

Abstract

Over the past decades, industrial robotics has transitioned from fixed, single-
purpose machines to flexible, collaborative mobile systems capable of navigat-
ing complex factory environments. Today’s manufacturing demands, driven
by labor scarcity, the need for rapid reconfiguration, and advances in Al and
sensing, require robots to perform increasingly sophisticated, non-repetitive
tasks alongside human workers. Designing and executing efficient multi-robot
missions in such dynamic, human-in-the-loop settings presents multiple chal-
lenges: expressing high-level production requirements in a planner-friendly
way, handling unexpected execution errors, scaling to large task allocations,
and accounting for uncertainties in task durations and human behavior.

This thesis introduces an intuitive task modeling formalism and a suite of
algorithmic methods that address these challenges end-to-end. First, we pro-
pose a domain-expert-friendly syntax for defining single-robot production mis-
sions, automatically generating problem definitions compatible with diverse
oft-the-shelf planners. To support rapid recovery from errors, we present task
roadmaps, a novel planning algorithm that reuses the original search tree to
accelerate replanning when execution deviates. We extend the formalism to
a multi-robot kitting use case with alternative task locations and introduce a
scalable, clustering-based approach to maintain computational tractability.

Recognizing the inherent uncertainties of human-robot collaboration, we
further develop a collaborative stochastic task planning framework that inte-
grates human risk preferences and models variability in task and routing du-
rations. Finally, we tackle a collaborative production scenario with complex
cross-schedule dependencies, proposing a stochastic scheduling method that
generates optimized, deadlock-free plans while balancing efficiency with hu-
man well-being.

Extensive simulations and experiments grounded in real-world applica-
tions demonstrate that our methods significantly improve planning efficiency,
robustness, and adaptability in dynamic industrial settings, paving the way to-
ward more resilient, human-centric robotic automation.

Sammanfattning

Under de senaste decennierna har industrirobotiken utvecklats fran stationéra
maskiner specialiserade for enstaka typer av uppgifter till flexibla, kollabo-
rativa och mobila system som kan navigera i komplexa fabriksmiljoer. Da-
gens tillverkningskrav, drivna av bristen pa arbetskraft, behovet av snabba om-
stdllningar samt framsteg inom Al och sensorteknik, fordrar att robotar ut-
for alltmer sofistikerade, icke-repetitiva uppgifter tillsammans med minsklig
arbetskraft. Att effektivt utforma och genomfoéra produktionsuppdrag som
omfattar samarbete mellan robotar och ménniskor i den typen av dynamiska
miljéer medfor flera utmaningar: att specificera produktionsprocessen pa en
anvindarvinlig abstraktionsniva som underlittar resursplaneringen, att hantera
ovintade fel under exekvering, att skala upp antalet arbetsmoment som ska
fordelas och att hantera osdkerheter i tidsatgang och ménskligt beteende.

Denna avhandling introducerar ett intuitivt sétt att definiera och organisera
arbetsmoment samt en uppsittning algoritmiska metoder som hanterar
utmaningarna genom hela kedjan. Forst foreslar vi en anvindarvinlig
modellering for att definiera produktionsuppdrag for en robot, med automatisk
generering av planeringsproblem kompatibla med olika kommersiella
planeringsverktyg. For att mojliggora en snabb aterhdmtning vid fel under
drift presenterar vi task roadmaps, en ny planeringsalgoritm som ateranvinder
det ursprungliga soktradet for att accelerera en omplanering nér exekveringen
avviker. Vi utdkar modelleringen till en multi-robot kitting-applikation
med alternativa upphamtningsplatser och introducerar en klustringsbaserad
algoritm som dr berdkningsmissigt hanterbar f6r uppskalade problem.

Med hinsyn till de inneboende osédkerheterna i ménniska—robot-samarbete
utvecklar vi dessutom ett kollaborativt stokastiskt ramverk for planering av
robot-uppgifter som integrerar ménskliga riskpreferenser och modellerar en
varierande tidsatgang for arbetsmoment och forflyttningar. Slutligen behandlar
vi ett kollaborativt produktionsscenario med komplexa korsschemaberoenden
och foreslar en stokastisk schemalidggningsmetod som genererar optimerade,
lasningsfria planer dér effektivitet balanseras med ménskligt vilbefinnande.

Omfattande simuleringar och experiment baserade pa realistiska applika-
tioner visar att vara metoder visentligen forbdttrar effektivitet, robusthet och
anpassningsbarhet av robot-planering i dynamiska industriella miljoer, vilket
banar vig for en mer hallbar, mianniskocentrerad robotautomatisering.

Acknowledgements

After completing my master student thesis at Uppsala University and ABB,
I spent twenty-four interesting years with product development of industrial
robots at ABB. One day my wife Sara advised that ABB had announced par-
ticipation in ARRAY, a new research school at Milardalen University which
was led by Professor Thomas Nolte. This was the spark that ignited an inter-
esting journey of research. My first thanks go to Sara for all support along the
way.

I want to thank ABB, my manager Niklas Durinder and Thomas Nolte for
supporting and encouraging this research idea from the very start. A special
thanks to my main supervisor Professor Alessandro Papadopoulos, whose in-
put in the research process has been invaluable. In addition, I want to thank
my supervisors Thomas Nolte, Giacomo Spampinato and Branko Miloradovi¢.
I have had a fantastic, complementary, and stable team of supervisors who
made this journey possible in a friendly and supportive atmosphere by gradu-
ally teaching me how to think as a researcher, discussing ideas and problems,
providing guidance, and helping me find ways out in times of trouble.

Thanks to my fellow PhD students from ARRAY and other research
projects for the fun discussions and sharing of experiences. Thanks to
my colleagues and friends at MDU and ABB. Thanks to the CORE team
for hosting me and making MDU my second workplace. In my everyday
research life, I have spent a lot of time “embedded” with my ABB colleagues
in team Tau. This has been an invaluable social environment, making the
sometimes-lonely research work a lot more enjoyable. Thank you all present
and recent Tau members for your inclusive team spirit. Thanks to Anders
Wall for internal feedback on all papers and to all anonymous reviewers from
the research community whose input helped to shape this thesis.

Finally, I want to thank my parents for their unconditional support. My
father, who was very enthusiastic about my PhD journey, sadly left us too
early but remains a big inspiration.

Anders Lager, Visteras, Fall of 2025

List of Publications

Papers included in this thesis]|

Paper A: Anders Lager, Alessandro V. Papadopoulos, Giacomo Spampinato
and Thomas Nolte. A Task Modelling Formalism for Industrial Mobile Robot
Applications. In 20th International Conference on Advanced Robotics (ICAR),
2021.

Paper B: Anders Lager, Giacomo Spampinato, Alessandro V. Papadopoulos
and Thomas Nolte. Task Roadmaps - Speeding up Task Replanning. In Fron-
tiers in Robotics and Al, section Robotic Control Systems, 2022.

Paper C: Anders Lager, Branko Miloradovi¢, Alessandro V. Papadopoulos,
Giacomo Spampinato and Thomas Nolte. A Scalable Heuristic for Mission
Planning of Mobile Robot Teams. In 22nd World Congress of the International
Federation of Automatic Control (IFAC), 2023.

Paper D: Anders Lager, Branko Miloradovi¢, Giacomo Spampinato, Thomas
Nolte and Alessandro V. Papadopoulos. Risk Aware Planning of Collaborative
Mobile Robot Applications with Uncertain Task Durations. In 33rd IEEE In-
ternational Conference on Robot and Human Interactive Communication (RO-
MAN), 2024.

Paper E: Anders Lager, Branko Miloradovi¢, Giacomo Spampinato, Thomas
Nolte and Alessandro V. Papadopoulos. Stochastic Scheduling for Human-
Robot Collaboration in Dynamic Manufacturing Environments. Accepted by
34th IEEE International Conference on Robot and Human Interactive Commu-
nication (RO-MAN), 2025.

!The papers included have been reformatted to comply with the thesis layout.

10

Other relevant publication

Anders Lager, Alessandro V. Papadopoulos, Giacomo Spampinato
and Thomas Nolte. Towards Reactive Robot Applications in Dynamic
Environments. In 24th IEEE International Conference on Emerging
Technologies and Factory Automation (ETFA), 2019.

Anders Lager, Alessandro V. Papadopoulos, Giacomo Spampinato and
Thomas Nolte. IoT and Fog Analytics for Industrial Robot Applications. In
25th IEEE International Conference on Emerging Technologies and Factory
Automation (ETFA), 2020.

2Not included in this thesis.

Contents

[Thesisl
[T Tntroduction|

1.2 Background and Motivation|

[1.3 Research Challenge| . .

2 Research Context
[2.1 ~ Task Representations| .

[2.1.1 Programming| .

[2.1.3 Planning| . . .
2.2 Task Planning|
[2.2.1 Al planning| . .

[2.5.2 Uncertainties in collaborative applications|.

[2.6 Reactive Task Planning]

[2.6.1 Reactive task re-planning approaches|

[2.7 Proactive Task Planning|

[2.7.1 ~ Related approaches|

3 Research Questions|

11

15

17
17
17
20

21
22
23
23
24
24
24
25
25
27
28
29
29
30

31
31
32
32
33

39

12 Contents
4 Research Process and Methods| 43
41 ResearchProcessl 43
4.2 Research Methods|. 44
[@4.2.1 Experiments| 45

B Thesis C butions 47
BI1 Contributions 47

[5.1.1 C1: Robot Task Scheduling Graph (RTSG) Formalism| 48
[5.1.2 C2: Task Roadmaps for Incremental Replanning| . . . 49
D13 C3: Cluster-and-Balance Heuristic for MRTAI 49
[5.1.4 C4: Risk-Aware Single-Robot Planning with Humans|. 49
[5.1.5 C5: Stochastic Scheduling Framework for |

Multi-Agent Teams| 50

[5.2 Included Papers| 51
[5.2.1 Paper Al 52

Paper B oo 53
......................... 54

[5.24 PaperD|. 55

Paper E| 56

5.3 Other Publicationsl 57

6 Conclusions and Future Workl 59
[6.1 Summary of Contribution| 59

Contents 13
(II Included Papers| 69
{7 Paper A |
| A Task Modelling Formalism for Industrial Mobile Robot |
| Applications| 71
(/1 Introductionl 73
(/2 Relatedworkl 74
(7.3 RTSG Modelling formalism| 76
(24 Conversion from RISGtoMILPl 77
(£4.1 _Conversion from RISGto MILPI. 77

[7.42 Replanning| 80

(2> Conversion from RISG o PDDL). 81
751 PDDL. 81

(252 Conversion from RTSG to PDDL) 81

(/5.3 Replanning| 87

6 Resullsl. . . o oottt e 88
[7.6.1 Experimentalsetup|. 88

[7.6.2 Experimental results| 92

[7.7 Conclusion and future work]. 94

8 Paper B |
| Task Roadmaps - Speeding up Task Replanning| 99
8.1 Introductionl 101
82 Relatedworkl 102
[8.3 Task modelling formalism and scheduling problem formulation| 103
[8.3.1 Robot Task Scheduling Graph| 103

[8.3.2 AND-pairs|, 103

[8.3.3 OR-pairs| 104

[8.3.4 Lock-pairs| 104

[8.3.5 The task scheduling problem| 104

[8.4 MILP representation| 106
4.1 Notation| 106

842 Problem formulationl 106

843 Generalconstraintsl 107

[8.4.4 Lock-pair definitions and constraints|. 108

[8.4.5 OR-pair definitions and constraints| 108

[8.4.6 Replanning constraints| 110

[8.5 PDDL representation| 110
851 PDDL introductionl 113

14 Contents

8.6 Task Roadmaps| 116
[8.6.1 Learningphasel 116
[8.6.2 Queryphasel 118

8.63 B&B and B&B-TRM

[8.7.2 Experimental setup| 127

[8.7.3 Expermmental results| 128

[8.7.4 Scalability investigation| 132

8.8 Conclusion and future workl. 132

9 Paper C |
[A Scalable Heuristic for Mission Planning of Mobile Robot Teams |
L] 137
1 Intr 100 139

9.2 Relatedworkl 140
(9.3 Problem description and assumptions| 142
9.4 Problem formulationl 143
[9.4.1 Decision variables and objective| 144

942 Generalconstraints| 144

[9.4.3 Delivery task constraints| 146

9.5 Heuristicapproach|, 147
[9.5.1 Task Clustering| 147

[9.5.2 Routing and robot selection| 148

[9.5.3 TSPmodelingl 149

[9.54 Balancing|. oL 150

[9.5.5 Algorithmic overview| 151

9.6 Experiments|., 151
9.7 Conclusionl 158

{10 Paper D |
| Risk Aware Planning of Collaborative Mobile Robot Applications |
[with Uncertain Task Durations| 163
(0.1 Introduction| L o 165
[10.2 Relatedworkl 166
[10.3 Modeling the planning problem|. 168
(10.3.1 Problem description and assumptions| 168

[10.3.2 Modeling a collaborative planning problem| 169

10.3.5 Preliminaries and defimtionsf 170

Contents 15

(10.4.1 Plan feasibility and dependencies with human tasks|. . 172

(10.4.2 The durationofaplan| 172

(10.4.3 Extended B&B algorithm| 174

[10.4.4 Risk aware plan selection|. 175

[10.4.5 Safe pruningmethod| 175

[10.5 Evaluationlo 177
(10.5.1 Usecasescenariol. oo v v ... 177

(10.5.2 Deterministic benchmark approach| 177

10.5.5 Monte Carlo simulationsf 178

(10.5.4 Evaluationresults|. 178

[10.5.5 Evaluation discussion]. 182

[10.6 Conclusionl 182

11 Paper E |
| Stochastic Scheduling for Human-Robot Collaboration in |
| Dynamic Manufacturing Environments| 187
LI Introduction] 189
[11.2 Motivating Example| 190
[11.3 Defining the Scheduling Problem|. 192
[11.3.1 Stochastic Modeling of Durations| 193

(11.3.2 Plan Duration Computation| 195

11 Plan Duration Bounds| 196

(11.3.4 Human Preferences and Ergonomic Constraints| 197

[IT.3.5 Objective Function| 197

[11.4 Solving the Scheduling Problem| 198
(11.4.1 GRASP Algorithm| 198

(11.4.2 Genetic Algorithm (GA)[. 199

[(11.4.3 Deadlock Search and Repair{ 200

LS Evaluationl o 202
(1.5.1 Numerical Results| 205

(1152 Evaluationdiscussion|. 206

(1.6 Conclusionl 206

Thesis

15

Chapter 1

Introduction

1.1 Overview of Thesis

The thesis contains two parts.

Part I presents the research and summarizes the contributions. Chapter
gives an introduction motivating and specifying the research challenge. Chap-
ter [2] presents the research context. Chapter [3| breaks down the research chal-
lenge into research questions and Chapter 4| explains the applied research pro-
cess and methods. The research questions are addressed with contributions
summarized in Chapter [5|and the thesis is concluded in Chapter [6]

Part II contains the collection of included papers, which provide the details
of the contributions and their evaluation. It lists papers A, B, C, D, and E in
chronological order.

1.2 Background and Motivation

Since the beginning of the 1950s, robots have been deployed to automate var-
ious industrial applications, for example, material handling, machine tending,
glueing, painting, laser cutting, arcwelding, and spotwelding. Over the years,
industrial robots have played a pivotal role in the automation and acceleration
of various production processes thanks to their adaptability, high precision, re-
peatability, and ability to work 24/7. From the third generation of industrial
robots, 1978 - 1999 [1], an extended ability for interaction with users, pro-
cess equipment, and the environment was established. High-level program-
ming languages increased the flexibility and standardized communication in-
terfaces, for example, fieldbuses and ethernet, enabled interaction with various
process equipment. Process control in coordination with highly accurate mo-

17

18 1.2. Background and Motivation

tion planning provided means for the successful deployment of sophisticated
applications requiring high precision. Environmental deviations, for example,
the location of a weld joint line, could be monitored with sensors and compen-
sated for in a reactive way with real-time path adjustments. This historically
successful approach to control robots is still widely used in industry today.
Despite the flexibility of the third robot generation, these robots are designed
to work in a fairly static environment within protective fences. All external
events affecting a robot’s planned actions are quite predictable and the robot’s
responses to them are pre-programmed.

In contrast to the third generation robots, today’s industrial robots are fur-
ther enhanced by dramatic increases in computing capacity, Artificial Intelli-
gence (Al), and connectivity to fog and cloud nodes [2]. These robots can
process high-volume data in real time, for example, point clouds from depth
cameras. The development of Al algorithms has enabled learning of robot be-
haviors, sophisticated logical reasoning, and an ability to devise long-sighted
plans to achieve assigned goals. Of growing importance is the trend of mass
customization [3], leading to a higher variability in robot tasks and smaller
batch sizes, which requires new ways to leverage the flexibility of robots with-
out compromising the output quality of assigned tasks. A robot’s operating
environment can be open and more accessible for humans, reducing the foot-
print and enabling new ways of human-robot collaboration. The growth of
collaborative applications has been supported by the development of safety
standards [4], providing guidance for risk assessments in the robot installa-
tion phase. With the trend of mass customization, the skills and adaptivity of
human workers are an important complement to handle unexpected problems
related to the potentially unique conditions that may appear in each process-
ing step. Human tasks may involve planning, supervision, problem-solving, or
assembly. They may cover up for robot limitations in skills or capacity, for ex-
ample, non-automated tasks or hard-to-automate tasks requiring a high level of
creativity, dexterity, or manipulation skills. The different skills of robots and
humans may be combined to solve complex tasks in a flexible and efficient
way [5, 6]. However, collaborative robot applications expose a more dynamic
environment that may interfere with robot actions in unexpected ways.

A wheeled platform equipped with a manipulator arm, known as a mo-
bile manipulator, extends the operational range and enables the handling of
more flexible and versatile tasks. This has opened up new types of industrial
applications, for example, service tasks in medical labs, see Figure[I.1] or lo-
gistic operations in warehouses. Mobile robots may also form fleets to perform
multi-robot missions. Besides increasing the performance of missions, a robot
fleet can increase the variety of tasks that can be handled through cooperation

Chapter 1. Introduction 19

Figure 1.1: A mobile manipulator performing laboratory tasks in a hospital environ-
ment.

or heterogeneous (diverse) robot abilities. Additionally, the redundancy of a
fleet may be used to safeguard a continuous ability to operate when robot errors
occur. For the sake of simplicity, a mobile manipulator is hereafter referred to
as a robot or a mobile robot, although these terms represent a wider scope.

In an industrial context, a mobile robot’s operating environment is ex-
pected to be fairly structured, but the exact conditions, for example, locations
of equipment or temporary obstacles, will vary in a dynamic working place. A
robot is further expected to encounter unexpected actions and events initiated
or caused by co-located humans, robots, or other actors. Such environmen-
tal uncertainties, in combination with shorter product cycles, increase the risk
of errors and may cause a significant variability in task durations. While hu-
man participation in collaborative robot applications introduces uncertainties,
for instance increased variation in task durations, it also provides advanced
skills and problem-solving capabilities that strengthen system robustness. For

20 1.3. Research Challenge

convenience, the term agent can represent a robot as well as a human in this
thesis.

Complex routing problems, dependencies between tasks, and coordinated
actions among robots and humans increase the need for long-sighted planning
to maintain efficient operation. To devise efficient and realistic plans, uncer-
tainties need to be taken into account.

1.3 Research Challenge

A transformation of technologies in industry is needed to handle increasingly
complex robot applications while coping with the uncertainties of dynamic
environments. The research challenge addressed in this thesis is:

How can we design an end-to-end, domain-expert-friendly planning
framework that enables industrial users to intuitively specify and organize
mobile-robot tasks, while generating efficient, scalable, dynamically
adaptable, and risk-aware plans for both single- and multi-robot systems
operating in uncertain, human-collaborative environments?

Chapter 2

Research Context

Task/Skill Execution Environment
Model

Motion Planning

Extrinsic
Sensors

Environment
(]

= Robot(s)

Torque
Figure 2.1: Scope of the thesis in the view of a robot system architecture.

Complex robotic production scenarios require/benefit from intelligent
planning, execution and control with autonomous decision making. In
Figure 2.1} a hierarchical architecture for a robot system is exemplified,
having a top-down information flow with feedback loops from extrinsic

21

22 2.1. Task Representations

sensors observing the environment and intrinsic sensors monitoring the
actuation of robots. At the top level a planning problem, given by a desired
production scenario or mission, is sent to a task planning component that
computes sequences of tasks, their allocation to robots and their mutual
dependencies. At the second level, a task execution component processes
tasks in the given order and generates target positions to guide robot
movements. At the third level, a motion planner generates trajectories to
reach target positions while considering obstacles in the environment. At the
fourth level, a motion planner regulates motor torques to move the robots
accordingly.

The thesis contributions belong to the top level in this architecture, which is
related to Task Planning and Multi Robot Task Allocation (MRTA). Addition-
ally, they cover related aspects of humans-in-the-loop. In this chapter these and
other related topics and research areas are presented, starting with Task Rep-
resentations in Section [2.I] Task Planning in Section [2.2] Multi Robot Task
Allocation in Section [2.3] Collaborative Robot Applications in Section [2.4]
Uncertainties in Robot Applications in Section Reactive Task Planning in
Section [2.6]and Proactive Task Planning in Section

2.1 Task Representations

For humans, it is convenient to reason about work descriptions for a robot
at an abstract level. They may specify goals to be reached, for example, "A
circuit board shall be on the table", while leaving out the details of how to
accomplish them. Alternatively, they may specify tasks to be performed, for
example, "Assemble a circuit board", which define what is to be done while
leaving out the details of how to accomplish it. For robots, tasks must be
specified at a more detailed, machine-interpretable level to enable the control
of robot movements and the use of required equipment, such as a robot-held
tool. In this thesis, we refer to a task as an abstract action relevant to industrial
or service applications, for example pick, place, fetch, deliver, inspect, screw,
or glue, etc. A task may be performed by a single agent or a group of agents.
When organizing the planning or execution of tasks, a model is typically
created with a modeling formalism that provides relevant elements, for ex-
ample tasks, objects, agents and goals. Such a model may indicate relations
between different elements, for example, "robot1" is holding "gripper", or con-
straints, such as, "task A" must be completed before the start of "task B". Sev-
eral modeling formalisms exist for different purposes [7], for example, pro-
gramming, policies and planning. Another important aspect to consider is the
intended users of a modeling formalism. More specifically, what are the users’

Chapter 2. Research Context 23

needs and areas of knowledge? For industrial applications, a user is often a
domain expert with in-depth knowledge about the process and the tasks the
robots shall perform. However, domain experts are not necessarily experts in
robot programming and other representations for planning and control of robot
applications.

2.1.1 Programming

With standard programming languages such as C++ or Python, or with spe-
cialized robot programming languages such as ABB’s RAPID [8], a desired
control behavior can be manually defined using structured programming. This
typically involves sequences of statements and constructs to control program
flow, including if-else and do—while. In block-based programming [9], a li-
brary of visual blocks representing useful constructs or routines, for example
a pick task, can be organized into a program structure. The building blocks
hide a substantial part of the underlying programming details to avoid expos-
ing the full complexity, for example, the detailed control of the gripper in the
pick task. Block-based programming is intended to simplify and reduce the
threshold for programming, which may be advantageous if an operator needs
to swiftly adapt the program to handle a new product. Closely related to blocks
representing tasks is the concept of a skill [10], which is a reusable implemen-
tation of a commonly used robot task. The skill encapsulates the detailed motor
and sensing operations needed to run the skill. An instantiation of a skill in a
robot program will typically require updating a set of skill parameters.

2.1.2 Policies

Some modeling approaches simplify the specification of complex control
behaviors, for example, State Machines [11], PetriNets [12], and Behavior
Trees [13]. In general, these approaches provide a reactive control policy,
indicating which action shall be taken for a given observed state of the
environment. Typically, a new action is triggered by a change of state. Actions
may be performed by programmed routines, thereby combining modeling
formalisms for policy and programming. In another common approach, a
policy can be generated from a Linear Temporal Logic (LTL) specification
indicating desired robot behaviors over time with logical statements [14].
Policies may also be learned to implement low level control behaviors for
complex tasks/skills, for example, picking up a garment with a multi-fingered,
robot-held gripper, where the policy output corresponds to actuated motor
torques. This can be accomplished with Reinforcement Learning, where a

24 2.2. Task Planning

policy is learned from repeated experiments in the real world or a simulation
environment [15]. The resulting policy-providing model, which can be
considered a black box without interpretable logic, may be combined with
higher-level modeling formalisms for policies or planning.

2.1.3 Planning

The purpose focused in this thesis is automated planning, also referred to as Al
Planning, where a plan is derived to reach a goal by selecting and organizing
tasks. Such a plan is typically more long-sighted than the look-ahead of a
policy. Al planning and related modeling formalisms, for example PDDL,
are covered in the next section. To integrate planning with plan execution,
modeling formalisms for programming, policies and automated planning may
be combined. In [16], a skill framework was combined with PDDL to enable
automated planning by converting skills to PDDL actions suitable for planning.

2.2 Task Planning

2.2.1 Al planning

Planning is a problem where task{] are selected and organized by anticipating
their outcomes to reach a goal. For humans, explicit planning requires some
effort and can be avoided if the goal is simple or can be reached with a well-
known procedure. Planning can also be avoided if the goal can be efficiently
approached in an exploratory manner. Planning may pay off if the goal is
complex, requires close cooperation, or if a bad selection of tasks entails high
risk or cost.

Al planning [17] is a computational study of the planning process. It pro-
vides computational methods, modeling tools, and algorithms for selecting
and organizing tasks into a plan. A plan, if executed from the current state,
which represents the observed situation of the robots and their environment,
will achieve the specified goal(s). A feasible (valid) goal reaching plan is not
necessarily the most efficient plan. To rank different plans, a plan cost can be
estimated, for example, the time required to perform a plan or the total energy
consumption required. A plan is optimal if it minimizes the cost.

If the planning approach is domain specific, representations in the model-
ing formalism are adapted for a specific type of problem, for example motion
planning. On the other hand, domain independent planning provides repre-
sentations and methods of more general nature that can be applied to planning

'Often referred to as actions.

Chapter 2. Research Context 25

problems of many different types, for example, planning of robots, satellites, or
patient appointments in healthcare. While domain dependent representations
limit the problem types that can be solved, they are typically more efficient
and therefore an important complement. The study of Al Planning is mostly
concerned with domain independent planning.

Closely related to planning is scheduling which sometimes represents the
same thing. In this thesis, the term scheduling is used about organizing tasks
that are selected beforehand, for example by a domain expert, whereas plan-
ning also identifies these tasks. Like planning, scheduling can involve deter-
mining the order of tasks and choosing which agents to assign them to.

2.2.2 Precedence constraints

Precedence Constraints (PCs) represent ordering restrictions between tasks
that must be satisfied by a plan. A PC is a common relation between tasks,
for example, in a sequential manufacturing process. There are four main types
of PCs [18] that may be required to hold for a pair of tasks, A and B:

1. Start-after-completion. A cannot start until B has completed. This is
the most common type of PC in the planning literature. Besides speci-
fying the order of A and B, it prevents them from concurrent execution.

2. Start-after-start. A cannot start until B has started. Neither prevents
nor requires concurrent execution.

3. Complete-after-start. A cannot complete until B has started. Neither
prevents nor requires concurrent execution.

4. Complete-after-completion. A cannot complete until B has completed.
Neither prevents nor requires concurrent execution.

PCs may be specified with a modeling formalism. In paper E, all four types
are present, while papers A to D consider intra-schedule start-after-completion
PCs.

2.2.3 Defining a planning problem

A computational approach to planning typically requires a problem formula-
tion that describes the problem in logical terms. This typically includes con-
straints, for example PCs, that must be satisfied by a feasible solution. Given
the problem formulation, an algorithm may search for a good feasible solution.

A planning problem may be represented in a purely mathematical form
as an optimization problem. Optimization problems include a set of decision

26 2.2. Task Planning

variables representing a parameterized plan. An algorithm is used to identify
the decision variables so that an objective function, describing the cost of a
plan, is minimized while a number of constraints, describing requirements for
aplan to be feasible, are satisfied. One type of optimization problem is a Mixed
Integer Linear Program (MILP), characterized by a mix of discrete and contin-
uous decision variables with a linear objective function and linear constraints.
A mathematical representation is indispensable for a researcher and included
in all papers of this thesis to precisely define targeted planning problems in a
compact format. However, mathematical expressions are rarely a convenient
way for domain experts to formulate or communicate mobile robot planning
problems, as illustrated in Section[2.1]

Problem Domain Definition Language (PDDL) [19] provides a modeling
formalism for planning problems that is developed within the Al Planning re-
search community. PDDL originates from classical planning [20], where the
state of the environment is represented with objects and binary facts indicating
the existence (or non-existence) of different relations between objects. To alter
the environment, an action involving a set of objects can be applied if the ac-
tion’s preconditions on a set of binary facts are fulfilled. The effect of applying
an action is the creation of a new set of facts and the removal of another set
of facts. A planning problem is defined by an initial state and a desired goal
state. A plan is a sequence of actions that gradually alter the environment from
the initial state to the goal state. PDDL has evolved over time to cover dif-
ferent aspects of planning problems, for example temporal planning [21, 22]
where actions have a duration and facts can be numerical, and probabilistic
effects [23].

In industry, tasks to be performed are typically well organized by domain
experts. Therefore, it makes sense to explicitly represent which tasks need to
be accomplished rather than specifying a goal state. A goal state specification
leaves room for a planner to reach the goal in "clever ways" with unexpected
actions that may be undesirable. For a domain expert, it can be convenient to
provide an overall work description at a suitable abstraction level where the de-
tailed planning is handled by automated planning, thereby combining the skills
of a domain expert with the efficient reasoning capacity of planner algorithms.
One approach to the modeling task of task planning problems, Hierarchical
task Networks (HTN) [24] takes this approach. In HTN, the goal is to perform
an abstract task, which is a task description on a higher abstraction level, for
example, a mission. A robot can only be assigned primitive tasks, which are
task descriptions on the lowest abstraction level. An abstract task is associ-
ated with alternative methods that can be used to decompose the task into a
partially or totally ordered set of sub-tasks. A partially ordered set of tasks

Chapter 2. Research Context 27

does not impose mutual task orderings unless required. The decomposition is
made recursively until there are only primitive tasks. A final ordering may be
planned to optimize the efficiency or it may be resolved during runtime. A
decomposition method has preconditions on the state that must be fulfilled to
be applied. Similar to PDDL actions, tasks have preconditions on facts and
effects that modify facts.

Both PDDL and HTN are powerful modeling approaches that simplify the
definition of planning problems compared to a purely mathematical approach.
However, there is a significant threshold for a domain expert to define a plan-
ning problem with PDDL or HTN. Especially for PDDL, it is hard to get an
intuition of the expected robot behavior from a planning problem.

One graph-based approach of simplifying a robot work description for a
task planning problem is Expression Tree, which recently was proposed and
investigated for a single-robot Traveling Salesperson Problem problem [25]
followed by a multi-robot Vehicle Routing Problem (VRP) [26]. This model-
ing approach has AND nodes, OR nodes, and sequence nodes with functional
similarities to the earlier modeling approach, Robot Task Scheduling Graph,
proposed in paper A and extended in paper C to model a VRP problem.

2.2.4 Motion planning and control

Motion planning is used to generate the path or trajectory of a robot when
moving between different locations in the environments, for example, within
a task or between different tasks. A robot trajectory should be safe and avoid
unintended collisions. An optimized trajectory could be fast or have a lim-
ited energy consumption. Motion control deals with the following of planned
trajectories using control loops that actuate motors while considering sensor
feedback indicating actual trajectories. This thesis does not contribute to mo-
tion planning or motion control, but these topics are intertwined with task plan-
ning. A task planner affects which movements shall be planned by the motion
planner as indicated in Figure[2.1] But task planning may also be affected by
motion planning. For example, estimated paths for moving between task lo-
cations may affect the selection and sequencing of tasks. In the research field
Task and Motion Planning (TAMP), task planning and motion planning are
combined to consider both problems in parallel [27], but typically at the price
of a highly increased problem complexity. TAMP may enable more flexible
plans, for example, for problems with highly constrained movements where
task selection and ordering matters for the generation of feasible motion plans.

With a mobile manipulator, motion planning needs to be combined for the
mobile base and the arm to perform planned tasks in the operational environ-

28 2.3. Multi Robot Task Allocation

ment [28]. To follow a motion plan towards a planned location, the robot needs
to keep track of its own location. A traditional robot with a stationary base uses
intrinsic sensors, for example, resolvers or encoders, to locate itself accurately
in the workspace. With a wheeled mobile base, a robot additionally needs ex-
trinsic sensors, such as laser scanners or depth cameras, to locate itself with
accuracy. Localization can be achieved by matching sensed features in the en-
vironment with a map of the workspace. Initially, the map may be created by
moving around the robot to explore the workspace with the extrinsic sensors.
Thereafter, the map can be maintained during operation with Simultaneous Lo-
calization And Mapping (SLAM) [29]. For example, if a new stationary object
has appeared in the workspace, the robot may still locate itself from visible
mapped features and the new object will over time become a part of the map if
it remains in the same position long enough.

2.3 Multi Robot Task Allocation

Planning or scheduling multi-agent missions are referred as Multi Robot Task
Allocation (MRTA) problems. MRTA problems can be categorized with four
different problem dimensions [30, 31] to indicate their complexity:

1. Task concurrency. Single-task robots (ST) must handle tasks sequen-
tially, while multi-task robots (MR) are able to perform multiple tasks in
parallel.

2. Task type. Single-robot tasks (SR) are handled by a single agent, while
multi-robot tasks (MR) require simultaneous cooperation with multiple
agents.

3. Assignment type. With instant allocation (1A) a task is not planned until
agents are available, while time extended assignment (TA) generates a
more long-sighted plan that allocates multiple tasks for agents.

4. Interrelatedness between tasks. In the simplest case, there are no
dependencies (ND) between tasks. With intra-schedule dependencies
(ID) tasks performed by the same agent have dependencies, for example
precedence constraints. With cross-schedule dependencies (XD) there
are dependencies between tasks allocated to different agents. With
complex dependencies a task can be recursively decomposed into a
set of dependent primitive tasks which cannot be further decomposed.
For example, "Clean the kitchen" can be decomposed into "Vacuum
the floor", "Mop the floor", "Clean the sink", "Clean the stove", etc.

Chapter 2. Research Context 29

"Vacuum the floor" must be ready before starting "Mop the floor" and
the primitive cleaning tasks may be allocated to different agents. There
may exist alternative decompositions for a task, representing different
ways to perform them, for example with another set of tasks.

The MRTA category for a planning problem can be specified by listing the
four characteristics. For example, in paper C an MRTA problem of category
ST-SR-TA-ID is investigated while in paper E a more complex MRTA problem
of category ST-MR-TA-XD is targeted. The other papers do not cover MRTA
problems, as they either plan a single robot (paper A and B) or use a static
allocation of tasks to agents (paper D).

The main variants of solving MRTA problems are centralized and decen-
tralized approaches [32]. In centralized approaches, there is one point of con-
trol for allocating tasks to robots while decentralized approaches organize the
allocation of tasks in a distributed manner, for example with auction-based
approaches. While decentralized approaches often are fast and scalable, cen-
tralized approaches may generate more efficient or even optimal plans. In this
thesis, centralized approaches are focused.

2.4 Collaborative Robot Applications

In collaborative robot applications, tasks are performed by both robots and hu-
mans in a shared or separated workspace. Different cooperation modes are pos-
sible [33]. While Cooperating, robots and humans share the same workspace
and goals but are occupied with different tasks. Additionally, they may con-
currently work on the same task in a Collaborative mode. If on the other hand
they do not interact, this can be referred as Coexistence [34]. If Synchronized,
a robot and a human perform tasks in a common part of the workspace, but
in a sequence not overlapping in time, for example a human handing over a
work piece for later processing by a robot. A common theme for most works
on planning and execution of collaborative robot applications is uncertainties
related to the interaction between robots and humans and how they can be
managed.

2.5 Uncertainties in Robot Applications

The industrial environment where a robot operates is assumed to be semi-
structured and dynamic. A semi-structured environment means the environ-
ment mainly contains objects that are known or can be identified, for example
a screw or a circuit board. However, observations may also contain features

30 2.5. Uncertainties in Robot Applications

that cannot be categorized, for example the tools of a service technician per-
forming temporary work. A dynamic environment means unexpected actions
from humans or other actors may take place that interfere with the actions
of the robot. Many of the uncertainties in the operational environment cause
routing and task durations of agents to become uncertain, which affects the
efficiency of a mission plan. In this section, we identify a relevant subset of
uncertainties discussed in the literature.

2.5.1 General uncertainties

From the time of the very first industrial robots, the positioning of parts to be
manipulated, often in repetitive cycles, has had a variation from the expected
location. Traditionally, such variations have been minimized with fixtures and
accurate sensor measurements. However, the need for flexibility to handle such
deviations increases, for example to handle the picking of objects from an un-
sorted pile (bin picking) with partly observable objects. Many works have fo-
cused on part position adaptivity [35]. Adaptivity may not be enough to avoid
errors from occurring requiring automatic recovery actions, for example re-
tries, or human assistance to restart operations [36]. Parts may also be missing
or hidden. The detection of incorrectly processed parts with inspection tasks
may require recovery actions that affect the through-put of a manufacturing
process. The arrival or cancellation of tasks or missions may have a stochas-
tic behavior requiring re-planning of ongoing activities. Planned movements
or routes of robots may be affected by temporary obstacles. Multiple agents
may cause temporary congestion at critical passages [35]. Sometimes, unex-
pected environmental conditions may require explicit exploration of an area,
for example to update the map or to find a missing object [37]. Tasks may
fail due to function failures of robots, tools, and other equipment [38]. With
the trend of mass customization, the required robot capabilities to perform a
task may depend on uncertain characteristics of objects to be manipulated, for
example size, shape, weight, softness etc. Heterogeneous robots with different
capabilities may be used to cover a larger variability of tasks, but uncertainties
in required capabilities poses risk of allocating the wrong agents [39]. Some
uncertainties in resource consumption [40], for example a robot’s battery en-
ergy consumption for executing a task in a dynamic environment, needs to be
managed in real-world scenarios.

2.5.2 Uncertainties in collaborative applications

Collaborative applications add additional uncertainties related to the interac-
tion between humans and robots. Regardless of the human-robot cooperation

Chapter 2. Research Context 31

mode, the proximity of humans may require stopping, speed reduction or re-
planning of robots to avoid a collision or limit its effects. The availability of
human agents and their task execution capacity are more uncertain due to hu-
man factors such as attention and fatigue. Human selected task sequences may
vary from time to time and between different humans [35]. Human capabilities
or skills may increase significantly over time from a growing experience [41].

2.6 Reactive Task Planning

While executing a plan a mobile robot needs to be reactive to unexpected con-
ditions or events, which requires a degree of autonomous behavior. The archi-
tecture example in Figure [2.T] has four hierarchical levels in a top-down order
given by task planning, task execution, motion planning and motion control.
Re-planning may be initiated at one of these levels without involving upper
levels, for example to adjust a trajectory, modify a task or re-plan a task se-
quence [42]. However, re-planning at a lower level, for example adjusting a
trajectory, may affect a higher-level plan, for example by altering the plan dura-
tion. Re-planning is typically faster and less complex at a lower level, requiring
less computational effort and less sophisticated corrective actions. However,
re-planning on a higher level may solve more complex planning problems and
increase the operational efficiency. In the following section, re-planning at the
task planning level is discussed.

2.6.1 Reactive task re-planning approaches

Reactive task re-planning approaches, for example paper B, is mainly focused
on detecting and resolving planning problems on the fly. Typically, knowledge
of uncertainties are not considered in the planning phase.

At some point along the execution of a plan, the observed state may not
match the expected state well enough to be able to continue with the current
plan, and a re-planning may be required before the execution can continue.
Another purpose of re-planning can be to optimize the plan for new state con-
ditions in an opportunistic way, where the old plan is still valid [43, 44].

The robot’s re-planning time needs to be limited since it has a direct impact
on the productivity, while the generation of an initial plan may be less critical.
The most straight forward approach to re-planning is to re-generate the plan
from scratch, where the initial conditions have been updated with the observed
state of the environment, including unexpected conditions and the effects of
the robot’s performed work [45, 46]. However, the complexity of a planning
problem is typically NP-hard, causing an exponential growth of planning time

32 2.7. Proactive Task Planning

with the problem size. In a runtime scenario with frequent re-plannings from
scratch, the planning time may become a bottleneck for efficient operation.

To speed up re-planning, some alternative strategies have been suggested
where [47] used a rule-based rearrangement of operations to repair the plan and
[48] proposed generating an initial plan with partially ordered tasks, combined
with a runtime algorithm generating alternative completely ordered plans and
selecting the one with the highest probability for success. For multi-agent mis-
sions, the concept of an adaptable task to manage different situational condi-
tions in uncertain environments was proposed by [49], using trigger functions
for a proper runtime selection of task adaption.

To speed up both planning and re-planning, heuristic algorithms can be
used to search for acceptable but suboptimal solutions, which is an approach
used in paper C. A heuristic algorithm typically explores a limited part of the
solution space guided by a promising strategy, a heuristics, to find feasible and
sometimes near-optimal solutions in a limited planning time. Meta-heuristic
algorithms, used in paper E, are more general suboptimal search strategies that
can be applied to a wide range of planning problems. They are designed to
explore the solution space effectively with elements of randomness, for ex-
ample Genetic Algorithms [50], Simulated Annealing [51] or Particle Swarm
Optimization [52]. The optimality and convergence of metaheuristic algorithm
typically depends on the tuning of some hyperparameters affecting the search
strategy.

2.7 Proactive Task Planning

Proactive task planning approaches consider knowledge of uncertainties in the
planning phase to provide more efficient plans. Proactive task planning does
not replace reactive task planning, which may coexist in a robot system archi-
tecture.

2.7.1 Related approaches

When performing an industrial task, it is supposed to change the state of the
environment in a desired way. For example, after a robot picks up an object, it
is expected to hold the object. However, in a dynamic environment tasks may
fail and the object may instead fall to the ground, which is an example of un-
certain task effects. Planning problems with uncertain effects can be modeled
with Markov Decision Processes (MDP) [53]. A probability is estimated for
every state s;y1 that may result from an action a; taken in an initial state s¢
at time ¢. Instead of generating a plan, a policy II(s;) is computed, indicating

Chapter 2. Research Context 33

what is the next action to take given the observed state. The policy is computed
to maximize an accumulation of rewards from future actions. Due to the com-
putational burden of evaluating alternative effects at each decision point, the
method does not scale well for long-sighted planning problems. Observations
may also be uncertain, for example an inaccurate observation may indicate that
the robot is holding the object, although it is on the floor. Partially Observable
Markov Decision Processes (POMDP) [54] is an extension of MDP where the
uncertainty of the observed state is modeled. In an industrial scenario, these
two types of uncertainties are prevalent and may cause errors while executing
planned tasks.

Industrial tasks are typically well defined and cannot be canceled if they
fail. Instead of modeling uncertain task effects or state observations, it can be
reasonable to model the uncertainty of task durations to account for a dynamic
environment which may cause re-planning of robot paths, retries of tasks or
assistance from a human supervisor to solve problems. Temporal uncertainties
are addressed in Probabilistic Simple Temporal Networks (PSTN) [55], which
is used to model scheduling problems with temporal constraints, for example a
deadline for an activity to be finished. Start and end times of tasks are modeled
as random variables with probability distributions. To solve a PSTN is to com-
pute a schedule for all tasks where the risk for violating temporal constraints
is minimized or bounded. Modeling task durations as random variables with
Gaussian probability distributions for task planning problems was suggested
by [56], where a set of approximate stochastic operators was used to add, mul-
tiply, maximize, etc. random variables in a computationally efficient way. In
another approach, triangular fuzzy sets were used to model uncertain durations
of human tasks and robot tasks in a collaborative robot application [57].

The uncertainty of resource consumption, for example battery consump-
tion, was recently addressed in a multi-agent scenario featuring critical tasks
and less critical tasks associated with both optimistic and pessimistic worse
case costs. A Mixed Criticality approach from the real-time community was
proposed, yielding proactive optimized plans providing guarantees to handle
all critical tasks in worst case scenarios [58].

2.7.2 Random variables

In this section, some definitions of random variables from probability theory
are introduced in an intuitive way, omitting details of the mathematical defi-
nitions provided in paper D and E. In these papers, random variables are used
to model and represent uncertainty of task and routing durations. Moreover,
operands for random variables, sum and max, are combined to compute prob-

34 2.7. Proactive Task Planning

abilistic makespans of planned missions incorporating sequential as well as
concurrent tasks.

2.7.2.1 Probability distribution

A random variable X may for example be modeled to represent the time re-
quired to move a mobile robot between two specific locations in a factory. This
movement time is uncertain for various reasons discussed in Section The
outcome of X is arandom value that can take any value matching possible out-
comes of the movement time. However, the probability for an outcome within
some time intervals is higher than others. This probability distribution of out-
comes can be modeled with a Probability Density Function (PDF), fx (t) > 0,
exemplified in the upper diagram of Figure [2.2] where the horizontal axis rep-
resents (outcomes of) time. The total area under the PDF curve is 1 and the
probability for an outcome of time less than ¢ is represented by the area below
the PDF curve up to ¢t. This probability can be computed by integrating the
PDF:

e =pix <= [feas 1)

The function F'x (t) is referred as the Cumulative Density Function (CDF) of
X and is visualized in the lower diagram of Figure[2.2] where CDF values, for
example 0.4, match the left-hand side area below the PDF curve.

For Definition 2.1, we assume X is a continuous random variable.
To model any distribution, for example from data collected by repeated
observations of actual or simulated outcomes, it is often convenient to let
X be modeled as a discrete random variable where the outcome is a set of
discrete values rather than a continuous range. For example, the outcomes
may be modeled with a set of equidistant discrete values, for example
Q = {0.0,1.0,..., N} where the values represent equidistant time intervals
{[-0.5,0.5),[0.5,1.5),... [N — 0.5, N 4+ 0.5) }. The probability distribution
is modeled with a discrete PDF, sometimes referred as a probability mass
function. The value of fx () represents the probability for an outcome within
the time interval containing ¢. The CDF becomes a sum of fx () values:

Fx()=PX <t]= Y fx(w) 22)

{weQ|w<t}

If a higher modeling resolution is desired, the interval length can be re-
duced to a proper value while increasing the size of €2 to represent the same
range of time.

Chapter 2. Research Context

35

Probability Density Function (PDF)

0.001 - A — X
R Y
0.0008 - --- X+Y
------- MAX(X,Y)
0.0006 -
0.0004 |
0.0002
0 I \\ ~

T T T T T
0 100 200 300 400 500

Cumulative Density Function (CDF)

T T T T T
0 100 200 300 400 500

Figure 2.2: Distributions of random variables.

36 2.7. Proactive Task Planning

2.7.2.2 Percentile

pr. is the k-th percentile of a probabilistic distribution fx () and is defined as:
pr=inf{t: Fx(t) >k}, 0<k<]l1.

In Figure 2.2] p4o ~ 130 is indicated in the CDF and PDF diagrams for X. ps
is the median value, which is the center point of a distribution.

2.7.2.3 Independence

Two random variables are independent if there is no correlation between their
outcomes. This relation can be illustrated with an example:

Assume a robot shall move between two locations with duration X and
thereafter pick an object with duration Y. If X and Y are independent random
variables, the observation of X must not alter the probability distribution of
Y. For example, a fast movement should not increase the probability for a fast
pick. Further assume Z represents the total duration of moving and picking,
thatis Z = X + Y. This is an explicit correlation between Z and X (or Z and
Y’) indicating their dependence, and a fast movement increases the probability
for a fast total time.

2.7.2.4 Stochastic dominance

Stochastic dominance is a relation where one random variable is larger than
(dominates) another. Y dominates X if V¢, Fy (t) < Fx(t) which is denoted
Y > X. This relation is exemplified in Figure [2.2] where the CDF curve of
Y never is above X. Stochastic dominance does not occur if the CDF curves
intersect.

2.7.2.,5 Sum

The sum of two independent random variables, X + Y, also referred as con-
volution, can be used to compute the total duration of two sequential tasks.
The sum becomes a distribution exemplified by the PDF and CDF diagrams in
Figure The discrete version of the sum is defined by:

f2() =PZ=1] =) fx(@)fr(t—w) 2.3)

weN

Chapter 2. Research Context 37

2.7.2.6 Maximum

The maximum of two independent random variables, max (X, Y"), can be used
to compute the total duration of two concurrent tasks, X and Y. The max-
imum becomes a distribution exemplified by the PDF and CDF diagrams in
Figure [2.2] It has a CDF defined by:

Fz(t) = Fx(t)Fy(t) (2.4)

Chapter 3

Research Questions

The general research challenge,

How can we design an end-to-end, domain-expert-friendly planning
framework that enables industrial users to intuitively specify and organize
mobile-robot tasks, while generating efficient, scalable, dynamically
adaptable, and risk-aware plans for both single- and multi-robot systems
operating in uncertain, human-collaborative environments?

is addressed with four specific research questions (RQs). These are listed
in the following, including a brief description of how they are tackled by the
thesis:

RQ 1: How can we design a graph-based modeling formalism that allows

domain experts to specify and organize industrial mobile-robot
tasks intuitively, and automatically translate models into both
MILP and PDDL planning representations?
The thesis introduces the Robot Task Scheduling Graph (RTSG)
formalism: a compact, visual, graph-based language for domain
experts to specify alternative task sequences without needing deep
programming knowledge. RTSG models consist of start/goal nodes,
AND- and OR-forks, and lock/join constructs to capture sequencing and
synchronization. A conversion pipeline then automatically translates
any RTSG model into (1) a Mixed Integer Linear Program and (2) a
Planning Domain Definition Language specification. A benchmark on a
mobile kitting application shows that the two resulting formulations are
equivalent in solution quality for representative solvers, and that RTSG
yields intuitive models.

Furthermore, an experiment correlating path-length cost models with
simulated makespan validates that RTSG’s cost abstraction faithfully

39

40

RQ 2:

RQ 3:

RQ 4:

guides plan efficiency.

What algorithms and data structures enable low-latency initial
planning and incremental replanning of mobile-robot tasks when
the environment changes?

To answer this, the thesis proposes Task Roadmaps (TRM), inspired
by probabilistic roadmaps in motion planning. A Branch-and-Bound
(B&B) algorithm first explores an RTSG-model-derived search space
offline, building a reuseable “roadmap” of partial plans. When
replanning is needed (e.g., a path is blocked or a task fails), the
B&B-TRM query phase identifies the current progress node and reuses
existing subtrees instead of expanding. In simulation with a mobile
manipulator kitting scenario, B&B-TRM replanning is orders of
magnitude faster than solving from scratch with either a MILP solver or
a PDDL planner.

How can we efficiently plan a fleet of robots for a multi-agent mis-
sion, ensuring high-quality solutions within bounded computation
time?

The thesis develops a cluster-and-balance heuristic:

* Supervised clustering of tasks into k groups (one per robot) using
a Variable Neighborhood Search-based adaptation of k-medoids,
which respects separation/precedence constraints.

* Route planning within each cluster via a TSP solver for each robot.

* Conflict resolution if multiple clusters pick the same robot (recom-
pute the cheapest cluster).

 Alternative-task pruning to remove redundant branches.

* Load balancing by iteratively moving tasks (with highest gain/loss
ratio) between robot sequences to reduce makespan variance.

On problems up to 200 tasks and 5 robots, this heuristic finds plans
within a few seconds that are near-optimal compared to Gurobi’s MILP
solver (which times out or runs for minutes), with planning-time-to-
makespan ratios under 10%. The heuristic’s makespan deviation from
optimal shrinks as task counts grow, while the MILP solver becomes
infeasible for online use.

How can we incorporate stochastic task-duration models and
human risk preferences into a planning framework to generate,
evaluate, and select collaborative robot-human plans that balances

Chapter 3. Research Questions 41

makespan efficiency and uncertainty?
Two layered contributions tackle this.

First, in Paper D, we focus on the plan generation under uncertainty.
We propose an extension of the RTSG model to include human tasks
and &JS (join-sync) nodes that block robot actions until humans com-
plete their work. The paper introduces stochastic durations of tasks, with
robot and human task times modeled as independent random variables
with generic, refinable distributions. The paper then proposes a solver
based on a Branch-and-Bound search over stochastic RTSG that gen-
erates all non-dominated plans (in terms of first-order stochastic domi-
nance) by safely pruning plans whose CDFs are dominated by others.

Second, Paper E extends the above to multiple robots and humans, han-
dling cross-schedule dependencies. The paper introduces a GRASP
heuristic, a deadlock detection & repair algorithm, and merge/prune op-
erators to bound the complexity of random-variable combinations, and
it provides analytical bounds (upper/lower) on makespan distributions
under dependence assumptions, ensuring robust schedule executability
with quantified risk.

Together, these ensure the planning framework not only produces ef-
ficient nominal plans but also equips domain experts with risk-aware
choices grounded in probabilistic performance guarantees.

Chapter 4

Research Process and Methods

In this thesis a constructive research approach is used, which is a solution-
oriented way to tackle the research challenge. In a research process, solutions
are devised to improve some aspects, for example simplicity, performance or
robustness of artifacts, for example a task planning methodology or algorithm.
The improvements are verified with suitable research methods.

4.1 Research Process

Research questions are defined to guide the research process, see figure 4.1]
which is a repeated cycle of sequential steps:

1. Develop a research question: Devise an initial research question. Find
and analyze state-of-the-art with scientific literature studies. Are there
interesting aspects of the research question that have not been prop-
erly addressed before? Are there promising solution ideas that have not
been properly explored before? Refine the research question to target a
promising solution idea.

2. Develop a solution: Devise and develop a solution to the research ques-
tion. A solution must include novel elements that improve aspects of
alternative approaches. This is often the most time-consuming step, re-
quiring iterative development and testing of solution components, the
development of a realistic validation framework and the integration of
alternative approaches to be compared.

3. Validate the solution: Check correctness of claimed solution aspects.
Compare with relevant alternative approaches.

43

44

4.2. Research Methods

. Develop
Discuss . h Develop
future works | @ resedre a solution

u .
question
A TS /I\ P
~ ’
~ 1 ’,
.~ 1 .
~ ’,
~ 1 ’,
. 1 .
~ ’,
~ 1 4
. 1 .
~ 4
~ 1 ’
~ 1 .
-~ k4
~ 1 ’
~ 1 4
~ ’
~ 1 ’
-~ 1 4
-~ 4
~ 1 ’
~ 1 4
~ ’
LN 1 2 h 4
. . peeeeemseea==a > .
Submit , Discuss |, Verify the
. . A A .
contributions the results solution

Figure 4.1: The main steps of the research process.

4. Discuss the results: Did our devised solution address the research ques-

tion effectively? If the answer is no, it may be possible to improve or
change the solution. On other occasions, the research question needs to
be refined or changed. Sometimes, a developed solution may be more
promising for another research question. Are the results valid? If not,
the solution may have to be validated in a new way. The next step de-
pends on the discussion and will lead to a new iteration in the research
process. Eventually, the next step is to submit contributions.

. Submit contributions: Document contributions and findings in the con-

text of related works. Papers are submitted to conferences or journals to
undergo a peer review process. Ultimately, submitted papers become
published and extend the knowledge of the research community

. Discuss future work: Discuss future work in the light of previous re-

sults and peer reviews. Did our results generate ideas for new solutions
and/or research questions? This discussion will feed the next cycle of
the process with potential updates of the active set of research questions
and solution ideas.

4.2 Research Methods

Literature surveys form the basis to find the state-of-the-art in relevant research
areas. On top of that, controlled experiments and theoretical proofs are the re-

Chapter 4. Research Process and Methods 45

search methods used in this thesis. All papers include controlled experiments
where a suggested approach is compared with state-of-the-art approaches. Pa-
per D and E additionally provide theoretical proofs, thereby contributing to
establish a theoretical ground for stochastic planning and scheduling.

4.2.1 Experiments

A general goal of an experiment, that matches most experiments in this thesis,
is: Analyze the planning of tasks for industrial mobile robots in collaborative
industrial applications by comparing a proposed solution with the state-of-the-
art in terms of planning efficiency and plan optimality/robustness.

Many experiments are focused on validating the outcome of planning al-
gorithms running in isolation, but with realistic input data from industrially
relevant use cases. Other experiments, in paper A and B, are executed as
part of simulations running on top of the software platform Robot Operating
System (ROS)[59], with ROS navigation stack[60] for mobile navigation and
Gazebo[61] for modeling and simulation of robots and the application environ-
ment. Using simulations reduces the cost and time to develop and verify so-
lutions compared to real systems. However, simulations avoid some important
challenges a real system set-up will encounter, for example object recognition
and classification from sensor input. No experiments are run on real robots,
which is an important future step, for example, to validate system behavior in
terms of performance, robustness, resilience and human perception.

Chapter 5

Thesis Contributions

In this section, the contributions are described, and their connection to the
research questions as well as to the included papers are indicated.

5.1

Cl:

C2:

C3:

Contributions

Robot Task Scheduling Graph (RTSG) Formalism. An intuitive,
graph-based language for domain experts to encode mobile-robot
workflows using start/goal nodes, AND/OR forks, and lock/join
constructs—automatically compiled into both MILP and PDDL
planning problems. A benchmark on a kitting use case shows that
RTSG models yield equivalent-quality plans in both representations,
and simulation confirms that its cost abstraction accurately predicts
makespan.

Task Roadmaps for Incremental Replanning. A two-phase
Branch-and-Bound approach (B&B-TRM) that precomputes and stores
a reusable search graph (“roadmap”) of partial plans. When replanning
is needed, it reuses existing branches instead of expanding—achieving
replanning times orders of magnitude faster than scratch-built MILP or
PDDL solvers while preserving optimality.

Cluster-and-Balance Heuristic for MRTA. A scalable, hybrid
heuristic that (1) clusters tasks into robot-specific groups via a
constraint-aware k-medoids variant, (2) solves intra-cluster routes
as TSP instances, (3) resolves robot conflicts, (4) prunes redundant
alternatives, and (5) iteratively shifts tasks to balance makespan. On

47

48 5.1. Contributions

problems up to 200 tasks and 5 robots, it computes near-optimal
schedules in seconds versus minutes for MILP.

C4: Risk-Aware Single-Robot Planning with Humans. An RTSG exten-
sion for human-robot collaboration that tags human tasks and &JS sync
nodes, models all durations as random variables, and uses a stochas-
tic Branch-and-Bound to enumerate plans under first-order stochastic
dominance. From this Pareto front, a planner selects a plan via a user-
specified risk level or CDF-based comparison, backed by a safe pruning
theorem and Monte Carlo validation.

C5: Stochastic Scheduling Framework for Multi-Agent Teams. Building
on C4, this framework handles multiple robots and humans by (a) defin-
ing cross-schedule precedence operators, (b) introducing GRASP and
genetic heuristics, (c) implementing a deadlock detection & repair rou-
tine, and (d) deriving analytic upper/lower bounds on makespan distribu-
tions under uncertainty. It generates executable, risk-bounded schedules
in realistic production scenarios.

The contributions are mapped to the research questions in Table [5.1]

5.1.1 C1: Robot Task Scheduling Graph (RTSG) Formalism

The first contribution is the result of RQ 1: How can we design a graph-based
modeling formalism that allows domain experts to specify and organize in-
dustrial mobile-robot tasks intuitively, and automatically translate models into
both MILP and PDDL planning representations? Defining a planning prob-
lem, with PDDL or other relevant approaches in the literature, for a mobile
robot operating in an industrial application is a complex task for a domain
expert. This contribution proposes an intuitive graph-based task modeling for-
malism, Robot Task Scheduling Graph (RTSG), that is used to model the work-
flow of a robot application using start/goal nodes, AND/OR forks, lock/join
constructs and where edges represent precedence constraints. Importantly,
RTSG leverage automated planning to find efficient plans. We demonstrate
how an RTSG model can be automatically converted into planning problems
with two different representations, MILP and PDDL. The approach is investi-
gated in a benchmark study where a kitting application is modeled with RTSG.
The study compares one MILP solver and two PDDL planners, and the results
support a hypothesis that the two conversions are equivalent. A complementary
simulation study corroborates the correlation between estimated and simulated
makespan of a generated plan.

Chapter 5. Thesis Contributions 49

5.1.2 C2: Task Roadmaps for Incremental Replanning

The second contribution is the results of RQ 2: What algorithms and data
structures enable low-latency initial planning and incremental replanning of
mobile-robot tasks when the environment changes? This contribution explores
the idea that replanning often is more time critical than making an initial plan.
The search for efficient plans in a planning algorithm typically involves the
expansion of a search space in the form of a tree or a graph. We propose the
concept of Task Roadmaps, which is to keep the search space expanded dur-
ing initial planning and reuse it when replanning is needed. The concept is
demonstrated with a novel Branch-And-Bound algorithm, B&B-TRM, able to
plan and replan planning problems defined with an RTSG model. A benchmark
study of a realistic, simulated kitting application compares the replanning per-
formance of the proposed B&B-TRM algorithm with a MILP solver, a PDDL
planner and initial planning with B&B. The study indicates that B&B-TRM
is able to generate plans of equivalent optimality within a fraction of the plan-
ning time of the other approaches. Complementary experiments investigate the
limitations of the approach for scaled up problem instances.

5.1.3 C3: Cluster-and-Balance Heuristic for MRTA

The third contribution is the result of RQ 3: How can we efficiently plan a
fleet of robots for a multi-agent mission, ensuring high-quality solutions within
bounded computation time? This contribution is three-fold. First, a new in-
dustrially relevant variant of the Vehicle Routing Problem (VRP) is modeled
with a MILP formulation. The proposed variant is the first to include OR-type
precedence constraints with alternative predecessors. Secondly, the problem
is represented with a Robot Task Scheduling Graph with proposed extensions
and interpretations for the modeling of multi-robot applications. The third and
the main contribution is the proposal of a heuristic algorithm able to generate
suboptimal plans of high quality with a limited planning time small as well as
scaled up problem instances. The algorithm is empirically evaluated against a
MILP solver in terms of solution optimality and planning time.

5.1.4 C4: Risk-Aware Single-Robot Planning with Humans

The fourth contribution is the result of RQ 4: How can we incorporate stochas-
tic task-duration models and human risk preferences into a planning frame-
work to generate, evaluate, and select collaborative robot-human plans that
balances makespan efficiency and uncertainty? With this contribution, we
leverage modeling of uncertain task durations as independent random variables

50 5.1. Contributions

with unrestricted distributions, which can be refined from future observations.
These stochastic task durations are used to pro-actively compute and select
the best plan for a robot assisting human workers, while considering the risk-
willingness of a human planner. The main contribution is a methodology for
stochastic task planning: Given an RTSG work description, a B&B algorithm
(extended from paper B) computes the best plans without a stochastic ordering.
From this Pareto front candidate set, a final plan is selected while considering
the risk willingness of a human planner. To support this methodology, theo-
retical contributions provide a safe pruning strategy with a guarantee to never
stop the exploration of a better plan, and a novel selection criterion, stochastic
set dominance, for full-length plans.

5.1.5 C5: Stochastic Scheduling Framework for Multi-Agent
Teams

The fifth contribution is the result of targeting RQ 3 and RQ 4 in combina-
tion. The contribution is a novel stochastic scheduling framework targeting
real-world collaborative, multi-agent manufacturing applications with several
types of cross-schedule dependencies, multi-agent tasks and which considers
individual human constraints for preferred activities and desired idle time. It
reuses the modeling of uncertain task durations (from C4) as independent ran-
dom variables. The outcome is an optimized pro-active schedule for a de-
sired risk-level, with a realistic makespan estimate given as a probability dis-
tribution. Further, the framework provides theoretically safe bounds on such
makespan distributions which arises from dependencies between aggregated
random variables in the composition of the makespan. A novel deadlock detec-
tion and repair algorithm ensures executability of schedules, preventing cyclic
dependencies that may arise between a set of assigned tasks caused by an un-
desired combination of agent task sequences and precedence constraints. A
novel GRASP heuristics, which is benchmarked against a genetic algorithm,
provides optimized schedules in a limited time.

Table 5.1: Mapping between contributions and research questions.

RQ1 RQ2 RQ3 RQ4
Cl| X

2 X

C3 X

c4 X
Cs X X

Chapter 5. Thesis Contributions 51

RQ 1 | Paper A - - - - - 5 RQ 3 5| Paper C
RQ2 3 Paper B
—— Leadingto Paper E

...... » Influenced by

--------- > Contribution reuse

Figure 5.1: Dependencies between research questions and papers.

5.2 Included Papers

In this section, the papers included in the thesis are outlined. These papers are
listed and mapped to the contributions in Table

Table 5.2: Mapping between papers and contributions.

Cl C2 C3 C4 G5
Paper A | X
Paper B X
Paper C X
Paper D X
Paper E X

An overview of the dependencies between research questions and papers is
provided in Figure[5.1] Additionally, it displays the influence between papers,
indicating the reuse of contributions. These dependencies and their causes,
which are discussed below, reflect the exploratory nature of the research pro-
cess — resembling a mobile robot navigating and mapping an unknown envi-
ronment where the outcome is unknown beforehand and revealed on the go.

RQ 1 had a first version and a final version with major differences, and
so did the resulting paper A. The first version of RQ 1 was abandoned as a
consequence of constructive reviewer feedback. RQ 2, leading to a first and a
final version of paper B, was influenced by a planning algorithm introduced in
the first version of paper A but removed from its final version. The final RQ

52 5.2. Included Papers

1 was inspired by a review of the first paper B which highlighted the applied
RTSG modeling formalism, introduced as a sub-contribution in the first version
of paper A, as a very interesting idea. The final RQ 1 entailed a major rework
of paper A into the final version, with the RTSG task modeling formalism and
its conversions to MILP and PDDL as the main contribution. Paper B was
extended into a journal paper in the final version. RQ 3, leading to paper C,
was inspired by a review of the final paper A which suggested an extension
into multi-agent planning. RQ 4, leading to the stochastic planning approach
in paper D, was mainly influenced by the desire to address the challenge of
uncertainties in collaborative robot applications. Paper E addressed RQ 4 but
also RQ 3, extending the stochastic modeling framework of paper D into multi-
agent scheduling.

The RTSG modeling formalism from paper A was reused by paper B and
further extended by paper C and D. Paper D extended the B&B algorithm in-
troduced in paper B by adding a stochastic modeling framework. Paper E did
not reuse B&B but extended the stochastic modeling framework. Similar to
paper A, the initial work of paper E explored the idea of a novel task model-
ing formalism, but as a complement (to RT'SG) for manufacturing processes.
However, this part was eventually turned into a motivating example for the
proposed multi-agent stochastic scheduling framework.

5.2.1 Paper A

Title: A Task Modelling Formalism for Industrial Mobile Robot Applications.
Authors: Anders Lager, Alessandro V. Papadopoulos, Giacomo Spampinato
and Thomas Nolte.

Status: In 20th International Conference on Advanced Robotics (ICAR),
2021.

Abstract: Industrial mobile robots are increasingly introduced in factories
and warehouses. These environments are becoming more dynamic with
human co-workers and other uncertainties that may interfere with the
robot’s actions. To uphold efficient operation, the robots should be able
to autonomously plan and replan the order of their tasks. On the other
hand, the robot’s actions should be predictable in an industrial process. We
believe the deployment and operation of robots become more robust if the
experts of the industrial processes are able to understand and modify the
robot’s behaviour. To this end, we present an intuitive novel task modelling
formalism, Robot Task Scheduling Graph (RTSG). RTSG provides building
blocks for the explicit definition of alternative task sequences in a compact
graph format. We present how such a graph is automatically converted to a

Chapter 5. Thesis Contributions 53

task planning problem in two different forms, i.e., a Mixed Integer Linear
Program (MILP) and a Planning Domain Definition Language specification
(PDDL). Converted RTSG models of a mobile kitting application are used
to experimentally compare the performance of one MILP planner and two
PDDL planners. Besides providing this comparison, the experiments confirm
the equivalence of the converted MILP and PDDL problem formulations.
Finally, a simulation experiment verifies the assumed correlation between a
cost model, based on path lengths, and the makespan.

My role I developed the solution, compared the approach with
state-of-the-art, derived the theory and performed the experiments.
Alessandro came up with the initial idea to investigate a graph-based
task modeling approach. All co-authors supervised the findings of this
work, discussed the results and contributed to the development of the final
manuscript.

5.2.2 Paper B

Title: Task Roadmaps - Speeding up Task Replanning.

Authors: Anders Lager, Giacomo Spampinato, Alessandro V. Papadopoulos
and Thomas Nolte.

Status: In Frontiers in Robotics and Al, section Robotic Control Systems,
2022.

Abstract: Modern industrial robots are increasingly deployed in dynamic
environments, where unpredictable events are expected to impact the robot’s
operation. Under these conditions, runtime task replanning is required
to avoid failures and unnecessary stops, while keeping up productivity.
Task replanning is a long-sighted complement to path replanning, which
is mostly concerned with avoiding unexpected obstacles that can lead to
potentially unsafe situations. This paper focuses on task replanning as a
way to dynamically adjust the robot behaviour to the continuously evolving
environment in which it is deployed. Analogously to probabilistic roadmaps
used in path planning, we propose the concept of Task roadmaps as a method
to replan tasks by leveraging an offline generated search space. A graph-based
model of the robot application is converted to a task scheduling problem to be
solved by a proposed Branch and Bound (B&B) approach and two benchmark
approaches: Mixed Integer Linear Programming (MILP) and Planning
Domain Definition Language (PDDL). The B&B approach is proposed to
compute the task roadmap, which is then reused to replan for unforeseeable

54 5.2. Included Papers

events. The optimality and efficiency of this replanning approach are
demonstrated in a simulation-based experiment with a mobile manipulator in a
kitting application. In this study, the proposed B&B Task Roadmap replanning
approach is significantly faster than a MILP solver and a PDDL based planner.

My role I conceived the presented idea, developed the theory, and
performed the experiments. Alessandro and Giacomo encouraged me to
investigate how to improve replanning scenarios for the B&B algorithm.
Giacomo conceived the idea to investigate the synergies of the replanning
concept with Probabilistic Roadmaps. All co-authors supervised the findings
of this work, discussed the results and contributed to the development of the
final manuscript.

5.2.3 Paper C

Title: A Scalable Heuristic for Mission Planning of Mobile Robot Teams.
Authors: Anders Lager, Branko Miloradovié¢, Alessandro V. Papadopoulos,
Giacomo Spampinato and Thomas Nolte.

Status: In 22nd World Congress of the International Federation of Automatic
Control (IFAC), 2023.

Abstract: In this work, we investigate a task planning problem for assigning
and planning a mobile robot team to jointly perform a Kkitting application
with alternative task locations. To this end, the application is modeled as a
Robot Task Scheduling Graph and the planning problem is modeled as a
Mixed Integer Linear Program (MILP). We propose a heuristic approach to
solve the problem with a practically useful performance in terms of scalability
and computation time. The experimental evaluation shows that our heuristic
approach is able to find efficient plans, in comparison with both optimal and
non-optimal MILP solutions, in a fraction of the planning time.

My role I suggested the approach, modeled and developed the
solution and performed all experiments. Branko provided modeling input on
the makespan objective and suggested investigating the usage of TSP solvers
for single route computations. Alessandro encouraged me to investigate the
modeling aspects with RTSG. All authors supervised the work, discussed the
results, and contributed to the final manuscript.

Chapter 5. Thesis Contributions 55

5.2.4 PaperD

Title: Risk Aware Planning of Collaborative Mobile Robot Applications with
Uncertain Task Durations.

Authors: Anders Lager, Branko Miloradovi¢, Giacomo Spampinato, Thomas
Nolte and Alessandro V. Papadopoulos.

Status: In 33rd IEEE International Conference on Robot and Human
Interactive Communication (RO-MAN), 2024.

Abstract: The efficiency of collaborative mobile robot applications is
influenced by the inherent uncertainty introduced by humans’ presence and
active participation. This uncertainty stems from the dynamic nature of the
working environment, various external factors, and human performance
variability. The observed makespan of an executed plan will deviate from any
deterministic estimate. This raises questions about whether a calculated plan
is optimal given uncertainties, potentially risking failure to complete the plan
within the estimated timeframe. This research addresses a collaborative task
planning problem for a mobile robot serving multiple humans through tasks
such as providing parts and fetching assemblies. To account for uncertainties
in the durations needed for a single robot and multiple humans to perform
different tasks, a probabilistic modeling approach is employed, treating
task durations as random variables. The developed task planning algorithm
considers the modeled uncertainties while searching for the most efficient
plans. The outcome is a set of the best plans, where no plan is better than the
other in terms of stochastic dominance. Our proposed methodology offers
a systematic framework for making informed decisions regarding selecting
a plan from this set, considering the desired risk level specific to the given
operational context.

My role I proposed the research question (RQ 4) for this novel
direction of the thesis, made the literature review and proposed the targeted
knowledge gap, that is a stochastic modeling of task durations for task
planning. I proposed the use case scenario and developed the modeling and
the planning approach. I developed the theory and performed all experiments.
Alessandro suggested to investigate convolutions, stochastic dominance and
assisted in deriving the MAX operator. All authors supervised the work,
discussed the results and contributed to the final manuscript.

56 5.2. Included Papers

5.2.5 Paper E

Title: Stochastic Scheduling for Human-Robot Collaboration in Dynamic
Manufacturing Environments.

Authors: Anders Lager, Branko Miloradovi¢, Giacomo Spampinato, Thomas
Nolte and Alessandro V. Papadopoulos.

Status: Accepted by 34th IEEE International Conference on Robot and
Human Interactive Communication (RO-MAN), 2025.

Abstract: Collaborative human-robot teams enhance efficiency and
adaptability in manufacturing, but task scheduling in mixed-agent systems
remains challenging due to the uncertainty of task execution times and
the need for synchronization of agent actions. Existing task allocation
models often rely on deterministic assumptions, limiting their effectiveness
in dynamic environments. We propose a stochastic scheduling framework
that models uncertainty through probabilistic makespan estimates, using
convolutions and stochastic max operators for realistic performance
evaluation. Our approach employs meta-heuristic optimization to generate
executable schedules aligned with human preferences and system constraints.
It features a novel deadlock detection and repair mechanism to manage
cross-schedule dependencies and prevent execution failures. This framework
offers a robust, scalable solution for real-world human-robot scheduling in
uncertain, interdependent task environments.

My role I developed the motivating manufacturing scenario and the
general theory. Specifically, I found the inherent problem of dependencies
between operands of stochastic operators, which prevented a straight-forward
analytical makespan computation. To overcome, I developed the novel
makespan computation approach and suggested it would represent a safe
stochastic upper bound if we could prove a basic mathematical property of
the stochastic max operator. This proof was derived by Alessandro, and
he additionally provided a lower bound for the max operator. Supported
by these results, I developed the proof of the upper and lower bounds of
the novel makespan computation approach and incorporated these bounds
into the cost function to provide conservative estimates of both makespan
and human idle times. Alessandro suggested to investigate how to consider
preferences of human agents. Branko was helpful in the development of the
genetic algorithm and suggested to investigate a GRASP based solution of the
planning problem. I did all programming and developed all experiments. All
authors supervised the work, discussed the results and contributed to the final
manuscript.

Chapter 5. Thesis Contributions 57

5.3 Other Publications

Publications listed here are not included in the licentiate thesis:

* Anders Lager, Alessandro V. Papadopoulos, Giacomo Spampinato and
Thomas Nolte. Towards Reactive Robot Applications in Dynamic En-
vironments. In 24th IEEE International Conference on Emerging Tech-
nologies and Factory Automation (ETFA), 2019.

* Anders Lager, Alessandro V. Papadopoulos, Giacomo Spampinato and
Thomas Nolte. loT and Fog Analytics for Industrial Robot Applications.
In 25th IEEE International Conference on Emerging Technologies and
Factory Automation (ETFA), 2020.

Chapter 6

Conclusions and Future Work

In this thesis the general challenge,

How can we design an end-to-end, domain-expert-friendly planning
framework that enables industrial users to intuitively specify and organize
mobile-robot tasks, while generating efficient, scalable, dynamically
adaptable, and risk-aware plans for both single- and multi-robot systems
operating in uncertain, human-collaborative environments?

is addressed with four research questions (RQ1-RQ4) and five resulting
contributions (C1-C5).

6.1 Summary of Contribution

RQ1 is identified from the desire to assist domain experts in the creation
of intuitive robot work descriptions while leveraging the efficiency of auto-
mated planning: How can we design a graph-based modeling formalism that
allows domain experts to specify and organize industrial mobile-robot tasks
intuitively, and automatically translate models into both MILP and PDDL
planning representations? The resulting contribution (C1) is the Robot Task
Scheduling Graph (RTSG) Formalism and its conversions to MILP and RTSG.
Extensive experiments confirm that the proposed conversions yield equivalent
plan optimality with state-of-the-art solvers/planners.

RQ?2 targets the need for efficient planning and replanning of highly com-
plex task planning problems by leveraging the data structures of algorithmic
search spaces: What algorithms and data structures enable low-latency ini-
tial planning and incremental replanning of mobile-robot tasks when the en-
vironment changes? The resulting contribution (C2) is Task Roadmaps for
Incremental Replanning. Experiments indicate the re-planning time of the

59

60 6.2. Future Work

proposed algorithm, B&B-TRM, is significantly faster than B&B, PDDL and
MILP planners/solvers.

RQ3 extends planning scenarios to include multi-agent applications: How
can we efficiently plan a fleet of robots for a multi-agent mission, ensuring
high-quality solutions within bounded computation time? One contribution
(C3) is a Cluster-and-Balance Heuristic for MRTA. It is used to solve a novel
type of VRP problem, modeled with RTSG as a multi-agent kitting application.
Benchmark Experiments with a proposed MILP problem formulation verify
near-optimality of plans and superior planning times with good scalability.

RQ4 is identified from the desire to manage task planning in dynamic envi-
ronments with humans in the loop of task execution and planning: How can we
incorporate stochastic task-duration models and human risk preferences into
a planning framework to generate, evaluate, and select collaborative robot-
human plans that balances makespan efficiency and uncertainty? One con-
tribution (C4) is Risk-Aware Single-Robot Planning with Humans. It is used
to search for and select the best proactive plans for any risk willingness level.
To capture the task execution uncertainty, task durations are modeled as unre-
stricted random variables in a workflow modeled with RTSG for a single robot
assisting multiple humans. The algorithmic search approach includes a the-
oretically safe pruning strategy based on stochastic dominance and is bench-
marked against a deterministic version.

Finally, RQ3 and RQ4 are addressed in combination, leading to the
contribution Stochastic Scheduling Framework for Multi-Agent Teams (C5).
Extending the stochastic modeling of task durations from C4, it provides a
proactive, risk-aware and deadlock-free scheduling approach for a real-world
multi-agent and collaborative production scenario with various types of
cross-schedule task dependencies. Derived stochastic makespans provide
conservative estimates within proven theoretical bounds. Additionally,
human ergonomics (preferred idle time) and preferred human activities are
considered by the scheduling approach.

6.2 Future Work

Future work may investigate the following RQs, from technical aspects to a
broader question:

* How input distributions can be efficiently learned and improved over
time?

* How to efficiently combine the strengths of proactive and reactive plan-
ning?

Chapter 6. Conclusions and Future Work 61

* What are the key challenges of human-robot and human-system inter-
actions for a sustainable, human-centric and efficient real-world, indus-
trial, collaborative multi-agent system ?

62

Bibliography

Bibliography

[1]

(2]

(3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

Alessandro Gasparetto and Lorenzo Scalera. A brief history of industrial
robotics in the 20th century. Advances in Historical Studies, 8(1):24-35,
2019.

Anders Lager, Alessandro Papadopoulos, and Thomas Nolte. Iot and
fog analytics for industrial robot applications. In 2020 25th IEEE Inter-
national Conference on Emerging Technologies and Factory Automation
(ETFA), volume 1, pages 1297-1300. IEEE, 2020.

Mitchell M Tseng and Jianxin Jiao. Mass customization. Handbook of
industrial engineering, 3:684-709, 2001.

Int. Organization for Standardization Standard ISO/TS 15066:2016.
Robots and robotic devices-collaborative robots, 2016.

Arash Ajoudani, Andrea Maria Zanchettin, Serena Ivaldi, Alin Albu-
Schiffer, Kazuhiro Kosuge, and Oussama Khatib. Progress and prospects
of the human-robot collaboration. Autonomous Robots, 42(5):957-975,
2018.

Andie Zhang. Collaborative robots—enabling smes to automate in post-
pandemic world. In ISR Europe 2022; 54th International Symposium on
Robotics, pages 1-7. VDE, 2022.

H. Nakawala, P. J. S. Goncalves, P. Fiorini, G. Ferringo, and E. D. Momi.
Approaches for action sequence representation in robotics: A review. In
IROS, pages 56665671, 2018.

Zichen Wang, Jingyi Wang, Fu Song, Kun Wang, Hongyi Pu, and Peng
Cheng. K-rapid: A formal executable semantics of the rapid robot pro-
gramming language. In Proceedings of the 10th ACM Cyber-Physical
System Security Workshop, pages 64-76, 2024.

David Weintrop, Afsoon Afzal, Jean Salac, Patrick Francis, Boyang Li,
David C Shepherd, and Diana Franklin. Evaluating coblox: A compar-
ative study of robotics programming environments for adult novices. In
Proceedings of the 2018 CHI Conference on Human Factors in Comput-
ing Systems, pages 1-12, 2018.

Ole Madsen, Simon Bggh, Casper Schou, Rasmus Skovgaard Andersen,
Jens Skov Damgaard, Mikkel Rath Pedersen, and Volker Kriiger. Inte-

Bibliography 63

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

gration of mobile manipulators in an industrial production. Industrial
Robot: An International Journal, 42(1):11-18, 2015.

Jonathan Bohren and Steve Cousins. The smach high-level executive [ros
news]. IEEE Robotics & Automation Magazine, 17(4):18-20, 2010.

Andrea Casalino, Andrea Maria Zanchettin, Luigi Piroddi, and Paolo
Rocco. Optimal scheduling of human-robot collaborative assembly op-

erations with time petri nets. IEEE Transactions on Automation Science
and Engineering, 18(1):70-84, 2019.

Petter Ogren and Christopher I. Sprague. Behavior trees in robot control
systems. Annual Review of Control, Robotics, and Autonomous Systems,

5(Volume 5, 2022):81-107, 2022.

Marius Kloetzer and Cristian Mahulea. Path planning for robotic teams
based on Itl specifications and petri net models. Discrete Event Dynamic
Systems, 30(1):55-79, 2020.

Fengming Li, Qi Jiang, Sisi Zhang, Meng Wei, and Rui Song. Robot
skill acquisition in assembly process using deep reinforcement learning.
Neurocomputing, 345:92-102, 2019.

Matthew Crosby, Francesco Rovida, Mikkel Rath Pedersen, Ronald P. A.
Petrick, and Volker Kriiger. Planning for robots with skills. In Workshop
on Planning and Robotics (PlanRob), pages 49-57, 2016.

James A Hendler, Austin Tate, and Mark Drummond. Ai planning: Sys-
tems and techniques. Al magazine, 11(2):61-61, 1990.

Michele Lombardi and Michela Milano. Optimal methods for resource
allocation and scheduling: a cross-disciplinary survey. Constraints, 2012.

Maria Fox and Derek Long. PddI2. 1: An extension to pddl for expressing
temporal planning domains. Journal of artificial intelligence research,
20:61-124, 2003.

Richard E Fikes and Nils J Nilsson. Strips: A new approach to the ap-
plication of theorem proving to problem solving. Artificial intelligence,
2(3-4):189-208, 1971.

Andrew Coles, Amanda Coles, Allan Clark, and Stephen Gilmore. Cost-
sensitive concurrent planning under duration uncertainty for service-level
agreements. In Proceedings of the International Conference on Auto-
mated Planning and Scheduling, volume 21, pages 34-41, 2011.

64

Bibliography

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

[31]

[32]

Patrick Eyerich, Robert Mattmiiller, and Gabriele Roger. Using the
context-enhanced additive heuristic for temporal and numeric planning.
In ICAPS, 2009.

Héakan LS Younes and Michael L Littman. Ppddll. 0: An extension to
pddl for expressing planning domains with probabilistic effects. Techn.
Rep. CMU-CS-04-162, 2:99, 2004.

Dana Nau, Tsz-Chiu Au, Okhtay Ilghami, Ugur Kuter, J William Mur-
dock, Dan Wu, and Fusun Yaman. Shop2: An htn planning system. J.
Artif. Intell. Res. (JAIR), 20:379-404, 2003.

Rahul Kala. Mission planning on preference-based expression trees using
heuristics-assisted evolutionary computation. Applied Soft Computing,
136:110090, 2023.

Rahul Kala. Operational probability aware mission planning on expres-
sion trees using evolutionary computation. Evolutionary Intelligence,
18(4):81, 2025.

Caelan Reed Garrett, Rohan Chitnis, Rachel Holladay, Beomjoon Kim,
Tom Silver, Leslie Pack Kaelbling, and Tomas Lozano-Pérez. Integrated
task and motion planning. Annual review of control, robotics, and au-
tonomous systems, 4(1):265-293, 2021.

Yoshio Yamamoto and Xiaoping Yun. Coordinating locomotion and ma-
nipulation of a mobile manipulator. In [1992] Proceedings of the 31st
IEEE Conference on Decision and Control, pages 2643-2648. 1EEE,
1992.

Hugh Durrant-Whyte and Tim Bailey. Simultaneous localization and
mapping: part i. IEEE robotics & automation magazine, 13(2):99-110,
2006.

Brian P Gerkey and Maja J Matari¢. A formal analysis and taxonomy
of task allocation in multi-robot systems. The Int. Journal of Robotics
Research, 23(9):939-954, sep 2004.

G. Ayorkor Korsah, Anthony Stentz, and M. Bernardine Dias. A com-
prehensive taxonomy for multi-robot task allocation. The International
Journal of Robotics Research, 32(12):1495-1512, 2013.

Alaa Khamis, Ahmed Hussein, and Ahmed Elmogy. Multi-robot Task
Allocation: A Review of the State-of-the-Art, pages 31-51. Springer In-
ternational Publishing, 2015.

Bibliography 65

[33]

[34]

[35]

(36]

[37]

[38]

[39]

[40]

[41]

Stefan Thiemermann. Direkte Mensch-Roboter-Kooperation in der
Kleinteilemontage mit einem SCARA-Roboter. PhD thesis, Jost-Jetter
Verlag, 2005.

Eloise Matheson, Riccardo Minto, Emanuele GG Zampieri, Maurizio
Faccio, and Giulio Rosati. Human-robot collaboration in manufactur-
ing applications: A review. Robotics, 8(4):100, 2019.

Xiaodan Wang, Rossitza Setchi, and Abdullah Mohammed. Modelling
uncertainties in human-robot industrial collaborations. Procedia Com-
puter Science, 207:3652-3661, 2022.

Anders Billesg Beck, Anders Due Schwartz, Andreas Rune Fugl, Martin
Naumann, and Bjorn Kahl. Skill-based exception handling and error re-
covery for collaborative industrial robots. In FinE-R@ IROS, pages 5-10,
2015.

Min Chen, Emilio Frazzoli, David Hsu, and Wee Sun Lee. Pomdp-
lite for robust robot planning under uncertainty. In 2016 IEEE Inter-
national Conference on Robotics and Automation (ICRA), pages 5427—
5433. IEEE, 2016.

Stephen B Stancliff, John Dolan, and Ashitey Trebi-Ollennu. Planning
to fail—reliability needs to be considered a priori in multirobot task al-

location. In 2009 IEEE International Conference on Systems, Man and
Cybernetics, pages 2362-2367. IEEE, 2009.

Jinwoo Park, Andrew Messing, Harish Ravichandar, and Seth Hutchin-
son. Risk-tolerant task allocation and scheduling in heterogeneous multi-
robot teams. In 2023 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pages 5372-5379. IEEE, 2023.

Jonathan Gough, Maria Fox, and Derek Long. Plan execution under
resource consumption uncertainty. In Proceedings of the Workshop on
Connecting Planning Theory with Practice at ICAPS, volume 4, pages
24-29, 2004.

Shaobo Zhang, Yi Chen, Jun Zhang, and Yunyi Jia. Real-time adap-
tive assembly scheduling in human-multi-robot collaboration according
to human capability. In 2020 IEEE International Conference on Robotics
and Automation (ICRA), pages 3860-3866. IEEE, 2020.

66

Bibliography

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

Anders Lager, Giacomo Spampinato, Alessandro V Papadopoulos, and
Thomas Nolte. Towards reactive robot applications in dynamic envi-
ronments. In 2019 24th IEEE International Conference on Emerging
Technologies and Factory Automation (ETFA), pages 1603—-1606. IEEE,
2019.

G. Kazhoyan, A. Niedzwiecki, and M. Beetz. Towards plan transfor-
mations for real-world mobile fetch and place. In IEEE Int. Conf. on
Robotics and Automation (ICRA), pages 11011-11017, 2020.

D. Hadfield-Menell, L. P. Kaelbling, and T. Lozano-Pérez. Optimization
in the now: Dynamic peephole optimization for hierarchical planning.
In 2013 IEEE Int. Conf. on Robotics and Automation, pages 4560-4567,
2013.

Martin Weser, Dominik Off, and Jianwei Zhang. Htn robot planning in
partially observable dynamic environments. In 2010 IEEE International
Conference on Robotics and Automation, pages 1505-1510. IEEE, 2010.

Branko Miloradovié. Multi-agent mission planning. Malardalen Univer-
sity (Sweden), 2022.

Ping Lou, Quan Liu, Zude Zhou, Huaiqing Wang, and Sherry Sun. Multi-
agent-based proactive—reactive scheduling for a job shop. Int. Journal of
Advanced Manufacturing Technology - INT J ADV MANUF TECHNOL,
59, 03 2012.

Oscar Lima, Michael Cashmore, Daniele Magazzeni, Andrea Micheli,
and Rodrigo Ventura. Robust plan execution with unexpected observa-
tions, 2020.

Gianluca Filippone, Juan Antonio Pifiera Garcia, Marco Autili, and
Patrizio Pelliccione. Handling uncertainty in the specification of au-
tonomous multi-robot systems through mission adaptation. In Proceed-
ings of the 19th International Symposium on Software Engineering for
Adaptive and Self-Managing Systems, pages 25-36, 2024.

Javier G Martin, José Ramén Dominguez Frejo, Ramén A Garcia, and
Eduardo F Camacho. Multi-robot task allocation problem with multiple
nonlinear criteria using branch and bound and genetic algorithms. Intel-
ligent Service Robotics, 14(5):707-727, 2021.

Hanfu Wang and Weidong Chen. Simulated annealing algorithms for the
heterogeneous robots task scheduling problem in heterogeneous robotic

Bibliography 67

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

order fulfillment systems. In International conference on intelligent au-
tonomous systems, pages 276-287. Springer, 2021.

Changyun Wei, Ze Ji, and Boliang Cai. Particle swarm optimization
for cooperative multi-robot task allocation: a multi-objective approach.
IEEE Robotics and Automation Letters, 5(2):2530-2537, 2020.

Mausam Natarajan and Andrey Kolobov. Planning with Markov decision
processes: An Al perspective. Springer Nature, 2022.

Hanna Kurniawati. Partially observable markov decision processes and
robotics. Annual Review of Control, Robotics, and Autonomous Systems,

5:253-2717, 2022.

Michael Saint-Guillain, Tiago Vaquero, Steve Chien, Jagriti Agrawal,
and Jordan Abrahams. Probabilistic temporal networks with ordinary
distributions: Theory, robustness and expected utility. Journal of Artifi-
cial Intelligence Research, 71:1091-1136, 2021.

Andrew W Palmer, Andrew J Hill, and Steven J Scheding. Modelling re-
source contention in multi-robot task allocation problems with uncertain
timing. In IEEE Int. Conf. ICRA, pages 3693-3700, 2018.

Andrea Casalino and Angelo Geraci. Allowing a real collaboration be-

tween humans and robots. Special Topics in Information Technology,
page 139, 2021.

Franco Cordeiro, Samuel Tardieu, and Laurent Pautet. Rescue: Multi-
robot planning under resource uncertainty and objective criticality. In
37th Euromicro Conference on Real-Time Systems (ECRTS 2025), pages
5-1. Schloss Dagstuhl-Leibniz-Zentrum fiir Informatik, 2025.

Morgan Quigley, Brian Gerkey, Ken Conley, Josh Faust, Tully Foote,
Jeremy Leibs, Eric Berger, Rob Wheeler, and Andrew Ng. Ros: an
open-source robot operating system. In Proc. of the IEEE Intl. Conf. on
Robotics and Automation (ICRA) Workshop on Open Source Robotics,
Kobe, Japan, may 2009.

Rodrigo Longhi Guimardes, André Schneider de Oliveira, Jodo Alberto
Fabro, Thiago Becker, and Vinicius Amilgar Brenner. Ros navigation:
Concepts and tutorial. Robot Operating System (ROS) The Complete Ref-
erence (Volume 1), pages 121-160, 2016.

68 Bibliography

[61] N. Koenig and A. Howard. Design and use paradigms for gazebo, an
open-source multi-robot simulator. In IEEE/RSJ Int. Conf. on Intelli-
gent Robots and Systems (IROS) (IEEE Cat. No.0O4CH37566), volume 3,
pages 2149-2154 vol.3, 2004.

11

Included Papers

69

Chapter 7

Paper A
A Task Modelling Formalism

for Industrial Mobile Robot
Applications

Anders Lager, Alessandro V. Papadopoulos, Giacomo Spampinato and
Thomas Nolte. In 20th International Conference on Advanced Robotics
(ICAR), 2021.

71

Abstract

Industrial mobile robots are increasingly introduced in factories and ware-
houses. These environments are becoming more dynamic with human co-
workers and other uncertainties that may interfere with the robot’s actions. To
uphold efficient operation, the robots should be able to autonomously plan and
replan the order of their tasks. On the other hand, the robot’s actions should
be predictable in an industrial process. We believe the deployment and opera-
tion of robots become more robust if the experts of the industrial processes are
able to understand and modify the robot’s behaviour. To this end, we present
an intuitive novel task modelling formalism, Robot Task Scheduling Graph
(RTSG). RTSG provides building blocks for the explicit definition of alterna-
tive task sequences in a compact graph format. We present how such a graph is
automatically converted to a task planning problem in two different forms, i.e.,
a Mixed Integer Linear Program (MILP) and a Planning Domain Definition
Language specification (PDDL). Converted RTSG models of a mobile kitting
application are used to experimentally compare the performance of one MILP
planner and two PDDL planners. Besides providing this comparison, the ex-
periments confirm the equivalence of the converted MILP and PDDL problem
formulations. Finally, a simulation experiment verifies the assumed correlation
between a cost model, based on path lengths, and the makespan.

Paper A 73

7.1 Introduction

To support human labour with repetitive, non-ergonomic and simple tasks, the
need is ever increasing for having mobile robots able to perform versatile in-
dustrial robot tasks like kitting and machine tending.

For efficient operation in a dynamic, collaborative working space where
unexpected situations are expected to occur, the ability to plan and replan tasks
autonomously in a robust way becomes a key success factor. The maturity of
Al Planning has seen tremendous progress over the last decades and several
modelling formalisms with high expressiveness have been demonstrated suc-
cessfully in industrial robot applications and other domains [1, 2]. However,
these modelling formalisms are often complex and do not take advantage of
the domain expert’s intuition and skills in understanding what is a valid task
sequence. We consider a domain expert as someone who has expert knowledge
in the tasks that the robot shall perform in a certain industrial context—not an
expert in robot programming. We strongly believe that enabling the compe-
tence of domain experts is crucial to reduce the threshold for the successful
commissioning of competitive industrial robot applications on a larger scale.

In industrial robot applications, it is important to avoid unexpected action
sequences that reach a defined goal state, at the price of potentially unexpected
and undesired side effects. Finding a feasible plan is often easy since working
procedures typically are well organized. The challenge often lies in finding an
efficient plan.

In this paper, we present a novel modelling formalism, Robot Task
Scheduling Graph (RTSG), that addresses these problems while leveraging Al
planning. One goal with RTSG is to combine the knowledge and experience
of domain experts with the efficiency of automated planning/scheduling.
The modelling formalism provides building blocks for describing variable
sequences of robot actions to reach high-level goals. As RTSG is graph-based,
it enables an intuitive visual overview.

We do not claim RTSG to be the most expressive modelling approach but
we argue it is sufficiently expressive for a semi-structured industrial mobile
robot application. We present how an RTSG model can be automatically
converted to a task scheduling problem in two different forms: Mixed Inte-
ger Linear Programming (MILP) and Planning Domain Definition Language
(PDDL) [3]. This enables RTSG to be used with MILP solvers as well as
PDDL-based planners. Improving the efficiency of these planners is a relevant
problem, but it is beyond the scope of this paper that focuses on the capabilities
of the modelling formalism.

An experimental comparison of the performance for two PDDL-based

74 7.2. Related work

planners and one MILP solver is presented. These experiments are applied to
modelled use cases for a mobile kitting application, measuring the planning
time and the efficiency of generated task sequences. Additionally, the results
indicate an equivalence of the MILP and the PDDL representations of the
RTSG scheduling problem. Finally, in a simulation study, we show that a
transition cost model based on path lengths is a valid approach to minimize
the resulting makespan.

The rest of the paper is organized as follows. Section presents the
related work. Section gives an intuitive description of the RT'SG mod-
elling formalism. Section describes a conversion from RTSG to MILP.
Section [7.5]describes a conversion from RTSG to PDDL. Section [7.6| presents
the experimental results, while Section[/.7|concludes the paper.

7.2 Related work

RTSG fills a gap between existing modelling formalisms of robot action se-
quences by combining a desirable set of properties:

* Intuitive modelling approach for a domain expert.

* Intended for use with an automated planner/scheduler to generate effi-
cient task sequences.

* Leverages domain experts intuition, skills and knowledge on a suitable
variability of task sequences.

A recent literature review investigated different approaches for representa-
tions of action sequences used for robot task planning and execution in a dy-
namic environment [4]. A selection of these representation approaches is given
in Table [7.I] The selection covers all representations available in ROS that
have been used with industrial robot applications. Additionally, robot skills,
block-based programming and Behaviour Trees have been added. The first
column, indicating the intuitiveness of the formalism, is subjective and not
backed with empirical evidence. The indicated existence of properties for the
second and the third column is indicated by the referenced works.

PDDL [5] is an expressive modelling formalism to set up general planning
problems (see Section[7.5.1)). Modelling a planning problem is focused on cre-
ating objects in the world and give facts about them and their mutual relations
while providing operators that may change these facts to reach a goal condi-
tion. However, the representation is not intuitive for a domain expert, and there
is no explicit way to indicate preferences on action sequences.

Paper A 75

Table 7.1: Properties of modelling formalisms for industrial robot applications

Modelling Intuitive for Tz'lsk.s.e quen.ce Autom.a ted
. . variability guided | planning/
formalism domain expert . .
by domain expert | scheduling
PDDL - - v
HTN - v v
CRAM - v -
RTSG v v v
Robot Skills v - v
State Machine W) v -
Petri Net W) v -
Behavior Trees W) v -
Block-based
i v - -
Programming

Hierarchical Task Networks (HTN) is another general modelling formal-
ism [6]. In HTN, modelling is about specifying partial orders of tasks. It
supports compound tasks that can be decomposed by alternative methods into
smaller subtasks in a desired partial order. This provides a way to indicate al-
ternative task sequences. Primitive subtasks correspond to operators in PDDL.
The specification of preconditions and variables for methods and operators, the
specification of operator effects and the flexible binding of variables give great
expressiveness. However, managing these general concepts can be challenging
for a domain expert.

Similar to HTN, Cognitive Robotic Abstract Machine (CRAM) [7] that
is based on Reactive Plan Language [8] has an action-centric modelling for-
malism. It is an expressive programming language supporting a hierarchical
task structure. The general purpose of CRAM is to be a tool to write robust
robot control programs. However, it does not provide support for automated
planning and a programming language is not intuitive for a domain expert.

Robot skills build on the idea that the knowledge of an expert of robot
programming can be encoded into the implementation of tasks in the form
of reusable skills that can be used as simple building blocks when modelling a
robot application. These skills can include preconditions and effects to support
runtime execution but also automated planning [9]. However, this concept does
not explicitly support using a domain expert’s intuition of the task sequence
variability.

Block-based programming is primarily intended to simplify programming

76 7.3. RTSG Modelling formalism

15

poloEe

T6
-

Figure 7.1: Robot Task Scheduling Graph.

by providing configurable building blocks, e.g., CoBlox [10].

Other general modelling formalism’s can be used for modelling complex
robot behaviour and guiding the execution e.g., State Machines [11],
PetriNets [12, 13] and Behaviour Trees [14]. These powerful modelling
techniques are not primarily intended for automated planning and the
modelling complexity can be challenging.

In some approaches, no apparent high-level modelling formalism is used
and the problem representation is purely mathematical, typically in the form
of an optimization problem, e.g., [15]. This can give good results but is less
intuitive and the problem formulation is harder to adapt to meet new require-
ments.

In assembly applications, directed graphs, AND/OR-graphs [16] (based
on the assembly parts) or precedence graphs [17] (based on assembly oper-
ations) can be used to model the variability of assembly sequences that will
fulfil a specified assembly. ASML is a later approach [18]. These techniques
are used to search for a good design for manufacturability but also for find-
ing an efficient assembly sequence. They are not intended for runtime task
planning/replanning. RTSG presents an approach akin to assembly modelling
formalisms, to guide automated scheduling of tasks.

7.3 RTSG Modelling formalism

With the building blocks informally described below, RTSG provides a mod-
elling formalism for a domain expert that guides the selection of a task se-
quence to be decided by an automatic planner with respect to some optimiza-
tion objective.

Paper A 77

An RTSG model, as exemplified in Figure is a directed acyclic graph
having one start node (S) with a single outgoing edge representing an initial
state. At the other end, there is one goal node (G) with a single incoming edge
representing a desired goal state. In between, a set of robot tasks leading to-
wards the goal are represented by rectangular nodes having a single incoming
edge and a single outgoing edge. In addition, a collection of logical nodes im-
pose different scheduling dependencies between tasks. Edges represent prece-
dence constraints: If there is a directed path between two tasks, e.g., T'1 and
T'5, the first task must precede the latter task in a plan where both tasks are
scheduled. AND-Pairs split the graph with an AND-Fork node (&F) into par-
allel branches and rejoin them with an AND-Join node (&J). Tasks in different
AND-Fork branches, e.g., T'1, T2 and T'3 may be scheduled in any mutual or-
der since there is no directed path between them. OR-Pairs split and rejoin the
graph in a similar way with an OR-Fork (IIF) and an OR-Join (/lJ). However,
the resulting parallel branches represent alternatives, i.e., only tasks in one of
the branches, e.g., T'5 or T'6, will be scheduled. Lock-Pairs encapsulate a part
of a single branch between an AddLock node (+L) and a RemoveLock node
(-L). The set of tasks between a Lock-pair, e.g., {7'3,7'4} will be scheduled
as a coherent sub-array of the full task sequence, i.e., uninterrupted by other
tasks. Pairs may encapsulate other pairs in a hierarchy, e.g., an OR-Pair may
contain other OR-pairs that split alternative branches into sub-alternatives.

Complementing the graph, a task cost estimation should be provided.
Apart from specifying the cost of performing different tasks, it should include
transition costs between any pair of tasks allowed by the RT'SG model to be
scheduled in consecutive order.

7.4 Conversion from RTSG to MILP

Section[7.4.1| presents how an RTSG model is converted to a MILP scheduling
problem with decision variables, optimization objective and constraints. Sec-
tion [7.4.2] specifies how the scheduling problem is modified in a replanning
scenario.

7.4.1 Conversion from RTSG to MILP
Notation

A is the set of all task nodes, S is the start node and G is the goal node. The
following notation is used when combining them: AS=AUS, A = AUG
and A = AUSUG. O C A denotes all tasks encapsulated by OR-Pairs. j < k

78 7.4. Conversion from RTSG to MILP

indicates that j precedes k, where j, k € A.

Variables and objective

Decision variables are given by X, € {0,1} j,k € A.

1, if'task j is followed by task k.

Gk = .
0, otherwise.

K i, € R>q represents the cost for performing task % after task j:

Kjk = Tjk + o

where 7; 1 is the transition cost and «, is the action cost.
The objective is to minimize the cost function J:

T=>3 XK

JEAS K€ AC

General constraints

X;; =0 VjecAd
ZX—yk:1 Vjie A9\ O

k€AG

Y X<l VjeO
k€AG

Y Xjr=1 VkeA9\O
JEAS

Y Xjp<l VkeO
jEAS

Y Xjgp=) Xp; Vj€O
k€ AG k€AS

> X5 =0

JEAG

> Xak=0

keAS

>N Xk <IVI-1 VVCAV#D

JjeEV keVv

(7.1)

(7.2)

(7.3)
(7.4)

(7.5)

(7.6)

(7.7)

(7.8)

(7.9)

(7.10)

(7.11)

Paper A 79

There can be no transition between the same task ((7.3). Tasks outside
OR-Pairs will occur once and (7.6). Tasks inside OR-Pairs will occur at

most once (7.5)), (7.7), and (7.8)). There is no transition to the start state (7.9)
and there is no transition from the goal state (7.10). There can be no cyclic

sub-tours between tasks (7.11)).

Precedence constraints

Assuming D C A is any ordered subset with elements D;. Precedence con-
straints must hold for these subsets in general and especially if they become a
sub-array of the task sequence:

|D|-1
> Xp,p,, <ID|—2 VDCA |D|>2 Dp <Di. (112
j=1

Lock constraints

L C A are the set of all tasks encapsulated by a Lock-Pair.
The first tasks in L are defined as LY = {a € L |b A#a Vb€ L}. The
last tasks in L are definedas L = {a € L|a Ab Vbe L}.

Xjp=0 VLVje AS\L,Vke L\L" (7.13)
Xjp=0 VL\VjeL\L'Vke A\ L (7.14)

Y X<l VL (7.15)
JEAS\L keLF

) X<l VL (7.16)

jELL ke AG\L

There can only be transitions to the first tasks from external tasks and
there can at most be one such transition (7.13). Similarly, there can only be
transitions from the last tasks to external tasks and there can at most be
one such transition ({7.16).

OR-Pair constraints

The constraints presented here can handle a nested structure of OR-Pairs.
However, a potential simplification of such a structure, e.g., with algebraic
rules, is out of the scope for this work. If an OR-pair is contained by an outer
OR-Pair, it is denoted an internal OR-Pair and at most one of its alternative
branches will be scheduled. The outermost OR-Pairs are denoted external

80 7.4. Conversion from RTSG to MILP

OR-Pairs and exactly one of their branches will be scheduled. OR-Pairs
contain OP nodes that can be of two types: tasks and internal OR-Pairs.

0O1,...,0, are sets of OP nodes contained by OR-Pair
1,...,v. Opt,...,0py are the set of OP nodes contained by
branches 1,...,m of OR-Pair p. Ol = {a € Op|aisatask}.
OSF = {a € Opq | ais an internal OR-Pair}

One primary OP node, P,q; € O, is arbitrary selected for each OR-Pair
branch.

Three help operators (7.17), (7.18)), and are defined to support the
definition of OR-Pair constraints. Note that operators F' and H return a set
while R returns a set of sets.

F(Oy) = {a} %f Py ?s task a.. (7.17)
F(Or)U...UF(Opy,) if P,q is OR-pair O,
H(0,) = F(Op1) U F(Op2) U...UF(Opm) (7.18)
R(Opg) = Ogg\ Prgu |J {H()} (7.19)
1€0SF \ Ppg

Given these definitions, the OR-Pair constraints can be summarized:

Z i Z Xsj=1 V external O, (7.20)

JEACG q=1 s€F(Opq)

Z i Z Xjs=1 V external O,, (7.21)

JEAS q=1 s€ F(Opq)

SN Xij=> > Xej VO0u,Vr € R(Oy) (7.22)

jEAG ker JEAG s€F(Opq)
NN Xjn=> > Xji VO, Vr € R(Oy) (7.23)
JEAS ker JEAS s€EF(Opq)

One of the branches of external OR-Pairs will be scheduled (7.20), (7.21). If
the primary OP node in an OR-Pair branch is scheduled, so will the remaining

OP Nodes in the same branch (7.22)), (7.23).

7.4.2 Replanning

At a point of replanning, the ordered set C = {C1,...,C;} represents com-

pleted tasks. Additional constraints for completed transitions ((7.24)) (7.25):
Xscy, =1 (7.24)
Xe,oip =1 Vi=1,...,1-1 (7.25)

Paper A 81

Furthermore, the cost matrix, K, j € AS \C,k € AC \ C, is updated
to consider a new starting location and an updated world state. Finally, the cost
matrix is updated to consider completed tasks:

Ksc, =0
Kooy =0 Vi=1,...,1-1
Kc,j=Ks; Vje A9\ C

7.5 Conversion from RTSG to PDDL

7.5.1 PDDL

PDDL is a modelling formalism originating from STRIPS [19] that has
evolved from the planning competitions held by The International Conference
on Autonomous Planning and Scheduling since 1998. In PDDL, a planning
problem is described in terms of objects in the world (e.g., robot, gripper, box
and location), an initial state and the desired goal state. The initial state and
the goal state are specified as a list of facts. A fact is related to a set of objects
and it is defined with a binary predicate (e.g., gripper is holding box). Actions
(e.g., place box on location) can be applied to change facts. Actions have
parameters (e.g., robot, gripper, box, location). They also have preconditions
as a binary function of predicates (e.g., gripper is holding box and robot is at
location). If the preconditions hold for some set of parameters, an action can
be performed that will change the facts according to the action’s list of effect
predicates applied to the parameters (e.g., gripper is not holding box, the box
is on location). Finding a plan is about finding a sequence of actions applied
to the objects that step-by-step will change the facts from the initial state to
the goal state. A simple objective for finding an optimal plan is to minimize
the number of actions. The PDDL2.1 specification [5] introduced syntax for
temporal and numerical planning. It also includes metrics that allows for
specifying an objective. With these language extensions, it is possible to
convert an RTSG model into a PDDL scheduling problem.

7.5.2 Conversion from RTSG to PDDL

With respect to RTSG, we identify the natural PDDL objects as the RTSG
nodes. The reason for converting nodes to PDDL objects is that nodes have
several relations and properties that can be defined as predicates or numeri-
cal functions, e.g., the edges that connect them or the transition cost between
them. Two types of actions are needed. The first type is to run a task and

82 7.5. Conversion from RTSG to PDDL

the second type is to fire a transition for a logical node. Running a task has a
duration while firing a transition is instant. The purpose of transition actions
is to guide the scheduling of tasks according to the constraints imposed by the
RTSG. The occurrences of transition actions in a planned action sequence do
not correspond to real robot actions. However, they can be used to improve the
visualization of a runtime execution state and progress:

In Figure the active task is orange, completed tasks are green while
non-started tasks are grey. Completed logical nodes are light green while the
remaining are white. This illustrates the execution progress as a gradual green
propagation of the graph that will follow the outgoing edges of completed
tasks/transitions.

Paper A

83

Listing 7.1: PDDL domain

(define (domain RTSG)

(:types
node - obiject
task logical andjoin2 - node
startcond goalcond robtask - task
andfork orfork orjoin - logical
nofork - orfork)

(:predicates
(edge ?nl ?n2 - node)

(fired ?n - node)

(latest-completed ?t - task)
(andjoin2-inputs ?nl ?n2 - node)
(orfork-branch ?orf - orfork ?to - node)

(branch-not-selected ?orf - orfork)
(not-locked ?from ?to - task))
(:functions
(cost ?from ?to - task))
(:durative—-action RUN-TASK
:parameters (?this ?prev - task ?input - node ?orf - orfork)
:duration (= ?duration (cost ?prev ?this))
:condition (and

(at start (latest-completed ?prev))
(at start (edge ?input ?this))
(at start (fired 7?input))
(at start (orfork-branch ?orf ?this))
(at start (branch-not-selected ?orf))
(at start (not-locked ?prev ?this)))
ceffect (and
(at start (not(latest-completed ?prev)))
(at start (not (branch-not-selected 2orf)))
(at end (latest-completed ?this)
(at end (fired ?this))))
(:durative-action FIRE-LOGICAL
:parameters (?this - logical ?input - node ?2orf - orfork)
:duration (= ?duration 0)

:condition (and

(at
(at
(at
(at
ceffect
(at

start (edge ?input ?this))

start (fired 7input))

start (orfork-branch ?orf ?this))
start (branch-not-selected ?orf)))
(and

start (not (branch-not-selected ?orf)))

(at end (fired ?this))))
(:durative-action FIRE-ANDJOIN2
:parameters (?this - andjoin2 ?inputl ?input2 - node ?orf -
orfork)
:duration (= ?duration 0)

:condition (and

(at
(at
(at
(at
(at
(at
(at
ceffect
(at
(at

start (edge ?inputl ?this))

start (edge ?input2 ?this))

start (fired ?inputl))

start (fired ?input2))

start (andjoin2-inputs ?inputl ?input2))
start (orfork-branch ?orf ?this))

start (branch-not-selected ?orf)))

(and

start (not (branch-not-selected ?orf)))
end (fired ?this)))))

84 7.5. Conversion from RTSG to PDDL

Listing 7.2: PDDL problem

(define (problem RTSG-config)
(:domain RTSG)

(:objects
s - startcond
g — goalcond
afl - andfork
ajl aj2 - andjoin2
ofl - orfork
ojl - orjoin
tl t2 t3 t4 t5 t6 - robtask
nfs nfg ... nft4 - nofork ; Dummy objects

)

(:init
(fired s)
(latest-completed s)
(edge s afl)
(edge afl tl) ... (edge aj2 qg)
(not-locked s tl) ... (not-locked t6 qg)
(andjoin2-inputs tl t2)
(andjoin2-inputs ojl t4)
(orfork-branch ofl tb5)
(orfork-branch ofl t6)
(branch-not-selected ofl)

(orfork-branch nfs s) ; Dummy fact
(orfork-branch nfg g) ; Dummy fact
(branch-not-selected nfs) ; Dummy fact

(branch-not-selected nft4) ; Dummy fact
(= (cost s tl) 100) ... (= (cost t6 g) 100))

(:goal (fired qg))

(:metric minimize total-time)

Paper A 85

Converted domain and problem files for the RTSG model in Figure
are shown in Listings and The syntax used from PDDL2.1 has been
reduced to enable the POPF2 planner [20] that is supported by ROSPlan [21]
making it an attractive choice for robotics research. POPF2 does not support
some of the PDDL2.1 requirements, among them negative preconditions, dis-
junctive preconditions and conditional effects. This adds some complexity to
the conversion by a need to use antonym predicates (e.g., “not-locked" instead
of “locked"), dummy objects, redundant facts and redundant actions.

In the following, a walkthrough is made through the different sections
of the converted PDDL domain and problem files in Listings and
The contents of the domain sections are mostly fixed and independent of the
RTSG model with only a few stated exceptions for AND-Join nodes. The
problem sections are populated from the RTSG model as specified in the
walkthrough. With this specification, the conversion from a general RTSG
model to PDDL2.1 can be fully automated.

Domain sections:

Types

RTSG node types are arranged as different types in a hierarchy: A node is a
PDDL object. A task is a node that affects the cost of the plan. There are
three types of tasks: robottask, startcond and goalcond. The remaining types
are used to define logical nodes of different types. The nofork type is used to
create dummy objects that support the handling of alternative task sequences.
The andjoin2 type is used to create AND-Joins having two incoming edges. If
the RTSG model has AND-Joins with more incoming edges, additional types
are needed to cover them as well, e.g., andjoin3, andjoin4 etc.

Predicates

The edges between two RTSG nodes are indicated with an edge predicate. A
completed RTSG node is indicated with a fired predicate. The latest-completed
predicate indicates if a task is the latest completed task. A group of all X
nodes having an outgoing edge to the very same AND-Join are indicated with
an andjoinX-inputs predicate. Nodes having an incoming edge from a specific
OR-Fork are indicated with an orfork-branch predicate. The same predicate
is also used to indicate other nodes, but these are created with a nofork in the
problem sections. The branch-not-selected predicate indicates that there has
been no selection of an alternative branch for an OR-Fork. Finally, the not-
locked predicate indicates that a transition is possible between two tasks.

86 7.5. Conversion from RTSG to PDDL

Functions

A cost function indicates the cost, as a numerical value, required to perform a
task after finishing a previous task.

Durative actions for running tasks

There is one action that runs tasks. The parameters indicate which task to
run, the previous task, the node that is connected to the incoming edge and an
associated orfork (a dummy or a real). The action’s duration time is set to the
cost to run the task after the previous task. The preconditions require that an
action already has been run for the node connected to the incoming edge. It
also requires that a transition from the previous task is allowed (not-locked).
The primary effect of the action is to indicate that the action for the task has
run (fired). The combination of preconditions and effects avoids concurrent
tasks and prevents the scheduling of tasks in more than one alternative OR-
Pair branch. Note that goalcond also is a task and running it will reach the
goal state, e.g., by moving to a certain location.

Durative actions for firing transitions

The remaining actions are used to fire transitions for logical nodes. The pa-
rameters indicate for which logical node the transition will occur, a node that is
connected to an incoming edge and an associated orfork. The action’s duration
time is always zero. The preconditions require that an action already has been
run for the node connected to the incoming edge. The primary effect of the ac-
tion is to indicate that the action for the logical node has run. The combination
of preconditions and effects prevents the scheduling of tasks in more than one
alternative OR-Pair branch.

Similar but separate actions are used to fire transitions for AND-Join
nodes. One such action is needed for every used number of incoming edges
on AND-Join nodes in the RTSG model. There is only one difference between
these actions: The preconditions require that actions have been run for all
nodes connected to the incoming edges.

Problem sections:

Objects

One node (of corresponding type) is created for each node in the RTSG model
except for AddLocks and RemoveLocks. One dummy nofork object is created

Paper A 87

for each of these nodes that do not have an incoming edge from an OR-Fork
node.

Init

The start node is indicated as fired and it is also indicated to be the latest-
completed task. Edge facts are created between the nodes according to the
RTSG model, but where AddLock and RemoveLock nodes are bypassed. No-
lock facts are defined for all possible transitions between tasks with respect
to the precedence constraints and Lock-Pair constraints imposed by the RTSG
model. For all AND-Joins in the RTSG model, an andjoinX-inputs fact is
created indicating all nodes that are connected to the incoming edges. For
all nodes having an incoming edge from an orfork, an orfork-branch fact is
created indicating this OR-Fork, and for all remaining nodes, an orfork-branch
fact is created indicating the corresponding nofork. A branch-not-selected fact
is created for all OR-Forks, indicating if an outgoing branch has not yet been
selected. Finally, numerical cost facts are created to specify the cost of all
possible transitions between tasks.

Goal and metric

The goal is to reach the condition that the goal node has been fired. The metric
indicates that an optimal plan should minimize the total duration of the plan
(total-time).

7.5.3 Replanning

In a replanning scenario, some modifications are required for the init section
of the problem Listing[7.2] A fired predicate is added for all completed tasks
and for all logical nodes that precede completed tasks. The latest-completed
predicate is removed for the start node and added for the latest completed task.
Transition costs from the latest completed task are updated to account for a
new start location of the robot. Potential obstacles may affect some transition
costs, e.g., if the robot needs to move another way between two tasks. If there
are completed tasks in one OR-Fork branch, scheduling of tasks in alternative
branches are avoided by not creating a branch-not-selected predicate for the
corresponding orfork.

88 7.6. Results

7.6 Results

7.6.1 Experimental setup

The targeted application is a mobile robot operating in a warehouse for picking
customer orders in the form of kits, i.e., boxes filled with specified objects.
The robot moves around the warehouse shelves and performs robot tasks as
specified by an RTSG model. In the graph, a robot task represents an action
where a specific object is handled at a specific location. The RTSG models for
three different use cases (A, B and C) are shown in Figures and
All use cases start with the fetching of 2 empty kit boxes and allow them to be
filled in parallel. In use cases A and B, the kit boxes are filled in two layers
separated by an interlayer. Use case B has more precedence constraints than A
while use case C has quite few precedence constraints.

Gazebo [22] was used to set up a simulated mobile robot in a simple ware-
house world having shelves of different shapes, see Figure Dijkstra’s al-
gorithm was used to generate two-dimensional collision-free paths between
handling locations at the different shelves. The path lengths were used to de-
fine transition costs.

The experiments were run with Ubuntu 18.04.5 on an Intel i5-4570 quad-
core processor with 7.6 GB RAM.

Paper A 89

Get 2 boxes @—> Box A,B

:
aﬁ

IFlHlSt Obj A |[Obj B|[Obj C|[Obj G|[Obj H
ayers ~_ T — 7
Fetch " " " ‘
interlayers ILQ }L B ILC\ I;D D
Obj I || Obj J
))
Fill 2nd Obj D |[Obj E Obj K}[Obj L
layers 7

®

Deliver 2 kit boxes

ObjF—»@

Figure 7.2: RTSG model for use case A.

90 7.6. Results

Get 2 boxes @—> Box A,B

layers
N~ :/
Fetch
interlayers LAl ULB e
ijf) \@
Fill 2nd Obi D Obf = =l Otij :
layers Obj F Obj L 1Obj K

Deliver 2 kit boxes

Figure 7.3: RTSG model for use case B. The colouring of the graph nodes is discussed

in subsection

Paper A 91

Obj H

Ot

Obj J
Obj K

Get 2 boxes Fill boxes Deliver
Obj A 2 kit
- boxes
Obj; B
? @lmelo
Box A,B Obj D
Obj F
Obj E
S :
Obj G
\ Obj L

O
Q

Figure 7.4: RTSG model for use case C.

Figure 7.5: Simple warehouse world.

92 7.6. Results

7.6.2 Experimental results

The use cases were tested with three different planners in a comparative study
where all problem formulations were automatically generated from the RTSG
models. Gurobi Optimizer [23], hereby referred to as MILP, was used with the
MILP problem formulation. POPF2 and Temporal Fast Downward (TFD) [24]
were used with the PDDL problem formulation. Each use case was run 100
times. For each run, the location of the objects to be handled by the robot tasks
was randomized among 52 fixed locations at the different shelves. The com-
mon start- and goal location, i.e., the delivery station, was fixed. Comparisons
of the planners’ achievements of objective values and planning times are dis-
played in Figure MILP and TFD indicated optimal solutions and reached
the same objective value for all runs and the very same sequence for 89% of
the runs. This suggests an equivalence of the PDDL conversion and the cor-
responding MILP problem formulation. MILP solved C within a few seconds
while needing several minutes for A and B. The reason for this performance
difference is presumably a fast-growing amount of precedence and non-cyclic
constraints needed for A and B compared to the less constrained C. On the
other hand, TFD needed a minute to solve use case C while solving A and B
within a few seconds. POPF2 found valid but non-optimal solutions within
200 ms for A and B and within 2 seconds for C. The average cost increase for
POPF2 was 15%, 14% and 11% for A, B and C respectively. The fast planning
time for POPF2 can be attractive if a less optimized plan is acceptable.

In these experiments, the transition costs are based on path lengths but the
optimization goal is often to minimize the makespan. To verify the correla-
tion of path lengths and makespan an additional experiment was performed:
To this end, a selection of ten MILP generated task sequences for use case
B was made. The selection included the lowest and the highest costs and in-
termediate cost values with a fairly uniform distribution within this interval.
These cycles were simulated 20 times and the cost vs makespan is given in
Figure ROS Navigation Stack [25] was used to navigate the robot with
Adaptive Monte Carlo Localization for localization and Timed Elastic Bands
for trajectory generation. The experiment indicates a linear correlation be-
tween cost and makespan. However, the non-monotonic part of the curve oc-
curring between the two highest costs also confirms that there is an uncertainty
imposed by a simplified cost model when applied to a more realistic setting.

Paper A 93
Use Case A
160 |- =+ —
1 106 [N
[} —_
= : 15 | E
1 (5]
5 120 | ! ! 1o 10t | ! i
= T =
100 |- : &
1 + 1 e
80 I I I 102 I I]
MILP POPF2 TED MILP POPF2 TFD
Use Case B
160 |- L 1 106 [- j_ 7
I —
—_ ! Z
E ol T - - | E
= 1 1 [}
5 120 — = e -
100 (¢ —+ R
1 1
2 |- .
80 - | —+ 10 | % |
MILP POPF2 TFD MILP POPF2 TFD
Use Case C
— 5 [— |
' 107 ¢ =
100 |- ; 1 - -+
—_ 1 1 1 E |]
B : ' | o 10* | E
| L E T & :
! ! £ E g
g 80 |- .) i]
g : £ 10°E E == =
= J ! | = B 1 E
—_ |- N
60 |- —_ —_ - I :]
| | | 102 = : f f E
MILP POPF2 TFD MILP POPF2 TFD
Figure 7.6: Use cases results.
600
= 500 |- g
g
&
3 Mini
3 00| — Minimum | |
—— Median
—— Maximum
300 | | I
80 110 120 130 140 150

Cost of sequence [m]

Figure 7.7: Sequence cost vs simulated makespan for use case B. The grey
highlights the distribution of the obtained makespans in simulation.

arca

94 7.7. Conclusion and future work

7.7 Conclusion and future work

We have presented Robot Task Scheduling Graph, a novel task modelling for-
malism. Descriptions are provided on how to automatically convert an RTSG
model to a scheduling problem for MILP solvers as well as for PDDL planners.
An experimental comparison of two PDDL planners and one MILP solver
suggests the converted problem formulations for MILP and PDDL are equiv-
alent. These experiments also indicate that MILP solvers are more efficient
than PDDL planners for an RTSG model with fewer precedence constraints
while the opposite hold for an RTSG model with more precedence constraints.
Mobile robot simulations of scheduled task sequences confirm the validity of
estimating transition costs from 2-dimensional path lengths.

Future work may cover an extension to modelling and scheduling in the
context of multi-robot applications and continuous applications. Another
line of work may cover efficient modelling and handling of disturbance
behaviours.

Bibliography 95

Bibliography

[1]

(2]

(3]

[5]

[6]

[7]

[8]
[9]

[10]

[11]

Erez Karpas and Daniele Magazzeni. Automated planning for robotics.
Annual Review of Control, Robotics, and Autonomous Systems, 3(1):417—
439, 2020.

Branko Miloradovié, Baran Ciiriiklii, Mikael Ekstrom, and Alessan-
dro Vittorio Papadopoulos. GMP: A genetic mission planner for hetero-
geneous multi-robot system applications. IEEE Trans. on Cybernetics,
2021.

D. McDermott, M. Ghallab, A. Howe, Craig A. Knoblock, A. Ram,
M. Veloso, Daniel S. Weld, and D. Wilkins. PDDL — the planning domain
definition language. 1998.

H. Nakawala, P. J. S. Goncalves, P. Fiorini, G. Ferringo, and E. D. Momi.
Approaches for action sequence representation in robotics: A review. In
IROS, pages 56665671, 2018.

M. Fox and D. Long. PDDL2.1: An extension to PDDL for expressing
temporal planning domains. ArXiv, abs/1106.4561, 2003.

Dana Nau, Tsz-Chiu Au, Okhtay Ilghami, Ugur Kuter, J] William Mur-
dock, Dan Wu, and Fusun Yaman. Shop2: An htn planning system. J.
Artif. Intell. Res. (JAIR), 20:379-404, 2003.

Tobias Rittweiler. Cram design & implementation of a reactive plan lan-
guage. 2010.

Drew Mcdermott. A reactive plan language. 1993.

Matthew Crosby, Francesco Rovida, Mikkel Rath Pedersen, Ronald P. A.
Petrick, and Volker Kriiger. Planning for robots with skills. In Workshop
on Planning and Robotics (PlanRob), pages 49-57, 2016.

David Weintrop, Afsoon Afzal, Jean Salac, Patrick Francis, Boyang Li,
David Shepherd, and Diana Franklin. Evaluating CoBlox: A comparative
study of robotics programming environments for adult novices. In Conf.
on Human Factors in Computing Systems (CHI), pages 1-1, 2018.

Jonathan Bohren and Steve Cousins. The smach high-level executive.
Robotics & Automation Magazine, IEEE, 17:18-20, 2011.

96

Bibliography

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

(20]

[21]

Vittorio Ziparo, Luca locchi, Pedro Lima, Daniele Nardi, and
Pier Francesco Palamara. Petri net plans: A framework for collabora-
tion and coordination in multi-robot systems. Autonomous Agents and
Multi-Agent Systems, 23:344-383, 2011.

Hugo Costelha and Pedro Lima. Robot task plan representation by Petri
nets: Modelling, identification, analysis and execution. Autonomous
Robots, 33, 2012.

Alejandro Marzinotto, Michele Colledanchise, Christian Smith, and Pet-
ter Ogren. Towards a unified behavior trees framework for robot control.
In IEEE Int. Conf. on Robotics and Automation (ICRA), pages 5420-
5427, 2014.

Izabela Nielsen, Quang Vinh Dang, Grzegorz Bocewicz, and Zbigniew
Banaszak. A methodology for implementation of mobile robot in adap-
tive manufacturing environments. Journal of Intelligent Manufacturing,
28:1171-1188, 2015.

Luiz Mello and Arthur Sanderson. Representations of mechanical as-
sembly sequences. Robotics and Automation, IEEE Transactions on,
7(2):211-227, 1991.

Xinwen Niu, Han Ding, and Youlun Xiong. A hierarchical approach
to generating precedence graphs for assembly planning. Int. Journal of
Machine Tools and Manufacture, 43(14):1473-1486, 2003.

A. Salmi, Pierre David, Joshua Summers, and Blanco Eric. A modelling
language for assembly sequences representation, scheduling and analy-
ses. Int. Journal of Production Research, 52:3986—4006, 2014.

Richard E. Fikes and Nils J. Nilsson. Strips: A new approach to the ap-
plication of theorem proving to problem solving. Artificial Intelligence,
2(3):189 — 208, 1971.

Andrew Coles, Amanda Coles, Allan Clark, and Stephen Gilmore. Cost-
sensitive concurrent planning under duration uncertainty for service-level
agreements. 2011.

Gerard Canal and Michael Cashmore. ROSPlan: Al planning and
robotics. 2019.

[22]

(23]
[24]

[25]

N. Koenig and A. Howard. Design and use paradigms for gazebo, an
open-source multi-robot simulator. In IEEE/RSJ Int. Conf. on Intelli-
gent Robots and Systems (IROS) (IEEE Cat. No.0O4CH37566), volume 3,
pages 2149-2154 vol.3, 2004.

LLC Gurobi Optimization. Gurobi optimizer reference manual, 2021.

Patrick Eyerich, Robert Mattmiiller, and Gabriele Roger. Using the
context-enhanced additive heuristic for temporal and numeric planning.
In ICAPS, 20009.

Rodrigo Longhi Guimaraes, André Schneider de Oliveira, Jodo Alberto
Fabro, Thiago Becker, and Vinicius Amilgar Brenner. ROS Navigation:
Concepts and Tutorial, pages 121-160. 2016.

Chapter 8

Paper B
Task Roadmaps - Speeding up
Task Replanning

Anders Lager, Giacomo Spampinato, Alessandro V. Papadopoulos and
Thomas Nolte. In Frontiers in Robotics and Al, section Robotic Control
Systems, 2022.

99

Abstract

Modern industrial robots are increasingly deployed in dynamic environments,
where unpredictable events are expected to impact the robot’s operation. Un-
der these conditions, runtime task replanning is required to avoid failures and
unnecessary stops, while keeping up productivity. Task replanning is a long-
sighted complement to path replanning, which is mostly concerned with avoid-
ing unexpected obstacles that can lead to potentially unsafe situations. This
paper focuses on task replanning as a way to dynamically adjust the robot
behaviour to the continuously evolving environment in which it is deployed.
Analogously to probabilistic roadmaps used in path planning, we propose the
concept of Task roadmaps as a method to replan tasks by leveraging an offline
generated search space. A graph-based model of the robot application is con-
verted to a task scheduling problem to be solved by a proposed Branch and
Bound (B&B) approach and two benchmark approaches: Mixed Integer Lin-
ear Programming (MILP) and Planning Domain Definition Language (PDDL).
The B&B approach is proposed to compute the task roadmap, which is then
reused to replan for unforeseeable events. The optimality and efficiency of this
replanning approach are demonstrated in a simulation-based experiment with
a mobile manipulator in a kitting application. In this study, the proposed B&B
Task Roadmap replanning approach is significantly faster than a MILP solver
and a PDDL based planner.

Paper B 101

8.1 Introduction

With the introduction of stationary and mobile robots in collaborative set-
tings [1], robots need a more sophisticated autonomous behaviour to handle
an increasingly dynamic environment both safely and efficiently. Robots must
be capable of dealing with such uncertainty at runtime, without impacting too
much on their expected productivity. The path planning problem has been ex-
tensively discussed in the literature [2, 3, 4, 5, 6] as one important aspect to
be able to guarantee a safe operation of the robot, and avoid collision with
humans, robots, or other unexpected objects present in the environment. How-
ever, an efficient feasible path may not be easy to find at runtime, e.g., due
to physical constraints of the environment, and the robot may need to stop
waiting for the path to be cleared or make an extended detour. Whenever an
unforeseeable event is perceived, e.g., the robot path is not cleared, or a task
exception occurs, a task replanner can re-assign the sequence of tasks to the
robot to keep its productivity high [7].

In this paper, we propose a task planning approach for industrial robots and
service robots, called Task Roadmaps (TRM), that can be used for replanning
the robot’s task allocation at runtime. The approach is inspired by Probabilistic
Roadmaps [6], as it uses a similar idea to speed up the replanning of tasks
at runtime. An initial plan may be generated offline while replanning is an
online activity that has a direct impact on productivity, as well as the perceived
reactive responsiveness of a robot.

In this work, the TRM approach is applied to a robot application modelled
in the form of a Robot Task Scheduling Graph (RTSG). RTSG is an intuitive
graph-based task modelling formalism for robot applications in dynamic envi-
ronments that was proposed in our previous work [8]. An RTSG model can be
converted to a mathematical representation of the related task scheduling prob-
lem as a Mixed Integer Linear Programming (MILP) problem. The solution of
the MILP problem provides the execution sequence of tasks to complete the
mission with a minimized makespan. Additionally, an RTSG model can be
converted to a domain and problem description in the Planning Domain Defi-
nition Language (PDDL), allowing for the scheduling problem to be solved by
planners compatible with this format.

Unfortunately, the MILP formulation is an NP-hard problem [9, 10], and
computing a solution can be time-consuming. Compared to MILP solvers,
PDDL based planners tend to be more efficient for RTSG models with more
constraints but less efficient for models with fewer constraints [8].

In this paper, we propose the concept of TRM and present a Branch and
Bound (B&B) algorithm to solve the very same scheduling problem described

102 8.2. Related work

above while generating a reusable planning space (a task roadmap). Whenever
replanning is needed, the B&B algorithm can leverage the planning space,
which will speed up the replanning time considerably. This usage scenario of
the algorithm is referred to as B&B-TRM.

In a simulation-based experimental study, we compare the replanning per-
formance for a MILP solver, a PDDL planner, B&B, and B&B-TRM in a
kitting application with a mobile manipulator. The experiments show a signif-
icant reduction of task replanning time with B&B-TRM compared to the other
approaches, while providing equivalent solutions in terms of cost.

The remainder of this paper is organized as follows. Section presents
related works, Section [8.3] gives an introduction to the task modelling for-
malism, RTSG, and the general scheduling problem. Section [8.4] details the
scheduling problem formulation as a MILP, Section [8.5]shows how RTSG can
be converted to PDDL. Section [8.6] introduces Task Roadmaps, exemplified
with a B&B scheduling algorithm for RTSG models. Section[8.7) presents the
experimental results, while Section [8.8]concludes the paper.

8.2 Related work

Some replanning approaches make a new plan from scratch when an unex-
pected condition occurs, e.g., see the work by [11]. This is a solid approach
for high-quality plans but often at a high price of computational time for large
problem instances. Moreover, our approach essentially makes a replanning
from scratch but in addition, it leverages the search space generated to find the
initial plan, thereby reducing the planning time.

Other approaches try to reuse the initially generated plan, modifying parts
of it to adapt to unexpectedly changed or more refined conditions. The purpose
can be to locally optimize the initially planned sequence, e.g., with rule-based
transformational planning [12] or by rearranging subgoals at runtime using
Hierarchical Planning [13]. The purpose can also be to repair a plan, e.g., by
making a rule-based rearrangement of operations [14]. This way of replan-
ning can be more simple and efficient than replanning from scratch, but the
quality of a modified plan may become less optimal or invalid [15]. A so-
phisticated variant of this approach creates an adaptable and partially ordered
initial plan, having an online algorithm generating a set of completely ordered
plans and dispatching the one with the best chance for success given the current
state [16].

The Traveling Salesperson Problem (TSP) with Precedence Constraints
(PCs) with a fixed starting- and endpoint is a special case of the scheduling
problem for RTSG models targeted in this work. RTSG models additionally

Paper B 103

include alternative sequences and interrupt locks. One example of a TSP-
PC problem instance is TSP with pickup and delivery [17]. Recently, a dy-
namic programming approach to solve TSP-PC dating back to 1979 was re-
visited [18]. In this approach, which is akin to our proposed B&B (that uses a
breadth-first and forward search approach), the algorithm starts from an empty
set of nodes and uses an expansion operator to select the order-theoretic mini-
mal of the remaining nodes in every iteration.

8.3 Task modelling formalism and scheduling problem
formulation

In this section, RTSG, the task modelling formalism used in this paper, is pre-
sented. This is followed by a description of the task scheduling problem and
related assumptions.

8.3.1 Robot Task Scheduling Graph

An RTSG is a directed acyclic graph, as exemplified in Figure[8.1] The graph
is composed, e.g. by a domain expert, to specify the variability of a task se-
quence from a start node (S) to a goal node (G) that will achieve a higher-level
goal, e.g., to fetch and deliver a selection of different objects from a ware-
house. S has one outgoing edge and G has one incoming edge. Intermediate
nodes in rectangular form represent tasks that may be executed in a scheduled
sequence to reach the goal. Tasks have one incoming and one outgoing edge
and represent robot actions at different locations in the environment, e.g. the
fetching of an object. Edges and paths (of edges) represent precedence con-
straints. For example, if there is a directed path from task A to task B, then
task A must precede task B in any schedule where both A and B are present.
The remaining nodes, with a circular shape, are logical nodes that guide the
variability of the task sequence. These are intuitively described in the next

subsections[8.3.2] [8.3.3]and [8.3.4]

8.3.2 AND-pairs

An AND-pair is an AND-Join node (&J) and a corresponding preceding AND-
Fork node (&F). The AND-Fork node has a single incoming edge and multiple
outgoing edges, while the AND-Join node has multiple incoming edges and a
single outgoing edge. AND-pairs split a single branch into parallel branches
at the AND-Fork node (&F) and rejoin them at the AND-Join node (&J).

104 8.3. Task modelling formalism and scheduling problem formulation

Figure 8.1: Robot Task Scheduling Graph.

The function of AND-pairs is to indicate more complex precedence con-
straints by being able to fork and rejoin branches. The mutual scheduling order
of tasks in different parallel branches is variable since there is no directed path
between them. Additionally, tasks in these branches must be scheduled before
any task succeeding the AND-Join node.

8.3.3 OR-pairs

An OR-pair is an OR-Fork node and a corresponding succeeding OR-Join
node. The OR-Fork node has a single incoming edge and multiple outgoing
edges while the OR-Join node has multiple incoming edges and a single out-
going edge. An OR-pair contains alternative branches of tasks, where at most
one of them will be scheduled. If an OR-pair is contained by another OR-pair,
it is said to be internal, otherwise, it is external. For an external OR-pair, one
of its contained branches will be scheduled. For an internal OR-pair, one of its
branches will be scheduled if the OR-pair is a part of a scheduled branch.

8.3.4 Lock-pairs

A Lock-pair is an +L node and a corresponding succeeding -L node. These
nodes have a single incoming edge and a single outgoing edge. The sub-graph
between a Lock-pair must be scheduled uninterrupted by externally located
tasks.

8.3.5 The task scheduling problem

The problem to solve is to generate a sequence of tasks that minimises the cost
to achieve the goal in a way that satisfies the constraints of the given RTSG
model. Apart from the sequencing of tasks, a selection of alternative tasks

Paper B 105

is generally included in the scheduling problem. The cost to be minimized
includes routing costs implicated by the task sequence selection.

It is a deterministic, single robot scheduling problem with non-concurrent
tasks, where the task allocation type is a time extended assignment [19]. The
state is fully observable at planning/replanning.

Targeted replanning scenarios handle unexpected states that are blocking
or delaying the progress of task execution. They include the considering of ob-
stacles that are obstructing the execution of the initially planned path/route or
blocking the access of planned task locations. Additionally, they may include
unexpected circumstances affecting the time to execute a task, e.g., when the
robot needs to pick an object from a shelf location, and there are no objects
in the box; the box will be eventually refilled, e.g. by a human but the com-
pletion of the task is affected by an unexpected duration. As a consequence
of the replanning scenario, the cost for the initially planned sequence may in-
crease and in the extreme case make it impracticable. The transition cost may
become changed between many tasks and not only affect the currently running
task or its successor. After rescheduling, the order of tasks to be executed may
be changed or remain. Additionally, alternative tasks may become replaced.

Replanning for an unexpected adding of sub-goals, requiring a structural
modification/extension of the RTSG model, is not investigated in this work.
However, the removal of modelled sub-goals may be handled, e.g. by penaliz-
ing the cost for related tasks or with a selective pruning by the proposed B&B
algorithm.

The computational complexity of the RTSG scheduling problem depends
on the structure of the graph. As a simplistic example, the RTSG can be
used to model two alternative branches of totally-ordered sequences of ac-
tions encapsulated by an OR-pair. The solution to this problem can be solved
in polynomial time. On the other hand, RTSG can also be used to model a
Traveling Sales Person problem (TSP). This is a problem that is known to be
NP-hard [20] indicating the general RTSG problem is at least NP-hard.

A planner supporting temporal PDDL may be used to address problems of
harder complexity classes than NP, e.g. a temporal plan existence problem may
be EXPSPACE-complete [21]. Rintanen shows that a significant fragment of
temporal PDDL planning problems can be reduced in polynomial time to clas-
sical planning with a complexity class of PSPACE. The requirements for this
reduction include no overlapping of the same action and state-independent ac-
tion duration. However, RTSG planning problems have state-dependent action
durations. Classical domain-independent planning languages do not support
state-dependent cost. However, it might be possible to reduce the problem into
a classical problem by generating a manifold of fixed-cost actions [22]. The

106 8.4. MILP representation

modelling approach in this work is not based on a standardized format, e.g.
classical PDDL, which is too limited for the approach. Instead, it uses the na-
tive SAS+ format [23]. Despite the improvements suggested by Geiler et al.,
these conversions will in the worst case grow exponentially. The combination
of these drawbacks for the usage of classical planners motivated the selection
of a temporal PDDL planner as one of the benchmarks in this study.

8.4 MILP representation

The task scheduling problem can be formulated as a Mixed Integer Linear
Programming (MILP) problem where the decision variables and the constraints
are derived from the RTSG model. The optimization objective is to minimize a
cost function, e.g., in the form of a total completion time. The MILP problem
formulation is detailed in this section.

8.4.1 Notation

A is the set of all task nodes in the RTSG, S is the start node and G is the
goal node. We indicate with AS = AU S, with A = AU G, and with
A=AUSUG.

The set O C A, is the set of all task nodes contained by OR-pairs, thus indi-
cating alternative tasks that may, or may not be a part of a valid task sequence.
The notation j < k where j, k € A indicates that task 7 must be scheduled
before task k. The relation j < k holds if there is a directed path from j to &k
in the RTSG.

8.4.2 Problem formulation

The problem that needs to be solved is to select a set of tasks within A and their
sequence, starting from S and ending in G, subject to the constraints indicated
by the RTSG so that the cost is minimized. Such a problem, can be formulated
as an optimization problem, where the decision variables are X5, € {0,1},
Vi, k € A, where

{1, if there is a scheduled transition from j to k
Jk =

0, otherwise.

Note that X; ; = 0, Vj € A since we require that there is always a transition
to a different task.

The cost for selecting a transition between task j and task & is indicated
with K ;; € R>g, and it includes the transition cost 7; , i.€., the time to move

Paper B 107

from the location of task j to the location of task k, and the time oy, that is
required to complete the action of task k:

Kj,k: = T4k + o. (81)

The optimization problem aims to minimize the following cost function:

T=> 3 XK (8.2)

JEAS ke AC

8.4.3 General constraints

The minimization problem is subject to the following constraints.

* There is exactly one transition from, and one transition to the
non-alternative nodes. However, there is no transition from the goal
node and no transition fo the start node:

Y Xje=1 VjeA®\O (8.3)
ke AG
> Xax=0 (8.4)
ke AS
Y Xjr=1 VkeA9\O (8.5)
jEAS
> Xjs=0 (8.6)
JEAG

* No cyclic sub-routes: Let V' C A be any non-empty subset of tasks.

DD X <VI-1 VWWCAV#D (8.7)

JEV keV

« Precedence constraints: Let D C A be any ordered subset with multiple
elements where the last element precedes the first element. D; is the ¢-th
element of D.

|D|—1
> Xp,p,. <ID|—2 VD CA, |D|>2, Dp < Di. (8.8)
j=1

108 8.4. MILP representation

8.4.4 Lock-pair definitions and constraints

A Lock-pair contains a set of tasks, L. C A. Tasks in L must be scheduled as
a group in a sub-sequence that is uninterrupted by other tasks. Two subsets of
L are defined: L = {a € L|b A a Vb € L} specifies the first tasks of L
while LX = {a € L|a Ab Vb€ L} specifies the last tasks of L.

The constraints associated with Lock-pairs restrict transitions from/to tasks
contained by the pair. There can at most be one transition from external tasks
to the first tasks, and at most one transition from the last tasks to external tasks:

Xjx=0 VLVjeL\L\Vke A°\ L (8.9)
Xjp=0 VLVjeAS\L,Vke L\L" (8.10)

Z Z X <1 VL (8.11)

jeLL ke AG\L

Z Z Xjp<1 VL (8.12)

JEAS\L keLF

8.4.5 OR-pair definitions and constraints

The OR-pair constraints presented in this section can handle OR-Pairs inside
OR-Pairs etc., in a recursive manner. To express the OR-pair constraints we
first need to prepare some supporting definitions and operators:

An OR-pair contains a set of OP nodes, where an OP node is either a task
node or an internal OR-pair. In the same way, internal OR-pairs contain OP
nodes etc.

Formally, Oq,...,0, are OP node sets contained by OR-pair
1,...,v; Opi,...,0pp, are OP node sets in branches 1,...,m of
OR-pair p; qu = {a € Op,|aisatask} contains task nodes and
OI?qP = {a € Oy | ais an internal OR-Pair} contains internal OR-pairs so
that O, = OL, UOST.

One primary OP-node, P,, € O, is arbitrarily selected for each OR-pair
branch. We define the following operators:

* F'is a recursive operator that returns a set of tasks for a given OR-pair
branch. The set represents alternative tasks in the branch that shall not
be combined:

F(Oy,) = {{a} if B, is task a. 813

F(Or1)U...UF(Oypp,) if P,y is OR-pair O,

Paper B 109

* H returns a set of tasks for a given OR-pair. It represents alternative
tasks in the OR-pair that shall not be combined:

H(O,) = F(Op1) UF(Op2) U... U F(Opm) (8.14)

* R returns a set of sets of tasks for a given OR-pair branch. It represents
other sets (than F') with alternative tasks in the branch that shall not be
combined:

R(Opq) = qu \ Ppg U U {H (i)} (8.15)

1€0SF\ Ppg

With these definitions, the OR-pair constraints can be summarized:

* Transitions from and to tasks contained by OR-pairs: There is at most
one transition from/to such a task and the number of incoming transi-
tions is the same as the number of outgoing transitions:

Y X<l VjeO (8.16)
ke AG

Y Xjp<1l VkeO (8.17)
JEAS

Y Xjp= > Xp; Vj€O (8.18)
ke AG keAS

* Transition from and to tasks in alternative OR-pair branches: For an
external OR-pair, exactly one branch will be scheduled. For any OR-
pair: If the primary OP node in one branch is scheduled, the remaining
OP-nodes in the same branch will also be scheduled.

sz: Y Xy=1 Vextenal O, (8.19)

JEAG q=1 s€F(Opq)

Z i Z Xjs=1 V external O, (8.20)

FEAS q¢=1 s€F(Opq)

SN Xkj= Y Y. Xuj VO, VR €R(O,) (821

JEAG kER/ JEAG s€F(Opq)

SN Xin=>_ Y Xj. VO0,,VR € R(Oy) (8.22)

JEAS keR! JEAS SEF(Opq)

110 8.5. PDDL representation

8.4.6 Replanning constraints

In dynamic environments, some unforeseeable events may make the initially
computed plan not possible to execute. To complete the robot mission, a re-
planning can be initiated. Such a replanning can, besides changing the order
of tasks, exploit other OR-pair branches of the RTSG to successfully complete
the mission in an alternative way. On the other hand, if one or more tasks in an
OR-pair branch are already completed, the remaining tasks in this branch will
also become scheduled in the new plan. For replanning, one needs to intro-
duce additional constraints to account for completed tasks, and for capturing
the changed situation that hinders the completion of the initial plan. The set
C = {C,...,C;} contains the sequence of already completed tasks. The
initial transitions for these tasks become additional replanning constraints:

Xgc, =1 (8.23)
Xooo, =1 Vi=1,...,1—1 (8.24)

Further, the costs for possible transitions between tasks, K5 j € AS \C,k €
AG \ C are updated to describe the current situation. For example, the costs
are affected by unexpected obstacles and the new location of .S, i.e., the current
location of the robot. Thereafter, the cost of transitions involving completed
tasks are initialized:

Ksc, =0
Kooy =0 Vi=1,...,0—1
Kej=Ks; VjeAS\C

8.5 PDDL representation

PDDL is a general domain-independent modelling formalism for setting up
planning problems, originating from classical planning [24]. It is used to de-
fine planning problems in many areas, also outside the field of robotics. Plan-
ning problems that are represented in a PDDL format can be solved by many
different planner algorithms, e.g., Temporal Fast Downward (TFD) [25] and
POPF2 [26]. Since an RTSG model can be converted to a PDDL planning
problem [8], many different planner algorithms are available. One of these,
TFD, is used in this work as a benchmark. The reason for selecting TFD was
it’s ability to find high quality solutions in comparison with other planners/-
solvers in our previous work [8]. For compatibility, planners need to support
some parts of PDDL2.1 [27] that extends PDDL with syntax for temporal plan-
ning.

Paper B 111

Listing 8.1: PDDL domain

(define (domain RTSG)

(:types
node - obiject
task logical andjoin2 - node
startcond goalcond robtask - task
andfork orfork orjoin - logical
nofork - orfork)

(:predicates
(edge ?nl ?n2 - node)

(orfork-branch ?orf - orfork ?to - node)
(not-locked ?from ?to - task)
(andjoin2-inputs ?nl ?n2 - node)
(fired ?n - node)
(latest-completed ?t - task)
(branch-not-selected ?orf - orfork))
(:functions
(cost ?from ?to - task))
(:durative—-action RUN-TASK
:parameters (?this ?prev - task ?input - node ?orf - orfork)
:duration (= ?duration (cost ?prev ?this))
:condition (and
(at start (latest-completed ?prev))
(at start (edge ?input ?this))
(at start (fired 7?input))
(at start (orfork-branch ?orf ?this))
(at start (branch-not-selected ?orf))
(at start (not-locked ?prev ?this)))
ceffect (and
(at start (not(latest-completed ?prev)))
(at start (not (branch-not-selected 2orf)))
(at end (latest-completed ?this)
(at end (fired ?this))))
(:durative-action FIRE-LOGICAL
:parameters (?this - logical ?input - node ?2orf - orfork)
:duration (= ?duration 0)
:condition (and
(at start (edge ?input ?this))
(at start (fired 7?input))
(at start (orfork-branch ?orf ?this))
(at start (branch-not-selected ?orf)))
:effect (and
(at start (not (branch-not-selected ?orf)))
(at end (fired ?this))))
(:durative-action FIRE-ANDJOINZ2

:parameters (?this - andjoin2 ?inputl ?input2 - node ?orf -
orfork)
:duration (= ?duration 0)

:condition (and
(at start (edge ?inputl ?this))
(at start (edge ?input2 ?this))
(at start (fired ?inputl))
(at start (fired ?input2))
(at start (andjoin2-inputs ?inputl ?input2))
(at start (orfork-branch ?orf ?this))
(at start (branch-not-selected 2orf)))
ceffect (and
(at start (not (branch-not-selected ?orf)))
(at end (fired ?this)))))

112 8.5. PDDL representation
Listing 8.2: PDDL problem
(define (problem RTSG-config)
(:domain RTSG)
(:objects
s - startcond

g - goalcond
afl - andfork
ajl aj2 - andjoin2
ofl - orfork
0jl - orjoin

ta tb tc td te tf - robtask

nfs nfg nftd - nofork
)
(:init

; Static facts

(edge s afl)

(edge afl ta)
(not-locked s ta)
(andjoin2-inputs ta tb)
(andjoin2-inputs ojl td)
(orfork-branch ofl te)
(orfork-branch ofl tf)
(orfork-branch nfs s)

(orfork-branch nfg g)

; Dynamic facts

(fired s)
(latest-completed s)
(branch-not-selected ofl)
(branch-not-selected nfs)

(branch-not-selected nftd)
(= (cost s ta)
(:goal (fired g))
(:metric minimize total-time)

100) ... (=

’

’

’

’

’

(cost tf g)

Dummy objects

(edge aj2 g)
(not-locked tf g)

Dummy fact

Dummy fact

Dummy fact

; Dummy fact
100))

Paper B 113

8.5.1 PDDL introduction

A PDDL problem specification is divided into a domain description and a prob-
lem description. In the domain description, definitions are made that can be
reused for similar planning problems. The most basic definitions include:

* Types are used to instantiate different types of objects, e.g., robots, loca-
tions, tools, paths, or boxes. The types can be organized with polymor-
phism, e.g., a tool may be a gripper or a camera.

* Predicates are used to instantiate different types of facts, describing re-
lations between objects, e.g., "robotl is at locationl", "locationl and
location? is connected with path1".

* Actions are operators that can be applied if a set of preconditions, spec-
ified as predicates, hold for a set of object parameters. The application
of an action causes a set of effects, also specified as predicates, that will
add or remove facts. Action example: Move robotl from locationl to lo-
cation2. Preconditions are: 1) "robot at location1" and 2) "location1 and
location? is connected with path". Effects are: 1) "robot is at location2"
and not "robot is at location1".

A basic PDDL problem description includes:
» Existing objects of different types.
* Facts describing initial relations between objects, i.e., the initial state.

* Facts describing desired or undesired relations between objects, i.e., the
goal state.

The task of a planner algorithm is to process the domain and problem de-
scription and find a sequence of applicable actions operating on the existing
objects, that will change the initial state to a state where the goal state is ful-
filled. This plan generation process is not investigated here. Instead, details are
presented on how to convert the RTSG task modelling formalism into PDDL,
thereby enabling plan generation with already existing planner algorithms.

8.5.2 Conversion from RTSG to PDDL

In general, when converting an RTSG model to a PDDL specification, the
RTSG nodes become objects and the edges become facts. Two types of PDDL
actions are defined:

114 8.5. PDDL representation

* Running a task. This is a durative action where the duration is the cost
to perform the task.

* Firing a transition of a logical node. The purpose of this action type is to
enable the execution of tasks under the constraints imposed by the logi-
cal nodes, e.g., precedence constraints and alternative OR-pair branches.
They do not correspond to real actions and their duration is zero in order
not to affect the cost.

A PDDL domain for RTSG

Listing[8.1|presents a PDDL domain for a general RT'SG. The domain is almost
independent of the RTSG model that shall be converted.

All object types are derived from the node type, and are used to represent
nodes in an RTSG model. There are two types of node: task and logical. task
represents actions or states that affects the cost of a plan: startcond, goalcond
and robtask. logical represents different types of logical nodes: andfork, orfork
and orjoin. Different andjoin types are defined for each number of incoming
edges that needs to be represented in the RTSG model. For example, andjoin2
represents an AND-Join with two incoming edges. A nofork object is a dummy
object that helps in the modelling of alternative branches. Lock-pair nodes are
not represented by object types; instead their constraints are modelled with
not-locked facts.

Among the static predicates, that cannot be affected by any action, edge
represents an edge between two nodes. orfork-branch specifies the outgoing
connection from an OR-Fork to another node. not-locked specifies if a tran-
sition between two tasks is not locked. The other predicates are dynamic and
can be created or removed by actions: fired specifies if a node (task or logical)
is completed. latest-completed specifies if a task is the latest completed task.
branch-not-selected specifies if an alternative branch for an OR-Fork not has
been selected.

There are two types of actions: to run a task and to fire a transition for a
logical node. There is one action that runs all tasks, i.e. RUN-TASK. There
are a limited number of actions for logical nodes, i.e. FIRE-LOGICAL to run
transitions for all non AND-Join nodes, FIRE-ANDJOIN?2 for transitions of
AND-Joins with two incoming edges, FIRE-ANDJOIN3 for 3 incoming edges
etc. Additional AND-Join actions must only be defined if they exist in the
RTSG model.

Running a task has a duration and the duration is represented by a cost
function that specifies the cost of performing a task (o) after completing an-
other task (from). The preconditions require that the node connected to the

Paper B 115

incoming edge has been fired. If this connected node is an OR-Fork, it is
required that a branch not yet has been selected. It is also required that a
transition from the latest completed task not is locked. The effects update the
dynamic predicates: The task becomes both fired and the latest-completed.
The branch-not-selected is removed for the task’s orfork.

Fire a transition for a logical node has a zero duration, i.e., free of cost. The
preconditions require that the node connected to the incoming edge has been
fired. If this connected node is an OR-Fork, it is required that a branch not yet
has been selected. The effects update the dynamic predicates: The logical node
becomes fired and the branch-not-selected is removed for the logical node’s
orfork. For an AND-Join action, the preconditions additionally require every
node connected to the incoming edges to be fired.

A PDDL problem for an RTSG model

Listing [8.2] exemplifies a PDDL problem description at initial planning, that
is converted from the RTSG model in Figure 8.1 Some of the data in the
conversion are left out, indicated with ’...’, to get a more compact overview.

The objects and the static facts listed in the PDDL problem are dependent
on the structure of the RTSG model.

Objects are defined for all nodes in the RTSG graph except for Lock-pair
nodes. Additionally, nofork objects are created for all nodes that do not have
an incoming edge from an OR-Fork node. noforks are dummy objects assisting
in the selection of alternative OR-Fork branches.

Static facts are created to represent the structural elements of the RTSG
model. The edges are represented with edge facts that specify connected
nodes. However, edges to/from Lock-Pair nodes are bypassed. not-locked
facts are created for each valid transition between two tasks, with respect to
precedence constraints as well as Lock-pair constraints. For each AND-Join
node, an andjoinX-inputs fact is created that specifies all nodes connected to
its X incoming edges. For each node connected to the outgoing edge of an
OR-Fork node, an orfork-branch fact is created indicating this orfork. For all
other nodes, an orfork-branch fact is created indicating their nofork object.

Dynamic facts are created to represent all possible intermediate states of
a task execution sequence. A fired fact is added for all completed nodes. For
the initial state, as illustrated in Listing there is only a single fired fact for
the start node. At replanning, a fired fact is additionally added for all com-
pleted tasks and for the logical nodes that precede completed tasks. A single
latest-completed fact specifies the latest completed task. At initial planning,
the start node is always the latest-completed, while this may have changed at

116 8.6. Task Roadmaps

replanning. For the initial plan, a branch-not-selected fact is created for each
orfork and nofork. At replanning, these facts are removed if the orfork has a
fired fact or if the node that is connected to the nofork has a fired fact.

Finally, the numerical cost value for all not-locked transitions between
tasks is specified. In a replanning scenario, these values may become changed
by the current state of the modelled application.

The required goal state is a fired fact for the goal object. The objective of
the plan, the metric, is to minimize the makespan.

8.6 Task Roadmaps

We developed a Branch and Bound (B&B) algorithm, to compute solutions of
scheduling problems modelled with RTSG as detailed in Section [8.3] The al-
gorithm makes a breadth-first expansion of a search tree. It is a forward search
that is guided from the start node of the RTSG model. When replanning is
needed, the algorithm is designed to make a new plan while considering the
current conditions, e.g., the location of the robot and the sequence of already
completed tasks. Optionally, the search space that was constructed while gen-
erating the initial sequence can be reused. This option avoids the need of ex-
panding a new search space from scratch, making the replanning significantly
faster with preserved quality of generated plans.

In analogy with Probabilistic Roadmaps [6], the search space is referred
to as the Task Roadmap (TRM) that is created in a learning phase and used
for runtime replanning in a query phase. In Table [§.1] we compare the basic
characteristics between Probabilistic Roadmaps (PRM) and TRM.

Additionally, a saved Task Roadmap may be leveraged to speed up initial
planning for an RTSG model if it has the same graph structure as the model
used to generate the Task Roadmap.

8.6.1 Learning phase

In the learning phase, a search tree is expanded by the B&B algorithm acting
on a Robot Task Scheduling Graph (RTSG) to find an initial task sequence. In
the search tree, see Figure [8.2] the initial start condition is represented by the
root node S, and other nodes represent sub-sequences. The number of tasks
in a sub-sequence corresponds to the distance between the node and the root
node. The best sequence is the sequence reaching the leaf G' with the lowest
cost (indicated in green in the figure).

An important aspect of the scheduling algorithm is the pruning of equiva-
lent nodes. Equivalent nodes have the same distance to the root node and the

Paper B

117

Probabilistic Roadmaps

Task Roadmaps

Represents a robot configuration
space with a graph.

Represents a robot task sequence
space with a search tree.

Used for path planning with obsta-
cle avoidance.

Used for rask planning with
scheduling constraints.

The graph is built using probabilistic
sampling of the robot configuration
space.

The search tree is built with a deter-
ministic B&B algorithm where the
scheduling constraints are specified
with an RTSG model.

Nodes represent collision-free
configurations in the configuration
space.

Nodes represent valid task se-
quences with respect to the schedul-
ing constraints.

Edges represent collision-free paths
between robot configurations. Path
costs are typically fixed.

Edges represent valid transitions
that extend task sequences with ap-
plicable tasks. Transition costs are
updated for a new replanning sce-
nario.

Offline learning phase to build the
graph.

Offline learning phase to build the
search tree.

Online query phase where the graph
is used, e.g., at replanning, to iden-
tify a collision-free and potentially
efficient path from a current state to
a goal state.

Online query phase where the
search tree is used, e.g. at replan-
ning to identify a valid and poten-
tially optimal task sequence from a
current state to a goal state.

Table 8.1: Similarities of the basic characteristics for Probabilistic Roadmaps and
Task Roadmaps, respectively.

same combination of tasks (but in different orders) where the last task is the
same, leading to a similar state. In the example in Figure [8.2] the two nodes
representing the sequences S-A-B-C and S-B-A-C are equivalent. The dif-
ference between equivalent nodes is mainly the cost of the respective sequence
leading to this state. The possible propagation of task sequences from equiva-
lent nodes is identical. This conclusion is not formally proved here but verified
experimentally in the scenarios presented in Section where B&B always
finds valid and potentially optimal solutions with the same objective value as
a MILP solver and a PDDL planner, at initial planning as well as at replanning
in the query phase. The identical task sequence propagation from equivalent
nodes is leveraged in the query phase. For this purpose, the algorithm always
adds a pruning edge from a pruned node to the equivalent node with a better

118 8.6. Task Roadmaps

v
() (®)

G:G : G‘QG $’
% il

Figure 8.2: Visualization of a B&B search tree for the RTSG model in Figure
This expanded search tree makes up the Task Roadmap. The initial task sequence is
marked in green and completed nodes have a checkmark. Pruned nodes are red and
have red pruning edges.

cost that caused the pruning. In the following description, equivalent nodes
that are interconnected with pruning edges are referred to as peers.

8.6.2 Query phase

At a point of replanning, the world is in a new state where the robot has com-
pleted 0 to |A| tasks of the initial sequence. It is expected that the transition
costs and the action costs of the remaining tasks (Equation (8.1)) may have
changed, e.g., since the previously planned path to a task may have become
temporarily blocked. Especially, the transition cost from the latest completed
task to other tasks should be guided by the current state of the robot, e.g. its
location. The query phase tries to identify an efficient sequence of tasks that
will bring the robot from the current world state to the goal.
The query phase is divided into 2 steps:

1. The first step is to identify the current node of the search tree. This is
the node that represents the sequence of already completed tasks. If no

Paper B 119

tasks have been completed, the root node becomes the current node.

2. The second step is to find the most efficient task sequence between the
current node and a goal-reaching node in the search tree. In this step,
pruning edges are leveraged to explore nodes without children.

When replanning is made while reusing an existing search tree, we will refer to
this method as B&B-TRM. And when replanning is made from scratch with a
single and non-expanded root node, we will refer to this method as B&B. The
memory required for replanning with B&B-TRM is always the same amount
as required by B&B to find the initial task sequence in the learning phase and
create the Task Roadmap. Replanning with B&B will in worst case require
the same amount of memory as B&B-TRM, i.e. if no tasks are completed. If
some tasks are already completed the memory need becomes reduced due to
the smaller problem size. Both methods are realized with the same algorithm.
This algorithm takes as input a list of already completed tasks. It also needs
cost estimates for actions and transitions with respect to the current state. The
search starts from the root node, which may be an initial single node or the top
node of an existing search tree. It is a breadth-first search where any existing
children are reused instead of being created while expanding the search. It is
pruning all nodes in the first generation except the one that matches the first
completed task. Then all nodes in the second generation are pruned except
the one that matches the second completed task etc. This goes on until the
current node is reached. From this node and onwards, only equivalent nodes
are pruned. If an expansion is required from a node without children, the
algorithm will look for a peer of the node. If no peer is found (e.g., since
the algorithm is run without a TRM), all applicable children of the node are
identified by a search of the RT'SG and created. If instead a peer is found, the
peer’s children are adopted by this node. If the peer lacks children, the peer’s
peer’s children are adopted etc. These adopted children are top nodes of sub-
trees that are disconnected from the peer and reconnected to the new parent
node. The cost of all reused children adopted or previously existing, need to
be updated to consider the new cost of the parent. The search continues until
the goal is reached in all active (non-pruned) search nodes. Finally, the goal-
reaching node with the lowest cost is identified.

Due to the exchange of subtrees between peers, each replanning will po-
tentially modify the structure of the search tree. However, no information is
lost that is required for later replanning. The significant reduction of planning
time from reusing nodes comes from 1) removing the process of searching the
RTSG to find possible search tree propagations and 2) removing the process of
creating nodes from scratch.

120 8.6. Task Roadmaps

Algorithm 1 B&B and B&B-TRM.

1: function SCHEDULETASKS(root, completedT asks)
22 GS+w > Goal reaching sequences
3: for i+ 0tooodo
4: GN + GETGENERATION(root, GS,i + 1)
5: if GN = @ then
6: break > No more generation to explore
7 end if
8: ifi e [l,...,|completedTasks|| then
9: Prune all ¢ € G except the one matching the i-th
10: element in the completedT asks sequence
11: else
12: for allc € GN do
13: if 3d € GN, cis equivalent with d, cost(c) > cost(d) then
14: Prune(c)
15: c.peer < d > Add a pruning edge
16: end if
17: end for
18: end if
19: end for

20: return sequence in G.S with lowest cost
21: end function

Paper B 121

Algorithm 2
1: function GETGENERATION(tn, G'S, depth)
22 GN+©
3: if depth =1 then > Check if this generation
4: GN +tn
5: elseif depth = 2 then > Check if next generation
6 if Not Pruned(tn) then
7 if HasNoChildren(tn) then
8 if HasPeer(tn) then
9: p < GetPeerWithChildren(tn)
10: for all ¢ € p.children do
11: c.parent < tn > Assign a new parent
12: end for
13: tn.children < p.children > Adopt the peer’s children
14: tn.peer < & > Remove the pruning edge to the peer
15: p.children <~ @ > Disconnect the peer from it’s former children
16: p.peer < tn > Establish a pruning edge from the peer
17: else
18: tn.children « SearchAndCreateChildren(tn) > A forward
search of the RTSG for children
19: end if
20: end if
21: if IsGoal Reaching(tn) then
22: AddGoalCost(tn) > Add cost to reach the goal.
23: GS + GSUtn > Add to the collection of goal reaching sequences
24: else
25: for all ¢ € tn.children do
26: InheritParentCost(c)
27: AddTaskCost(c)
28: end for
29: GN < tn.children
30: end if
31: end if
32: else > Later generations
33: for all c € tn.children do
34: if NotPruned(c) then
35: GN + GN U GETGENERATION(c, GS, depth — 1)
36: end if
37: end for

38: end ifreturn GN
39: end function

122 8.6. Task Roadmaps

8.6.3 B&B and B&B-TRM

A pseudo-code for B&B and B&B-TRM is given in Algorithm [I]and [2]

The algorithm starts at the ScheduleTasks function. It takes as input argu-
ments a root node and a list of already completed tasks. The root node keeps
the starting conditions for planning, e.g., the current location of the robot. At
initial planning, the root node does not have any children. After completing the
initial planning, it has been expanded to a search tree. At replanning, the ex-
panded root node can be used as an input argument to ScheduleTasks, thereby
speeding up the planning time. This usage scenario is referred to as the B&B-
TRM algorithm. If instead a non-expanded root node is used, the search tree
will be generated from scratch, which is referred to as the B&B algorithm.

ScheduleTasks runs a loop where a new generation of nodes is fully ex-
plored in every cycle, starting from the root node. From each generation, any
goal-reaching nodes (sequences) are collected. The loop continues until no
more generations can be explored. Finally, ScheduleTasks returns the goal-
reaching sequence with the lowest cost. For each explored generation, pruning
is made among equivalent nodes (in the algorithm referred to as peers) and
pruning edges (object references to peers) are recorded for all pruned nodes
to keep track of reusable sub-trees. If there are completed tasks, all children
of the first generations, except the ones matching the completed sequence, are
pruned.

To explore a new generation, the recursive GetGeneration function is used.
The first argument, ¢n, is a reference to a tree node. The function returns a list
of nodes representing a generation with respect to the tree node. The gener-
ation is specified with a relative depth argument, where the value of 1 spec-
ifies the current generation, i.e. the tree node itself. A value of 2 indicates
the children of the tree node while 3 indicates the grandchildren etc. If the
grandchildren or later generations are specified, intermediate generations have
already been explored due to the breadth-first search approach, and the exist-
ing children are used to explore the specified generation recursively. If instead
the children generation is specified, the way of exploration will depend on the
usage scenario. For the B&B scenario, where a reusable roadmap is missing,
the children of the tree node are identified with the method SearchAndCreate-
Children. This is a method that searches the RTSG model recursively, where
any possible child nodes are created, configured, cost estimated and attached
to the search tree. For B&B-TRM, existing children can be reused and if a
tree node does not have children, these can be localized from its peer. If the
peer has no children, the peer’s peer is checked etc until children are found.
Thereafter, the children are reconnected from the peer to the tree node. For

Paper B 123

Figure 8.3: Warehouse layout. The light green path, starting and ending at the bottom
right, is the initial route for Scenario B. The robot has stopped in front of an obstacle
that is blocking the initially planned movement. The red lines along the shelves, the
wall and the obstacle indicate the objects perceived by the robot’s laser scanner. A
replanned route in blue, starting at the robot’s location, has changed the order of the
remaining tasks.

both usage scenarios, the costs of the children are estimated as the cost of the
parent plus the cost to perform the last task of the child with respect to the last
task of the parent. Apart from returning a list of a generation, GetGeneration
also updates the list of goal-reaching sequences, i.e. the G\S argument, with
any goal-reaching sequence.

8.7 Results

8.7.1 Use case

The use case is a kitting application in a warehouse. A mobile manipulator
shall deliver kit boxes filled with several specified objects to a delivery station.
Objects and empty kit boxes are located on 5 different shelves in a simple
warehouse as illustrated in Figure[8.3]

The robot can carry 2 kit boxes and fill them in parallel. The process to

124

8.7. Results

Load 2 boxes @—>
Fill 1st Lo =
layers | FO2B1| |F03B1| [F04B1| |FO7B2| |F08B2 |
W
Fetch ; :
interlayers | F98B1| |F99BI | |F98E< || ’F/99B2|
([F10B2 |<{ F09B2 |
E;Lffd < [FosB1] [FoeBI] [F11B2]
N/
L |F21B1| | F22B2 |
L
Deliver 2 kit boxes @

Figure 8.4: RTSG representation of Scenario A.

Paper B 125

Load 2 boxes @—> LO1BX @

E;g: t | FO4B1 |~ FO3B1 [« F02B1| |F07B2 |~ F08B2 |

Fetch

interlayers | F98B1 | | F99B1 | | F98B2 | | F99B2 |

Fill 2nd | FO5B1 || FO6B1 | | FO9B2 | F10B2 |~ F11B2 |
1 n

layers

Deliver 2 kit boxes

Figure 8.5: RTSG representation of Scenario B.

Load 2 boxes Fill boxes Deliver

2 kit
boxes

FO3B

F04B @ F21B1

FOSB

@—» [L01BX]

F08B2

F09B2 F21B2

F1 0B2

Figure 8.6: RTSG representation of Scenario C.

126 8.7. Results
Scenario #Variables #Constraints
A 342 46
B 342 46
C 210 30

Table 8.2: Variables and constraints for the MILP problem formulations.

deliver the kits is divided into 5 phases: Fetch empty kit boxes, Fetch layer 1,
Fetch interlayer, Fetch layer 2, and Deliver kits. There are two types of tasks:
The first is to load empty kit boxes, and the second is to fetch an object to
a carried kit box. Three different scenarios (A, B and C) are modelled with
RTSG, see Figures Task names, e.g., F'98B1, indicate type of task
(F'etch), location (98) and kit box (1). In all scenarios, the first task, LO1BX,
is to load two kit boxes from a shelf location (01). The remaining tasks require
fetching one object at a shelf location into one of the two carried kit boxes.
The first AND-pair splits the graph into two branches, each one modelling the
filling of one kit box. The goal node represents the movement of the robot
to the goal location where the filled kit boxes shall be delivered. Scenario
A is a realistic specification for how kit boxes can be filled in an industrial
context. For layer one, the kit objects can be fetched in any order. For layer
2, the right-hand side kit box is modelled to be filled in strict order (F'0952-
F10B2-F11B2) while the left-hand side kit box provides some variability. A
strict order can be desired, e.g., to achieve a predefined overlap of objects in the
kit box. There are two alternative locations, 98 and 99, where an interlayer can
be fetched. In Scenario B, tasks from Scenario A are rearranged in the graph,
applying a strict order for each layer, thereby introducing more precedence
constraints that reduce the variability of the task sequence. In Scenario C,
the tasks are rearranged to minimize the number of precedence constraints,
thereby maximizing the variability. Scenario C is closer to a TSP problem
with no precedence constraints among the objects that shall be placed in the
boxes.

When converting the three scenarios to MILP problem formulations, the
number of variables and constraints are indicated in table [8.2] Additionally,
some lazy constraints are added dynamically when required for equations |8.7
and [8.8] while running the MILP solver. The theoretical number of constraints
for these equations can be very high and defining them all may not be viable.

Paper B 127

8.7.2 Experimental setup

The simple warehouse world is modelled with the Gazebo simulator [28]. This
includes the shelves, the mobile robot and an obstacle that may interfere with
the robot path. ROS Navigation Stack [29] is used to navigate the robot be-
tween different locations. The navigation is guided by a 2D map of the ware-
house that initially does not include the obstacle. While navigating, the robot
simultaneously maps changes in the simulated world with respect to the map.

The benchmarked planners include the proposed B&B and B&B-TRM al-
gorithms, a MILP solver [30] and Temporal Fast Downward (TFD) [25] which
is a PDDL based temporal planner. An initial task sequence is generated from
the RTSG model with B&B, MILP and TFD. Additionally, B&B generates a
task roadmap that is reused by B&B-TRM in all replanning experiments. The
transition costs between tasks are represented by the collision-free path lengths
generated with the Dijkstra algorithm from the initial map. The initial task se-
quence corresponds to a route in the warehouse that starts and ends at the same
location. In the simulation-based replanning experiments, the robot navigates
the initially computed route, which turned out to be the very same route for
all planners, while simultaneously mapping the environment with a simulated
laser scanner. When the first task is reached, the next task is dispatched etc.
During the progress of the plan execution, the planned motion to the next task
becomes blocked by the obstacle at randomized locations along the path. The
part of the obstacle that is visible from the robot while approaching it and
stopping a short distance nearby (1-1.5 m), becomes included in the map. A
replanning is initiated from a randomized location of the robot in front of the
obstacle on the planned path. For this purpose, the initial planning problem is
updated to become a replanning problem, considering already completed tasks,
the robot’s (randomized) current location and updated transition costs caused
by the updated map. Depending on the location of the obstacle and its effect on
collision-free path lengths between tasks, the replanned routes may change or
keep the sequence of tasks. Replanning may fail if the location of the obstacle
blocks a planned task when there are no alternative tasks. If a collision-free
path can not be found between two tasks, the transition cost is penalized to a
very high value that will help to detect a failed plan. All replanning scenar-
ios were run with the benchmarked planners, including B&B-TRM and B&B
(without the TRM). The number of already completed tasks at replanning, [,
was in the range [€ {0,1,...,|A|}. 50 replannings were made for each [,
with randomized robot and obstacle locations along the path between the lo-
cation of the latest completed task and the next task. All experiments were
run on the same computer with an Intel i5-4570, quadcore, 64-bit processor

128 8.7. Results

having 7.6 GB RAM running on Ubuntu 18.04.5. For the MILP solver, the no-
cyclic-subroutes constraints and the precedence constraints were implemented
as lazy constraints in a customized Python callback routine. The B&B and the
B&B-TRM algorithms were implemented in Python.

8.7.3 Experimental results

Figure [3.7|shows the experimental results for the four planner algorithms, i.e.,
B&B, B&B-TRM, TFD and the MILP solver. The graphs show the minimum,
the median, and the maximum replanning time for the four algorithms, as a
function of the number of completed tasks /; if [is 0, no task has been com-
pleted, and the replanning is performed with all the tasks in the task set, and
therefore the replanning time is expected to be higher.

For each experiment in all scenarios, B&B-TRM and B&B reach the very
same objective value as the solution computed by the MILP solver, suggesting
that the proposed algorithms may be optimal. However, further investigation
on the optimality of the proposed algorithms is needed. TFD also reaches the
very same objective values in all experiments. The replanning time for B&B-
TRM is less than 1 second (and often a fraction of that) for all scenarios. As
expected from B&B-TRM essentially being a reduced version of B&B, it out-
performs B&B in every scenario by an average factor of 26. The factor tends to
increase slightly for scaled-up problem instances with fewer completed tasks.

B&B-TRM outperforms the MILP solver in Scenario A by a factor greater
than 152 for the largest problem instances [€ {0, ...,8}. The difference is
slightly less for the smaller problem instances but still significant (> 18). For
Scenario B, B&B-TRM is more than 137 times faster for [€ {0, ...,8}. For
Scenario C and [€ {0,1,2}, B&B-TRM is only 1.8, 2.3 and 2.6 times faster
than the MILP solver, but for [> 2, the proposed method exhibits significantly
better performance. The decreasing difference to the MILP solver for the larger
problem instances in Scenario C is correlated with a fast-growing search tree
and increased memory consumption. For Scenario A and B, the growth of the
search tree at each breadth-first expansion step is limited by the more numer-
ous precedence constraints, thereby reducing the memory consumption con-
siderably. Scenario C highlights the main limitation of the proposed approach,
i.e., for loosely constrained problems (Figure [8.6)), the number of alternatives
grow significantly in breadth-first tree-based search approaches. On the other
hand, the specification of robot applications is typically closer to Scenario A
(Figure [8.4), with a more structured sequence of tasks, hence with additional
constraints. In such cases, the proposed approach can provide a significant
speedup.

Paper B 129

B&B-TRM outperforms TFD by a factor greater than 149 for all [€
{0,...,|A|} in Scenario A. This factor is 151 for Scenario B and 68 for Sce-
nario C, respectively. A part of this performance difference may depend on
the fact that the proposed algorithm is designed for the RTSG modelling for-
malism used to model these scenarios, while TFD is designed for the PDDL
modelling formalism.

Finally, it is worth noticing that both the B&B-TRM approach and TFD
provide a more predictable performance than MILP, highlighted by the limited
variability (standard deviation) of the replanning time.

130 8.7. Results

T T T ———
- Scenario A | e B&B EEmB&B-TRM ||
= s MILP mesw TFD -
£ |
-
g =
£ E
=}
=
o
[$)
-
107
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Completed tasks
3 T T T T T T Nl T : . : - :
o Scenario B | pam B&B mmm B&B-TRM |
% 102 2 MILP pese TFD E
g ow
g 107! =
= 1072
[P
o103
1074
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Completed tasks
T T =i : : i X X E
e Scenario C | g B&B EmmB&B-TRM ||
% o s MILP mese TFD
£
= -
=] _1 .
.E 10 =
g g2
= 10
()
&M o1073

1074
o 1 2 3 4 5 6 7 & 9 10 11 12 13

Completed tasks

Figure 8.7: Replanning time for B&B (dashed area), B&B-TRM (solid area) and
MILP (dotted area) at different task completion levels. The central line in each area
indicates the median. Note that the vertical axis is logarithmic.

Paper B 131
(a) Scaling layer sizes (b) Scaling number of layers
10 -10
T T T T T T T T T
6| 3 6|)
(3 6
24| I 1
= =
Q (]
& =
2[iy # 2 a
| | | | 0 | | |
10 15 20 25 30 10 20 30 40
Tasks # Tasks
10° T T 103 == T T T |
|2 || B&B 599 B&B-TRM | g2 || = B&B 599 B&B-TRM
2 T = E]
2w | owl
2 10 - £ 10° E |
= -1 N = 1 B
5w -
g v 1 &
1073 l § 10—3 é é
1 25

o]
w
o

Tasks

Tasks

Figure 8.8: Scalability experiments for Scenario A. ‘#Tasks’ indicates the number of
tasks in the RTSG. ‘#Tree nodes’ indicates the number of nodes in the Task Roadmap

search tree.

132 8.8. Conclusion and future work

8.7.4 Scalability investigation

As discussed in section [8.3.5] the complexity of the scheduling problem de-
pends on the structure of the graph. It is assumed that the scalability of the
presented algorithm also depends on this structure, and how the graph is scaled.
In order to investigate how the algorithm may scale for growing problem sizes,
an experiment was setup targeting the graph in scenario A. The size of this
graph was modified in different steps. For each problem size, memory con-
sumption and replanning time were measured. The number of tree nodes in
the Task Roadmap are used to represent memory consumption. All replanning
times were measured at random locations before completing the first very task,
which is the worst case. Scenario A was scaled in two ways, (a) by changing
the number of tasks in each layer of the kit boxes (Figure [8.8(a)), and (b) by
changing the number of layers in the kit boxes (Figure [8.8(b)). Both scaling
scenarios indicate an exponential growth of the memory consumption, but at
different rates where scaling the number of layers is more advantageous. Scal-
ing the number of layers introduces a lot of precedence constraints, while the
scaling of layer sizes introduces very few. The B&B-TRM replanning times
are within a few seconds for the included problem sizes. The scalability ex-
periments confirms that memory consumption may be a limitation for the al-
gorithm in some scenarios. Especially for less constrained, scaled up problem
scenarios.

8.8 Conclusion and future work

We have proposed the concept of Task Roadmaps (TRM) and shown that it
is a promising strategy to speed up online replanning of robot tasks, thereby
contributing to improved productivity in a dynamic environment. We have pre-
sented a strategy to implement Task Roadmaps, using a Robot Task Scheduling
Graph to model a robot application, Branch and Bound (B&B) for initial plan-
ning and B&B-TRM for replanning. The benefits, as well as the limitations for
this strategy, have been investigated in an experimental study where a MILP
solver and a PDDL based planner have been used as benchmarks.

Future work will address the combining of different replanning strategies
with the modelling and runtime observation of disturbance behaviours. An-
other interesting extension is to widen the scope to multi-robot task allocation
and scheduling.

Bibliography 133

Bibliography

[1]

(2]

(3]

[4]

[5]

[7]

[8]

[9]

[10]

A. Ajoudani, A.M. Zanchettin, S. Ivaldi, A. Albu-Schaeffer, K. Kosuge,
and O. Khatib. Progress and prospects of the human-robot collaboration.
Auton Robot, 42:957-975, 2018.

M. M. Costa and M. F. Silva. A survey on path planning algorithms for
mobile robots. In 2019 IEEE Int. Conf. on Autonomous Robot Systems
and Competitions (ICARSC), pages 1-7, 2019.

Thi Thoa Mac, Cosmin Copot, Duc Trung Tran, and Robin De Keyser.
Heuristic approaches in robot path planning: A survey. Robotics and
Autonomous Systems, 86:13-28, 2016.

P. Tajvar, F. S. Barbosa, and J. Tumova. Safe motion planning for an
uncertain non-holonomic system with temporal logic specification. In
IEEE Int. Conf. on Aut. Science and Eng. (CASE), pages 349-354, 2020.

Anna Mannucci, Lucia Pallottino, and Federico Pecora. Provably safe
multi-robot coordination with unreliable communication. /EEE Robotics
and Automation Letters, 4(4):3232-3239, 2019.

L. E. Kavraki, P. Svestka, J. . Latombe, and M. H. Overmars. Probabilis-
tic roadmaps for path planning in high-dimensional configuration spaces.
IEEE Trans. Rob. and Aut., 12(4):566-580, 1996.

A. Lager, G. Spampinato, A. V. Papadopoulos, and T. Nolte. Towards
reactive robot applications in dynamic environments. In IEEE Int. Conf.
on Emerging Tech. and Factory Automation (ETFA), pages 1603-1606,
2019.

Anders Lager, Alessandro Papadopoulos, Giacomo Spampinato, and
Thomas Nolte. A task modelling formalism for industrial mobile robot
applications. In 20th International Conference on Advanced Robotics,
2021.

Branko Miloradovi¢, Baran Ciiriiklii, Mikael Ekstrom, and Alessan-
dro Vittorio Papadopoulos. A genetic algorithm approach to multi-agent
mission planning problems. In Operations Research and Enterprise Sys-
tems, pages 109-134, Cham, 2020. Springer Int. Publishing.

Branko Miloradovié, Baran Ciiriiklii, Mikael Ekstrom, and Alessan-
dro Vittorio Papadopoulos. Gmp: A genetic mission planner for het-

134

Bibliography

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

erogeneous multi-robot system applications. IEEE Transactions on Cy-
bernetics, Mar. 2021.

Martin Weser, Dominik Off, and Jianwei Zhang. Htn robot planning in
partially observable dynamic environments. pages 1505-1510, 05 2010.

G. Kazhoyan, A. Niedzwiecki, and M. Beetz. Towards plan transfor-
mations for real-world mobile fetch and place. In IEEE Int. Conf. on
Robotics and Automation (ICRA), pages 11011-11017, 2020.

D. Hadfield-Menell, L. P. Kaelbling, and T. Lozano-Pérez. Optimization
in the now: Dynamic peephole optimization for hierarchical planning.
In 2013 IEEE Int. Conf. on Robotics and Automation, pages 4560-4567,
2013.

Ping Lou, Quan Liu, Zude Zhou, Huaiqing Wang, and Sherry Sun. Multi-
agent-based proactive-reactive scheduling for a job shop. Int. Journal of
Advanced Manufacturing Technology - INT J ADV MANUF TECHNOL,
59, 03 2012.

Drew McDermott. Robot planning. Al Magazine, 13(2):55, Jun. 1992,

Oscar Lima, Michael Cashmore, Daniele Magazzeni, Andrea Micheli,
and Rodrigo Ventura. Robust plan execution with unexpected observa-
tions, 2020.

Irina Dumitrescu, Stefan Ropke, Jean-Francois Cordeau, and Gilbert La-
porte. The traveling salesman problem with pickup and delivery: Polyhe-
dral results and a branch-and-cut algorithm. Mathematical Programming,
121:269-305, 07 2009.

Yaroslav Salii. Revisiting dynamic programming for precedence-
constrained traveling salesman problem and its time-dependent gener-
alization. European Journal of Operational Research, 272(1):32 — 42,
2019.

Brian P. Gerkey and Maja J. Matari¢. A formal analysis and taxonomy
of task allocation in multi-robot systems. The International Journal of
Robotics Research, 23(9):939-954, 2004.

J. Grefenstette, R. Gopal, B. Rosmaita, and D. Van Gucht. Genetic algo-
rithms for the traveling salesman problem. pages 160-168, 1985.

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

Jussi Rintanen. Complexity of concurrent temporal planning. In Pro-
ceedings of the Seventeenth International Conference on International
Conference on Automated Planning and Scheduling, ICAPS’07, page
280-287, 2007.

Florian Geifler, Thomas Keller, and Robert Mattmiiller. Delete relax-
ations for planning with state-dependent action costs. In Proceedings of
the 24th International Conference on Artificial Intelligence, 1JCAI’ 15,
page 1573-1579, 2015.

Christer Béckstrom and Bernhard Nebel. Complexity results for sas+
planning. Computational Intelligence, 11(4):625-655, 1995.

Richard E. Fikes and Nils J. Nilsson. Strips: A new approach to the ap-
plication of theorem proving to problem solving. Artificial Intelligence,
2(3):189 — 208, 1971.

Patrick Eyerich, Robert Mattmiiller, and Gabriele Roger. Using the
context-enhanced additive heuristic for temporal and numeric planning.
ICAPS’09, 2009.

Andrew Coles, Amanda Coles, Allan Clark, and Stephen Gilmore. Cost-
sensitive concurrent planning under duration uncertainty for service-level
agreements. 2011.

M. Fox and D. Long. PDDL2.1: An extension to PDDL for expressing
temporal planning domains. ArXiv, abs/1106.4561, 2003.

N. Koenig and A. Howard. Design and use paradigms for gazebo, an
open-source multi-robot simulator. In IEEE/RSJ Int. Conf. on Intelli-
gent Robots and Systems (IROS) (IEEE Cat. No.0O4CH37566), volume 3,
pages 2149-2154 vol.3, 2004.

Rodrigo Longhi Guimardes, André Schneider de Oliveira, Jodo Alberto
Fabro, Thiago Becker, and Vinicius Amilgar Brenner. ROS Navigation:
Concepts and Tutorial, pages 121-160. 2016.

LLC Gurobi Optimization. Gurobi optimizer reference manual, 2021.

Chapter 9

Paper C

A Scalable Heuristic for
Mission Planning of Mobile
Robot Teams

Anders Lager, Branko Miloradovié, Alessandro V. Papadopoulos, Giacomo
Spampinato and Thomas Nolte. In 22nd World Congress of the International
Federation of Automatic Control (IFAC), 2023.

137

Abstract

In this work, we investigate a task planning problem for assigning and plan-
ning a mobile robot team to jointly perform a kitting application with alterna-
tive task locations. To this end, the application is modeled as a Robot Task
Scheduling Graph and the planning problem is modeled as a Mixed Integer
Linear Program (MILP). We propose a heuristic approach to solve the problem
with a practically useful performance in terms of scalability and computation
time. The experimental evaluation shows that our heuristic approach is able to
find efficient plans, in comparison with both optimal and non-optimal MILP
solutions, in a fraction of the planning time.

Paper C 139

9.1 Introduction

Coordinating a fleet of robots to perform various tasks is a problem with high
complexity, requiring the solving of many sub-problems. In this paper, we
investigate how to efficiently plan a kitting application mission, including the
selection of a robot team for this purpose. In a kitting application, a specified
group of objects of different types shall be fetched from different locations and
thereafter delivered to a specified location. To increase operational efficiency,
some object types may be available at multiple alternative locations, e.g., if
the demand for these objects is high. Robots available for the mission may be
located at different locations, e.g., for charging. The targeted objective is to
minimize the makespan, which promotes a balanced usage of the robots and
reduces the aggregation time at the delivery location.

This problem belongs to the category of Multi-Robot Task Allocation
(MRTA) [1]. It can also be categorized as a variant of the Capacitated Vehicle
Routing Problem (VRP), first studied by [2], and extensively studied during
the latest decades to solve many related problem variants in different domains,
e.g., logistic operations and production planning [3, 4]. For a basic VRP, the
problem is to deliver a set of customer orders with a set of vehicles located at
a single depot. The customers to be served are located at different locations
and the vehicles need to return to the depot after all customers have been
served. Vehicles have a limited order capacity. A solution to the problem
will decide the number of vehicles and their routes, while the objective is to
minimize the total cost of all routes. In our problem variant, vehicles represent
mobile robots, and customers to be visited represent robot tasks to be done.
Since the robots are assumed to have an unlimited capacity, the problem
may also be categorized as a Multiple Travelling Salesperson Problem
(MTSP) which covers a subset of VRPs without capacity constraints [5]. The
selection of a team of robots, each one having a different start location, can
be categorized as a VRP with Multiple Depots [6], here assuming there is
only one robot at each depot. The problem includes AND-type precedence
constraints [7], limiting the execution order of intra-schedule tasks [8]. It also
includes separation constraints [9] to provide mutual exclusion of delivery
tasks within the same route. These tasks are used to deliver aggregated
objects. Additionally, the robots are not required to return to their starting
depots to complete the mission, making it an Open VRP. In practice, the
robots may immediately become available for a new mission and they may
start moving towards a currently free charging location. The problem can
also be categorized as a Balanced VRP since a minimum makespan objective
promotes a balanced usage of the robot team, as long as the mission does not

140 9.2. Related work

include dominating tasks [10]. The existence of sets of alternative tasks, in
which only one task needs to be visited, motivates the categorization of the
problem as a Multiple Generalized TSP (MGTSP). MGTSP and the single
robot version GTSP [11], are generalizations of MTSP and TSP respectively,
where the tasks are divided into different subsets and at least one task in
each subset needs to be visited. In our problem, these subsets are mutually
exclusive and exactly one task needs to be visited. To summarize, we have
a Balanced, Open, Multi Depot, VRP/MGTSP with Precedence Constraints
(PC) and separation constraints.

In this paper, we propose an interpretation and extension of the Robot Task
Scheduling Graph (RTSG) [12] to model the addressed multi-robot problem.
Moreover, we provide a problem formulation as a Mixed Integer Linear Pro-
gram (MILP), that can be used by a MILP Solver to find optimal solutions for
smaller problem instances, given enough time. We also propose a heuristic
multi-step approach, targeting a reduced planning time and efficient solving
of larger problem instances. In the first step, tasks are partitioned into clus-
ters with a semi-supervised clustering approach based on K-medoids. There-
after, the clusters are modeled as separate single-route scheduling problems
using MILP, or as asymmetric Travelling Salesperson Problems. Finally, any
remaining alternative tasks are removed and the computed schedules are bal-
anced with a local search approach to further minimize the makespan.

The solution quality and the planning time of the heuristic approach are
compared with a MILP solver, indicating an ability to generate high-quality
solutions within a practically acceptable time frame. Other benchmark ap-
proaches were not found that can be applied to the full problem description in
an obvious way. To the best of our knowledge, OR-type PC for VRP, [7], with
alternative predecessors, have not been addressed in the VRP literature.

The remainder of this paper is organized as follows. Sect.[9.2] presents re-
lated works. Sect. describes the problem and the assumptions made, while
Sect. [9.4] gives a formal problem formulation as a MILP. Sect. [0.5] details the
heuristic solution approach, and Sect. provides the experimental evalua-
tion. The study is concluded in Sect.

9.2 Related work

Robot Task Scheduling Graph is an intuitive task modeling formalism pro-
posed by [12]. It can be used by a domain expert to model an industrial mobile
robot application while leveraging automated planning. Until this work, this
modeling formalism has only been applied to single-robot planning.

Paper C 141

For a VRP, a customer normally must be served and there is only one ad-
dress to go to. However, a task to be performed by a robot can often be alterna-
tive or be performed at alternative locations. Examples of alternative customers
(or task locations) in the VRP literature are sparse but can be found, e.g., in
the work by [13], where the profit is maximized by deciding if a transportation
request shall be assigned to a vehicle or bought. [14] used an MGTSP problem
formulation to plan a team of charging robots to support a team of Unmanned
Aerial Vehicles on the ground at alternative locations along planned flight tra-
jectories. [15] targeted a combined sequencing and path generation problem
for industrial robots, using a genetic algorithm to solve an MGTSP for the
sequencing including a selection of alternative robot configurations.

Precedence constraints of AND-type have been used extensively in previ-
ous works, and OR-type PC was suggested recently for VRP where only one
of a task’s predecessors must precede the task in a plan [7, 16]. In our prob-
lem, OR-type PC are modeled. However, different from the mentioned works,
OR-type predecessors of a task are alternative in the sense that only one will
exist in a plan.

The objective to minimize the makespan can often be improved by increas-
ing the robot team size. However, robots are a limited resource that may be
used in parallel for alternative missions or multi-mission problems [17]. There-
fore, being able to specify the number of robots, i.e., the number of clusters
for the proposed heuristic approach, can be considered an advantage for this
problem. K-means is a popular method to partition nodes into K clusters where
the total distance between the nodes and their Euclidian cluster center points is
minimized [18]. However, the routes for our problem, e.g., in a warehouse, are
seldom linear and a Euclidian center point may not be close or even reachable
from other cluster nodes. K-medoids [19] is a more suitable approach where
a node is identified as a center point. To consider separation constraints in the
computation of clusters, a supervised clustering approach can be applied. Our
supervised approach is based on the Variable Neighborhood Search (VNS) al-
gorithm presented by [20]. Cluster algorithms that also identify the number of
clusters sometimes referred to as automatic clustering, can be appropriate for
some problem types. Several automatic clustering approaches for MRTA are
listed by [21].

[21], addressed an MRTA problem where tasks shall be assigned to robots
with the objective to minimize the total completion time given by a fitness
function. They used a two-step approach with dynamic clustering based on
Particle Swarm Optimization followed by a robot assignment to clusters with
an approach including the solving of TSP problems for each combination. [22]
demonstrated a two-phase heuristic approach to compute solutions for a Bal-

142 9.3. Problem description and assumptions

anced MTSP, where a balanced K-means was used to get clusters with evenly
distributed nodes. This was followed by a genetic algorithm to compute routes.
[23] compared the performances of different clustering algorithms for solving
a Balanced MTSP, where a convex hull TSP algorithm was used to generate the
routes for each cluster. The modeling of alternative tasks for the single route
problem within an asymmetric TSP has similarities with the approach for con-
verting an asymmetric GTSP into an asymmetric TSP described by [24].

9.3 Problem description and assumptions

The problem is to fetch and deliver a set of objects while minimizing the mis-
sion makespan. To this end, a team of robots needs to complete a set of tasks.
These are Single-robot Tasks and the robots are Single-task Robots in a Time-
extended Assignment [25]. The team size is fixed beforehand. The problem
has In-Schedule Dependencies but no Cross-Schedule Dependencies [8]. It is
assumed there is no restriction in the number of fetch tasks that can be allo-
cated to a single robot. Furthermore, the robots are homogeneous and initially
located at different start locations. Each task is associated with a location and
an action duration. A schedule is referred to as an ordered sequence of tasks
to be executed by a single robot. The solution shall identify 1) the robots to
be used for the mission, and 2) the schedules for the used robots. A mission
work description can be modeled with an RTSG model [12]. In this repre-
sentation, exemplified in Fig. rectangular nodes represent tasks. Directed
edges and paths represent precedence constraints. A start state is represented
by an S-node and the goal state is represented by a G-node. AND-Fork (&F)
and AND-Join (&J) node pairs are used to split and rejoin edges. OR-Fork
(IIF) and OR-Join (IlJ) node pairs split a branch into alternative branches. In
previous works, RTSG has exclusively been used with a single robot.

In our model (Fig. , a set of fetch tasks (F;, G\ : 1,j,k € N) need
to be completed before the execution of delivery tasks (D; : | € N). The
model allows for defining a number of OR-pair groups, each one containing a
set of alternative fetch tasks (G'; ;) where only one of them will be planned (j
indicates the OR-pair group). There is one delivery task for each schedule. The
delivery tasks can be co-located, but this is not a requirement for the solution
approaches. We propose a few multi-robot interpretations and extensions of
RTSG for the multi-robot problem at hand:

* Precedence constraints do only apply if the involved tasks become allo-
cated to the same schedule.

* If a predecessor of a task is mandatory, it matches an AND-type PC for

Paper C 143

Figure 9.1: A work description for the multi-robot mission modeled as a Robot Task
Scheduling Graph.

VRP in accordance with [7], where all predecessors of a task must be
planned before any successor.

 If a predecessor is alternative, it matches an OR-type PC for VRP, as
proposed by [7], where only one of the predecessors to a common task
must precede it. Since the predecessors are alternative, only one of them
will be planned for execution.

* A Separation Constraint (SC) indicates a group of tasks that needs to be
separated into different schedules. In Fig.[0.1] the blue color is used to
indicate a SC for the group of delivery tasks.

In the proposed form, the RTSG model is a flexible but constrained multi-robot

work description.

9.4 Problem formulation

In this section, a MILP problem formulation is proposed that can be used to
compute optimal solutions of the MRTA problem presented in Section[9.3]

144 9.4. Problem formulation

9.4.1 Decision variables and objective

Let » be a robot schedule in the set of schedules R, where the number of
total schedules is known a priori. The set of robot start locations is defined
by S, representing available robots. For each start location s € S, there is
a corresponding goal state, F(s) € G. |S| = |G| > |R|. The set of all
tasks is denoted as A. For convenience, we indicate with A° = A U S, with
A¢ = AUG, and with A = AU S UG. The set B is the set of all non-
mandatory tasks, indicating they may, or may not be a part of a schedule. The
set B is a subset of set A, i.e., B C A. Other tasks that belong to the set A\ B
are mandatory. The notation j < k where j, k € A, indicates task j must be
scheduled before task k if they are assigned to the same schedule.

Decision variable X ;. , is a binary variable, i.e., X, € {0,1},Vj, k €
/Nl, and Vr € R, where

1, if there is a scheduled direct transition
Xjkr= from task j to task k& within schedule 7,
0, otherwise,

where X ;, = 0,Vj € A, Vr € R. The cost to perform task k after task j
within the same schedule includes routing cost (7} x) and action cost (ay):
Cj7k = Tjk + Q. 9.1)

There is no cost to reach the goal state, Cj o = 0,Vj € A. The objective
function used for optimization is a MiniMAX [26]. The objective function J

is defined as:
J=max Y > (Xjer Cin (9.2)
JEAS ke AG

Since J is not a linear function in X; ; , for Equation @, the objective func-
tion is modeled as a constraint by including J as one extra decision variable
where the size of J is limited by additional MiniMAX constraints for the total
cost of each schedule:

J|_Z Z Xjr Cix) <0, Vr € R, 9.3)

JEAS ke AG

9.4.2 General constraints

There are transitions from exactly |R| robot start locations:

SN Xjke=IRI. (9.4)

JES ke AGTER

Paper C 145

If a transition from a robot start location goes directly to the goal state, i.e.,
Xjkr=1:j € SkeG,re€ R,schedule r is considered empty and the
robot at start location j will not be allocated. There is at most one transition
from a robot start location and there are no transitions to a robot start location
as defined by:

S>> Xjpr <1, VjES, 9.5)
ke AG reR
Y Xjke=0, VE€S 9.6)
jEATER

Similarly, there is at most one transition to a robot goal state and there are no
transitions from a robot goal state:

YN Xjpr <1, VEEG, 9.7)
jeASreR
>N Xjka=0, VjeG. (9.8)
keA reR

One start location is included in each schedule:
Y Xjpr=1, WreR (9.9)
JES ke AC

The number of transitions from a robot start location in a schedule is the same
as the number of transitions to the corresponding goal state:

ST Xigr= Y. Xjpgye Vi€ SVreR 9.10)
ke AG j'eAs

There is one transition from and one transition to mandatory tasks:

Z ZXj,k,r =1, Vje A\ B, 9.11)
ke AG reR
S S Xjur=1, VkeA\B. 9.12)
jEASTrER

There is at most one transition from and one transition to non-mandatory tasks.

YD) Xjke <1, VjeB, (9.13)
ke ATER
>N Xjpe <1, VkeB. (9.14)

jeA reER

146 9.4. Problem formulation

The number of incoming and outgoing transitions to non-mandatory tasks must
be the same:

SN Xjke=>_> Xjjr Vi€B (9.15)

kcATER J'eATER

A task is entered and departed within the same schedule:

S Xjpr= Y Xpws, VhEAVreR 9.16)
jEAS k'€ AG

No cyclic sub-route are allowed:

YN Xjpr <|V[=1, VWCA:V#£0reR. (9.17)
JEV kEeV

Thus, to eliminate the sub-tours, it is required that for each nonempty subset
V C A, the number of edges between the elements of V' must be at most
|[V| — 1. Let O be a set of alternative tasks in the set of all sets of alternative
tasks O, i.e., O € O where ONU = 0.VU € 0) \ O. Additionally, O is
a subset of B, i.e., O C B. The number of transitions to and from a set of
alternative tasks is limited to 1.

YD D) Xep=1, YOe€O (9.18)

s€0 jec AG reR

YYD Xjer=1, VO€O (9.19)

jeAS s€eOreR

In order to constrain fetch tasks to be done before delivery tasks within the
same schedule, as indicated by the edges of the RTSG in Fig. general
precedence constraints are introduced:

|D|-1

Z XDj,DjJrl,’r‘ S ’D‘ - 27
7=1

VD C A:|D|>2, Dip < D1, Vr € R,

(9.20)

where D is an ordered subset D = {D1,..., D|p|} C A.

9.4.3 Delivery task constraints

Delivery tasks, P C B, cannot be allocated to the same schedule. The number
of delivery tasks equals the number of computed schedules, |P| = |R|. Since

Paper C 147

schedules may become empty, delivery tasks are a subset of the non-mandatory
tasks, B. At most one delivery task in P is allocated to schedule r, i.e., a
separation constraint. No delivery task is allocated to r if the schedule is empty,
meaning there is a direct transition between the start location and the goal state:

Z Z KXjkr <1, VP C B,Vr € R, (9.21)
jEAS keP
Xep@r+ 3. > Xjkr=1, YPCBNY¥s€SVreR (922
jEAS keP

9.5 Heuristic approach

The general idea of the proposed heuristic approach is to partition all tasks into
K mutually exclusive clusters, where K is the number of robots to use. There-
after, a single route scheduling problem is solved for each cluster. Eventually,
alternative tasks remaining in different routes are reduced, and the costs of the
routes are balanced by transferring tasks between the routes.

9.5.1 Task Clustering

To reduce routing costs, it is assumed that tasks within the same cluster should
be in proximity to each other. K-medoids partitions the nodes into K clusters
while minimizing the total dissimilarities of the nodes and their medoid, i.e., a
node assigned as the center for a cluster:

> dmi, (9.23)

leL i€l

where L is the set of clusters (|[L| = K), d, is a dissimilarity measure of
nodes = and y. The assigned medoid of cluster [is m;.

For our problem, nodes represent robot tasks, and the elements of the dis-
similarity matrix, d, ,, represent routing costs between task x and task y. The
separation constraints for the delivery tasks require them to end up in different
clusters. These constraints are converted to cannot-link constraints, indicating
tasks that must be separated in different clusters [27].

The clustering approach is detailed in Algorithm [3] It implements the
Semi-Supervised K-medoids algorithm presented by [20]. It starts with an
initial random selection of K medoids, and the tasks in the set A are grouped
with their closest medoid. In each iteration, a randomly selected subset of
the medoids are exchanged and the tasks are regrouped. Thereafter, the
LocalSearch algorithm, proposed by [28], reduces the total cluster cost

148 9.5. Heuristic approach

Algorithm 3 Semi Supervised K-medoids

function COMPUTECLUSTERS(A,k)
CL < K-medoids clustering of A with k£ random medoids
CL + REPAIR(CL)
ret < CL
while Stop criterion not reached do
v 1
while v < k do
CL < Switch v medoids randomly in C'L
CL < REPAIR(CL)
CL < LOCALSEARCH(CL)
CL < REPAIR(CL)
if CL.cosT() < ret.coST() then
ret < C'L
end if
véi—v+1
end while
end while
return ret
end function

by greedy modifications of the medoid selections and regrouping
of tasks. After each modification of the medoid selection, a repair step
adjusts the clusters to satisfy cannot-link constraints by moving conflicting,
non-medoid tasks between clusters. Different from the original approach by
[20], the cost of the clusters to be minimized is set in this paper as the max
cluster cost:

r{leaLX 2 A, i + o (9.24)

where d,,,, ; and «; represent routing cost and action cost.

9.5.2 Routing and robot selection

A MILP model is used to model the routing and robot selection problem for
an individual cluster, having a significantly smaller complexity than the MILP
model in Section [9.4] The decision variables are significantly less as we do
not have dimension r. Since the clustering already provided the allocation of
tasks to robots, we can now solve the sub-problems for each robot. Specif-
ically, at least K such problems need to be solved in this approach. These
smaller problems can be solved by a MILP solver to compute (sub-)optimal
solutions for the sub-problems. Moreover, for the kitting application problem

Paper C 149

investigated in this work, the sub-problems are modeled as asymmetric TSPs
making it possible to use off-the-shelf efficient TSP solvers, instead of using
more general-purpose solvers to compute solutions of the downsized MILP
problem presented in Section [9.4] The optimality of the overall solution will
be affected by the clustering resulting from the semi-supervised K-medoids
method, i.e., the solution of the asymmetric TSP will only optimize the route
of the individual robots, but the task allocation is decided a priori through the
clustering.

9.5.3 TSP modeling

As it is already mentioned in the sub-section above, the reduced routing and
robot selection problem can be expressed as an asymmetric TSP problem. The
reason for this conversion is the possibility to use efficient solvers dedicated to
the TSP problem, which will have some performance advantage over a more
general MILP solver. In order to use symmetric TSP solvers, e.g., Concorde
[29], the asymmetric TSP is transformed into a symmetric TSP with the ap-
proach by [30]. In a TSP problem, a salesperson needs to visit all assigned
cities and return to the starting point. An optimal solution will find a visit-
ing order that minimizes the total travel distance. A presumption for the pre-
sented conversion to TSP is a limited problem instance in terms of modeled
precedence constraints, where one task, i.e., the delivery task d, is preceded
by all other tasks and needs to be visited last. This is in accordance with the
RTSG model in Fig. 0.1} where the objects can be fetched in any order be-
fore being delivered. The TSP problem can be specified with a cost matrix,
Cij ik € AS:

Vi keS

j=dVkes
k=dVjeS:|A>1
j=dVkeA

Vi€ AVkeS

7jk + ap otherwise, where j,k € A°

(9.25)

SEE°°

where M is a value big enough to block related transitions. A solution will put
all start locations in a sequence, where the last indicates the selected robot. It
is followed by all the tasks where the delivery task becomes last. Thereafter,
the cost matrix is modified and extended to handle subsets of alternative tasks:

For a subset representing a set of alternative tasks, O = {O1,...0,} C
A, where n is the number of tasks in a corresponding OR-pair group of the

150 9.5. Heuristic approach

RTSG model, one extra task O; is added for each O;, Vi € {1,...,n}, where
O =1{0},...0,} € A C AS. The transition costs are arranged to make
O, represent transitions fo this alternative task while the added O; represents
transitions from the very same task. We indicate with OF = O U O’ and order
the tasks of O and O’ in closed loop sequences, so that O, = O;,Vi €
{1,...,n} and O;_n = O;,Vi € {1,...,n}. For each subset O, the related
elements of the cost matrix are defined as:

Tk +ar VjeAS\OF VkeO

M Vj € O,Vk € A%\ OF

Tik+ar VjeO ke AS\ OF

Cipm M b.’jeAS\OE,VkE'O' ©.26)

0]:Oi,k‘:OiJrl,\V/’LE{l,...,n

0 j=0,k=0,Viec{l,...,n}

0 j=0,k=0; ,Yic{l,...,n}

M otherwise: j,k € OF

\

where M is a value big enough to block related transitions. Within a solu-
tion of the TSP, all the tasks of a set O become grouped in a sub-sequence:
(04,0i41y .., Ojgn, O;_m, .. .,O;H,O;) where ¢ € {1,...,n}. Only the
outer task pair, O;, O;, contributes a cost to the solution, while the inner transi-
tions have zero cost. In turn, the outer task pair indicates the selected alterna-
tive task, and the intermediate tasks are removed from the solution. All sets of
alternative tasks that were distributed over multiple clusters will remain with
one task in each computed schedule. In this step, all of them are removed and
bypassed, except the one whose removal causes the smallest cost saving.

9.5.4 Balancing

The balancing step is a local search algorithm, detailed in Algorithm [5] At
each iteration, a task is selected and moved from the schedule with the high-
est cost into another sequence that does not increase the maximum cost. The
selected task may not have a separation constraint from tasks in the receiv-
ing sequence. The selection criteria of the task, the receiving schedule, and
the predecessor in the receiving schedule is critical to avoid sub-optimization.
E.g., a prioritization of the largest overall cost reduction will often move tasks
to the least expensive sequence, even if other scheduled sequences are much
closer. Another important aspect is to minimize the intersections between dif-
ferent routes. Our selection criterion is based on maximizing a gain vs loss

Paper C 151

ratio, where the gain is the cost reduction of the sending sequence and the loss
is the cost increase of the receiving sequence.

9.5.5 Algorithmic overview

A pseudo-code for the heuristic approach is given in Algorithm 4] The main
function COMPUTESCHEDULES, takes as input arguments the set of tasks (A),
the set of robot start locations (.5), and the number of schedules (k) to be com-
puted. First, the clusters are computed using the function ComputeClusters.
Thereafter, a schedule and a robot selection are computed for each cluster, us-
ing the TSP model in Section [9.5.3] Since there is a chance that a group of
multiple schedules may select the same robot, the schedule in the group with
the highest cost will be used, while the other schedules are recalculated with-
out this robot available. The worst case for this conflict resolution approach is
K (1 4 K)/2 schedule computations, which may cause a planning efficiency
problem if the given robot team size, K, is large. In the next step, redundant
alternative tasks are removed. Finally, the schedules are balanced with Algo-
rithm[5} BalanceSchedules.

9.6 Experiments

The goal of the experiments is to compare the proposed heuristic planning
approach with a MILP solver with respect to plan quality and planning per-
formance. In our experiments, the operational area where the missions are
planned is 40 x 50 m, containing 468 task locations and 72 robot locations.
For each experiment, a mission work description is generated in the form of the
RTSG model in Figure The model is populated with a randomly selected
subset of the tasks in the operational area, where the number of tasks is a con-
trolled parameter. 20% of the tasks are modeled to be alternative, partitioned
in randomly composed alternative sets with 2-4 tasks in each set. Delivery
tasks are co-located. Eight randomized robot locations indicate possible robot
team members to be selected, where the team size is a controlled parameter.
Routing distances are Euclidian and routing costs, i.e., routing times, are esti-
mated with a robot speed of 0.5m/s. Task action durations are randomized in
the interval 5-15s. The makespan is minimized by the two compared planning
approaches, while planning time is a corresponding performance measure. 10
experiments were run for each combination of team size and the number of
tasks. The planning time was limited to a maximum of 30 minutes for the
MILP solver. It can be noted that the problem is NP-hard, since it generalizes
the NP-hard TSP problem [11].

152 9.6. Experiments

Algorithm 4 Clustering-based heuristic approach.

function COMPUTESCHEDULES(A,S,k)

CL <~ COMPUTECLUSTERS(A, k) > Clusters
SC +— o > Schedules
AR <+ S > Available robots
for all c € C'L do
5 <— SCHEDULE() > New empty schedule
s.cl ¢ > Schedule has cluster ¢
5.5€q < D > Schedule has no sequence yet
s.robot < @ > Schedule has no robot yet
SC <+ SCUs
end for

while |S| — |AR| < k do
for all s € SC do
if s.robot = @V s.robot ¢ AR then
s.robot, s.seq <— COMPUTESCHEDULE(s.cl, AR)
end if
end for
for all s € SC do
if s.robot € AR then
y < x € SC : x.robot = s.robot, max, x.cost
AR + AR\ s.robot
end if
end for
end while
SC <+ REDUCEALTERNATIVETASKS(SC')
SC' < BALANCESCHEDULES(SC)
return SC
end function

The generated plans for one such experiment is illustrated in Figure 0.2]
where the diagrams indicate 2D locations in the operational area. Units of
axes are meter. The heuristic solution is visualized in the upper diagram and
the MILP solver solution in the lower diagram. Available robots are marked
with pink X-markers and tasks are marked with O-markers. Each route starts
from a selected robot (an X-marker) and ends with one of the black-colored
and co-located delivery tasks (d01,d02,d03). Action durations are indicated
by the size of the O-markers. The color of non-selected alternative tasks is
grey, i.e., a07 and al7 for the heuristic solution, and a04 and a15 for the
MILP solution. For the heuristic approach, the medoids of the clusters are
highlighted in orange and the colors of planned tasks indicate their clusters.
The balancing step has moved two red tasks (a1,a13) from the red route to the

Paper C 153

green route.

The experiments were run on an Intel i5-4570 with 8 GB of RAM and
Ubuntu 20.04.5 operating system. Gurobi [31] was used to compute MILP
solutions. For the heuristic approach, Concorde [29] was used to compute
TSP solutions while the remaining algorithmic steps, e.g., clustering, were
implemented in Python.

154 9.6. Experiments

Algorithm 5 Balancing of schedules

function BALANCESCHEDULES(SC)
SC.SORT() > Sort in order of decreasing routing cost
while true do
costImproving < false
mazRatio < 0
for all t € SC[0].seq do > tasks in the longest route
for all s € SC'\ SCI0] do
for all p € s.seq do
if NOSEPARATIONCONSTR(p, SC[0].seq) then
loss < CALCLOSS(s.seq,t,p)
if s.seq.cost + loss < SC0].seq.cost then
gain < CALCGAIN(SC|0].seq, t)
ratio < gain/loss
if ratio > max Ratio then
costImproving < true
mazRatio < ratio
task <t
predecessor < p
receiver < s
end if
end if
end if
end for
end for
end for
if costImproving then > Move task into shorter route
receiver.INSERT (task, predecessor)
SC0].REMOVE(task)
SC.SORT() > Update the sorting for next iteration
else
return SC
end if
end while
end function

Paper C

155

Heuristic, makespan = 202.8 (R: 202.8, B: 198.8, G: 171.3)

201

@3F I m- 202
~~~~~~ all
15 4 : ;.aZO
Available robot -
104| ® Inroute task o5
® In route task !
1
5 @® Inroute task ! ’.a_l_Z____
@ In route delivery task ! LT T T
Off route alternative task | / Ié” al7
01 Medoid of cluster o @313
-5 .
B al9
'.a14 .
~107 ‘_.Aao'?
15 " gals
~10 0 10 20 30
MILP solver, makespan = 190.9 (R: 185.2, B: 190.9, G: 186.8)
20

__@a02

.an—a/

—— Planned route
Planned route

Planned route

04
_5 - \

\

‘a14
-10 S

\\
<
\\\ /”

—15 4 SN Eﬂjﬁ

-10

10

Figure 9.2: Illustrated example of computed problem solutions.



156 9.6. Experiments

10* £ ‘ ‘ w =

_ § MILP-2R - - - Heur-2R 1

A MILP-3R - Heur-3R ]

§ | |----MILP4R ---- Heur4R =

Fq;f 0% MILP-SR —HeurSR | oiioo=— E

= i |
10?

T §

Q 3

§ 10% E

2 10k 5

= F &

S 100 e

2% r &
107!

10" E e

10° E :

% g &

b 8

2 10

1072 E -

1073 L I I I I I I I 4

21 31 41 51 61 200 400
# Tasks

Figure 9.3: Makespan and planning time for different sizes of robot teams, displayed
with logarithmic scales to provide a compact view.



Paper C 157

A comparison of the heuristic approach and the MILP solver is found in
Fig.[9.3] The horizontal axes indicate the number of tasks. In the top graph, the
average computed makespan is given for the MILP solver and for the heuristic
approach for different team sizes. For the MILP solver, a few makespan values
are marked with a red dot. They indicate problem instances where the MILP
solver was able to find optimal solutions for at least 5 out of 10 runs. To give
a quantitative indication of the optimality of the heuristic approach, only the
runs with optimal MILP solver solutions are included in the data set for these
problem instances. The middle graph indicates the average planning time, and
the bottom graph gives the Planning-time to Makespan Ratio (PMR).

The heuristic approach generated solutions with a slightly higher
makespan than the MILP solver for the smallest problem instances, while
performing better than the MILP solver for the larger problem instances. The
heuristic approach found solutions within a few seconds, while the MILP
solver delivered an optimal solution in less than 30 minutes, or a sub-optimal
solution at the 30 minute timeout. The PMR comparison in the bottom
graph indicates that the MILP solver in general uses significantly more time
for producing a plan compared to the makespan of that plan. This implies
the MILP solver is a less suitable approach, especially in online planning
scenarios where the planning time may have a direct impact on the mission
time. On the other hand, the heuristic approach has a planning time that is a
fraction of the makespan. With 200 tasks, the planning time is still reasonable
with PMR < 10%. Some quantitative data of the solution optimality for
the heuristic approach can be indicated with a Makespan Optimality Ratio
(MOR):

MOR — Makespanpeqy, 9.27)

Makespanp

MOR > 1, where a value of 1 indicates an optimal solution. MOR of the
heuristic approach can be evaluated for the problem instances with optimal
MILP solver solutions, i.e., Makespan,y, = Makespanrr,p. For problem
sizes with two robots, MOR was 104%, 105%, 106%, 104% and 104% for
21,31,41,51 and 61 tasks, respectively. For 3 robots, MOR was 113% for
21 tasks. These are all sub-optimal solutions, but indicate an acceptable gap to
optimality, especially when considering the superior planning time compared
to the MILP solver. However, the evaluation is quantitative and we do not
provide a guarantee on the optimality. For the largest problem instances with
200 and 400 tasks, the MILP solver was unable to find any feasible solution
in the given time. With 400 tasks, the planning time of the heuristic approach
increases with smaller robot teams. This is caused by TSP computations be-
coming the dominating sub-problem, where a smaller team size scales up the



158 9.7. Conclusion

size of the TSP problems.

9.7 Conclusion

We have investigated a novel heuristic approach to select and plan a multi robot
team for an industrial kitting application modeled with a Robot Task Schedul-
ing Graph. It is benchmarked against a MILP model implemented in Gurobi,
that is able to generate optimal solutions for smaller problem instances. The
experiments confirm an ability to generate high quality solutions within a few
seconds, i.e., a fraction of the time required by the MILP solver. Additionally,
solutions can be generated within reasonable time for significantly scaled up
problem instances.

Future extensions of this work may investigate, e.g., Cross-Schedule De-
pendencies and mission planning in a dynamic environment.

Bibliography

[1] Alaa Khamis, Ahmed Hussein, and Ahmed Elmogy. Multi-robot task al-
location: A review of the state-of-the-art. Cooperative robots and sensor
networks 2015, pages 31-51, 2015.

[2] George B Dantzig and John H Ramser. The truck dispatching problem.
Management science, 6(1):80-91, oct 1959.

[3] Grigorios D Konstantakopoulos, Sotiris P Gayialis, and Evripidis P
Kechagias. Vehicle routing problem and related algorithms for logistics
distribution: A literature review and classification. Op. Res., 22(3):2033—
2062, sep 2020.

[4] Rahma Lahyani, Mahdi Khemakhem, and Frédéric Semet. Rich vehicle
routing problems: From a taxonomy to a definition. Europ. J. Op. Res.,
241(1):1-14, feb 2015.

[5] Omar Cheikhrouhou and Ines Khoufi. A comprehensive survey on the
multiple traveling salesman problem: Applications, approaches and tax-
onomy. Computer Science Review, 40:100369, may 2021.

[6] Jairo R Montoya-Torres, Julidn Lopez Franco, Santiago Nieto Isaza,
Heriberto Felizzola Jiménez, and Nilson Herazo-Padilla. A literature re-
view on the vehicle routing problem with multiple depots. Computers &
Ind. Eng., 79:115-129, jan 2015.



Bibliography 159

[7]

[8]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

Unes Bahalke, Nima Hamta, Amir Reza Shojaeifard, Maryam Alimoradi,
and Samira Rabiee. A new heuristic algorithm for multi vehicle routing
problem with and/or-type precedence constraints and hard time windows.
Op. Res. in Eng. Sciences: Theory & Applications, 5(2):28-60, aug 2022.

G Ayorkor Korsah, Anthony Stentz, and M Bernardine Dias. A compre-
hensive taxonomy for multi-robot task allocation. The Int. J. Rob. Res.,
32(12):1495-1512, oct 2013.

Andreas Bortfeldt and Gerhard Wischer. Constraints in container load-
ing: A state-of-the-art review. Europ. J. Op. Res., 229(1):1-20, aug 2013.

Branko Miloradovié, Baran Ciiriiklii, Mikael Ekstrom, and Alessandro V
Papadopoulos. A genetic algorithm approach to multi-agent mission
planning problems. In Int. Conf. Op. Res. and Enterp. Syst., pages 109—
134, 2019.

K Ilavarasi and K Suresh Joseph. Variants of travelling salesman prob-
lem: A survey. In Int. Conf. on Inf. Comm. and Emb. Syst. (ICICES),
pages 1-7, feb 2014.

Anders Lager, Alessandro Papadopoulos, Giacomo Spampinato, and
Thomas Nolte. A task modelling formalism for industrial mobile robot
applications. In Int. Conf. on Adv. Rob. (ICAR), dec 2021.

Asvin Goel and Volker Gruhn. A general vehicle routing problem. Europ.
J. Op. Res., 191(3):650-660, dec 2008.

Neil Mathew, Stephen L Smith, and Steven L Waslander. Multirobot
rendezvous planning for recharging in persistent tasks. IEEE Trans.
Robotics, 31(1):128-142, feb 2015.

Hicham Touzani, Hicham Hadj-Abdelkader, Nicolas Séguy, and Samia
Bouchafa. Multi-robot task sequencing & automatic path planning for
cycle time optimization: Application for car production line. IEEE Rob.
& Autom. Lett., 6(2):1335-1342, apr 2021.

Mina Roohnavazfar, Seyed Hamid Reza Pasandideh, and Roberto
Tadei. A hybrid algorithm for the vehicle routing problem with and/or
precedence constraints and time windows. Computers & Op. Res.,
143:105766, jul 2022.



160

Bibliography

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

Branko Miloradovi¢, Mirgita Frasheri, Baran Ciiriiklii, Mikael Ekstrom,
and Alessandro Vittorio Papadopoulos. Tamer: Task allocation in multi-
robot systems through an entity-relationship model. In Int. Conf. Princi-
ples and Practice of Multi-Agent Systems, pages 478486, 2019.

Anil K Jain. Data clustering: 50 years beyond k-means. Pattern Recog-
nition Letters, 31(8):651-666, jun 2010.

Hae-Sang Park and Chi-Hyuck Jun. A simple and fast algorithm for k-
medoids clustering. Expert systems with applications, 36(2):3336-3341,
2009.

Rodrigo Randel, Daniel Aloise, Nenad Mladenovi¢, and Pierre Hansen.
On the k-medoids model for semi-supervised clustering. In Variable
Neighborhood Search, pages 13-27, 2019.

Asma Ayari and Sadok Bouamama. ACD3GPSO: automatic clustering-
based algorithm for multi-robot task allocation using dynamic distributed
double-guided particle swarm optimization. Assem. Autom., 40(2), sep
2019.

Xiaolong Xu, Hao Yuan, Mark Liptrott, and Marcello Trovati. Two phase
heuristic algorithm for the multiple-travelling salesman problem. Soft
Computing, 22(19):6567-6581, jul 2017.

Elango Murugappan, Nachiappan Subramanian, Shams Rahman, Mark
Goh, and Hing Kai Chan. Performance analysis of clustering methods
for balanced multi-robot task allocations. Int. J. Prod. Res., 60(14):4576—
4591, aug 2021.

Gilbert Laporte and Frédéric Semet. Computational evaluation of a trans-
formation procedure for the symmetric generalized traveling salesman
problem. INFOR: Information Systems and Op. Res., 37(2):114-120,
may 1999.

Brian P Gerkey and Maja J Matari¢. A formal analysis and taxonomy
of task allocation in multi-robot systems. The Int. Journal of Robotics
Research, 23(9):939-954, sep 2004.

Ernesto Nunes, Marie Manner, Hakim Mitiche, and Maria Gini. A taxon-
omy for task allocation problems with temporal and ordering constraints.
Rob. & Aut. Syst., 90:55-70, apr 2017.



[27] Sugato Basu, Ian Davidson, and Kiri Wagstaff. Constrained clustering:
Advances in algorithms, theory, and applications. CRC Press, 2008.

[28] Mauricio G. C. Resende and Renato F. Werneck. A fast swap-based local
search procedure for location problems. Annals of Op. Res., 150(1):205—
230, jan 2007.

[29] David L Applegate, Robert E Bixby, VaSek Chvatal, and William J Cook.
The traveling salesman problem. dec 2011.

[30] Roy Jonker and Ton Volgenant. Transforming asymmetric into symmet-
ric traveling salesman problems. Op. Res. Letters, 2(4):161-163, nov
1983.

[31] LLC Gurobi Optimization. Gurobi optimizer reference manual, 2021.






Chapter 10

Paper D

Risk Aware Planning of
Collaborative Mobile Robot
Applications with Uncertain
Task Durations

Anders Lager, Branko Miloradovi¢, Giacomo Spampinato, Thomas Nolte and
Alessandro V. Papadopoulos. In 33rd IEEE International Conference on Robot
and Human Interactive Communication (RO-MAN), 2024.

163



Abstract

The efficiency of collaborative mobile robot applications is influenced by the
inherent uncertainty introduced by humans’ presence and active participation.
This uncertainty stems from the dynamic nature of the working environment,
various external factors, and human performance variability. The observed
makespan of an executed plan will deviate from any deterministic estimate.
This raises questions about whether a calculated plan is optimal given uncer-
tainties, potentially risking failure to complete the plan within the estimated
timeframe. This research addresses a collaborative task planning problem for
a mobile robot serving multiple humans through tasks such as providing parts
and fetching assemblies. To account for uncertainties in the durations needed
for a single robot and multiple humans to perform different tasks, a probabilis-
tic modeling approach is employed, treating task durations as random vari-
ables. The developed task planning algorithm considers the modeled uncer-
tainties while searching for the most efficient plans. The outcome is a set of
the best plans, where no plan is better than the other in terms of stochastic dom-
inance. Our proposed methodology offers a systematic framework for making
informed decisions regarding selecting a plan from this set, considering the
desired risk level specific to the given operational context.



Paper D 165

10.1 Introduction

Integrating collaborative robot applications in the industrial landscape started
over a decade ago [1]. While robotic utilization enhances productivity and er-
gonomic conditions by managing assistive, repetitive, and strenuous tasks, the
contemporary industrial trend towards mass customization values the unique
skills, adaptability, dexterity, and problem-solving capabilities of human work-
ers [2]. Our paper specifically focuses on mobile robots in collaborative ap-
plications, appreciating their flexibility to execute diverse tasks across various
locations, catering to the needs of human workers [3]. In collaborative indus-
trial environments characterized by semi-structured and dynamic settings, the
duration of robot routing can be influenced by temporary obstacles and con-
current human and robot activities. Additionally, uncertainties in robot task
durations arise from unpredictable placements of required parts or tools and
the possibility of task failures, leading to retries. Similarly, the duration of
human tasks introduces uncertainty, influenced by variables such as workload,
fatigue, availability, and location.

This paper aims to study the uncertainty associated with the duration of
tasks performed by robots and humans, affecting collaborative plans’ accu-
racy. Traditional deterministic planning methods fail to account for potential
deviations from the estimated duration of tasks. Additionally, identifying an
optimal plan is difficult due to the inherent uncertainty in task durations and
the subjectivity involved in choosing the “best” plan, which can impact the
risk tolerance of a human planner. For example, a plan with a given probabil-
ity of completing the tasks within a certain time limit may be preferred over a
plan with a guaranteed upper bound for the makespan. While the former may
result in a lower makespan, it can sometimes lead to a higher makespan than
the upper bound of the latter. Taking a medium risk may reduce the expected
makespan over multiple runs. Taking a larger risk can be motivated if a low
makespan gives a reward, whereas the distinction between a shorter or longer
additional delay might not be crucial. This paper investigates industrial task
planning problems for a mobile robot collaborating with humans in dynamic
environments. To model the planning problem, we use Robot Task Scheduling
Graph (RTSG) [4]. This is motivated by the intuitiveness of the representa-
tion rather than its expressiveness, benefiting domain experts who have broad
knowledge of the application but no in-depth knowledge of all system parts,
e.g., robot programming. This paper extends the RTSG model to enhance
the flexibility of work descriptions by considering concurrent human tasks
and robot tasks with inter-dependencies. The stochastic modeling approach
presented in this paper introduces uncertainty into task and routing durations



166 10.2. Related work

using random variables with unrestricted probability distributions. When con-
crete data is lacking, initial simplifications of input distributions, such as uni-
form distributions, are employed. These distributions can be iteratively refined
through data collection during system execution, progressively improving ac-
curacy. The main contribution is a novel task planning methodology involv-
ing computing optimized plans where uncertainties are considered during plan
generation. The output is a set containing the best plans, where no plan is bet-
ter than the other in terms of stochastic dominance. Notably, the methodology
allows a human planner to make an informed decision on the most suitable
plan from this candidate set by providing a risk level value and/or by visu-
ally inspecting probabilistic makespan distributions of the candidates. This
approach is inspired by Mixed-Initiative Planning [5]. The novel task plan-
ning methodology leverages a Branch-and-Bound (B&B) algorithm [6] able to
solve planning problems modelled with RTSG, extended to handle stochastic
durations. It explores alternative sub-sequences, with their durations derived as
probability density functions. One contribution is the derivation of unrestricted
probability distributions to represent makespans of collaborative plans. Such
a distribution is a realistic estimate of the makespan range that may occur if
the plan is executed. Another contribution is a novel pruning strategy, which
uses the first-order stochastic dominance property to ensure safe pruning. It
guarantees that pruning never eliminates a superior plan in a stochastic sense.
Additionally, we contribute by proposing stochastic set dominance as a cri-
terion to filter full-length plans into a candidate set containing only the very
best plans, where no plan’s makespan dominates others in a stochastic sense.
To validate the approach, it is benchmarked against a deterministic counter-
part. Additionally, Monte Carlo simulations [7] are conducted to verify the
correctness of stochastic makespan computations generated by the planning
algorithm. These evaluations demonstrate the ability of our methodology to
provide more efficient plans and to support risk-aware task planning under un-
certain conditions.

10.2 Related work

In a recent approach for task planning in collaborative assembly applications,
a policy for task allocation based on the current state is trained to optimize
future rewards [8]. This work and all other related works differs from ours,
by not providing a set of plans optimized for different risk levels. Our ap-
proach accounts for uncertainties in the planning problem, while some other
approaches solve a deterministic planning problem and handle uncertainties
during execution [9] [10], potentially providing a suboptimal plan. Probabilis-



Paper D 167

tic Simple Temporal Networks (PSTN) are used to model scheduling prob-
lems with temporal constraints using random variables to represent uncertain
task durations [11]. In general, PSTN addresses scheduling risks by search-
ing for robust plans to minimize or control the risk for plan execution failures
caused by violation of temporal constraints, e.g., missed deadlines. The prob-
lem addressed in this paper has no temporal constraints, and the type of risk
addressed is different, i.e., the risk of getting a longer duration than expected
at plan execution. In some works, the primary focus of a robot is assisting
by anticipating the next human task and providing needed tools or parts just
in time [12, 13]. In our work, the robot serves multiple humans, and a long-
sighted sequence of robot actions is planned. One scheduling approach used
Monte Carlo simulations in a receding horizons approach to estimate the cost
distributions of alternative execution sequences of robot tasks and human tasks
with uncertain durations [14]. A receding horizons approach naturally limits
the growth of a search tree to a manageable level. For our problem type, where
the objective is to minimize the makespan, a plan may become greedy and
less optimal with a short-sighted look ahead, causing later costs to dominate.
Additionally, we compute cost distributions in a closed form, giving a qualita-
tive advantage when comparing alternative plans and sub-sequences, including
the possibility of safe pruning decisions to reduce the growth of a search tree.
In a receding horizon scenario similar to [14], the uncertainties in durations
of human and robot tasks were modeled and propagated for alternative task
sequences as triangular fuzzy sets, which in an actual application provided a
better plan optimization than an approach where task durations were modeled
more simplistic, as uniform distributions [15]. This result motivates the usage
of richer representations, as proposed in this paper, to represent uncertain dura-
tions when modeling collaborative applications. Similar to our approach, [16]
models routing and action durations as random variables and uses a framework
of stochastic operations to compute stochastic start and completion times of
tasks for different scenarios where multiple robots share a mutually exclusive
resource. However, probability distributions are limited to be Gaussian, while
our approach does not impose such restrictions. In [17], this Gaussian frame-
work was applied to a task planning problem of a replenishment agent serving
other agents, where a finite-horizon schedule of tasks is computed with a B&B
approach, including pruning of branches where a conservative estimate of the
minimum cost is higher than currently the best solution. We propose a novel
pruning strategy based on stochastic dominance, proven to be safe for this ap-
plication when comparing unrestricted distributions of search nodes represent-
ing the same state. A proactive scheduling approach for a Job shop problem
was proposed by [18], using durations modeled as random variables. As a part



168 10.3. Modeling the planning problem

of the solution, the sequence of operations on a machine was computed with a
B&B algorithm, minimizing a weighted combination of expectation and vari-
ance of the completion time. A safe pruning criterion was proposed, using
Stably Stochastic Dominance, providing an ordering of alternative sequences
based on expectation and variance of operations. While this approach is mo-
tivated by the need to find a robust plan with limited time variations, our ap-
proach computes a candidate set of plans, whose makespans are stochastically
dominated by alternative plans, thereby providing the most efficient choices
for any risk level.

10.3 Modeling the planning problem

In this section, we define and model the planning problem. We present the
modeling of task durations as random variables and provide related definitions
for later reference.

10.3.1 Problem description and assumptions

A mobile industrial robot is used to deliver parts to different assembly worksta-
tions. At these stations, sub-assemblies are made either by human workers or
by the robot itself. The robot fetches the finished sub-assemblies, and finally,
all sub-assemblies are delivered to another station for further processing. It
is assumed there is no load restriction related to the mobile robot’s ability to
carry parts and sub-assemblies. Task allocation is static, i.e., there are robot
tasks and human tasks. While considering the dependencies between robot
tasks and human tasks, we assume human tasks are mutually independent.
There is no physical interaction between the robot and humans and their in-
teraction level can be categorized as synchronized, i.e., they share the same
space at the delivery and fetching locations, but not at the same time [19].
The effects of tasks are assumed to be deterministic, i.e., all tasks will eventu-
ally succeed. However, task and routing durations are uncertain. The goal is
to compute an offline plan [20] that minimizes the uncertain makespan while
considering the aversion or willingness to risk. In this context, the risk is re-
lated to efficiency. Increasing the risk means we increase the probability of
reaching shorter makespans while also accepting the risk of sometimes reach-
ing longer makespans than before. The risk willingness may influence what
plan is considered to be the best.



Paper D 169

10.3.2 Modeling a collaborative planning problem

The planning problem is modeled with an RTSG model, exemplified
in Fig. [I0.I] Tt is a directed acyclic graph giving an intuitive workflow
description of how tasks can be sequenced. The Start node and the Goal node
represent the initial state and the desired goal state, respectively. Task nodes
have rectangular shapes. Edges (or paths) represent precedence constraints,
e.g., DL1 must precede MV1 while DL1 and DL2 may be performed
in any order. Alternative branches are modeled between OR-Fork (IIF) and
OR-Join (IlJ) node pairs, and in this model, they describe the alternative
selections of human assembly (H A1) or robot assembly (RA1). Lock node
pairs (+L,-L) indicate a branch section where robot tasks must be scheduled
in an uninterrupted sequence. Here, the robot movement to a human
assembly station (M V'1) must be followed by the robot picking (PI1) the
sub-assembly provided by the human (H A1). AND-Fork nodes (&F) create
parallel branches while AND-Join nodes (&J) join branches. In this work,
the RTSG modeling formalism has been extended to represent human tasks,
i.e., tasks allocated to humans (e.g., HA1). Human tasks may be performed
concurrently with robot tasks, and they need to follow the scheduling
constraints set by the RTSG model. Additionally, the need to synchronize
human tasks with robot tasks is addressed. A new node type, AND-JoinSync
(&JS), has multiple incoming branches and a single outgoing branch. The
&JS node blocks the robot from proceeding with succeeding robot tasks until
all preceding human tasks are completed, potentially causing some robot wait
time. For example, after moving to an assembly station (M V1), the robot
may not pick the sub-assembly (P71) until the human assembly task (H A1)
has provided the assembly.

FE1

Figure 10.1: RTSG model with 2 human assembly tasks.



170 10.3. Modeling the planning problem

10.3.3 Preliminaries and definitions

Durations for performing robot tasks and human tasks are indexed variables.
The routing duration R, ,» between robot tasks, 7, 7" € T where T is the set of
all robot tasks. The duration A, to perform a robot task 7 € 7" and the duration
By, to perform a human task h € H, where H is the set of all human tasks. This
work models these durations (B, A;, R, /) as independent random variables
without assuming any specific probabilistic distributions.

Definition 1 (Random Variable). A random variable X on the probability
space (0, F,P) is a measurable function X : Q — R such that {w € Q :
X(w) =2} € FforalzecR

Definition 2 (Expected value). Given a random variable X, its expected value
E[X] € R is a measure of the central tendency or average value of the possible
outcomes of X :

E[X] £ /EQ X (w) dP.

Definition 3 (Variance). Given a random variable X, its variance, denoted by
V[X], is a measure of the dispersion or spread of the possible outcomes of X.

V[X] 2 E[(X - E[X))*]

Definition 4 (Standard deviation). The standard deviation o[X| of a random
variable X is the square root of its variance:

Definition 5 (Probability density function (PDF)). The probability density
function fx(x) of a random variable X is defined as:

fx(x) =Pwe Q| X(w) = 2]

Definition 6 (Cumulative distribution function (CDF)). The cumulative prob-
ability distribution function Fx (x) of a random variable X is defined as:

Fx(z) =Pwe Q| X(w) <z

Definition 7 (Percentile). The k-th percentile of a probabilistic distribution
fx(x) is defined as:

pr =inf{x: Fx(x) >k}, 0<k<Ll



Paper D 171

Definition 8 (First-Order Stochastic Dominance [21]). Consider two random
variables, X and Y, with CDFs Fx and Fy. X has a first-order stochastic
dominance over Y, if and only if Vx, Fx(z) < Fy(x), and 3z, Fx(z) <
Fy (z). The stochastic dominance is denoted in the following as X = Y. If
the given condition is not fulfilled, this is denoted X * Y.

Definition 9 (Stochastic Set Dominance). Consider one random

variable X and a set of random variables S = {Y1,...,Y.},
with CDFs Fx and Fy,,...,F,,. X has a set dominance over S,
if and only if Vr, Fx(z) < max{Fy,(x),...,Fy,(z)}, and 3z,
Fx(z) < max{Fy,(x),...,Fy,(x)}.  Stochastic set dominance is

denoted in the following as X =qgp S. If the given condition is not
fulfilled, this is denoted X #,ggp S. Stochastic set dominance does

not require but follows from first-order stochastic dominance, i.e., if

Definition 10 (Independence). Two random variables X and Y are indepen-
dent if the pair of events {X = x} and {Y = y} are independent for all
z,y € R. Formally,

PX =2,Y =y =PX =z|PY =y|, Vz,yeR

Definition 11 (Convolution or sum of random variables). If X and Y are in-
dependent random variables on (0, F,IP), then Z = X + Y has probability
density function, when X and 'Y are discrete random variables

PlZ=21= Y fx(@)fy(z—2), Vz€L (10.1)

r=—00

and for continuous random variables:

PZ =2z = /OO Ix (@) fy(z — x)dx. (10.2)

Lemma 10.3.1 (Maximum between random variables). If X and Y are inde-
pendent random variables on (2, F,P), then Z = max(X,Y') has cumulative
probability function

Fz(z) = Fx(2)Fy(z)
Proof. By definition of CDF, we have that:
Fz(z) =Pmax(X,Y) <z =PX <zAY <]
=P[X <z|P[Y < z] X and Y are independent
= Fx(z)Fy(z).



172 10.4. Planning methodology

10.4 Planning methodology

This section gives a step-by-step description of the planning methodology.
Sec. defines a feasible plan and identifies dependencies between robot
tasks and human tasks. Sec.[T0.4.2]derives the stochastic duration of a plan or
sub-sequence. Sec.[I0.4.3]introduces a B&B algorithm to search for candidate
plans having the shortest durations in a stochastic sense, while Sec. [10.4.4]de-
scribes risk-aware plan selection from this set. Sec.[I0.4.5]presents a pruning
strategy based on stochastic dominance and proves this strategy is safe.

10.4.1 Plan feasibility and dependencies with human tasks

A plan is the set of all robot tasks in the RTSG model except those in non-
selected alternative branches, ordered in a feasible sequence from the start
node to the goal node. A feasible plan must fulfill the constraints imposed by
the RTSG model (see Sec. [I1.2). For the model in Fig. a feasible plan
is exemplified by (Start, FE2, DL1, RA2, MV'1, P11, FE1, DL, Goal).
It does not violate precedence or lock constraints. The completion of the plan
depends on the human task H A1, which belongs to the selected alternative
branch in the RTSG model starting with D L1. Due to precedence constraints,
H A1 can not start, i.e., become enabled, until D L1 is completed. This makes
DL1 the enabling task of H A1 in this plan. Due to the AND-JoinSync (&JS)
node, M V1 is not considered completed until H A1 is completed. Therefore,
depending on the outcome of task durations, the robot may need to wait for
completion of H Al after reaching M V'1. This makes MV'1 the dependent
task of H A1. If a human task is enabled in a plan, there is always a dependent
task, e.g., if the upper &JS node in Fig. is replaced with an &J node, the
goal node becomes the dependent task of H Al.

10.4.2 The duration of a plan

The duration of a plan is referred to as makespan. It depends on stochastic rout-
ing and task durations, R, ;/, A, By, of planned robot tasks and enabled hu-
man tasks. From these inputs, we derive the duration of a plan or sub-sequence
as a random variable without restricting its probability distribution. To support
this derivation, a few definitions are introduced: A plan is a sequence of robot
tasks without element repetition, defined as P , = (70, ...,7,) C T where 79
is the start state, 7, the goal state and 71, ..., 7,_1 are robot tasks. P ,, rep-
resents a feasible plan of the RTSG model, e.g., 79 = Start, m = DLI,
T2 = RA2, 3 = MV1, etc. P;j represents a sub-sequence from 7; to
Tk, where the first task, 7;, represents the start location and the following,



Paper D 173

Tj4+1,---, Tk, are robot tasks to be performed. For example, Py 3 = (71, 72,
73) starts at the location of 7; and thereafter performs 75 followed by 3.
HD(Py, ) € H represents the set of human tasks whose dependent task
in Pypis 7; € T, 4 < k. If a human task, h € H, has an enabling task
7 € Poi,0 < p < k, then EI(Py ;, h) = p represents the sequence index
of the enabling task. Similarly, DI(F x, h) represents the sequence index of
the dependent task of & within /% ;. The duration of a sub-sequence P; is
indicated as K ; and computed as:

K, = max(D(j, k)) (10.3)

where D(j, k) is a set of alternative durations between 7; and 75, and the max
operation is defined in Lemma D(j, k) combines the robot’s sequen-
tial routing and action durations with all possible combinations of waiting for
human tasks. Recursion for D(j, k) is given by:

D(]? k) :(D(j7 k - 1) + Rkal,k + ATk) U

U  (DGE(Pyk 1)) + Bn)
hEHD(PO’k,Tk)

where D(j,v) = ), Vv < j. The base case D(j,j) = {C°} represents a set
with one random variable having a constant value of zero. The sum operator
is defined in Def. The sum of a set of durations D(j, k) and a duration
X is element wise, i.e., D(j,k) + X = {d+ X : d € D(j,k)}. A human
task may affect K if the enabling and dependent tasks are included in the
sub-sequence. Using Eq.[T0.3]is not always the most efficient way to calculate
the duration. For example, if a new task is appended to a sub-sequence with a
previously known duration, a total re-computation is not always necessary. By
exploiting the structure of a sequence’s dependencies with human tasks, the
duration can often be computed by adding the durations of consecutive sub-
sequences, i.e., K = K;; + K, 7 <1 < k. A sufficient condition for this
sum rule is given in Eq. The condition requires all human tasks enabled
in P;, either to have no dependent tasks in Py , or to be completed latest
before the start of 774 1:

/\ <DT(PZ+1,I<:7 h) =0V po(Kei(py,n)0) > p1oo(Bh))
heHE(P; ;)

(10.4)
where HE(P; ;) C H is the set of human tasks enabled in P; ;. DT(P; 1, h) €
T is the dependent task for h € H in P; ;. DT (P}, h) = 0, if the dependent
task is elsewhere or / not is enabled. For later reference, HD(P; ;) C H is the
set of human tasks whose dependent tasks are in Pj .



174 10.4. Planning methodology

10.4.3 Extended B&B algorithm

The goal of the planning algorithm is to identify the set of plans that reaches
the goal state with a minimized makespan in a stochastic sense. Our algo-
rithm extends a previously developed deterministic B&B algorithm [6] where
a breadth-first forward search from the start state towards the goal state of an
RTSG model is used to compute an optimized plan. Each search node repre-
sents a unique sub-sequence, P ;, with a duration, Ko ;, where ¢ is the search
depth. Children are identified by searching the RTSG graph for feasible selec-
tions of the next robot task. To limit the search tree growth, a pruning selection
is made among two search nodes having the same depth, P(j‘}i and P(ﬁ», if they
are considered equivalent, i.e., they contain the same set of tasks, Eq. and
the last task is the same, Eq.[10.6] :

{r:reP)}={r:Te P’} (10.5)
h=1P (10.6)

7 (2

In essence, equivalent search nodes represent the same state, but reached with
different sequences. Pruning should stop exploring the search node having
the longest duration, i.e., the pruning selection criterion. However, this crite-
rion is unclear when applied on random variables. A naive approach would be
to replace longest duration with longest k-th percentile of the duration, e.g.,
pr(Ko,i), where the risk-aware planner selects the targeted k. Unfortunately,
our experiments confirm this criterion is unsafe and may stop exploring po-
tentially better full-length plans for a given k. Instead, our pruning selection
criterion is based on first-order stochastic dominance, proven safe in the tar-
geted application types in Sec.[10.4.5] When comparing alternative equivalent
sub-sequences during the tree exploration, one sub-sequence can stochastically
dominate another (see Def. [5)). This means it always has a higher chance of
providing a longer duration, for any k, than the other and may therefore be
pruned. The outcome of the tree exploration is a set of goal-reaching plans, E.
From this set, a candidate set, ) C F, is identified, containing the plans that
do not dominate the set of other plans:

Q={P|PEEANK #55p {K'| P' € E\ P}} (10.7)

where K and K’ are the makespans of P and P’, respectively. Using the
proposed stochastic set dominance criterion (7¢qp) in Eq. instead of
first-order stochastic dominance (%) is more stringent, hence every plan in )
will have the lowest k-th percentile, pg, of all plans in E for at least some k,
which otherwise would not be guaranteed.



Paper D 175

10.4.4 Risk aware plan selection

It is possible to specify a desired risk level & € [0, 100], where a lower value
increases the risk. From this input, a candidate plan is automatically selected
from (), having the minimum makespan reachable with a probability of k, i.e.,
a plan with minimum py. Specifying a lower k reduces p;, and the probability
of making it. Changing k£ may also lead to selecting a different candidate plan,
which is optimal for the new k. To complement the risk level, a user decision
may be supported by a visual comparison of PDF curves, indicating makespan
variances of the candidate plans. || = 1 implies there is a single plan having
the highest chance of providing the shortest makespan for any risk level, i.e., a
risk independent optimal plan

10.4.5 Safe pruning method

As previously mentioned, the B&B algorithm can prune nodes at the same
search depth if considered equivalent. However, the equivalence conditions,
Egs. [10.5H10.6} are not sufficient when introducing human tasks, potentially
running concurrently with the last robot task. If the search tree is further ex-
plored, children nodes will sometimes include a dependent task. For these
nodes, the concurrent human task may affect the plan duration differently, de-
pending on when the human task is enabled and when the dependent task oc-
curs. This makes a pruning decision solely based on Egs. [I0.5}{I0.6] unsafe.
To remedy this, one additional condition for equivalence, Eq. [I0.8] is intro-
duced. This condition is fulfilled if the influence of all enabled human tasks is
fully accounted for in the search node durations, K (fi and K, 69,@'- If not, equiva-
lence is still possible for some instances, starting with identical sub-sequences
up to a point where enabling any human task also includes the corresponding
dependent task in the remaining sequence. The condition above is expressed
as:

[ /\ (DT(P(f'L? h) # @ \/po(Kél(P({‘i,h),Z) 2 plOO(Bh)) A
heHE(Pg!,) ’

/\ (DT(P@, h) # 0 VPO(KEBI(deZ_,h)J) > plOO(Bh)>
heHE(P) ’

MI(Pgt)
VMR, =MI(PE) A N\ =1 (10.8)
j=0

where MI(P, ;) = min{l | HE(P41;) = HD(P41.)} (10.9)



176 10.4. Planning methodology

By definition, condition Eq.[10.§]is true with no human tasks.

Theorem 10.4.1. Let P(fi and P(ﬁ be equivalent sequences and K, (‘fi dominate
K(]fi in terms of a first-order stochastic dominance (FSD), in short, Ké“i >
K (i-. Then, the duration of any plan starting with sub-sequence P(fi dominates
the duration of at least one plan starting with P(ﬁ.

Proof. Assume P64n = (TOA, .. ,TZ-A, Ti‘il, ...,7) is a feasible plan. We de-
fine P(fn = (7'69, e TiB , Ti‘il, ..., 7). Equivalence of P(fi and P(fi implies

conditions Egs. [T0.5] [T0.6] hold, i.e., the set of completed tasks and the last
task 7; are the same, representing the same planning state in the RTSG model.
Therefore, by having an identical continuation as P({}n from 7;41, P(fn is also
a feasible plan. The proof is segmented into two distinct cases based on fulfill-
ing the sub-conditions specified in Eq.[10.8] In case the first sub-condition in
Eq. is true, it implies condition Eq is also true for P(fz-, PO% and we
can express the duration of corresponding plans as K(fn = K(fi + Ki’f‘n and
Ké?n = K(f .+ K2, respectively. Thereby, both K, (fn and Ké?n can be defined

7 7,m°
as a monotone, increasing and continuous function of K ;:

Kon = Koi + K{,

K(fi = K(fi — K(ﬁn = K(fn in accordance with the FSD-theorem in [22].

If the second sub-condition in Eq. [I0.8] is true, it implies
an = (7'64,...,7'1{?[1,7'1\%“...,TZB,Ti’il,...,Tf) where
MI = MI(P({}Z») = MI(P&). By the definition of MI in Eq. ,
all human tasks enabled within Py1; also have their dependent tasks within
Pyii;. Some human tasks may be enabled within P(fMI and have their
dependent tasks within Piﬁl’n, thereby running concurrently with Pyir;. All
remaining human tasks are enabled and have their dependent tasks locally
within P(fMI or Pz-f‘n. Considering this structure of human dependencies, the

duration of plans A and B can be derived from Eq. [10.3as:
Ko, = max((Kghy + Ku + KU

U (Kf)é,lEI(R),Mhh) + By + KSI(PM,n,h),n))
heHE(Pgly ;)N
HD(PA, )
where Ky; becomes included as a single summand in a single operand of
the max operator. Thus, Ko, is a monotone (non-strictly) increasing and con-
tinuous function of Ky ;. Additionally, the second sub-condition in Eq. @



Paper D 177

implies condition Eq.[10.4]so that:
_ A
Ky = Koi — Ko

Thus, K ; is a monotone, increasing and continuous function of Ky ;. K (ﬁi >
K(]fi — Kf\?H,i > Kﬁl,i — K(fn > K(fn in accordance with the FSD-
theorem in [22].

O

The theorem suggests we can safely prune P({"l-, since the exploring of this
search node will not result in a better plan than the best plans starting with P(ﬁ.

10.5 Evaluation

This section presents an experimental evaluation of the proposed planning ap-
proach, including a use case scenario for a planning problem, a deterministic
benchmark approach, Monte Carlo simulations, followed by the evaluation re-
sults and their interpretation and a discussion of the outcomes.

10.5.1 Use case scenario

A planning problem, use case A, is modeled with the RTSG model in Fig.[I0.1]
having two human assembly tasks at different stations, where the robot deliv-
ers parts and fetches completed assemblies. Alternatively, the robot can per-
form one or both assemblies at robot assembly stations. Additionally, there
are two robot fetch tasks at different locations. Routing and task durations are
modeled with uniform distributions. Modeling resolution is 0.1 s. Assuming
humans are somewhat faster than robots, their expected duration is modeled to
be slightly lower but with a higher variance. An extended version of the plan-
ning problem, use case B, has five additional tasks (DL3, HA3, MV 3, PI3,
RA3) by inserting one extra assembly branch between the AND-Fork and the
AND-Join node pairs in the RTSG model.

10.5.2 Deterministic benchmark approach

The rationale of the benchmark approach is to provide a deterministic version
of the probabilistic approach, highlighting differences in the outcome if us-
ing non-stochastic values, identical with the expected values of the stochastic
approach, to model routing and task durations. The deterministic approach
uses the same B&B algorithm but searches for a single plan with minimized
makespan. Sequence durations are calculated in the same way as detailed in



178 10.5. Evaluation

Algorithm 6 Monte Carlo makespan computation

function COMPUTEMAKESPAN(F, )
141
Dy <+ 0
B, = B, YhcHE(P))
while i < n do
B =max{0, B, | h € HD(P,,;)}
Di = maX(Di,1 + Rﬁil’ﬂ. + A-,—l.,B)
B, = D; + B, Yh € HE(P,;)
1+—1+1
end while
return D,,
end function

section [10.4.2] but using non-stochastic ’+* and max operators. For pruning,
it uses the same extended criteria for equivalence as detailed in Eqs.[10.5] [10.6]
and but with longest duration instead of stochastic dominance as prun-
ing selection criterion. Since stochastic dominance does not always occur, the
deterministic approach can generally prune more search nodes.

10.5.3 Monte Carlo simulations

Monte Carlo simulations are used to verify the correctness of makespans dis-
tributions computed by the incremental search tree exploration using Eq.[10.3]
combined with the sum rule Eq.[10.4] For a single observation of a given plan,
task and routing durations are generated randomly from their modeled distri-
butions. The observed makespan is computed using the efficient Alg.[8] which
is applicable for a full-length plan. By generating thousands of makespan ob-
servations, a probability distribution is derived by counting the number of ob-
servations that fall within different intervals. The interval length is 0.1 s and
5 - 10° simulations are run for each plan.

10.5.4 Evaluation results

At the top of Fig. [I0.2] CDFs for the candidate plans of the stochastic ap-
proach are exemplified for use case A. The vertical axis indicates the k value
of a percentile while the horizontal axis indicates the percentile, i.e., the max-
imum makespan for the best k£ share of outcomes. A risk-tolerant planner
might prefer the red plan, which is the best plan with a 0-30% chance of mak-
ing the corresponding percentile or better. On the other hand, the risk-averse
planner might go for the black plan, which is the best plan with an 85-100%



Paper D 179

Stochastic approach, Makespan CDFs

1+ I I I I

E 0.5 - — F1-D1-D2-F2-M2-P2-M1-P1-D ||
© — F1-D1-D2-F2-M1-P1-M2-P2-D
— D1-D2-F2-F1-M1-P1-M2-P2-D
0 — D2-D1-F2-F1-M1-P1-M2-P2-D

T T I I |

i T T
400 450 500 550 600 650 700

Stochastic approach, Makespan
‘ T T

- - Expected makespan | |

0.004
- - Expected makespan

.-+ Expected makespan

o9
E 0.002 —- Expected makespan | |
0 : \\1\ 1\ T T
400 450 500 550 600 650 700
Deterministic approach, Makespan
T T T T T
0.004 - : — F1-D1-D2-F2-M1-P1-M2-P2-D T
: --- PDF (for comparison)
: - - Expected makespan (for comparison)
s 1
2 0.002 |- | i
1
R P RRTTRRRE P
O o i L i [ = e Attt  iniatethshain 1]
400 450 500 550 600 650 700
Monte Carlo Simulations
T 1 T T
0.004 - — F1-D1-D2-F2-M2-P2-M1-P1-D ||
— F1-D1-D2-F2-M1-P1-M2-P2-D
— DI-D2-F2-F1-M1-P1-M2-P2-D
= — D2-D1-F2-F1-M1-P1-M2-P2-
E 0.002 |- D2-D1-F2-F1-M1-P1-M2-P2-D | |
0 I T T T T
400 450 500 550 600 650 700
Time [s]

Figure 10.2: Makespans for use case (A) with two assembly tasks.



180 10.5. Evaluation

Stochastic approach, Makespan

1 -
—— F2-D3-D1-D2-M1-P1-M2-P2-M3-P3-F1-D
—— F2-D3-D1-D2-M2-P2-M1-P1-M3-P3-F1-D
E 0.5 —— F2-D3-D1-D2-F1-M3-P3-M1-P1-M2-P2-D
Q — F2-D2-D1-D3-F1-M2-P2-M1-P1-M3-P3-D
—— D2-DI-D3-F2-M2-P2-M1-P1-M3-P3-F1-D
D2-D1-D3-F2-M2-P2-M1-P1-F1-M3-P3-D
-+« + Deterministic plan (for comparison)
0r i I I T T T
500 550 600 650 700 750
Stochastic approach, Makespan
T I | T | .
HU — — Expected makespan
0.004 |~ I i! - — Expected makespan | |
|‘. ) «« -« Expected makespan
E ] — — Expected makespan
: L T T Expected makespan
A 0.002 - o -
ey Expected makespan
0 f T = t
550 650 700 750
Deterministic approach, Makespan
T ! T T T T
I —— F2-D2-D1-D3-M2-P2-M1-P1-M3-P3-F1-D
0004 . ! -+« - PDF (for comparison) 1
I
| — - Expected makespan (for comparison)
I
A |
A~ 0.002 |- | n
I
RS
0 b o e { = | . I = Do [ e from ]
500 550 600 650 700 750
Monte Carlo Simulations
T T T T
—— F2-D3-D1-D2-M1-P1-M2-P2-M3-P3-F1-D
0.004 — F2-D3-D1-D2-M2-P2-MI-PI-M3-P3-FI-D | |
—— F2-D3-D1-D2-F1-M3-P3-M1-P1-M2-P2-D
[r, —— F2-D2-D1-D3-F1-M2-P2-M1-P1-M3-P3-D
@) —— D2-D1-D3-F2-M2-P2-M1-P1-M3-P3-F1-D
A 0.002 n
D2-D1-D3-F2-M2-P2-M1-P1-F1-M3-P3-D
0 e

I - I
500 550

Time [s]

Figure 10.3: Makespans for the extended use case (B).



Paper D 181

chance of making the corresponding percentile or better. The green plan is best
with a 30-70% chance, while the blue is best between 70-85%. The second
graph indicates corresponding PDFs, and their expected makespans as vertical
lines, giving an intuition on possible variations. The third graph indicates the
makespan generated by the deterministic approach as a solid vertical line. For
comparison, the dotted lines show the PDF and the expected makespan (see
Def. [2) of this plan for the stochastic approach. In this example, the deter-
ministic plan is also among the stochastic candidate plans. The bottom graph
provides Monte Carlo distributions of the plans, normalized by dividing inter-
val counts with the total number of observations. Use case B is exemplified
in the same way in Fig. [I0.3] Here, the plan computed by the deterministic
approach is not found among the candidate plans of the stochastic approach.
This is because the deterministic plan stochastically dominates the set of all
other feasible plans according to Def. [9] thereby excluding it from the candi-
date set of Eq.[I0.7] In the top graph, the CDF of the deterministic plan is
included as a dotted line. For every k-value, the percentile of the determinis-
tic plan is higher than the percentile of at least one of the candidate plans of
the stochastic approach. However, the deterministic plan does not dominate
any candidate plan in terms of first-order stochastic dominance. In a statisti-
cal comparison of the planning approaches, 100 plans were computed for each
use case with randomized task locations and intervals of input distributions.
Table [I0.1] presents the average number of explored and pruned nodes and in-
dicates how many of the deterministic plans were found among the candidate
plans of the stochastic approach. In Fig.[I0.4] a histogram presents frequencies
of makespans of the deterministic approach subtracted by expected makespans
of the stochastic approach, expressed as several standard deviations, for use
case A. A negative value means the deterministic makespan is shorter than the
expected stochastic makespan.

20
>
% 15 +
% 10
£ 9
0 T T \_ T T

-2 -1.5 -1 -0.5 0 0.5 1
Standard deviations

Figure 10.4: Frequencies of deterministic makespan subtracted with expected
stochastic makespan, for use case A.



182 10.6. Conclusion

Planning approach Number of Number of Among the best
& app explored nodes | pruned nodes stochastic plans
A B A B A B

Stochastic B&B 773 | 16995 | 251 | 6262 | (100%) | (100%)
Deterministic B&B | 594 | 12116 | 259 | 5104 65% 47%

Table 10.1: Statistic comparison of the planning approaches.

10.5.5 Evaluation discussion

The Monte Carlo simulations in the bottom graphs of Figs.[10.2]and [10.3] are,
if the noise is omitted, very similar to the PDFs in the corresponding figures,
thereby supporting the correctness of the plan durations computed by the pro-
posed planning approach. A large share of the PDFs are quite asymmetric,
highlighting the advantage of not limiting the type of probabilistic distribution
that can be represented. In this study, the deterministic approach tends to un-
derestimate the makespan, as indicated in Fig. and exemplified in the 3rd
graph of Figs.[I0.2} [T0.3] This tendency magnifies the inherent problem of the
deterministic approach, where a computed plan is associated with a more or
less unknown risk. The stochastic approach considers this risk while searching
for the best plans, providing information on how much a makespan can vary
and suggesting the best plan with respect to the planner’s willingness to risk.
The deterministic plan is not always among the best plans of the stochastic ap-
proach, here in 65% and 47% of the runs (Table[I0.1)). This highlights the risk
of computing an inferior plan by not considering uncertainties. The stochastic
approach needs to explore 30% and 40% more nodes due to the safe but more
restrictive pruning selection criterion. Still, the potential for pruning in the
proposed approach is significant.

10.6 Conclusion

This paper proposes a novel methodology to compute an optimized collabo-
rative plan while considering uncertain task durations and the risk willingness
of a human planner. Relevant planning problems modeled with a Robot Task
Scheduling Graph (RTSG) accommodate uncertainties by representing them
as random variables. These are effectively tackled using a Branch-and-Bound
(B&B) algorithm, incorporating a safe pruning strategy grounded in first-order
stochastic dominance. The result is a set of the best plans for all risk levels,
with makespans represented as probability distributions, empowering planners
to make informed decisions based on their situational risk tolerance. Future



Paper D 183

research includes the exploration of techniques for learning input distributions
dynamically. Additionally, we foresee extending our methodology to consider
other types of risks and handle more complex scenarios, such as centralized or
decentralized multi-agent task allocation, agent load restrictions and intricate
dependencies between tasks.



184

Bibliography

Bibliography

[1]

(2]

(3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

Eloise Matheson, Riccardo Minto, Emanuele GG Zampieri, Maurizio
Faccio, and Giulio Rosati. Human-robot collaboration in manufactur-
ing applications: A review. Robotics, 8(4):100, 2019.

Afshin Ameri E., Branko Miloradovic, Baran Ciiriiklii, Alessandro Vit-
torio Papadopoulos, Mikael Ekstrom, and Johann Dréo. Interplay of Hu-
man and Al Solvers on a Planning Problem. In /EEE Int. Conf. Sys., Man,
& Cyb. (SMC), 2023.

Manman Yang, Erfu Yang, Remi Christophe Zante, Mark Post, and Xue-
feng Liu. Collaborative mobile industrial manipulator: a review of sys-
tem architecture and applications. In Int. Conf. Autom. & Comp. (ICAC),
pages 1-6, 2019.

Anders Lager, Alessandro V. Papadopoulos, Giacomo Spampinato, and
Thomas Nolte. A task modelling formalism for industrial mobile robot
applications. In Int. Conf. Advanced Robotics (ICAR), pages 296303,
2021.

George Ferguson, James F Allen, Bradford W Miller, et al. TRAINS-95:
Towards a mixed-initiative planning assistant. In Conf. Artificial Intelli-
gence Planning Systems (AIPS), pages 70-77, 1996.

Anders Lager, Giacomo Spampinato, Alessandro V Papadopoulos, and
Thomas Nolte. Task roadmaps: speeding up task replanning. Frontiers
in Robotics & Al, 9:816355, 2022.

Reuven Y Rubinstein and Dirk P Kroese. Simulation and the Monte
Carlo method. John Wiley & Sons, 2016.

Zhihao Liu, Quan Liu, Lihui Wang, Wenjun Xu, and Zude Zhou. Task-
level decision-making for dynamic and stochastic human-robot collabo-
ration based on dual agents deep reinforcement learning. Int. Journal of
Advanced Manufacturing Tech., 115(11-12):3533-3552, 2021.

Lars Johannsmeier and Sami Haddadin. A hierarchical human-robot
interaction-planning framework for task allocation in collaborative in-
dustrial assembly processes. IEEE RA-L, 2(1):41-48, 2016.

Martina Lippi and Alessandro Marino. A mixed-integer linear program-
ming formulation for human multi-robot task allocation. In /IEEE Int.
Symp. RO-MAN, pages 1017-1023, 2021.



Bibliography 185

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

Michael Saint-Guillain, Tiago Vaquero, Steve Chien, Jagriti Agrawal,
and Jordan Abrahams. Probabilistic temporal networks with ordinary
distributions: Theory, robustness and expected utility. Journal of Artifi-
cial Intelligence Research, 71:1091-1136, 2021.

Jun Kinugawa, Akira Kanazawa, Shogo Arai, and Kazuhiro Kosuge.
Adaptive task scheduling for an assembly task coworker robot based on
incremental learning of human’s motion patterns. IEEE RA-L, 2(2):856—
863, 2017.

Andrea Maria Zanchettin, Andrea Casalino, Luigi Piroddi, and Paolo
Rocco. Prediction of human activity patterns for human—robot collab-
orative assembly tasks. IEEE Trans. Industrial Informatics, 15(7):3934—
3942, 2018.

Andrea Casalino and A Geraci. Allowing a real collaboration between
humans and robots. Special Topics in Information Technology, 2021.

Andrea Casalino, Eleonora Mazzocca, Maria Grazia Di Giorgio, An-
drea Maria Zanchettin, and Paolo Rocco. Task scheduling for human-
robot collaboration with uncertain duration of tasks: a fuzzy approach.
In Int. Conf. Control, Mechatronics and Automation (ICCMA), pages 90—
97, 2019.

Andrew W Palmer, Andrew J Hill, and Steven J Scheding. Modelling re-
source contention in multi-robot task allocation problems with uncertain
timing. In IEEE Int. Conf. ICRA, pages 3693-3700, 2018.

Andrew W Palmer, Andrew J Hill, and Steven J Scheding. Methods for
stochastic collection and replenishment (scar) optimisation for persistent
autonomy. Robotics and Autonomous Systems, 87:51-65, 2017.

Ping Lou, Quan Liu, Zude Zhou, Huaiqing Wang, and Sherry Xiaoyun
Sun. Multi-agent-based proactive—reactive scheduling for a job shop. Int.
Journal of Advanced Manufacturing Tech., 59:311-324, 2012.

Rainer Miiller, Matthias Vette, and Ortwin Mailahn. Process-oriented
task assignment for assembly processes with human-robot interaction.
Procedia CIRP, 44:210-215, 2016.

Kourosh Darvish, Barbara Bruno, Enrico Simetti, Fulvio Mastrogio-
vanni, and Giuseppe Casalino. Interleaved online task planning, simu-
lation, task allocation and motion control for flexible human-robot coop-



eration. In IEEE Int. Symp. Robot and Human Interactive Comm. (RO-
MAN), pages 58-65, 2018.

[21] Moshe Shaked and J. George Shanthikumar, editors. Univariate Stochas-
tic Orders, pages 3—79. Springer New York, New York, NY, 2007.

[22] Elmar Wolfstetter, Uwe Dulleck, Roman Inderst, Peter Kuhbier, and
M Lands-Berger.  Stochastic dominance: theory and applications.
Humboldt-Univ., Wirtschaftswiss. Fak., 1993.



Chapter 11

Paper E

Stochastic Scheduling for
Human-Robot Collaboration in
Dynamic Manufacturing
Environments

Anders Lager, Branko Miloradovi¢, Giacomo Spampinato, Thomas Nolte and
Alessandro V. Papadopoulos. Accepted by 34th IEEE International Confer-
ence on Robot and Human Interactive Communication (RO-MAN), 2025.

187



Abstract

Collaborative human-robot teams enhance efficiency and adaptability in man-
ufacturing, but task scheduling in mixed-agent systems remains challenging
due to the uncertainty of task execution times and the need for synchronization
of agent actions. Existing task allocation models often rely on deterministic as-
sumptions, limiting their effectiveness in dynamic environments. We propose
a stochastic scheduling framework that models uncertainty through probabilis-
tic makespan estimates, using convolutions and stochastic max operators for
realistic performance evaluation. Our approach employs meta-heuristic opti-
mization to generate executable schedules aligned with human preferences and
system constraints. It features a novel deadlock detection and repair mecha-
nism to manage cross-schedule dependencies and prevent execution failures.
This framework offers a robust, scalable solution for real-world human-robot
scheduling in uncertain, interdependent task environments.



Paper E 189

11.1 Introduction

Collaborative robotics in manufacturing promises enhanced efficiency and
adaptability by combining robotic precision with human dexterity [1]. While
autonomous systems are effective, their high cost and inflexibility in dynamic
settings have led to the rise of human-robot collaboration. This paradigm
introduces significant scheduling challenges due to uncertainties in task
durations and human preferences. In modern production environments,
scheduling is further complicated by cross-schedule dependencies among
multiple robots and human operators. For example, a human may need to
complete an inspection before a robot proceeds with packaging, or several
agents might coordinate transport tasks to avoid bottlenecks, or multi-agent
tasks cannot start until all assigned agents have arrived. Mismanagement
of these dependencies can lead to deadlocks and inefficient workflows.
Additionally, uncertainties arise from robotic delays, environmental obstacles,
and human factors such as fatigue, emphasizing the need for robust scheduling
frameworks that integrate ergonomic constraints and individual preferences.

This work tackles the Multi-Robot Task Allocation (MRTA) [2] problem in
a stochastic, human-in-the-loop context. Differently from traditional determin-
istic approaches, our method models task and routing durations as random vari-
ables with probability distributions. By analytically deriving the makespan dis-
tribution using convolutions and stochastic max operators, we obtain bounds
that better reflect real-world variability. By incorporating human preferences,
our framework not only enhances worker engagement but also achieves a more
balanced workload distribution.

Prior work has explored similar challenges. Palmer et al. [3] computed
stochastic objective functions under Gaussian assumptions, and our earlier
work [4] extended planning to single-robot systems with non-restrictive
distributions.  Other studies, such as those using Probabilistic Simple
Temporal Networks [5] or adaptive scheduling based on real-time human
performance [6], address temporal constraints and reactive adaptation, yet they
do not fully capture the stochastic and interdependent nature of collaborative
manufacturing tasks. Markov Decision Processes models uncertainties in the
effects of task executions [7], while we model uncertainties of task and routing
durations, which may encompass some relevant aspects of such uncertainties,
e.g., retries after failure. While some research has focused on individual agent
performance [8, 9] or ergonomic risks [10], these efforts often overlook global
task dependencies and the cross-schedule precedence constraints—namely,
start-after-completion,  start-after-start, complete-after-completion, and
complete-after-start—as defined in [11].



190 11.2. Motivating Example

Our primary contribution is a novel stochastic scheduling framework for
MRTA that explicitly accounts for execution uncertainties and human-centric
considerations. A novel deadlock detection and repair mechanism is intro-
duced to manage the inherent cross-schedule dependencies. Finally, a novel
heuristic is presented for guiding the search of a Greedy Randomized Adap-
tive Search Procedure (GRASP) [12] able to find optimized solutions to the
scheduling problem in a limited time frame. We validate the correctness and
accuracy of the proposed framework using Monte Carlo (MC) simulations, and
a deterministic variant of the framework is compared. Further, the GRASP al-
gorithm and a Genetic Algorithm (GA) [13] are evaluated across test instances
of varying complexity. A hybrid approach, where GRASP is used to provide
initial solutions for GA, is also investigated.

11.2 Motivating Example

In discrete manufacturing processes [14], activities such as assembly, inspec-
tion, and transport are orchestrated to process parts efficiently. Each part or
batch is handled through a sequence of tasks—each assigned to an individual or
a team of agents—that collectively form the basis for a multi-agent scheduling
problem.

Manufacturing Process Model

A typical process model outlines the series of activities needed to transform an
order into a finished product. For example, an order may progress through:

* Fetch: Retrieving parts from storage locations and deliver them to a
workstation.

* Assemble: Combining parts to form a product.

¢ Inspect: Evaluating product quality.

* Transport: Moving products between workstations.
* Palletize: Grouping finished products for shipment.

Each activity is characterized by an input queue (holding parts to be processed)
and an output queue (storing processed parts), where the output of one activity
becomes the input for the next. A task represents the execution of one such
activity, including subtasks such as loading, processing, and unloading. The



Paper E 191

number of parts handled in a task depends on the order specifications and ac-
tivity constraints. Importantly, aside from the initial order queue, all queues
follow a First-In, First-Out (FIFO) rule, and certain activities (e.g., Assemble)
may require strictly sequential processing due to limited space or resources.

Task Network: A Motivating Example

From the process model, a fask network is constructed by simulating the flow
of parts through the queues and activities. This network is modeled as a di-
rected acyclic graph (DAG) where each node represents a task, and edges de-
note precedence constraints (PCs). Figure [[T.1]illustrates a typical task net-
work for sequential activities. Key features of this network include:

* The initial task 77, which marks the start of the process.

* A primary set of PCs enforcing FIFO access within the same activity—
ensuring that, in sequential operations, a task cannot start until its prede-
cessor completes (start-after-completion), while in concurrent setups, it
may start once the preceding task has begun (start-after-start) and com-
plete once the preceding task has finished (complete after completion).
For the activity connected to the order queue, the start of tasks are not
restricted.

* A secondary set of PCs governing transitions between consecutive ac-
Fetch Assemble ~ Inspect  Transport  Palletize

—— start-after-completion

| F2 I—»J Al,2 l—»] 112 | ----» start-after-start

-------------- > complete-after-completion
,~'! -===» complete-after-start
| F4f - A34] } B4 —[T123¢—[ P12 |
| F6 : "J A5.6 |—.—»| 156 |'i
/ ,"; P56
| F8 v|—>| A7,8r [ 178 | IYF56,78 (P78 | 7o

Figure 11.1: Task network for a manufacturing scenario.



192 11.3. Defining the Scheduling Problem

tivities; for instance, a task in the next activity cannot start until the
previous activity has fully populated the common queue (start-after-
completion).

* A tertiary set of PCs arising from queue capacity limits, where a task’s
completion may depend on subsequent activities removing parts to cre-
ate the necessary space (complete-after-start).

The process is considered complete when the final task 77, of the last ac-
tivity is finished. This motivating example highlights the complexity inherent
in task scheduling for manufacturing systems, where managing sequential and
interdependent tasks is critical to avoiding bottlenecks and ensuring smooth
operations.

11.3 Defining the Scheduling Problem

This paper formulates the scheduling problem as an optimization model that
assigns tasks to agents in a feasible and efficient manner. The model must re-
spect PCs, handle uncertainty in task and routing durations, avoid deadlocks,
and incorporate human preferences. The problem falls within the MRTA tax-
onomy [2, 15, 16] as an XD [ST-MR-TA] (Single-Task robots (ST), Multi-
Robot tasks (MR), Time-extended Assignment (TA) with cross-schedule de-
pendencies (XD) as defined in [17]). In the following, we introduce the gen-
eral assumptions and notation, describe the stochastic modeling of durations
and the computation of plan makespans, and finally define the objective func-
tion.

General Assumptions and Notation Let 7" be the set of all tasks to be com-
pleted, and A be the set of all available agents (robots and humans). Each
task 7 € T can be executed by a team of agents. For every task 7, a decision
variable

fre{l,....my}

selects one of the m. predefined ream formations. These represent alternative
ways to perform 7, specifying the number and types of agents required and
their given roles in carrying out the task. For example, f; = 1 requires a robot
and a human performer, while f; = 2 requires a robot and a human supervisor.
The set of agents assigned to 7 is denoted by

Fr C A,



Paper E 193

which must satisfy the requirements of the chosen formation. Agents execute
tasks sequentially. For each agent a € A, let

a .
wel, i=0,...,nq,

represent the i-th task in agent a’s sequence (with 7§ denoting the starting
location or initial state). We define the set of immediate predecessor tasks for
task T as
t
P2t ={r' |1} =T, a€ F;}.

PCs are imposed by the edges of the process model, as illustrated in Fig-
ure[T1.1] categorized as follows:

» P7P°: Tasks whose completions precede the start of 7.
 P3°: Tasks whose starts precede the start of 7.

» P7P°: Tasks whose completions precede the completion of 7.
» P3P°: Tasks whose starts precede the completion of 7.

In addition, the overall plan must be free of deadlocks, which can occur if the
agents’ scheduled routes, in combination with PCs, create cyclic dependencies
between tasks.

11.3.1 Stochastic Modeling of Durations

Task execution and agent routing times are modeled as independent, nonneg-
ative random variables with generic probabilistic distributions. We define the
routing duration for agent @ € A moving from task ¢ to task 7 as R, . The
duration required to execute task 7 under team formation f; with agents F; is
defined as A; s, r. . Initial distributions may be set as uniform (based on expert
estimates of minimum and maximum values) and later refined with empirical
data from observations in simulation or reality. In the following, we provide
some stochastic definitions needed by the proposed scheduling framework.

Definition 1 (Random Variable). A random variable X on the probability
space (0, F,P) is a measurable function X : Q — R such that {w € Q :
X(w) =2} € FforalzecR

Definition 2 (Probability density function (PDF)). The PDF fx(z) of a ran-
dom variable X is defined as:

fx(x)=Pwe Q| X(w) = 2]



194 11.3. Defining the Scheduling Problem

Definition 3 (Cumulative distribution function (CDF)). The CDF Fx (z) of a
random variable X is defined as:

Fx(z) =Pwe Q| X(w) <z

Definition 4 (Percentile). The k-th percentile of a probabilistic distribution
fx(x) is defined as:

pr=inf{z: Fx(z) >k}, 0<k<L

Definition 5 (First-Order Stochastic Dominance [18]). Consider two random
variables, X and Y, with CDFs Fx and Fy. X has a first-order stochastic
dominance over Y, if and only if Vx, Fx(z) < Fy(x), and 3z, Fx(z) <
Fy (z). The stochastic dominance is denoted as X >4 Y.

Definition 6 (Independence). Twwo random variables X andY are independent
if the pair of events {X = x} and {Y = y} are independent for all x,y € R.
Formally,

PX =2,Y =y =PX =z|PY =vy], Vz,yeR

Definition 7 (Convolution or sum of random variables). If X and Y are in-
dependent random variables on (0, F,IP), then Z = X + Y has probability
density function, when X and'Y are discrete random variables

PZ=z= Y [fx(2)fy(z—1), Vz€L, (11.1)

T=—00

and for continuous random variables:
P[Z = 2] :/ Fx(@)fy (s — z) da. (11.2)

Definition 8 (Maximum between random variables [4]). If X and Y are inde-
pendent random variables on (Q, F,P), then Z = max(X,Y") has cumulative
probability function

Fz(z) = Fx(2)Fy(2)



Paper E 195

11.3.2 Plan Duration Computation

The completion time of a task has a probability distribution which is deter-
mined by the durations along the critical paths—ordered sequences of routing
and task durations from the start of the plan to that task. We denote this com-
pletion time as K (7) and define:

K(7) = max(C(7)), (11.3)

where C(7) is the set of computed completion durations along all critical paths
for task 7. To compute these durations, we recursively define the start and
completion duration operators. The start duration operator S(7) is given by:

S(q-):/\/l(]:( U (cty+max( U Raur))

apt a€F,NF,
teps s (11.4)
v UJ env U sa >)>

ek (PSP ek (PSP

and the completion duration operator C(7) is defined as:
C(r) =M (f (5 (1) + Ar g

(11.5)
v | ecyu S()))

tek(PSPC) tEK(PSPO)

with initial durations, {S(7),C(7)|T = 7§} = 0 Va € A, and where a sum
of a set and a single element is performed element-wise. M(-) is an oper-
ator that merges durations from a set into a smaller representative set. JF(-)
is an operator that prunes inferior durations from a set, where X is inferior

Table 11.1: Examples of the merge operator, M(+)

4 X Y MUEX, YY)

1 A+B A+C {A+ max(B,C)}
2 A A+ B {Y}

3 B+ D max(B,C) {max(B + D,C)}
4 B max(B+C,D)+E {Y}

5 B+D max(B,C)+E {X, Y}




196 11.3. Defining the Scheduling Problem

if 3Y|max(X,Y) = Y. The operator K(-) selects the subset of preceding
tasks that are critical due to causality, e.g., a preceding task is not critical if
assigned to the same agent. The purpose of these operators is to enhance the
computational efficiency and accuracy by reducing S(7) and C(7). Further
efficiency is gained by avoiding the recomputation of S(7) and C(7) with the
same 7. Table[IT.T|provides examples illustrating the action of the merge oper-
ator, M(-), where X and Y are composed of independent durations. A merge
of them occurs if their combined duration, max(X,Y"), can be expressed with
independent operands only.

11.3.3 Plan Duration Bounds

Exact analytical computation of K (7) is challenging due to the possibility of
dependencies among completion durations, C(7). Instead, the estimate /. (7)
is computed as

K.(1) = max(Cina(7)), (11.6)
where Cing(7) is the same set as C(7) under the assumption of independence.
We define a lower bound K;(7) with CDF

F = i F 11.7
() xe%li:ﬁr) > (11.7)

where F), is the CDF of x. Note that the computed completion durations of all
critical paths C(7) may generally have shared tasks that will make the dura-
tion of the individual path dependent on the others. We show that considering
the duration of the different critical paths as independent random variables,
Cina(T), provides safe bounds, in terms of stochastic dominance, for the case
of dependent variables.

Theorem 1. Assume that K(7) from Eq. represents the exact task dura-
tion and K. () from Eq. is its estimate. Further, let K;(T) be defined as
above. Then,

Kl(T) <st K(T) <st Ke(T)a

where <4 denotes the stochastic order.

Proof. Since C(7) is composed of nonnegative, continuous random variables
combined via 4+ and max operators, the resulting durations are exact and posi-
tively dependent (i.e., they are non-decreasing functions of any shared random
variable). Eq. (T1.7) and Theorem [2| (in the Appendix) imply that if C(7)com
denotes a comonotonic version of C(7), then

max(C(7)com) <st max(C(7)) <g max(Cing(7)).
Thus, K;(7) <& K(7) <g Ke(7). O



Paper E 197

11.3.4 Human Preferences and Ergonomic Constraints

For a human agent a, task allocation considers ergonomic and motivational
factors. Anidle time quota, Q! € [0, 1], can be specified, defining a guaranteed
minimum level of free time that can be spent on breaks or other (non-planned)
tasks. Preferred activities and roles are specified with indicator £, ; f, to be
1 if task 7 with team formation f; is preferred, and 0 otherwise. An activity
time quota, Q7 € [0, 1], defines the desired proportion of the active time to
be spent on preferred activities and roles. The total activity time for an agent,
including planned tasks and routing, is given by

Na

Io = Z(Raﬂ'i—lﬂ'i + ATi,f-rin-ri>7
i=1

and the total preferred activity time is

Na
P, = Z ['a,‘ri,fq—i (Ra,n_l,n- =+ ATiyfTinTi)'
i=1

We require that the estimated median idle time quota for human agent a, de-
noted by
ps0(Ki(71)) — pso(Ta)

I*x _
Q= Rm))

(11.8)

satisfies
QF > QL VaeH, (11.9)

where pso(-) returns the median and H C A is the set of human agents. Simi-
larly, the median preferred activity time quota

QP — p50(Pa)
“ ps50(Ta)
should satisfy
QU >Ql, VaeH, (11.10)

Unlike constraint Eq. (I1.9), this is considered a soft constraint.

11.3.5 Objective Function

The primary objective is to minimize the makespan, represented by
K (11,)—the upper bound completion time of the final task 77. Given a
specified risk level k& € [0, 100], we aim to minimize the k-th percentile of the
makespan, pi(K¢(77)). A low k promotes plans with better chances to reach



198 11.4. Solving the Scheduling Problem

lower makespans (higher risk) while a high k& promotes plans with better
chances to avoid higher makespans (lower risk). To account for human-centric
constraints, penalty terms are added when the estimated quotas in Egs. (I1.9)
and (IT.10) are not met. The objective function to be minimized is:

J=plBer)) + 30|18 - Q] po(Kelm)

a€{H|n,>0}

+ [QL-Q" p50(Ta)}, (11.11)

where [z]T := max(z,0).

11.4 Solving the Scheduling Problem

Due to the stochastic representation of the makespan, developing an exact solu-
tion algorithm for the scheduling problem is highly challenging. Consequently,
we adopt variants of two metaheuristic approaches to search for sub-optimal
solutions, namely a GRASP algorithm with a novel efficient search heuristics
and a GA approach inspired by [19]. These approaches are designed to explore
the solution space while handling uncertainty, PCs, deadlocks and human pref-
erences.

11.4.1 GRASP Algorithm

The GRASP algorithm builds a solution incrementally, starting from an
empty solution and in each step selecting and scheduling a combination
of one task, one related team formation, and a matching agent set. A task
is selectable if unscheduled and all of the task’s predecessors are already
scheduled in the partially built solution. Selection is guided by a heuristic
function (see Eq. (I1.12)) that for any selectable combination estimates the
impact of scheduling the related task at the end of the sequences of the related
agents in the partial solution. From the best-ranked alternatives, a randomized
selection is made, with higher-ranked combinations having higher selection
probabilities. The selected task is denoted by 7; for step i € {1,2,...,|T|}.
After the last step |T'|, the resulting solution is repaired for deadlocks (see
Section and compared against the current best solution using the
objective function defined in Eq. (T1.T1).

GRASP Heuristic Function In step 4, the heuristic function H(7;, f-,, F~,)
estimates the incremental cost of scheduling a selectable combination for 7;,



Paper E 199

fr, and F,. It sums estimates of makespan increase and deviations from pre-
ferred idle and activity times using (non-stochastic) median values of task and
routing durations, defined as:

Ml fo Fr) = [C(n)— max C(rj)}ﬂr

{rjli<i}
> |[Tu-cra -] + QT - P, (11.12)
a€F,NH
where
C(r) = maX{S(T) + pso(Ar s, F, ), tg;ai%cc C(t), trer%%cc S(t)},

S(r) = max{tréz;—)p(t (C’(t) + pax, p50(Ra,t,T)>v

max C(t), max S(t)}

tepoPs tepsP®

and S(7§) = C(1§) =0Va € A.

11.4.2 Genetic Algorithm (GA)

In the GA framework, an individual represents a feasible solution and is en-
coded by a chromosome that includes grounded decision variables, such as the
sequence of tasks for each agent (with multi-robot tasks appearing in multiple
agent sequences) and the selected team formation for each task. The algorithm
proceeds as follows:

1. Initialization: An initial generation, i.e., a first population of individ-
uals, is generated by assigning tasks in a random order to randomly
selected team formations with corresponding agent sets. These assign-
ments are then adjusted to ensure that all intra-schedule PCs are satisfied.
Deadlocks are resolved as described in Section [ TT.4.3]

2. Creating Next Generation: A set of mutation operators is applied to
randomly selected individuals from the current generation. Although
these mutations preserve intra-schedule PCs, they may temporarily in-
troduce deadlocks, which are subsequently repaired.

3. Evaluation and Sorting: The new generation is evaluated using the
objective function (see Eq. and sorted accordingly. An elitism
strategy retains a small fraction of the best-performing individuals from
the previous generation, replacing the least fit individuals.



200 11.4. Solving the Scheduling Problem

Steps 2-3 are repeated until convergence is achieved. To enhance diversity,
four mutation operators are used. Task-to-Idle moves a task from one agent to
another with most surplus idle time, inserting it at a valid position. Team For-
mation changes a task’s team formation—retaining current agents if possible,
otherwise reassigning them. Task Insert transfers a task to a different agent
compatible with the team formation. 7ask Swap exchanges tasks between two
agents while potentially changing their team formations.

11.4.3 Deadlock Search and Repair

Deadlocks occur when agent schedules introduce cyclic dependencies that vi-
olate the acyclic structure of the task network. To eliminate these deadlocks
(see Algorithm [/|for detailed procedure), we employ a two-stage procedure.

Dependency Order (DO) Search: Starting from the initial task 7, the al-
gorithm recursively tries to determine a valid dependency order for all tasks,
from 7F to 7z, taking into account both PCs and agent schedules. This process
identifies lock-sets L;, which consist of tasks that cannot be scheduled until
task ¢’s dependency order is decided.

Detect and Repair Cycles: Starts with a DO search. If circular dependen-
cies are detected (i.e., some lock-sets remain unresolved), a repair step is in-
voked to identify a pair of tasks ¢ and x € L; that are assigned to the same
agent and lack a definitive ordering. Their order is swapped in the agent’s
schedule and if = is a multi-agent task, the order of x with a corresponding
task ¢’ in another agent’s schedule may also be swapped to avoid creating a
new cycle. The DO search is reinitiated and the process is rerun iteratively,
until no lock-sets remain and a valid dependency order is found.



Paper E 201

Algorithm 7 Detect and repair deadlocks

function DETECTANDREPAIRCYCLES
DO found «+ false

while = DO found do
fortcTdoL; + 0 > Reset lock sets
end for
for t € T'do D, + false > Reset DO flags
end for
d+0 > Reset number of ordered tasks
SEARCHDO(7F) > Search from the first task

if da,z,tlx =1 Nt =717 Ni<jAx € L Nz % t then
if 3 alternative such a, z, t combinations: a’, z’, ¢’ then
Select a, z, t|x % «’ for all combinations

end if
SWAPTASKORDER(a,x,t) > Remove cycle with agent a
for {a', 2/, t'|2' =z Nad £FaN({t<t'Vi=t)}do
SWAPTASKORDER(a’,z,t") > Avoid new cycle with o’

end for

else DO found < true > Done. No cycles in schedule

end if

end while

end function
function SEARCHDO(7)

D, < true > DO for 7 is decided
d+<—d+1
Dyg=1 > Store the dependency order of tasks

if 37,7 € PSP A-SAMEACTIVITY(7,,7) then
X = {t|t € PAPLUPPS UPP® UPPe UPPS A-Dy}

forte xdo L, < L;UT, > 7, is locked by ¢
end for
if Y = () then SEARCHDO(7,) > Search the unlocked 7,
end if

end if

if 37,7 € PSP U PSP UPPC ASAMEACTIVITY(7,,7) then
X = {t|t € PEPtUPPs UP3Ps UPPe UPPS A-D, }
forte xdoL; <+ L;UT; > 75 is locked by ¢
end for
if ¥ = () then SEARCHDO(7y) > Search the unlocked 7
end if
end if
fort € L, do
L.+ L\t > 7 no longer locks ¢
if ﬂx|t € L, then SEARCHDO(¢) > Search the unlocked ¢
end if
end for
end function




202

11.5. Evaluation

Table 11.2: Use case settings.

Usecase | #T | #R | #H || Use case | #T | #R | #H
1A 11 |2 1 1B 11 |3 2
2A 22 | 2 1 2B 22 | 3 2
3A 33 |2 1 3B 33 | 3 2
4A 44 | 2 1 4B 44 | 3 2
5A 55 |2 1 5B 55 |3 2

*(#T - no of tasks; #R - no of robots; #H - no of humans)

11.5 Evaluation

This section evaluates the proposed stochastic computation approach using
Monte Carlo simulations and a deterministic counterpart. It also compares
GRASP with two variants of the GA approach, for solving the scheduling
problem. The Python code used to obtain the results is available onlineﬂ

lhttps://github.com/andersflager/stochasticfscheduling

Algorithm 8 Deterministic makespan computation

function COMPUTEMAKESPAN
Sb %-();C% —0;2+0
while i < |T'| do

1+—1+1
T < I%

for a € F; do
t <~ AGENTPREVIOUSTASK(a,T)

S; = max(Cy + Rat.r, S:)

end for

for t € PSP* do S; = max(Cy, S;)

end for

for t € PP% do S; = max(Sy, S;)

end for

Ci=8;+Ars F.

for t € PP° do C; = max(Ct, C;)

end for

for ¢t € PP¢ do C; = max(St, C;)

end for
end while
return C)7|
end function

> Visit tasks in dependency order



https://github.com/anders-lager/stochastic-scheduling

203

Paper E

0.0625

KLD

KLD =0.4875
320

KLD = 0.8207

450 460 470

KLD = 0.6969

410 420 430 440

580

0.9237

[KLD

6
0.4

0.8

0.6 |-

0

1
0.8
0.6
0.4 |-

0.2 |-

%60

0.4 |
0.2

1A

KLD =0.0107

KLD =0.0448

C(mL)
- - - Deterministic

— Ke(rr)
— Ki(71)

--- Monte Carlo

0.5962

860

[KLD =04746] |
1140 1160

1120

0

1

0.8

0.6
0.4

(]

0.2

0.8

0.6
04|
0.2

4dD

4dd

0.4

(]

0.2}

1
8
0.6 -

0.
0.4 |
0.2

4dd

700 720 740 760 780
Makespan duration [s]

680

1100

1060 1080

Makespan duration [s]

Makespans of best schedules found.

Figure 11.2



204 11.5. Evaluation

1A 1B
e AR 320 B LA A
3401 & N 5 :
- \ {300} .
L ! B
2 320 Ay 7280; ]
S L i 1k ]
300[ 4 - 260[ .
[ ¥ e N 1 5 ]
= ) 1 [ 4 _|
280 Lol \HH‘\’T\AOT"\ \\\—\‘\'\T\P""\ T 240’ [TERTTIT R HH\ i
100 10t 102 103 104 10° 10t 10> 10% 10%
2A 2B
T T T T T T T T T T (ORI ALL) B SN B W R A R
800} = 15000
= [ | [
b
Se00f © % 400"
400 Lol vl el HHH 300 N 1 N THTY A B I W R TY 1| M B RAAT}
10° 10t 102 108 10% 10° 10! 102 10®  10%
3A 3B
12007\*\\\\\\ T TS L8 T T T 1T T T T T T T T O g T T T
L 1800
= 1000}
]
© o0 600
600 L] L] L] Ll v vl 0l
10! 102 103 10* 10° 10! 1‘(‘)]2; 103 104
1800:\ T T T T T T LTI T T T T Lzoof‘ T T T T T T T T T T TTT 7]
1600| : ' |
< 1400 1000 |- .
o) 5 [ B
QO 1200(- I .
Fet i 800 |- S
1000 Mi - = |
800 bl vl o STT® | 600 el o
10t 102 103 104 10 10t 102 103 104
5A 5B
— mean GA TTTTI T ] j\ T T T T HH‘(}‘JQ T T T ]
- best GA ( J400| T a
20001 mean GAW I NN
b7 o - best GAW A > 12001 ® |
Q mean GRASP % r 1
© 1500 - best GRASP “Hooo| ]
1000 b—ttii L L L L L RN -
102 103 104 10! 10? 103 104
Runtime [s] Runtime [s]

Figure 11.3: Convergence of scheduling algorithms.



Paper E 205

11.5.1 Numerical Results

Ten use cases, summarized in Table are set up with different numbers of
tasks and agents. Routing and task durations are modeled as uniform distribu-
tions with randomized intervals. While these data are simplified, the method-
ology supports a real-world scenario with unrestricted distributions modeled
from empirical data. All use cases are based on a process model exemplified
in Section [T1.2] For use cases 2A and 2B, each with 22 tasks, the constructed
task network is illustrated in Figure [IT.1] For larger problem instances, the in-
crease of tasks is accomplished by an increased length of the order list, which
expands the task network vertically. All tasks have 3 alternative team forma-
tions with different agent combinations: a single robot, a single human, or
a robot with a human supervisor. Assemble tasks have a 4th team formation
with a collaborating robot-human pair. Desired human idle time is 40%, and all
humans prefer Assemble activities in any team formation and the role of super-
visor for all activities except Fetch. In a real-world scenario, the methodology
enables different value selection strategies, e.g., from direct human input. The
selected risk value, & = 50, i.e., a medium risk in the objective Eq. (IT.TT).

MC simulations are used to validate the makespan computation approach
by representing the ground truth. An MC distribution is generated from
100 thousands of deterministic makespan computations, using Algorithm [§]
where input task and routing durations are randomized from their modeled
distributions. To account for PCs, Algorithm E] accumulates task and routing
durations in the dependency order identified by the deadlock Algorithm
Makespans for the best schedules found (with any algorithm) are illustrated
in Figure They include makespan bounds, completion durations for
critical paths, and MC distributions. The difference of the makespan bounds,
K;(7r) and K. (77.), is illustrated by the gray area between their CDFs and by
their Kullback-Leibler Divergence (KLD). Additionally, the graphs indicate
the makepan of a deterministic approach computed with Algorithm [§] using
median values of the modeled input task and routing durations.

The parameters of GRASP and GA were manually tuned to limit the con-
vergence time while providing good solutions. GRASP randomly selects a
combination from the 4 best heuristically ranked alternatives, with selection
probabilities 8/15, 4/15, 2/15, and 1/15 from the best to the fourth best. GA
uses a population of 200 with 5% elites, and each mutation type occurs with
a probability of 30%. The algorithms are run 20 times for each use case with
different seeds. Each run is limited to 270 minutes. A comparative analysis
of algorithmic convergence over time is presented in Figure[TT.3] It includes a
warm-started variant of GA, denoted GAW, whose initial generation is created



206 11.6. Conclusion

with GRASP solutions.

11.5.2 Evaluation discussion

The makespan graphs show the MC distribution being wedged between K;(77.)
and K, (7p) for all use cases, as expected from Theorem Consequently, the
usage of K. (7p) in the objective, Eq guarantees the makespan is never
underestimated for a schedule. Additionally, the usage of K;(7z,) for the esti-
mate of idle time quota, Eq.[I1.8] guarantees human idle time never is overes-
timated. The estimation accuracy, e.g., represented by the KLD value, depends
on the C(7p) distributions and their degree of mutual dependence. For these
examples, the accuracy has a variation among use cases without a clear corre-
lation with problem size. The deterministic approach tends to underestimate
the median makespan and generally suffers from the missing representation of
uncertainty. The fast convergence of GRASP compared to GA demonstrates
the efficiency of the proposed GRASP heuristics. The capacity of GRASP to
find good solutions faster is demonstrated in all use cases. The GAW approach
clearly benefits from the GRASP performance, with a convergence starting
from a more optimized population than GA. In general, GA is outperformed
by both GRASP and GAW. For the smallest use cases 1A and 1B, all algo-
rithms converge to the solutions of equal cost, but the actual plans are not
necessarily the same. GAW finds the best solutions for intermediate use cases
2 A through 4B, while GRASP finds the best solutions for 54 and 5B. On av-
erage, the difference between GRASP and GAW is generally small without a
clear advantage to either of them unless a really fast solution is needed, which
would make GRASP the better alternative.

11.6 Conclusion

In this paper, we presented a framework for scheduling in human-robot col-
laborative manufacturing environments. Our approach models the complex in-
terplay between stochastic task and routing durations, precedence constraints,
and human-centric factors such as ergonomic preferences and idle time re-
quirements. By formulating the scheduling problem as an optimization model
that accounts for uncertainty and potential deadlocks, we have established a
robust basis for effective multi-agent task allocation.

Our contributions demonstrate that the integration of stochastic model-
ing with human-centric scheduling can significantly enhance the reliability of
scheduling strategies in resilient manufacturing systems by producing realistic
plans. Future work will focus on extending the framework to support real-time



Paper E 207

scheduling adjustments and incorporating more detailed risk models, as well
as validating the approach in real-world industrial settings.

Overall, the proposed framework advances the state of the art in collab-
orative robotics by providing a scalable, adaptable solution to the challenges
inherent in human-robot manufacturing systems.



208

Bibliography

Bibliography

[1]

(2]

(3]

[4]

(5]

[6]

[7]

[8]

[9]

Luca Gualtieri, Ilaria Palomba, Erich J Wehrle, and Renato Vidoni. The
opportunities and challenges of sme manufacturing automation: safety
and ergonomics in human-robot collaboration. Industry 4.0 for SMEs:
Challenges, opportunities and requirements, pages 105-144, 2020.

Brian P Gerkey and Maja J Matari¢. A formal analysis and taxonomy
of task allocation in multi-robot systems. The Int. Journal of Robotics
Research, 23(9):939-954, 2004.

Andrew W Palmer, Andrew J Hill, and Steven J Scheding. Stochastic
collection and replenishment (SCAR): Objective functions. In IEEE/RSJ
Int. Conf. Intelligent Robots and Systems, pages 3324-3331, 2013.

Anders Lager, Branko Miloradovié, Giacomo Spampinato, Thomas
Nolte, and Alessandro V. Papadopoulos. Risk-aware planning of collab-
orative mobile robot applications with uncertain task durations. In /EEE
Int. Conf. Robot and Human Interactive Communication, pages 1191—
1198, 2024.

Michael Saint-Guillain, Tiago Vaquero, Steve Chien, Jagriti Agrawal,
and Jordan Abrahams. Probabilistic temporal networks with ordinary
distributions: Theory, robustness and expected utility. Journal of Artifi-
cial Intelligence Research, 71:1091-1136, 2021.

Shaobo Zhang, Yi Chen, Jun Zhang, and Yunyi Jia. Real-time adap-
tive assembly scheduling in human-multi-robot collaboration according
to human capability. In IEEE Int. Conf. Robotics & Automation, pages
3860-3866, 2020.

Shushman Choudhury, Jayesh K Gupta, Mykel J Kochenderfer, Dorsa
Sadigh, and Jeannette Bohg. Dynamic multi-robot task allocation under

uncertainty and temporal constraints. Autonomous Robots, 46(1):231-
247, 2022.

Stephen B Stancliff, John Dolan, and Ashitey Trebi-Ollennu. Planning
to fail: Reliability needs to be considered a priori in multirobot task allo-
cation. In IEEE Int. Conf. Systems, Man and Cybernetics, pages 2362—
2367, 2009.

Costanza Messeri, Gabriele Masotti, Andrea Maria Zanchettin, and Paolo
Rocco. Human-robot collaboration: Optimizing stress and productiv-



[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

ity based on game theory. I[EEE Robotics and Automation Letters,
6(4):8061-8068, 2021.

Yee Yeng Liau and Kwangyeol Ryu. Genetic algorithm-based task al-
location in multiple modes of human-robot collaboration systems with
two cobots. The Int. Journal of Advanced Manufacturing Technology,
119(11):7291-7309, 2022.

Michele Lombardi and Michela Milano. Optimal methods for resource
allocation and scheduling: a cross-disciplinary survey. Constraints, 2012.

Thomas A Feo, Mauricio GC Resende, and Stuart H Smith. A greedy ran-
domized adaptive search procedure for maximum independent set. Op-
erations Research, 42(5):860-878, 1994.

Branko Miloradovié, Baran Ciiriiklii, Mikael Ekstrom, and Alessan-
dro Vittorio Papadopoulos. GMP: A genetic mission planner for het-
erogeneous multirobot system applications. IEEE Transactions on Cy-
bernetics, 52(10), 2021.

Carlos Ocampo-Martinez et al. Energy efficiency in discrete-
manufacturing systems: Insights, trends, and control strategies. Journal
of Manufacturing Systems, 52:131-145, 2019.

Ernesto Nunes, Marie Manner, Hakim Mitiche, and Maria Gini. A taxon-
omy for task allocation problems with temporal and ordering constraints.
Robotics and Autonomous Systems, 90:55-70, 2017.

Branko Miloradovié¢, Mirgita Frasheri, Baran Ciiriiklii, Mikael Ekstrom,
and Alessandro Vittorio Papadopoulos. TAMER: Task allocation in
multi-robot systems through an entity-relationship model. In Int. Conf.
Principles and Practice of Multi-Agent Systems, pages 478-486, 2019.

G. Ayorkor Korsah, Anthony Stentz, and M. Bernardine Dias. A com-
prehensive taxonomy for multi-robot task allocation. The Int. Journal of
Robotics Research, 32(12):1495-1512, 2013.

Moshe Shaked and J. George Shanthikumar, editors. Univariate Stochas-
tic Orders, pages 3—79. Springer New York, 2007.

Branko Miloradovi¢, Baran Ciiriiklii, Mikael Ekstrom, and Alessandro V.
Papadopoulos. A genetic algorithm approach to multi-agent mission

planning problems. In Operations Research and Enterprise Systems,
pages 109-134, 2020.



210

Appendix

Definition 9 (Comonotonicity). Two random variables X and Y are said to
be comonotonic if there exists a common underlying random variable U and
two non-decreasing functions f and g such that:

X =fU) and Y =g(U),

For comonotonicity, there are a few relevant properties, including the fol-
lowing.
Joint Cumulative Distribution Function: The joint cumulative distribution
function of X and Y is given by:

Fxy(z,y) = min(Fx (), Fy (y)),

where F'x (x) and Fy (y) are the marginal cumulative distribution functions of
X and Y, respectively.

Copula: The copula of comonotonic random variables corresponds to the
Fréchet—Hoeffding upper bound.:

C(u,v) = min(u,v), foru,v € [0,1].

Maximum Positive Dependence: Comonotonicity represents the strongest
form of positive dependence:

* The rank correlation (Spearman’s p) and linear correlation (p) are max-
imal.

* The conditional distribution of Y given X = x is deterministic.

Theorem 2 (Stochastic Dominance of Maxima). Let X and Y be nonnega-
tive random variables (not necessarily identically distributed) with continuous
cumulative distribution functions (CDFs) Fx and Fy, respectively. Consider
three random vectors (Xing, Yina), (Xcom, Yeom), and (Xgep, Yaep) such that:

1. Xipg ~ X, Yipg ~ Y, and X4 and Ying are independent.
2. (Xcoms Yeom) is a comonotone coupling of X and Y .

3. (Xdep, Yaep) is any other positively dependent coupling of X and'Y with
copula Cgep satisfying Yu,v € [0,1]:



Paper E 211

Cina(u,v) = uv < Cgep(u,v) < min(u,v) = Ceom(u, v).

Let us define the maxima Ziyy = max(Xind, Yina),
Leom = maX(me, Ycom), and Zdep = maX(Xdep’ Y;iep)-
Then the following stochastic order holds:

Zcom Zst Zdep <st ZLind,
which means that for all z > 0:
P(Zing > 2) > P(Zaep > 2) > P(Zeom > 2).
Proof. Independent case:
P(Zina < 2) = P(Xing < 2, Yina < 2).
Since Xjnq and Yiyq are independent:
Fz .(2) = Fx(2)Fy(z).
Comonotonic case:
P(Zeom < 2) = P(F{NU) < 2, F 1 (U) < 2).
Since F,*(U) < 2z <= U < Fx(z) and similarly for Y, it follows that:
Fz .. (2) = min(Fx(z), Fy(2)).
Positively Dependent case: For any positively dependent coupling:
FZdep(Z) = Caep(Fx (2), Fy (2)).
Given the bounds on the copula:
Fx (2)Fy (2) < Caep(Fx (2), Fy (2)) < min(Fx (z2), Fy (2)).
Therefore, we conclude that:
Fz.4(2) < Fzy (2) < Fz,,(2),
which implies:

P(Zing > z) > P(Zaep > 2) > P(Zeom > 2),Y2 > 0.



	Thesis
	Introduction
	Overview of Thesis
	Background and Motivation
	Research Challenge

	Research Context
	Task Representations
	Task Planning
	Multi Robot Task Allocation
	Collaborative Robot Applications
	Uncertainties in Robot Applications
	Reactive Task Planning
	Proactive Task Planning

	Research Questions
	Research Process and Methods
	Research Process
	Research Methods

	Thesis Contributions
	Contributions
	Included Papers
	Other Publications

	Conclusions and Future Work
	Summary of Contribution
	Future Work


	Included Papers
	
	Introduction
	Related work
	RTSG Modelling formalism
	Conversion from RTSG to MILP
	Conversion from RTSG to PDDL
	Results
	Conclusion and future work

	
	Introduction
	Related work
	Task modelling formalism and scheduling problem formulation
	MILP representation
	PDDL representation
	Task Roadmaps
	Results
	Conclusion and future work

	
	Introduction
	Related work
	Problem description and assumptions
	Problem formulation
	Heuristic approach
	Experiments
	Conclusion

	
	Introduction
	Related work
	Modeling the planning problem
	Planning methodology
	Evaluation
	Conclusion

	
	Introduction
	Motivating Example
	Defining the Scheduling Problem
	Solving the Scheduling Problem
	Evaluation
	Conclusion
	Appendix



