, different network tasks by assigning the socket to a specific stack
instance using socket options.
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Figure 11.17: RSTP and other network-dependent applications using the de-
fault configured VxWorks network stack. RSTP, multiple applications, and
Ethernet Controllers (EC) share one network stack and Network Task (Net-
Task).

Figure [IT.I§] shows two stack instances—one for high-priority
time-sensitive traffic and one for best-effort traffic. In this example, the
high-priority network stack serves RSTP, including the Ethernet Controller
for the RSTP link. The low-priority network task handles time-insensitive
data. Note that this configuration can be scaled to include additional tasks and
priority levels. Figure[IT.T8|serves as an example.

11.8.2 RSTP Experimental Implementation

To experimentally evaluate RSTP, we implemented an RSTP sender, an RSTP
receiver, and a prototype RSTP engineering tool that checks schedule feasibil-
ity.

RSTP Engineering: The RSTP Engineering prototype is a Python script
that, given the periodicity, available bandwidth, BER, and state size of the
applications and the acceptable annual loss, provides the channel parameters
and checks if the channels are schedulable. It provides output used by the
RSTP sender prototype, such as the utilization of the links.
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Figure 11.18: Network-dependent applications using a customized VxWorks
network stack configuration with a High Priority (HP) network stack instance
for handling RSTP traffic and a Low Priority (LP) network stack instance for
best-effort time-insensitive traffic.

RSTP Sender: The RSTP Sender is a simplified version of what is de-
picted in Figure[IT.13] with the main differences being in the buffer and secu-
rity handling. The prototype does not implement double buffering or a security
handler. The applications in the evaluation prototype provide a state data buffer
to be transmitted every period and measure the time until RSTP indicates that
the transfer is completed. The RSTP-PP data is sent over UDP, with packets
transmitted on one UDP port and acknowledgments on another. VxWorks is
configured according to Figure to prioritize the RSTP traffic.

RSTP Receiver: The RSTP Receiver prototype is a simplified version
of the receiver depicted in Figure The prototype omits the security
handler and buffer management. The application is a placeholder that registers
the reception of new state data through a callback call upon state reception
completion from RSTP.
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11.8.3 RSTP Experimental Evaluation

We experimentally evaluate RSTP using two state transfer arrangements. The
first one uses the same state data size selection as we used to assess TCP and
SCTP in Section The second arrangement is a multi-application sce-
nario that mimics a controller running multiple applications utilizing channels
of varying sizes, periods, and deadlines, corresponding to the combinations of
applications with distinct periodicity and state sizes, as shown in Table [TT.20]

Table 11.20: RSTP evaluation configuration for multiple applications (and
channels). Each application runs in its own task, enabling concurrent RSTP
use.

App. Period Retransmission Size Utilization
(Chld) (deadline) budget (of 1 Gbps)
1 10 ms 2 800 B 0.06%

2 20 ms 2 800 B 0.03%

3 50 ms 3 40 KB 0.64%

4 100 ms 3 400 KB 3.2%

5 100 ms 4 800 KB 6.4%

6 200 ms 4 1.6 MB 6.4%

7 500 ms 5 8.0 MB 12.8%

8 500 ms 5 8.0 MB 12.8%

9 500 ms 5 8.0 MB 12.8%
10 500 ms 5 8.0 MB 12.8%

11 1000 ms 5 8.0 MB 6.4%

Total size and utilization: 42.8 MB 74.3%

An application that consists of 100,000 variables, corresponding to 0.4
MB of state data, and a period of 100 milliseconds, is considered a reasonably
large application with a relatively short cycle time for the process control do-
main [21, 183]. Moreover, controllers today offer varying amounts of memory
for application usage; for example, a PM 891 from ABB offers approximately
200 MB of memory available for applications [184], meaning a controller can
host many applications of the size mentioned above, a limit likely to increase
with newer generation controllers.

Table [T1.20] summarizes the concurrent multi-application simulation con-
figuration, where each application runs as a separate task. Applications 1 and
2 have small data sizes (800 B) and short periods, representing a small ap-
plication or a heartbeat-based failure detection utilizing RSTP. Application 3



Paper F 257

has a data size of 40 KB and a period of 50 milliseconds. Given, as stated
above, that an 400 KB application with a cycle time of 100 milliseconds is
considered large and fast, application 3 serves as smaller, but even faster ap-
plication [21, 183]. Application 4 and 5 have period of 100 milliseconds and
a size of 400 KB and 800 KB respectively, to serve as examples of fast and
large applications. Applications 6-11 are even larger, but with longer periods.
We believe that this selection serves as an example that pushes beyond typi-
cal utilization, given the combination of fast and large concurrent applications.
Table[TT.20]lists the complete configuration, which yields a payload utilization
of 74.3%.

We deliberately avoid going higher to spare some capacity for best-effort
traffic as well as the protocol processing-induced transfer time overhead. In
a real deployment, time-sensitive RSTP traffic would likely have precedence
over best-effort traffic by using a priority mechanism, such as Priority Code
Point (PCP) [182].

We ran the evaluation for one hour and collected the minimum, maximum,
and average application state transfer times. In addition, every second, a packet
is dropped to simulate a very lossy link and utilize the recovery mechanism.
The following section, Section presents the result.

11.8.4 RSTP Evaluation Results

Figure [I1.19]shows the RSTP prototype performance under the same arrange-
ment previously used to evaluate TCP and SCTP, described in Section|[I1.6.3]
It provides an overview and displays the longest measured transfer times, while
Table provides the more detailed measurements.

For the scenario without packet loss, transferring 1 MB (22° bytes), the
longest RSTP transfer time is 11 milliseconds, with an average transfer time
effectively at 10 milliseconds, compared to 9.2 milliseconds for TCP. In the
scenario with ten packet losses, the RSTP transfer time peaks at 16 millisec-
onds, whereas TCP’s worst-case transfer time occurs for 10 KB and measures
over five seconds.

Therefore, while RSTP’s overall throughput without packet losses is some-
what lower than TCP, RSTP recovers significantly faster when losses occur.
Additionally, RSTP was evaluated on a prototype implementation, whereas
the TCP implementation is a mature, production-level implementation that is
likely to be highly optimized. Hence, the throughput of RSTP can most likely
be improved with optimization efforts.

Table shows the results from the concurrent multiple-application
RSTP evaluation arrangement described in Table [IT.20] Transfer times in-
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Figure 11.19: RSTP max transfer times. First, last, and middle denote if the
first, last, or middle packets are lost.

crease with higher C'hld, likely because channels are processed in ascending
order of C'hld when deadlines are identical. Using C'hld as a tiebreaker was
deemed sufficient for this proof-of-concept implementation; however, it is a
potential area for future work to investigate whether there are more suitable
alternatives. Alternatives that would reduce the increase in transfer time for
higher Chld.

Additionally, note that deadlines are met even under conditions of frequent
packet loss, as one packet per second was dropped during the one-hour exper-
imental run, causing all channels to experience packet loss.

11.8.5 Discussion of RSTP Results

Under no-loss scenarios, RSTP is not as performant as TCP with default
settings in terms of throughput; however, RSTP is more performant than the
recovery-optimized TCP. When comparing SCTP and RSTP under no-loss
conditions, the optimized version of SCTP outperforms the non-optimized
SCTP configuration. However, the optimized SCTP is still less performant
than RSTP for larger data sizes. For smaller data sizes without losses,
both SCTP and TCP are slightly faster than RSTP. Again, we believe this
is due to specific implementation details in the prototype, which could be
mitigated with further optimizations. Such optimizations are reserved for
future work. The protocol is demonstrated to be performant, achieving 75%
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Table 11.21: Transfer times (ms) with minimum, average, and maximum val-
ues under packet loss scenarios.

1 mid pkt. lost 5 mid pkts. lost 10 mid pkts. lost

No Loss First pkt. lost Last pkt. lost
Min Avg Max | Min Avg Max | Min Avg Max | Min Avg Max | Min Avg Max | Min Avg Max

128 B 10 10 10|10 10 10|10 10 10|10 10 10|10 10 10| 10 10 30
256 B 10 10 10}10 10 10|10 10 20|10 10 10 |10 10 10| 10 10 1.0
512B 10 10 10|10 10 10]10 10 10|10 10 10| 10 10 10 1.0 1.0 1.0
1 KB 10 10 10|10 10 10|10 10 10|10 10 10|10 10 10| 10 10 10
2KB 10 10 20|30 30 3010 10 20|10 10 20|10 10 30| 10 10 3.0
5KB 10 10 20|30 41 50|10 10 20|10 10 10| 10 10 50 1.0 1.0 50
I0KB | 10 10 20|30 35 50|10 10 20|10 10 20|10 10 50 | 1.0 1.0 20
25KB | 1.0 10 10 |30 34 50|10 10 10|20 24 40 |30 39 70|20 40 70
50 KB 10 10 40|30 39 70|10 10 40|20 22 40|30 39 50|20 37 50
I00KB | 20 20 40| 40 50 50|20 20 20|40 40 60|50 50 70|20 51 70
250KB | 30 30 40| 50 51 70 |30 30 40|40 41 60 |50 51 70|40 46 80
500KB | 50 50 60|70 71 90 |50 50 60|60 60 80|70 71 90|60 74 90
IMB |100 100 110|110 11.1 130|100 100 100 | 11.0 11.0 13.0 | 11.0 11.9 140 | 11.0 122 16.0

Size

utilization across multiple channels (and applications) under significant loss
conditions, as shown in the measurements in Table Additionally, RSTP
significantly reduces the maximum transfer time under loss compared to TCP
and SCTP.

Regarding multiple application evaluations, all deadlines were success-
fully met, as shown in Table @ However, we conducted the evaluation
using only one set of concurrent applications, which utilized roughly 75%
of the available bandwidth. For comparison, as shown in Table [T1.15] TCP
transfers 1 MB in 9.2 milliseconds under lossless conditions, corresponding to
roughly 86% utilization of the 1 GB/s link.

The retransmission cost is twofold, since a retransmitted packet consumes
bandwidth and processing time. To push the RSTP limit even closer to the the-
oretical maximum, the processing of transmission and retransmission needs to
be analyzed in greater depth, and optimizations applied to push the utilization
boundaries, thereby enabling tighter deadlines.

A transfer-reliability model (Section estimates the probability of
state-transfer failure. The retransmission budget balances the trade-off be-
tween failure probability and worst-case transfer time. With RSTP schedu-
lability checks plus the reliability model, engineers can verify at design time
whether deadline and reliability targets are achievable. Future work is to inte-
grate this analysis into existing toolchains and present actionable and guiding
outputs to support engineering decisions.

In addition to the above-mentioned future work, future evaluations could
include additional application configurations under loss and no-loss condi-
tions. Comparative analyses against other protocols under multi-application
conditions, including security measures and measuring the associated over-
head in both lossless and lossy situations, are examples of relevant future
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Table 11.22: RSTP multiple applications evaluation result.

App. Period Size Min Avg Max
(Chld) (deadline)

1 10 ms 800 B 0.96 ms 1.16 ms 5.01 ms
2 20 ms 800 B 0.96 ms 2.02 ms 6.00 ms
3 50 ms 40 KB 0.96 ms 2.80 ms 15.99 ms
4 100 ms 400 KB  4.00 ms 10.59 ms  32.00 ms
5 100 ms 800 KB 7.97 ms 1348 ms  34.03 ms
6 200 ms 1.6 MB 23.00ms 3237ms 104.00 ms
7 500 ms 8O0MB 7798 ms 106.16 ms 157.01 ms
8 500 ms 80MB 154.01 ms 213.69ms 257.01 ms
9 500 ms 8.0MB 21698 ms 309.76 ms 363.01 ms
10 500 ms 8.0MB 282.05ms 403.81 ms 459.01 ms
11 1000ms 8.0MB 456.04ms 92246 ms 981.00 ms
work.

11.9 Conclusion

In this work, we have explored checkpointing and state replication solutions
within both OT and IT contexts. In OT, we investigated checkpointing
solutions used in industrial controllers and Programmable Logic Controllers
(PLCs). In the IT context, we examined checkpointing solutions used
within container and orchestration environments. CRIU was identified as a
commonly used solution for retrieving state data; however, we also observed
that none of the reviewed works specifically focused on transferring the
retrieved state data. The literature search and the outcome of that constitute
the first contribution.

The lack of literature detailing state transfer for redundancy purposes moti-
vated us to investigate suitable alternatives further. We defined a set of desired
features for a state transfer protocol that we used to evaluate existing protocols
against, identifying OPC UA Client/Server, running on top of TCP, and SCTP
as relevant candidates. The identification of features desired from protocols
used for state transfer, as well as the matching of existing protocol properties
against these desired features, constitutes the second contribution.

Considering that OPC UA Client/Server utilizes TCP as its underlying
transport protocol, we compared TCP and SCTP on VxWorks, a commonly
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used real-time operating system, using state transfer simulation scenarios. Vx-
Works allows for customization of TCP and SCTP internals, a feature we used
to optimize TCP and SCTP settings beyond the default settings. The TCP con-
figuration optimized for quick recovery in the event of losses demonstrated
strong performance but still suffered from high transfer times under specific
loss scenarios. Additionally, optimization impacts all TCP connections glob-
ally on the node. This evaluation, under lossy and no-loss scenarios, using
optimized and default settings of TCP and SCTP, constitutes the third contri-
bution.

To the best of our knowledge, deduced from the findings mentioned above,
there exists no publicly available protocol targeting state transfer for indus-
trial controller redundancy. That finding motivated us to design a new protocol
for that specific purpose, which we named the Reliable State Transfer Proto-
col (RSTP), explicitly tailored to fulfill all desired features, including security.
RSTP incorporates a retransmission budget, a channel-based concept, and a
security handler. Each channel is assigned its own period, deadline, and re-
transmission budget.

A scheduler manages packet transfers based on deadlines, prioritizing
packets with the earliest deadlines. Our evaluation demonstrated that RSTP
handles packet loss scenarios more efficiently than TCP and SCTP, although
its throughput is somewhat lower than that of TCP. Moreover, we evaluated
RSTP under a multi-application scenario with high utilization (75%),
experiencing significant loss to stress recovery handling.

We attribute RSTP’s lower throughput compared to TCP to the current lack
of performance optimizations. Addressing these optimizations remains part of
our future work. Future work also includes more extensive evaluations involv-
ing multiple application scenarios and the comprehensive integration of secu-
rity mechanisms, among other examples. RSTP and the experimental evalua-
tion constitute the fourth contribution.

In summary, research on state transfer for spatial redundancy is limited,
and existing protocols cover only subsets of the desired features. To close
these gaps, we introduced RSTP, a schedule-aware state-transfer protocol that
fulfills the desired features and, on VxWorks, shows lower worst-case transfer
times under loss than TCP/SCTP.
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